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Although use-wear analysis of prehistoric stone tools using conventional microscopy has 
proven useful to archaeologists interested in tool function, critics have questioned the 
reliability and repeatability of the method. The research presented here shows it is possible to 
quantitatively discriminate between various contact materials (e.g., wood, antler) using laser 
scanning confocal microscopy in conjunction with conventional edge damage data. 
Experiments with replica and prehistoric tools suggest the quantitative method presented here 
provides valid functional inferences and is flexible enough to accommodate other relevant 
sources of data on tool function.  
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1. Introduction 

 For several decades, archaeologists have had an uneasy relationship with lithic use-wear 

analysis. While the data it provides are useful, the subjectivity of the method, which often relies 

more on experience and expertise than explicit criteria, has left many archaeologists wary. This 

problem has been addressed in two ways: 1) blind tests to explore accuracy and interobserver 

error (Bamforth, 1988; Newcomer, et al., 1986; Odell and Odell-Vereecken, 1980), and 2) 

attempts at quantification (Evans and Donahue, 2008; Gonzalez-Urquijo and Ibanez-Estevez, 

2003; reviewed in Grace, 1996; Keeley, 1980; Kimball, et al., 1995; Stemp and Stemp, 2001; 

Stemp and Stemp, 2003; Van den Dries, 1998). Similar issues and solutions have developed in 

parallel among researchers studying dental microwear in primates (Scott, et al., 2006).  

 Laser scanning confocal microscopy (LSCM) is a promising method for use-wear 

analysis because it produces 3-dimensional point data that can be presented either as a high-

resolution image (Figure 1), or as quantitative data (Evans and Donahue, 2008). Making use-

wear analysis quantitative rather than qualitative will not only make the process of producing 

functional inferences more explicit, it will also provide a basis for further methodological 

improvements. Tests using both human analysts and quantitative classification (i.e., “machine 

learning” in the language of artificial intelligence, see Alpaydin, 2004) can be used to explore the 

relevant variables affecting the accuracy of the method including experience (Bamforth, et al., 

1990), materials (Bradley and Clayton, 1987; Lerner, et al., 2007), use duration (Bamforth, 1988; 

Goodale, et al., 2010), and post-depositional processes (Burroni, et al., 2002; Evans and 

Donahue, 2005; Levi Sala, 1986).  



 

 

 If different contact materials have distinctive quantitative signatures, then it should be 

possible to represent use-wear data in the form of probability statements that report not only how 

a tool was used, but also provide information about the certainty of the attribution, something 

that has not been possible using traditional methods. Additionally, if the results of human and 

machine use-wear experts converge for both replica and archaeological datasets, then many 

previous use-wear studies using conventional methods can be validated.  

 

2. Background 

 Blind tests typically involve analysts trading replica tools to test their ability to identify: 

1) which tools or tool edges were used, 2) the tool motions employed, and 3) the contact 

materials on which tools were used. While such tests have generally produced satisfactory 

results, some high-profile published tests with poor results (e.g., Newcomer, et al., 1986) led 

many archaeologists to doubt the efficacy of use-wear analysis.  

 A common misunderstanding of use-wear studies is that there is one “correct” answer 

and that anything less is not useful. In fact, the specificity of functional data needed depends on 

the archaeological question. In some cases, it may be enough to know simply which items are 

tools and which are waste flakes. In other cases, knowing whether tools were used on hard or 

soft substances may suffice. In still other cases, it may be desirable to know specifically the 

numbers of tools used to cut meat, or scrape wood. 

 Independent of the desired specificity of functional data are a number of factors largely 

beyond the control of the analyst that affect the quality of the data including raw material type, 

post-depositional alteration, available equipment, and others. The problem is that it is difficult to 

convey information about how certain an analyst is in a particular identification. It is also unclear 

when this lack of certainty should lead to less specific attributions (e.g., “indeterminate hard 

material”) or an admission by the analyst that the contact material is unknown. This problem is 

analogous to that of faunal analysts deciding when to identify material to the species, genus, or 

higher taxonomic levels owing to fragmentation, expertise, and other factors (e.g., Gobalet, 

2001). These issues can create real differences in how use-wear data are produced by different 

analysts and interpreted by the archaeological community. 

 Blind tests of both the “high-power” and “low-power” use-wear approaches (see Odell 

and Odell-Vereecken, 1980) have shown that accuracy varies predictably with level of 



 

 

specificity (Bamforth, 1988). Accuracy is quite high (ca. 70-90%) if only the presence or 

absence of use wear is examined. Accuracy is lower (ca. 60-75%) when discriminating between 

general contact material classes (e.g., hard vs. soft), and lower still (ca. 20-70%) for specific 

contact materials (e.g., antler, meat). Low power methods, in particular, have reduced success at 

discriminating specific contact materials but do well at discriminating general material classes. 

(Odell and Odell-Vereecken, 1980). 

 Conventional use-wear studies have shown that identification of specific contact 

materials can be improved by combining more than one type of data such as polish appearance at 

high magnification in addition to edge damage at low magnification (Bamforth, 1988; Keeley, 

1980). This approach was explicitly implemented by Grace (1989) and Van Den Dries (1998), 

who used a combination of polish and edge damage variables obtained by conventional 

microscopy in the construction of expert systems designed to identify tool functions. More 

recently, studies using sophisticated instrumentation including atomic force microscopy 

(Kimball, et al., 1995), laser profilometry (Stemp and Stemp, 2001), and LSCM (Evans and 

Donahue, 2008) have demonstrated quantitative differences between different polish classes, but 

have used only single descriptors (e.g., Rq, or root mean square roughness) and have not 

incorporated other sources of data on tool function such as edge damage. Our aim was to 

combine quantitative data on use-wear polishes (acquired at magnification equivalent to 1000X, 

using the LSCM) with qualitative data on edge damage (observed at 20X-100X, using a 

stereomicroscope) to arrive at a multivariate approach to classification incorporating the best 

attributes of each. 

 This was accomplished by following the lead of researchers working in the fields of 

artificial intelligence, pattern recognition, and machine learning, who have advocated an 

approach to classification where the results of multiple classifiers are combined (e.g., 

discriminant analysis or decision trees), each with particular strengths, weaknesses, and input 

data, yielding a more reliable classification (Alexandre, 2001; Ho, et al., 1994; Lam, 2000; 

Rahman and Fairhurst, 2003). 

 

 

 

 



 

 

3. Methods 

3.1 Analysis Procedure 

 The identification of unknown tool polishes was treated as a classification problem 

employing a training set of known classes, and a test set of unknown classes. In the field of 

machine learning, this is known as supervised learning (Clarke, et al., 2009; Liu, 2007). The 

training set “trains” a classifier (e.g., a discriminant function) using correctly classified objects. 

Subsequently, the test set is introduced to the classifier which assigns class membership based on 

the parameters of the training set. In this case, each data point is a tool or tool edge and the 

classes are contact materials (e.g., wood, antler). 

 The general analysis procedure consisted of collecting two types of data for each tool or 

tool edge: (1) quantitative polish data acquired using the LSCM, and (2) qualitative edge damage 

data acquired using a conventional stereomicroscope. Training set data from each was then input 

into a relevant classifier (i.e., discriminant analysis or decision tree).  

 Subsequently, test set data of each type was input into the classifiers and probabilities of 

class membership were calculated. Then, probabilities from each classification method were 

combined and the class with the highest resulting probability was assigned. A graphical 

representation of the data acquisition and classification process is presented in Figure 2. 

 

3.2 Training and Test Data Sets 

 The polish data training set comprised 36 replica tools consisting of unmodified flakes 

used to work five different materials: antler, wood, soft plants, dry hide, and meat. Six tools were 

used to work each contact material for 30 minutes and an additional six tools were left 

unmodified. All replica tools for the polish data training set were of Monterey chert, a high-

quality toolstone common along the California coast. Contact materials were chosen to 

encompass the range of variability present in materials worked by prehistoric peoples in the 

region. Antler and bone are generally agreed to be indistinguishable (Vaughan, 1985), so polish 

from scraping mule deer (Odocoileus hemionus) antler was used as a proxy for both. Wood 

polish was produced by scraping seasoned manzanita (Arctostaphylos sp.), a common California 

hardwood used ethnographically for digging sticks, projectile tips, and other implements. Soft 

plant polish was produced by slicing tule (Scirpus californicus) stalks. Dry hide polish was 

produced by scraping the membrane side of naturally tanned undyed cowhide. Meat polish was 



 

 

produced by cutting raw pork shoulder while avoiding contact with bone or the cutting board. 

Because edge damage data were easier and less expensive to acquire, they were also more 

plentiful. The edge damage data training set included all of the replica tools from the polish data 

training set and an additional 12 replica tools, for a total of 8 tools per contact material. 

 All replica tools were cleaned with a soft brush in soap and water then soaked in 5% 

HCL solution for 1 hour. Archaeological tools were cleaned with soap and water, but no acid 

bath was used to preserve tool surfaces for future residue studies. While it is possible this 

difference in cleaning techniques affected the outcome of the experiment, the effects of many 

factors affecting prehistoric tools, such as post-depositional processes, are also largely unknown. 

The effects of all such factors become part of the error in classification, something which could 

be theoretically studied empirically and controlled, but which is beyond the scope of this study. 

All replica and archaeological tools were also cleaned of finger oils and other extraneous 

substances by swabbing tool edges with alcohol prior to imaging. 

 Two separate test sets were employed. First, a group of replica tools (the “replica test 

set”) including a subset of the training sample was examined using both conventional and 

quantitative methodologies. The aim of this test was to evaluate the performance of the 

quantitative classification procedure. A total of 20 replica tools was examined by two analysts 

using a stereomicroscope with fiber optic illuminator under magnifications ranging from 20X to 

140X. Analyst “A” was the primary author (N.S.) and analyst “B” was Nicholas Hanten, both of 

UC Davis. The test was a blind test in that each analyst made 10 tools which were traded with 

the other analyst who was unaware of their uses. Because most of the blind test replica tools 

were also used for training classifiers, these samples were iteratively held out from the training 

set when calculating probabilities and assigning replica class membership so as not to bias the 

classification procedure. 

 The second test set (the “archaeological test set”) comprised 16 prehistoric Monterey 

chert tools from CA-SBA-246, an Early Holocene (ca. 9200-8800 calBP) archaeological site on 

the central California coast (Lebow, et al., 2001). One edge of each of these tools was imaged 

except for tool 1616-1, of which two edges were imaged. Additionally, the unused interior 

portions of three tools were imaged, for a total of 20 test cases. A previous “low-power” use-

wear analysis had been performed by the second author, permitting a comparison of the analyst 

calls to those produced by the quantitative analysis.  



 

 

 

3.3 Polish Data 

 Quantitative polish data were generated by imaging tool edges with the LSCM and then 

processing the images to extract three-dimensional surface characterizations. Imaging of samples 

was performed at the NEAT ORU Spectral Imaging Facility, University of California, Davis, 

using an Olympus FluoView FV1000 laser scanning confocal microscope with 405 nm laser 

diode and 40X (NA 0.6) objective. Each image had a field of view of 158 µm2 and was acquired 

at a digital resolution of 0.155 µm/pixel with the confocal aperture set at 100 µm and the z-step 

interval at 1 µm. While the FV1000 is generally used for fluorescence microscopy, for this 

application, it was maximized to acquire reflected light in the region of the laser wavelength 

(400-410 nm). 

 All image processing and surface characterization was performed using ImageJ software 

(Abramoff, et al., 2004) and relevant plugin modules. Each tool image stack was first 

transformed into a single grayscale topographic image with pixel intensity corresponding to 

height using the TopoJ plugin (Hovis, 2009). Fifteen 10 um2 areas within each image were 

sampled and descriptive statistics characterizing tool surfaces were calculated using the plugins 

SurfChar (Chinga, et al., 2007) and FracLac (Karperien, et al., 2008). 

 After confocal image data were converted to quantitative data, further statistical analyses 

were performed in JMP (SAS Institute, 2007). Principal components analysis, bivariate 

comparisons, and stepwise discriminant analysis were used to identify correlated variables that 

would be redundant for classification. SurfChar and FracLac both calculate a variety of statistics, 

many of which are useful (e.g., Evans and Donahue, 2008 successfully use Rq). Ultimately, the 

choice of specific variables used for classification is somewhat arbitrary as many combinations 

of three or more produce satisfactory results. Adding too many variables, however, can result in 

“overfitting” the data, resulting in classifications that are not widely applicable outside the 

training sample.  

 The three variables chosen were a compromise between avoiding multiple correlated 

variables, avoiding overfitting, and ability to discriminate material classes. Of 11 variables 

initially considered for classification using discriminant analysis, three were found to be 

particularly useful for discriminating different contact materials: Mean resultant vector (MRV), 

surface area (SA), and fractal dimension (Df). A canonical biplot with all 11 variables (Figure 3) 



 

 

shows that many variables are highly correlated and that those with the most influence on the 

discriminant analysis are MRV, SA, and Df. Rq is also useful for discrimination but is highly 

correlated with SA (R2 = .96), so only the later was used.  

 Mean resultant vector is a measure of the central tendency of facet orientation angles 

(Chinga, et al., 2007; Curray, 1956; compare to anistropy in Scott, et al., 2005). The measure is 

scaled to a range of 0 to 1 so that a score of 0 would signify a random distribution of orientations 

(e.g., a natural, unused chert surface) while a score of 1 would signify all facets oriented in the 

same direction (e.g., due to abrasive wear). Surface area is a measure of surface complexity in 

that a more convoluted surface will have a larger surface area while a flat or polished surface 

will have a smaller surface area. Fractal dimension is a measure of how patterned details change 

with scale (see also  Stemp and Stemp, 2001; Stemp and Stemp, 2003; Ungar, et al., 2003). Its 

value for classification likely relates to the observation that certain aspects of use-wear are 

apparent at smaller scales while others require a large-scale overview (Vaughan, 1985).  

 Polish data were classified by employing a discriminant analysis of the above-specified 

variables (MRV, SA, and Df) of the training set. An examination of the canonical plot (Figure 4) 

shows that polish from different contact materials plots in different regions, a necessary 

condition for proper discrimination. However, it is also apparent that some polish types overlap 

considerably; in particular, antler/plants and wood/hide. This suggests that if classification relied 

only on polish variables, tools used on antler would often be mistakenly classified as used on 

plants (and likewise with hide and wood). In both of these ambiguous cases, one material is hard 

(antler and wood), and one is soft (plants and hide), meaning if some other classifier could 

differentiate between hard and soft material classes, then classification accuracy could be 

improved. This was the role of edge damage data. 

 

3.4 Edge Damage Data 

 Lithic use-wear analysts have proposed a variety of methods for describing edge damage 

ranging from simple presence/absence of attributes (e.g., flake scars) to detailed quantification of 

flake removal types and locations (Akoshima, 1987; Bird, et al., 2007; Grace, 1989; Tringham, et 

al., 1974). Types and locations of edge damage have previously been shown to provide 

information about the types of materials worked as well as the tool motions employed although 

analysts concentrating on polish characteristics have tended to use edge damage as 



 

 

supplementary data for assigning tool function (Odell and Odell-Vereecken, 1980). Given that 

the aim of this study was to concentrate on variables that aid in assigning contact materials and 

not tool motions, a limited number of attributes that have been previously shown to help in 

discriminating contact material types (see Grace, 1989; Keeley, 1980; Odell and Odell-

Vereecken, 1980; Vaughan, 1985) were recorded using a stereomicroscope at magnifications 

from 25X to 100X. These included the presence or absence of snap fractures, microflakes, step 

fractures, and the degree of edge rounding. 

 This list of edge damage variables was reduced to two simple presence/absence values 

for use in decision tree analysis: step fractures and edge rounding. Use-wear analysts have 

repeatedly shown that step fractures are indicative of working hard materials (Akoshima, 1987; 

Grace, 1989) while edge rounding is an attribute of hide working (Vaughan, 1985). The decision 

tree (Figure 5) confirms these findings, suggesting the presence of step fractures easily 

distinguishes hard (antler, wood) from soft contact materials (meat, hide, and plants) and that the 

presence of edge rounding on tools without step fractures is a good indicator of hide working.  

 

3.5 Classifier Combination 

 As detailed above (sections 3.1-3.4), two types of data (polish data and edge damage 

data) and two classifiers (discriminant analysis and decision tree) were used in the analysis. 

When new data of unknown class assignment (i.e., test set data) are input into either classifier, 

probabilities of assignment to each contact material class are output. This is represented by: 

 

( )xcpp ijij =  
 

or, pij is the probability that an object with measurable characteristics x belongs to class i, using 

classifier j.  

 Classifier combination proceeded according to the method outlined by Alexandre (2001) 

where the probabilities of class assignment obtained by each classifier (i.e., discriminant analysis 

and decision tree) are averaged for each class, or,  
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where pi is the average over classifiers 1, 2, … N of the probabilities for class i. In this case, 

there are two classifiers and six possible classes. The decision rule used to assign class 

membership is simply: assign the observation x to the class i* with the highest average 

probability pi.  

 

4. Results 

4.1 Replica Test Set Results 

 The conventional analysts correctly identified specific contact materials in 65% of the 

cases (Table 1), better than average for similar “low-power” blind tests (e.g., Odell and Odell-

Vereecken, 1980). This is probably due to the limited number of possible contact materials and 

restricted tool motions employed. By comparison, quantitative classification performed nearly as 

well (Tables 1 and 2), correctly assigning tools to specific contact materials in 60% of the cases. 

The probability of obtaining this result by chance is less than .01 (cumulative binomial 

probability n=20, p=.17; b(x≥12)=0.000015 where n=number of trials, p=probability of success 

in a single trial, b=binomial probability, and x= total number of successes). 

 As expected, the combination of two classifiers (i.e., discriminant analysis and decision 

tree) performed better (60%) than either classifier in isolation (each at 40% correct). It is 

interesting to note that correct assignments were twice as common when associated probabilities 

were above 0.5 (n=8 correct, n=4 incorrect), whereas incorrect answers were equally common 

above and below the 0.5 level. Of the incorrect answers with probabilities below 0.5, however, 

all but one were correct at the level of general material class (i.e., “hard,” “soft,” or “unused”). 

Of the misclassified artifacts, in all but one case, the second highest probability is the correct 

answer (see Table 2).  

  

4.2 Archaeological Test Set Results 

 In consideration of the results of the replica test set, for prehistoric tools, probabilities of 

less than 0.5 were reported only at the level of general material class (Table 2). Specific contact 

materials associated with each probability are also provided in the table for comparison.  

 Given that the conventional use-wear analysis of the CA-SBA-246 collection was a “low-

power” analysis conducted with a stereomicroscope at magnifications between 20X and 90X, 



 

 

specific contact materials were often collapsed into more general material classes (Lebow, et al., 

2001). This fact is likely to have contributed to the good agreement (60%) between the 

conventional analyst and the quantitative classification. Nevertheless, the correspondence is still 

better than would be expected by chance and is surprisingly reliable for an initial test 

(Krippendorff's Alpha = 0.51 (Krippendorff, 2004)). Overall, maximum probabilities were lower 

(mean = 0.47) when compared to the blind test using replica tools (mean = 0.54).  

 

5. Discussion and Conclusions 

 Overall, the results of this study suggest quantitative use-wear analysis of stone tools is a 

promising analytical technique. The method presented here performed nearly as well as 

conventional analysts and much better than would be expected by chance at the most difficult 

task of use-wear analysts, that of identifying specific contact materials. Perhaps more important 

is the fact that use-wear assignments are given in the form of explicit probability statements, 

making it easier to evaluate their accuracy.  

 The replica test set results show that quantitative classification of use-wear using multiple 

classifiers is nearly as effective as conventional analysts at identifying specific contact materials 

given the materials and protocols of this initial comparison. Furthermore, the replica results 

confirm that new methods of surface characterization such as LSCM can be augmented by the 

addition of conventional edge damage data. The fact that correct classifications are more likely 

to have higher associated probabilities suggests the probability statements produced by the 

classification procedure provide useful information that can be used to fine-tune the analysis. It 

is also interesting that the conventional analysts and the quantitative classification did not 

necessarily make the same mistakes, suggesting it may be possible to isolate which types of use-

wear are best suited to human analysts and which can be better identified by quantitative 

methods.  

 The archaeological test set results are more difficult to evaluate because the true uses of 

the tools are unknown. The fact that the correspondence between the classifications of the 

conventional analyst and the quantitative method is greater than would be expected by chance, 

however, suggests human and machine analysts may “see” similar patterns in the data despite 

different methods of acquisition and processing. The fact that maximum probabilities were lower 

when compared to the blind test using replica tools, suggests additional sources of variability, 



 

 

such as postdepositional alteration, use of tools on multiple substances, or a wider variety of tool 

use intensity, duration, or contact materials, are present among the prehistoric tools that were not 

captured by the training set.  

 The use of LSCM to produce 3-dimensional surface data is certainly an advance in 

imaging and identification of use-wear polishes, but it should not be forgotten that additional 

sources of data obtained through more conventional means are still a valuable component for 

understanding tool function. In this case, if LSCM data alone were used to classify artifacts, 

many misidentifications would have resulted due to overlapping characteristics of certain 

polishes such as antler and plants (see Figure 4 and Table 1). The addition of edge damage data 

improved classification performance from 40% correct to 60% correct (see Table 1).  

 As instruments like LSCM become more available to the archaeological community, the 

temptation will be to replace existing traditional (i.e., user-generated) analytical methods with 

automated ones. However, a good case can be made for incorporating many types of information 

in making use-wear identifications, rather than relying on the appearance of polish alone. This 

was a lesson learned previously by use-wear analysts using conventional microscopy (Bamforth, 

1988). The use of multiple classifiers allows for the incorporation of a variety of quantitative 

data obtained through a diversity of methods and, potentially, can maximize the contribution of 

each method. Given certain conditions, two (or more) classifiers should work better than one 

because each classifier uses different input data and each operates in different regions of the 

feature space. In other words, each classifier will tend to be wrong in different ways, so that 

when combined, the best attributes of each method can be emphasized (Cunningham, et al., 

2008).  

 Although it is possible to imagine using a similar methodology to produce a completely 

machine-driven classification procedure, that was not the goal of this study. Instead, we see a 

real opportunity to integrate data generated by new imaging technologies such as LSCM as well 

as data generated by conventional microscopic examination and an understanding of fracture 

mechanics; in other words, human expertise. While many additional variables can easily be 

recorded and more elaborate classification procedures implemented, the plausibility of any 

answer must still be evaluated by an experienced lithic analyst who can incorporate information 

such as site context that is difficult to quantify. 



 

 

 Quantitative classification could also be incorporated as part of the larger analysis 

procedure according to the availability and expertise of human analysts. Certain features that 

require little training to identify (e.g., presence/absence of step fractures) could be cataloged by 

less experienced analysts while machine classification could be used to perform the more 

mundane identifications while, at the same time, identifying those artifacts that are best 

examined and interpreted by a human expert.  

 For this initial test, we limited the scope of potential use-wear identifications to a specific 

set of contact materials and also attempted to include the smallest number of relevant variables 

and use simple classification procedures. Future applications of quantitative methods to use-wear 

analysis could incorporate more variables and likely result in more accurate classifications and 

the ability to discern how a tool was used (e.g., tool motions) in addition to reporting possible 

contact materials. Truly machine-driven automatic classification of lithic tools is also a future 

possibility, but for the time being, human experts are an integral part of the process. 
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Figures 
 
Fig. 1. LSCM images of tool edges. a: unused replica, b: replica used for scraping wood, c: 
replica used for cutting soft plants, d: prehistoric tool (981-3) classified as used on hard material 
(wood), e: 3D projection of replica tool depicted in c.  
 
Fig. 2. Flowchart illustrating quantitative classification process. Probabilities from each classifier 
are marked Pij, Pij’ …etc. C = combiner rule (e.g., arithmetic mean), Pi = combined probabilities, 
D = decision rule (e.g., assign to class with largest Pi). 
 
Fig. 3. Discriminant analysis canonical plot of polish data training set using all 11 variables 
considered. Rays represent the direction of the variables in the canonical space. Circles represent 
95% confidence limits. Rq: root mean square deviation, Rku: kurtosis, Rsk: skewness, FPO: 
mean polar facet orientation, MFOV: variation of the polar facet orientation, FAD: direction of 
azimuthal facets, MRV: mean resultant vector, SA: surface area (Chinga, et al., 2007), Df: fractal 
dimension, LAC: lacunarity, PLAC: prefactor lacunarity (Karperien, et al., 2008). 
 
Fig. 4. Discriminant analysis canonical plot of polish data training set using MRV, SA, and Df. 
Circles represent 95% confidence limits. 
 
Fig. 5. Decision tree of edge damage training set using presence/absence of step fractures and 
edge rounding to partition hard materials from soft materials and hide from other soft materials. 
 
 
Tables 
 
1. Replica test set results. Results in bold are correctly classified artifacts. The “Analyst” column 
reports blind test results using conventional microscopy; “a” = Analyst A, “b” = Analyst B. 
Quantitative classifications are reported in the following three columns with the last column 
containing maximum probabilities of combined classification.  
 
2. Replica test set results with combined probabilities to all contact materials. Boxed numbers in 
bold are maximum probabilities. “Pred Material” column reports combined quantitative 
classification with contact materials in bold matching actual uses. 
 
3. Archaeological test set results. “Pred Material” column reports combined quantitative 
classification. Boxed numbers in bold are maximum probabilities while contact materials in bold 
are consistent with those of the conventional analyst. *1616-1a is considered plausible, but is not 
included in calculations of the success of this method. 
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Artifact Actual Analyst Edge D. Only Polish Only Combined Probability 
3 unused unusedb meat unused unused 0.66 
7 unused unusedb meat unused unused 0.66 

104 hide hideb hide wood hide 0.49 
118 wood hideb unused hide hide 0.28 
119 meat meatb unused unused unused 0.67 
121 hide antlerb hide plants plants 0.40 
123 antler antlerb antler plants antler 0.41 
124 plants plantsb hide antler hide 0.41 
126 antler woodb antler antler antler 0.69 
127 hide meata hide wood hide 0.41 
128 unused unuseda meat unused unused 0.66 
129 antler antlera wood antler antler 0.61 
130 meat wooda unused meat meat 0.65 
131 antler antlera antler antler antler 0.65 
132 wood wooda antler plants antler 0.46 
133 wood plantsa hide hide hide 0.62 
134 unused unuseda meat meat meat 0.67 
135 hide hidea hide wood hide 0.50 
136 wood hidea hide wood hide 0.54 
137 wood woodb antler hide wood 0.35 

Correct   65% 40% 40% 60%   
 

 
Table 1. 
 



 

 

 

Artifact P[Antler] P[Hide] P[Meat] P[Plants] P[Unused] P[Wood] 
Pred 

Material Actual 
3 0.00 0.00 0.18 0.14 0.66 0.02 unused unused 
7 0.00 0.00 0.18 0.14 0.66 0.02 unused unused 

104 0.00 0.49 0.01 0.05 0.00 0.45 hide hide 
118 0.00 0.28 0.18 0.14 0.18 0.22 hide wood 
119 0.00 0.00 0.17 0.14 0.67 0.02 unused meat 
121 0.07 0.37 0.00 0.40 0.00 0.15 plants hide 
123 0.41 0.04 0.00 0.22 0.00 0.33 antler antler 
124 0.34 0.41 0.00 0.11 0.00 0.14 hide plants 
126 0.69 0.00 0.00 0.11 0.00 0.20 antler antler 
127 0.08 0.41 0.00 0.21 0.00 0.29 hide hide 
128 0.00 0.00 0.18 0.14 0.66 0.02 unused unused 
129 0.61 0.00 0.00 0.20 0.00 0.19 antler antler 
130 0.00 0.00 0.65 0.14 0.18 0.02 meat meat 
131 0.65 0.00 0.00 0.16 0.00 0.19 antler antler 
132 0.46 0.03 0.00 0.25 0.00 0.27 antler wood 
133 0.02 0.62 0.00 0.15 0.00 0.22 hide wood 
134 0.00 0.00 0.67 0.14 0.17 0.02 meat unused 
135 0.00 0.50 0.08 0.05 0.00 0.37 hide hide 
136 0.00 0.54 0.00 0.06 0.00 0.39 hide wood 
137 0.32 0.25 0.00 0.09 0.00 0.35 wood wood 

 
Table 2. 
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