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Chapter 1

Introduction

1.1 What is GPUMD?

GPUMD stands for Graphics Processing Units Molecular Dynamics. It is a new molec-
ular dynamics (MD) code fully implemented on graphics processing units (GPUs). It was
firstly used for heat transport simulations only but we are now making it more and more
general.

1.2 Citations

If you use GPUMD in your published work, we kindly ask you to cite the following paper
which describes the central algorithms used in GPUMD:

• Zheyong Fan, Wei Chen, Ville Vierimaa, and Ari Harju. Efficient molecular dynam-
ics simulations with many-body potentials on graphics processing units. Computer
Physics Communications, 218:10-16, 2017.

If your work involves using heat current and virial stress formulas as implemented in
GPUMD, the following paper can be cited:

• Zheyong Fan, Luiz Felipe C. Pereira, Hui-Qiong Wang, Jin-Cheng Zheng, Davide
Donadio, and Ari Harju. Force and heat current formulas for many-body poten-
tials in molecular dynamics simulations with applications to thermal conductivity
calculations. Phys. Rev. B, 92:094301, Sep 2015.

You can cite the following paper if you use GPUMD to study heat transport using
the in-out decomposition for 2D materials and/or the spectral decomposition method as
described in it:

• Zheyong Fan, Luiz Felipe C. Pereira, Petri Hirvonen, Mikko M. Ervasti, Ken R.
Elder, Davide Donadio, Tapio Ala-Nissila, and Ari Harju. Thermal conductivity
decomposition in two-dimensional materials: Application to graphene. Phys. Rev.
B, 95:144309, Apr 2017.
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1.3 Feedbacks

You can e-mail the first author if you find errors in the manual or bugs in the source
code, or have any suggestions/questions about the manual and code. The following email
addresses can be used:

• zheyong.fan(at)aalto.fi (valid at least up to the end of 2019)

• brucenju(at)gmail.com

• zheyongfan(at)163.com

1.4 Acknowledgments

We acknowledge the computational resources provided by Aalto Science-IT project and
Finland’s IT Center for Science (CSC). We also thank the great help from the CUDA
experts from NVIDIA and CSC during the GPU hackathon (13-09-2016 to 16-09-2016)
organized by Sebastian von Alfthan.
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Chapter 2

Features of GPUMD

2.1 GPU-accelerated force evaluation for many-body

potentials

One of the major features of GPUMD is that force evaluation for many-body poten-
tials has been significantly accelerated by using GPUs. Our efficient and flexible GPU-
implementation of the force evaluation for many-body potentials relies on a set of simple
expressions for force, virial stress, and heat current derived in Ref. [8]. Detailed algo-
rithms for the efficient CUDA-implementation have been presented in Ref. [6].

Using the methods as described in Refs. [8, 6], we have implemented various many-
body potentials in GPUMD, including:

• The EAM-type potential with some analytical forms [32, 3].

• The Tersoff (1989) potential with single or double atom types [27].

• The Stillinger-Weber (1985) potential [25].

More many-body potentials will be implemented in GPUMD in future versions.

2.2 Utilities for heat transport simulations

Apart from being highly efficient, another unique feature of GPUMD is that it has use-
ful utilities to study heat transport. The current version of GPUMD can calculate the
following quantities related to heat transport:

• It can calculate the phonon density of states (DOS) from the velocity autocorrelation
function (VAC), using the method of Dickey and Paskin [5].

• It can calculate the equilibrium heat current auto-correlation (HAC), whose time
integral gives the running thermal conductivity according to the Green-Kubo rela-
tion [11, 16]. As stressed in Ref. [8], the heat current as implemented in LAMMPS
[22] does not apply to many-body potentials and significantly underestimates the
thermal conductivity in 2D materials described by many-body potentials. GPUMD
also contains the thermal conductivity decomposition method as introduced in Ref.
[7], which is essential for 2D materials.
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• It can calculate the thermal conductivity of a system of finite length or the thermal
boundary resistance (Kapitza resistance) of an interface or similar structures using
non-equilibrium MD (NEMD) methods. The spectral decomposition method as
described in Ref. [7] has also been implemented.

2.3 Other features

2.3.1 Boundary conditions

GPUMD supports the following boundary conditions in each direction:

• free boundary conditions

• periodic boundary conditions (using the minimum image convention)

• fixed boundary conditions (by fixing some atoms)

The current version of GPUMD only supports orthogonal simulation boxes. Triclinic
simulation boxes might be implemented in a future version.

2.3.2 Neighbor list construction

GPUMD has the following two versions for neighbor list construction and automatically
chooses an appropriate one according to the inputs:

• an O(N2) method which builds the Verlet neighbor list by directly checking the
distance between one particle and all the other particles in the simulation box

• an O(N) method which first builds a cell list and then converts the cell list to the
Verlet neighbor list

When the neighbor list is required to be updated during a simulation, one only has to
specify a skin distance and the code will automatically determine when the neighbor list
needs to be updated.

2.3.3 Integration methods

The velocity-Verlet [26] integration scheme is used for all the ensembles. The supported
ensembles and the adopted methods are

• the NV E ensemble

• the NV T ensemble

– the Berendsen method [1]

– the Nosé-Hoover chain method [21, 13, 19, 18, 29] with a fixed chain length of
4.

• the NPT ensemble

– the Berendsen method [1] with the pressure in each direction controlled inde-
pendently

We are working on implementing more integration methods.
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2.4 Major changes compared to the previous versions

2.4.1 Major changes introduced in version 1.1

1. Added a potential model for single-layer black phosphorene as introduced by Xu et
al. [31].

2.4.2 Major changes introduced in version 1.2

1. In the previous versions, the initial velocities have zero linear momentum but gen-
erally nonzero angular momentum. This will not result in rotation of the system if
periodic boundary conditions are applied in two or three directions, but will result
in rotation in systems with only one or no periodic direction. In version 1.2, both
linear and angular momenta of the initial velocities are zeroed.
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Chapter 3

Theoretical formalisms and
numerical algorithms

3.1 Physical units used in the program

The basic units in the numerical calculations are chosen to be

1. Energy: eV (electron volt)

2. Length: Å (angstrom)

3. Mass: amu (atomic mass unit)

4. Temperature: K (kelvin)

5. Charge: e (elementary charge)

The purpose of using these units is to make the values of most quantities in the code close
to unity. The units for all the other quantities are thus fixed. Here are some examples:

1. Time: Å amu1/2 eV−1/2, which is about 1.018051× 101 fs

2. Velocity: eV1/2 amu−1/2

3. Force: eV Å−1

4. Pressure (stress): eV Å−3, which is about 1.602177× 102 GPa

5. Thermal conductivity: eV3/2 amu−1/2 Å2 K−1 which is about 1.573769×105 W m−1

K−1

6. Boltzmann’s constant: kB ≈ 8.617343× 10−5 eV K−1

7. Electrostatic constant: kC = 1
4πϵ0
≈ 1.441959× 101 eV Å e−2

Important note: The input and output files do not necessarily adopt these units.
For example, time step in the input file is in unit of fs, rather than Å amu1/2 eV−1/2.
Details on the units adopted by the input and output files are presented in Chapter 5.
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3.2 Overall structure of the program

GPUMD is written using CUDA C/C++. The overall style is C, without using classes
(except for some C-style structures), but we might switch to C++ style in the future.
Except for data initialization and some calculations that are very cheap or inherently
serial, all the other calculations are done on the GPU.

The current version of GPUMD has 55 source files. Except for the main.cu file, all the
other files come in pairs (e.g., gpumd below means gpumd.cu and gpumd.h). The logical
dependence of the files can be summarized as follows:

• main is the entrance of the program and depends on gpumd

• gpumd depends on

– initialize

– finalize

– run

• run depends on

– potential

– velocity

– parse

– dump

– hac

– shc

– vac

– heat

– integrate

– neighbor

– validate

– force

• integrate depends on force

• validate depends on force

• neighbor depends on

– neighbor_ON1

– neighbor_ON2

• force depends on

– lj1

– ri

– eam_zhou_2004
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– eam_dai_2006

– sw_1985

– sw_bp

– tersoff_1989_1

– tersoff_1989_2

• All the files (except for main) depend on common

3.3 Neighbour list construction

We use the Verlet neighbor list when evaluating the forces between particles. Two methods
for constructing the Verlet neighbor list are implemented, one is an O(N2) method and
the other is an O(N) method.

3.3.1 A simple quadratic-scaling method

In the O(N2) method, the Verlet neighbor list is constructed by directly checking the
distance between every pair of particles. Therefore, the computational effort scales as
N2, where N is the number of particles. This method only requires a single CUDA
kernel. Algorithm 1 presents a pseudo code for the CUDA kernel.

In this kernel, the block size is Sb and the grid size is ⌈N/Sb⌉. The if statement is
used to avoid manipulating invalid memory.

3.3.2 A linear-scaling method

In this method, one partitions the system into cells and only searches for neighbors of a
given particle in a small number of cells. In 3D, there are 33 = 27 cells to be searched,
which does not scale with N . The overall computational effort of this method scales as
27N0N ∼ N , where N0 is the average number of particles in one cell. Therefore, this is a
linear-scaling, or O(N) method.

When periodic boundary conditions are applied, the number of cells in each direction
is determined as

Nx = ⌊Lx/rc⌋; (3.1)

Ny = ⌊Ly/rc⌋; (3.2)

Nz = ⌊Lz/rc⌋. (3.3)

Here, Lx, Ly, and Lz are the box lengths. If a direction has free boundary conditions,
we set the number of cells in that direction to 1. The total number of cells is thus
Nc = NxNyNz.

With the number of cells determined, we next determine the number of particles
Cn (n = 0, 1, · · · , Nc − 1) in each cell. We need to use a CUDA kernel to do this. A
pseudo code for the kernel is presented in Algorithm 2.

Note that atomic operations (for integer data) are used to avoid write conflict. In
the above kernel, we need to calculate the cell index of a given particle (with coordinate
components x, y, and z). This is done by using a device function. The total cell index n
is calculated from three indices:

nx = ⌊x/rc⌋; (3.4)
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Algorithm 1 The O(N2) method of neighbour list construction

Require: b is the block index
Require: t is the thread index
Require: Sb is the block size
Require: i = Sb × b+ t is the particle index
Require: N is the number of particles
Require: r2c is the square of the cutoff distance for building the neighbor list
Require: NNi is the number neighbors for particle i
Require: NLik is the index of the kth neighbor of particle i
Require: ri is the position vector of particle i
1: k ← 0
2: if i < N then
3: load ri from the global memory
4: for j = 0 to N − 1 do
5: if j = i then
6: continue
7: end if
8: load rj from the global memory and calculate rij = rj − ri

9: apply the minimum image convention to rij

10: if |rij|2 < r2c then
11: NLik ← j
12: k ← k + 1
13: end if
14: end for
15: NNi ← k
16: end if

ny = ⌊y/rc⌋; (3.5)

nz = ⌊z/rc⌋; (3.6)

n = nx +Nxny +NxNynz. (3.7)

The cell index in the x-direction is required to be no less then 0 and no larger than Nx−1.
That is, when nx < 0, we increase nx by Nx; when nx ≥ Nx, we decrease nx by Nx. The
other directions have similar requirements.

We then calculate the prefix sum (exclusive scan) Sn of Cn:

S0 = 0; (3.8)

Sn =
n−1∑
m=0

Cm (1 ≤ n ≤ Nc − 1). (3.9)

For this, we use the thrust::exclusive_scan function from the thrust library.
Now we can determine which particles are in which cells. We define a one-dimensional

array I of length N , with ISn to ISn+Cn−1 being the indices of the particles in cell n.
This array is constructed by using a CUDA kernel and a corresponding pseudo code is
presented in Algorithm 3.

Up to now, the so-called cell list has been constructed. The remaining task is to
convert the cell list to the Verlet neighbor list. This can be done by using a CUDA kernel
similar to that for the O(N2) method. A pseudo code is presented in Algorithm 4.
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Algorithm 2 Determine the number of particles in each cell

Require: b is the block index
Require: t is the thread index
Require: Sb is the block size
Require: i = Sb × b+ t is the particle index
Require: N is the number of particles
Require: Cn is the number of particles in cell n and has been initialized to 0
1: if i < N then
2: calculate cell index n of particle i
3: atomic operation: Cn ← Cn + 1
4: end if

Algorithm 3 Determine the array I containing the particle indices in the order of in-
creasing cell index

Require: b is the block index
Require: t is the thread index
Require: Sb is the block size
Require: i = Sb × b+ t is the particle index
Require: N is the number of particles
Require: Cn is the number of particles in cell n and has been initialized to 0
Require: Sn is the prefix sum of Cn as defined in the text
Require: ISn to ISn+Cn−1 are indices of the particles in cell n
1: if i < N then
2: calculate cell index n of particle i
3: ISn+Cn ← i
4: atomic operation: Cn ← Cn + 1
5: end if
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Algorithm 4 Construct the Verlet neighbour list from the cell list

Require: b is the block index
Require: t is the thread index
Require: Sb is the block size
Require: i = Sb × b+ t is the particle index
Require: N is the number of particles
Require: r2c is the square of the cutoff distance for building the neighbor list
Require: Cn is the number of particles in cell n
Require: Sn is the prefix sum of Cn as defined in the text
Require: ISn to ISn+Cn−1 are the indices of the particle in cell n
Require: NNi is the number neighbors for particle i
Require: NLik is the index of the kth neighbor of particle i
Require: ri is the position vector of particle i
1: k ← 0
2: if i < N then
3: load ri from the global memory
4: calculate cell index n of particle i
5: for m in all the neighbor cells of cell n (including cell n) do
6: for l = 0 to Cm − 1 do
7: j ← ISm+l

8: if j = i then
9: continue
10: end if
11: load rj from the global memory and calculate rij = rj − ri

12: apply the minimum image convention to rij

13: if |rij|2 < r2c then
14: NLik ← j
15: k ← k + 1
16: end if
17: end for
18: NNi ← k
19: end for
20: end if

We note that the computation time used for the construction of the cell list is negligible
compared to that used for the construction of the Verlet neighbor list from the cell list.
However, we have to do this conversion because our efficient force evaluation algorithm [6]
requires using the Verlet neighbor list rather than the cell list. Fortunately, the neighbor
list usually only needs to be updated every tens of time steps with a typical skin distance
(defined as the difference between the cutoff distance used for building the neighbor list
and the cutoff distance used for force evaluation). In some simulations such as calculating
the thermal conductivity of stable solids, the neighbor list even does not need to be
updated during the simulation.

3.3.3 How to choose between the two versions?

The O(N) version is faster than the O(N2) version in most cases. But sometimes we still
use the O(N2) version. Here are the choices made in GPUMD:
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• If the number of cells in any direction with periodic boundary conditions is less than
3, the O(N) version is not applicable (as some neighbors will be counted twice) and
the O(N2) version will be used. Therefore, if you hope to use the O(N) version, you
should make sure that the number of cells in any direction with periodic boundary
conditions is no less than 3.

• The O(N2) version is only faster when the number of cells is very small. Take a
3D system with periodic boundary conditions in each direction for example, when
the number of cells in each direction is 3, the O(N2) version is definitely faster than
the O(N) version, but the O(N) version is already faster when the number of cells
in each direction is 4. After doing some tests, we have decided to use the O(N)
version whenever the total number of cells is larger than 50. This might not be
always optimal but is not a bad choice.

• The O(N2) version is deterministic, but the O(N) version contains randomness,
due to the use of atomic operations in the CUDA kernels. Using atomic operations,
the order of the neighbor particles for a given particle can be different from run to
run, which is not desirable for the purpose of debugging. In view of this, we have
provided a compiling option (see Chapter 5 for details) to switch on the debugging
mode, where the O(N2) version is always used.

In summary, GPUMD chooses an appropriate method for neighbor list construction au-
tomatically and no input is expected from the users.

3.3.4 How often should the neighbor list be updated?

The frequency of updating the neighbor list depends on the applications. If one simulates
a stable solid system with the initial neighbor list containing all the neighbors that has
possible interactions with a given particle during the whole simulation, the neighbor list
does not need to be updated at all. In other cases, the neighbor list needs to be updated
during the simulation. Usually, one can set an updating frequency such as 10, which
means that the neighbor list will be updated every 10 integration steps. However, this
can be either inefficient or unsafe. Another way is to determine at every integration step
whether the neighbor list needs to be updated by checking how far each atom has moved
since the last neighbor list updating. It can be argued that the neighbor list should be
updated when the maximum traveling distance of the particles since the last updating
exceeds half of the skin distance (set by the user). As this check takes negligible time,
GPUMD uses this method to determine automatically when the neighbor list is to be
updated and thus does not expect the users to specify an updating frequency.

3.4 General formalisms for force evaluation and re-

lated calculations

3.4.1 General form of empirical potential functions

In classical molecular dynamics, the total potential energy U of a system can be written
as the sum of site potentials Ui:

U =
N∑
i=1

Ui. (3.10)
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The site potential can have different forms in different potential models. Although there
are numerous potential models proposed to date, they can be largely classified into two
groups: two-body potentials and many-body potentials.

3.4.2 Force

For two-body potentials, the site potential Ui can be expressed as

Ui =
1

2

∑
j ̸=i

Uij(rij). (3.11)

Here, rij = |rj − ri| is the distance between particles i and j and Uij(rij) is the pair
potential between them. The total force acted on particle i can be derived to be:

F i = −∇iU =
∑
j ̸=i

∂Uij(rij)

∂rij

rij

rij
. (3.12)

In this manual, we use the symbol rij to denote the position difference vector from particle
i to particle j:

rij ≡ rj − ri . (3.13)

The reader should bear this in mind when comparing the formulas in this manual with
those in the literature, because many authors have used the opposite sign convention.
One can also write the total force on particle i in the following form:

F i =
∑
j ̸=i

F ij, (3.14)

where

F ij =
∂Uij(rij)

∂rij

rij

rij
(3.15)

is the pairwise force acting on particle i by particle j. Newton’s third law is apparently
valid here, in the sense that

F ij = −F ji. (3.16)

In some many-body potentials such as the embedded-atom method potential [4], the
site potential can not be written in the form of Eq. (3.11). In some other many-body
potentials such as the Tersoff potential, the site potential can be written in the form of Eq.
(3.11), but the Uij in this equation does not only depend on the distance between particles
i and j. The force formulas for many-body potentials have confused the community a lot.
Recently, a well-defined force expression for general many-body potentials that explicitly
respects Newton’s third law has been derived as [8]:

F i =
∑
j ̸=i

F ij, (3.17)

where

F ij = −F ji =
∂Ui

∂rij

− ∂Uj

∂rji

=
∂ (Ui + Uj)

∂rij

. (3.18)

Here, ∂Ui/∂rij is a shorthand notation for a vector with cartesian components ∂Ui/∂xij,
∂Ui/∂yij, and ∂Ui/∂zij. This pairwise force expression for many-body potentials has
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been confirm by Hardy [12] as well as by Chen and Diaz [2]. We have also confirmed its
correctness by comparing with finite-difference calculations. This simple pairwise force
expression for many-body potentials is the key for deriving well-defined expressions for
other useful quantities such as virial stress and heat current, as discussed below.

3.4.3 Stress

Stress (tensor) is an important quantity in MD simulations. It consists of two parts:
a virial part which is related to the force and an ideal-gas part which is related to the
temperature. The virial part must be calculated along with force evaluation.

The validity of Newton’s third law is crucial in simplifying the calculation of the virial
stress. We know that the virial stress tensor is defined as

W =
∑
i

Wi, (3.19)

Wi = ri ⊗ F i. (3.20)

Here, Wi can be regarded as the per-atom virial stress. For periodic systems, the presence
of absolute positions ri would cause problems. However, when Newton’s third law is valid,
one can rewrite the per-atom virial stress as

Wi = −
1

2

∑
j ̸=i

rij ⊗ F ij , (3.21)

where only relative positions rij are involved. Because Newton’s third law also applies
to many-body potentials, the above expression of virial stress is valid for any classical
potential.

The ideal-gas part of the stress is isotropic, which is given by the ideal-gas pressure:

pideal =
NkBT

V
, (3.22)

where N is the number of particles, kB is Boltzmann’s constant, T is the absolute tem-
perature, and V is the volume of the system.

Combining the ideal-gas part and the virial part, the total stress tensor σαβ can be
expressed as:

σαβ = − 1

2V

∑
i

∑
j ̸=i

rαijF
β
ij +

NkBT

V
δαβ. (3.23)

Here, α and β can be x, y, and z and δαβ is the Kronecker symbol. We will denote
the diagonal part of the total stress tensor as a “vector” p with components px = σxx,
py = σyy, and pz = σzz. If the system is isotropic, we usually average the diagonal terms
to get a scalar:

p =
1

3
(px + py + pz) = −

1

6V

∑
i

∑
j ̸=i

rij · F ij +
NkBT

V
. (3.24)
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3.4.4 Heat current

GPUMD can be used to compute the lattice thermal conductivity using the Green-Kubo
[11, 16] formula, which requires calculating the heat current.

In classical physics, the total heat current vector J of a system is defined to be1 the
time derivative of the sum of the energy moments:

J =
d

dt

∑
i

riEi. (3.25)

Here, Ei is the site energy of particle i, which is the sum of the kinetic and potential
energies:

Ei =
1

2
miv

2
i + Ui. (3.26)

Using Lebniz’s rule, we have

J =
∑
i

viEi +
∑
i

ri
d

dt
Ei. (3.27)

The first term on the right hand side is usually called the convective term and we do not
need to evaluate it in the force-evaluation kernel. The second term,

Jpot =
∑
i

ri
dEi

dt
, (3.28)

is usually called the potential term and needs to be evaluated in the force-evaluation
kernel.

When using the Green-Kubo method, we need to use periodic boundary conditions (at
least in the transport directions). For two-body potentials, we can arrive at the following
expression which is suitable for implementation:

Jpot = −1

2

∑
i

∑
j ̸=i

rij (F ij · vi) . (3.29)

This equation can be expressed in an equivalent way:

Jpot = −1

2

∑
i

∑
j ̸=i

(rij ⊗ F ij) · vi. (3.30)

Therefore, we can also write it in terms of the per-atom virial:

Jpot =
∑
i

Wi · vi. (3.31)

We can also define the per-atom heat current Jpot
i for the potential part in the following

way:

Jpot =
∑
i

Jpot
i ; (3.32)

1Actually, it is J/V that has the dimension of heat current density (also called heat flux), which has
the unit of W m−2 in the international unit system. However, it is tedious to add the factor of 1/V in
many of the subsequent equations.
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Jpot
i = Wi · vi. (3.33)

However, we note that the above formula only applies to two-body potentials. For
many-body potentials, it has been demonstrated [8] that the above virial-based formula
is wrong and the correct one is

Jpot
i =

∑
j ̸=i

rij

(
∂Uj

∂rji

· vi

)
. (3.34)

The above heat current formula is usually applied in equilibrium simulations. In
nonequilibrium simulations, the following expression for the nonequilibrium heat current
[7] from a subsystem A to a subsystem B is more useful:

QA→B = −
∑
i∈A

∑
j∈B

⟨(
∂Ui

∂rij

· vj −
∂Uj

∂rji

· vi

)⟩
, (3.35)

This formula applies to general many-body potentials. For two-body potentials, it reduces
to the following one:

Qtwo-body
A→B = −1

2

∑
i∈A

∑
j∈B

⟨F ij · (vi + vj)⟩ . (3.36)

3.5 Integration by one step

The aim of time evolution is to find the phase trajectory

{ri(t1), vi(t1)}Ni=1, {ri(t2), vi(t2)}Ni=1, · · · (3.37)

starting from the initial phase point

{ri(t0), vi(t0)}Ni=1. (3.38)

The time interval between two time points ∆t = t1 − t0 = t2 − t1 = · · · is called the time
step.

The algorithm for integrating by one step depends on the ensemble type and other
external conditions. We discuss them in detail below. There are many ensembles used in
MD simulations, but we only consider the following 3 in the current version:

• The NV E ensemble, where the particle number N , the system volume V , and the
total energy E are kept constant. It is also called the micro-canonical ensemble.

• The NV T ensemble, where the particle number N , the system volume V , and the
temperature T are kept constant. It is also called the canonical ensemble.

• The NPT ensemble, where the particle number N , the pressure p, and the temper-
ature T are kept constant. There seems to be no simple name for this important
ensemble, but it is usually called the isothermal-isobaric ensemble.
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3.5.1 The NVE ensemble and the velocity-Verlet algorithm

In the NV E ensemble, the dynamics of the system is Hamiltonian and the equations of
motion can be derived from Hamilton’s equations. Because these equations of motion
have the time-reversal symmetry, a good numerical integrating method (an integrator)
should preserve this symmetry.

One of the most widely used integrators which has the property of time-reversibility
is the so-called velocity-Verlet method [26]. This integrator is also symplectic. These two
properties make the velocity-Verlet integrator very stable for long-time simulations. Here
are the velocity and position updating equations in the velocity-Verlet method:

vi(tm+1) ≈ vi(tm) +
F i(tm) + F i(tm+1)

2mi

∆t; (3.39)

ri(tm+1) ≈ ri(tm) + vi(tm)∆t+
1

2

F i(tm)

mi

(∆t)2, (3.40)

where mi is the mass of particle i.
The above velocity-Verlet integrator can be derived by finite-difference method (Tay-

lor series expansion), but a more general method, which can be generalized to more
sophisticated situations, is the classical time-evolution operator approach, or the Liou-
ville operator approach [29]. In this approach, the time-evolution of a classical system by
one step can be formally expressed as(

ri(t+∆t)
pi(t+∆t)

)
= eiL∆t

(
ri(t)
pi(t)

)
, (3.41)

where pi is the momentum of particle i and eiL∆t is called the classical evolution operator,
which is the classical counterpart of the quantum evolution operator. The operator iL in
the exponent of the evolution operator is called the Liouville operator and is defined by

iL(anything) = {anything, H} ≡
N∑
i=1

(
∂H

∂pi

· ∂

∂ri

− ∂H

∂ri

· ∂

∂pi

)
(anything). (3.42)

Here, H is the Hamiltonian of the system. Because

∂H

∂pi

=
pi

mi

and − ∂H

∂ri

= F i, (3.43)

we have
iL = iL1 + iL2, (3.44)

iL1 =
N∑
i=1

pi

mi

· ∂

∂ri

, (3.45)

iL2 =
N∑
i=1

F i ·
∂

∂pi

. (3.46)

Here, we have divided the Liouville operator into two parts. In general, iL1 and iL2 do
not commute, and therefore eiL∆t ̸= eiL1∆teiL2∆t. However, there is an important theorem
called the Trotter theorem, which can be used to derive the following approximation:

eiL∆t ≈ eiL2∆t/2eiL1∆teiL2∆t/2. (3.47)
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Now, we can express the one-step integration as(
ri(t+∆t)
pi(t+∆t)

)
≈ eiL2∆t/2eiL1∆teiL2∆t/2

(
ri(t)
pi(t)

)
. (3.48)

To make further derivations, we note that for an arbitrary constant c, we have

ec
∂
∂xx = x+ c. (3.49)

Applying this identity to the right most operator in the above equation, we have(
ri(t+∆t)
pi(t+∆t)

)
≈ eiL2∆t/2eiL1∆t

(
ri(t)

pi(t) +
∆t
2
F i(t)

)
. (3.50)

Then, applying the operator eiL1∆t, we have(
ri(t+∆t)
pi(t+∆t)

)
≈ eiL2∆t/2

(
ri(t) + ∆t

pi(t)+
∆t
2
F i(t)

mi

pi(t) +
∆t
2
F i(t)

)
. (3.51)

Last, applying the remaining operator eiL2∆t/2, we have(
ri(t+∆t)
pi(t+∆t)

)
≈

(
ri(t) + ∆t

pi(t)+
∆t
2
F i(t)

mi

pi(t) +
∆t
2
F i(t) +

∆t
2
F i(t+∆t)

)
. (3.52)

It is clear that this equation is equivalent to Eqs. (3.39) and (3.40).

Algorithm 5 The whole time-stepping in the NV E ensemble.

1: update the velocities partially

vi ← vi +
1

2

F i

mi

∆t (3.53)

2: update the positions completely

ri ← ri + vi∆t (3.54)

3: update the forces
F i ← F i({ri}) (3.55)

4: complete updating the velocities

vi ← vi +
1

2

F i

mi

∆t (3.56)

We can see that in the velocity-Verlet integrator, the position updating can be done
in one step, but the velocity updating can only be done by two steps, one before force
updating and the other after it. Algorithm 5 gives the pseudo code for the complete
time-stepping in the NV E ensemble, including force updating.
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3.5.2 Berendsen thermostat and barostat

Using the Berendsen thermostat, the integration algorithm in the NV T ensemble only
requires an extra scaling of all the velocity components, as shown in Algorithm 6. For
the NPT ensemble, the Berendsen barostat requires an extra scaling of positions and
box lengths, as shown in Algorithm 7. The Berendsen thermostat and barosat are very
suitable for equilibrating the system to a target temperature and pressure.

Algorithm 6 The whole time-stepping in the NV T ensemble using the Berendsen
method.
1: perform the whole time-stepping for the NV E ensemble as shown in Algorithm 5
2: scale the velocities

Algorithm 7 The whole time-stepping in the NPT ensemble using the Berendsen
method.
1: perform the whole time-stepping for the NV E ensemble as shown in Algorithm 5
2: scale the velocities
3: scale the positions and box lengths

The velocities are scaled in the Berendsen thermostat in the following way:

vscaled
i = vi

√
1 + αT

(
T0

T
− 1

)
. (3.57)

Here, αT is a dimensionless parameter, T0 is the target temperature, and T is the instant
temperature calculated from the current velocities {vi}. The parameter αT should be
positive and not larger than 1. When αT = 1, the above formula reduces to the simple
velocity-scaling formula:

vscaled
i = vi

√
T0

T
. (3.58)

A smaller αT represents a weaker coupling between the system and the thermostat. Prac-
tically, any value of αT in the range of 0.001 ∼ 1 can be used.

In the Berendsen barostat algorithm, the particle positions and box length in a given
direction are scaled if periodic boundary conditions are applied to that direction. The
scaling of the positions reads

rscaled
i = ri [1− αp(p0 − p)] . (3.59)

Here, αp is a parameter and p0 (p) is the target (instant) pressure in the three directions.
The parameter αp is not dimensionless, and it requires some try-and-error to find a good
value of it for a given system. A harder/softer system requires a smaller/larger value of
αp. In the unit system adopted by GPUMD, it is recommended that αp = 10−4 ∼ 10−2.
Only directions with periodic boundary conditions will be affected by the barostat.

3.5.3 Nosé-Hoover chain thermostat

The Nosé-Hoover chain method [21, 13, 19, 18, 29] is more suitable for calculating equi-
librium properties in a specific ensemble. In the current version of GPUMD, only the

22



Nosé-Hoover chain thermostat is implemented. We hope to implement the Nosé-Hoover
chain barostat in a future version.

The equations of motion in the Nosé-Hoover chain method are

d

dt
ri =

pi

mi

, (3.60)

d

dt
pi = F i −

π0

Q0

pi, (3.61)

d

dt
ηk =

πk

Qk

(k = 0, 1, · · · ,M − 1), (3.62)

d

dt
π0 = 2

(∑
i

p2
i

2mi

− dN
kBT

2

)
− π1

Q1

π0, (3.63)

d

dt
πk = 2

(
π2
k−1

2Qk−1

− kBT

2

)
− πk+1

Qk+1

πk (k = 1, 2, · · · ,M − 2), (3.64)

d

dt
πM−1 = 2

(
π2
M−2

2QM−2

− kBT

2

)
. (3.65)

The optimal choice [19] for the thermostat masses is

Q0 = dNkBTτ
2, (3.66)

Qk = kBTτ
2 (k = 1, 2, · · · ,M − 1), (3.67)

where τ is a time parameter, whose value is usually chosen by try and error in practice.
A good choice is τ = 100∆t, where ∆t is the time step for integration.

An integration scheme for the NV T ensemble using the Nosé-Hoover chain can also be
formulated using the approach of the time-evolution operator [18, 29]. The total Liouville
operator for the equations of motion in the Nosé-Hoover chain method is [18, 29]

iL = iL1 + iL2 + iLT , (3.68)

iL1 =
N∑
i=1

pi

mi

· ∂

∂ri

, (3.69)

iL2 =
N∑
i=1

F i ·
∂

∂pi

. (3.70)

iLT =
M−1∑
k=0

πk

Qk

∂

∂ηk
+

M−2∑
k=0

(
Gk −

πk+1

Qk+1

πk

)
∂

∂πk

+GM−1
∂

∂πM−1

−
N−1∑
i=0

π0

Q0

pi ·
∂

∂pi

. (3.71)

That is, the Liouville operator for the NV T ensemble contains an extra term iLT related
to the thermostat variables, which is absent from that for the NV E ensemble.

The total time-evolution operator eiL∆t for one step can be factorized using the Trotter
theorem as in the case of the NV E ensemble:

eiL ≈ eiLT∆t/2eiL2∆t/2eiL1∆teiL2∆t/2eiLT∆t/2. (3.72)
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Comparing this with the factorization in the NV E ensemble, we see that we only need to
apply the operator eiLT∆t/2 before and after applying the usual velocity-Verlet integrator
in the NV E ensemble.

The operator eiLT∆t/2 can be further factorized into some elementary factors using the
Trotter theorem. First, we define the following decomposition of the operator iLT :

iLT = iLT1 + iLT2 + iLT3, (3.73)

iLT1 =
M−1∑
k=0

πk

Qk

∂

∂ηk
, (3.74)

iLT2 =
M−2∑
k=0

(
Gk −

πk+1

Qk+1

πk

)
∂

∂πk

+GM−1
∂

∂πM−1

, (3.75)

iLT3 = −
N−1∑
i=0

π0

Q0

pi ·
∂

∂pi

. (3.76)

We can then make the following factorization:

eiLT∆t/2 ≈ eiLT2∆t/4eiLT3∆t/2eiLT1∆t/2eiLT2∆t/4. (3.77)

There are still a few terms in iLT2 and we need to factorize eiLT2∆t/4 further. We can
factorize the eiLT2∆t/4 term on the right of the above equation as

eiLT2∆t/4 ≈
M−2∏
k=0

(
e
−∆t

8

πk+1
Qk+1

πk
∂

∂πk e
∆t
4
Gk

∂
∂πk e

−∆t
8

πk+1
Qk+1

πk
∂

∂πk

)
e

∆t
4
GM−1

∂
∂πM−1 (3.78)

and correspondingly factorize that on the left as

eiLT2∆t/4 ≈ e
∆t
4
GM−1

∂
∂πM−1

0∏
k=M−2

(
e
−∆t

8

πk+1
Qk+1

πk
∂

∂πk e
∆t
4
Gk

∂
∂πk e

−∆t
8

πk+1
Qk+1

πk
∂

∂πk

)
. (3.79)

Algorithm 8 The whole time-stepping in the NV T ensemble using the Nosé-Hoover
chain method.
1: apply the operator eiLT∆t/2 except for eiLT3∆t/2 within it and save the value of

e−(π0/Q0)∆t/2

2: scale the velocity components of all the particles by the factor e−(π0/Q0)∆t/2

3: perform the whole time-stepping for the NV E ensemble as shown in Algorithm 5
4: apply the operator eiLT∆t/2 except for eiLT3∆t/2 within it and save the value of

e−(π0/Q0)∆t/2

5: scale the velocity components of all the particles by the factor e−(π0/Q0)∆t/2

It can be shown that the effect of the operator ecx
∂
∂x on x is to scale it by a factor of

ec:
ecx

∂
∂xx = ecx. (3.80)

Therefore, the effect of the operator eiLT3∆t/2 is to scale the momenta of all the particles
in the system by a uniform factor e−(π0/Q0)∆t/2. Although this operator appears in the
factorization of eiLT∆t/2, its does not affect the thermostat variables. Therefore, when
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applying the operator eiLT∆t/2, we only need to update the variables related to the ther-
mostats and save this factor for later use when we update the variables for the particles.
In this way, the update for the thermostat variables and that for the particle variables
are separated. Algorithm 8 presents the pseudo code for the whole time-stepping in the
NV T ensemble using the Nosé-Hoover chain method.

There are also some other tricks in the algorithm. For details, we refer to the excellent
book by Tuckerman [29].

3.6 Heat transport

3.6.1 Heat current autocorrelation and lattice thermal conduc-
tivity

In MD simulations, a popular approach of computing the lattice thermal conductivity
is to use the Green-Kubo formula [11, 16]. In this method, the running lattice thermal
conductivity along the x-direction (similar expressions apply to other directions) can be
expressed as an integral of the heat current autocorrelation (HAC):

κxx(t) =
1

kBT 2V

∫ t

0

dt′HACxx(t
′) . (3.81)

Here, kB is Boltzmann’s constant, V is the volume of the simulated system, T is the
absolute temperature, and t is the correlation time. The HAC is

HACxx(t) = ⟨Jx(0)Jx(t)⟩ , (3.82)

where Jx(0) and Jx(t) are the total heat current of the system at two time points separated
by an interval of t. The symbol ⟨⟩ means that the quantity inside will be averaged over
different time origins.

The calculation of the heat current J has been discussed earlier. Here, we assume
that we have calculated the total heat current of the system at M number of time points
and saved them into the global memory. The time interval ∆τ between the time points
here needs not to be the same as the time step ∆t used in the time-stepping. Usually,
∆τ = 10∆t is a good choice. From the Nd heat current data, we can calculate at most
Nd HAC data HACxx(t), with t = 0,∆τ, 2∆τ, · · · , (Nd − 1)∆τ . However, a correlation
function becomes more and more noisy as the correlation time increases and in practical
applications, one has to make sure that the production time Nd∆τ is much larger than
the maximum correlation time tmax one needs. The number of HAC data Nc is related
to the maximum correlation time by tmax = Nc∆τ . In most cases, Nc = Nd/10 is a good
choice. It is also convenient to use the same number of time origins, Nd − Nc, to do
the time-average for each correlation time. With these considerations, we arrive at the
following explicit expression for the HAC:

HACxx(nc∆τ) =
1

Nd −Nc

Nd−Nc−1∑
m=0

Jx(m∆τ)Jx((m+ nc)∆τ), (3.83)

where nc = 0, 1, 2, · · · , Nc − 1.
Because the HAC at different correlation times can be calculated independently, we can

simply use one CUDA-block for one point of the HAC data. Shared memory is used to do
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the summation in an binary-reduction way. An algorithm for the CUDA implementation
can be found in Ref. [9].

Last, we note that for 2D materials, the heat current can be naturally decomposed into
an in-plane component and an out-of-plane component. The lattice thermal conductivity
can be decomposed accordingly. See Ref. [7] for more details.

3.6.2 NEMD method

The thermal conductivity of a finite-length system can also be computed by the NEMD
method. In this method, a temperature gradient is established by externally generating
a nonequilibrium heat current. If the steady-state heat current is Q and the established
temperature gradient is ∇T , the thermal conductivity is calculated according to Fourier’s
law as

κ =
Q

S|∇T |
, (3.84)

where S is the cross-sectional area perpendicular to the transport direction.
The nonequilibrium heat current can be generated in various ways, such as the ve-

locity re-scaling method [14, 15] and the momentum swapping method [20]. However,
some guesswork is needed in choosing appropriate parameters in these methods. Another
method is to couple the source/sink region to a thermostat with a higher/lower temper-
ature. By setting the temperature difference, one has better control to the temperature
gradient. When steady state is achieved, a temperature gradient will be established and
the heat current Q can be calculated as the energy transfer rate dE/dt between the
source/sink and the thermostat:

Q =
dE

dt
. (3.85)

It has been shown [7] that Eq. (3.85) gives consistent heat current as calculated by Eq.
(3.35). As in the case of the Green-Kubo method, the nonequilibrium heat current defined
in Eq. (3.35) can also be decomposed into in-pane and out-of-plane components for 2D
materials. See Ref. [7] for details.

We have tested that all these NEMD methods can give consistent results. To make
the code simpler, we have only kept the version using thermostats in GPUMD.

In the framework of the NEMD method, one can also calculate spectrally decomposed
thermal conductivity (or conductance) using the method as described in Ref. [7]. This
method is base on the works by Sääskilahti et al. [23, 24] and Zhou et al. [33] but the
formulation in Ref. [7] is simpler and does not use approximations for the heat current.
In this method, one first calculates the following correlation function:

KA→B(t) = −
∑
i∈A

∑
j∈B

⟨(
∂Ui

∂rij

(0) · vj(t)−
∂Uj

∂rji

(0) · vi(t)

)⟩
, (3.86)

which reduces to the nonequilibrium heat current as defined in Eq. (3.35) when t = 0.
Then one can define the following Fourier transform pairs:

K̃A→B(ω) =

∫ ∞

−∞
dteiωtKA→B(t) ; (3.87)
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KA→B(t) =

∫ ∞

−∞

dω

2π
e−iωtK̃A→B(ω) . (3.88)

By setting t = 0 in the equation above, we can get the following spectral decomposition
of the nonequilibrium heat current:

QA→B =

∫ ∞

0

dω

2π

[
2K̃A→B(ω)

]
. (3.89)

From the spectral decomposition of the nonequilibrium heat current, one can deduce the
spectrally decomposed thermal conductivity corresponding to a given finite system with
a temperature gradient ∇T ,

κ(ω) =
2K̃A→B(ω)

S|∇T |
with κ =

∫ ∞

0

dω

2π
κ(ω) , (3.90)

or a spectrally decomposed thermal conductance corresponding to a given segment or
junction (interface) with a temperature difference ∆T ,

G(ω) =
2K̃A→B(ω)

S|∆T |
with G =

∫ ∞

0

dω

2π
G(ω) . (3.91)

For 2D materials, one can further consider the in-out decomposition. See Ref. [7] for
details.

3.7 Velocity autocorrelation and related quantities

Velocity autocorrelation (VAC) is an important quantity in MD simulations. On the one
hand, its integral with respect to the correlation time gives the running diffusion constant,
which is equivalent to that obtained by a time derivative of the mean square displacement
(MSD). On the other hand, its Fourier transform is the phonon density of states (PDOS)
[5].

3.7.1 Running diffusion coefficient

The VAC is a single-particle correlation function. This means that we can define the VAC
for individual particles. For particle i, the VAC along the x direction is defined as

⟨vxi(0)vxi(t)⟩. (3.92)

Then, one can define the mean VAC for any number of particles. In the current version of
GPUMD, it is assumed that one wants to calculate the mean VAC in the whole simulated
system:

VACxx(t) =
1

N

N∑
i=1

⟨vxi(0)vxi(t)⟩ . (3.93)

The order between the time-average (denoted by ⟨⟩) and the space-average (the average
over the particles) can be changed:

VACxx(t) =

⟨
1

N

N∑
i=1

vxi(0)vxi(t)

⟩
. (3.94)
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Using the same conventions as in the case of HAC calculations, we have the following
explicit expression for the VAC:

VACxx(nc∆τ) =
1

(Nd −Nc)N

Nd−Nc−1∑
m=0

N∑
i=1

vxi(m∆τ)vxi((m+ nc)∆τ), (3.95)

where nc = 0, 1, 2, · · · , Nc − 1. The algorithm for calculating the VAC is quite similar to
that for calculating the HAC and it thus omitted.

After obtaining the VAC, we can calculate the running diffusion constant Dxx(t) as

Dxx(t) =

∫ t

0

dt′ VACxx(t
′) . (3.96)

One can prove that this is equivalent to the time-derivative of the MSD, i.e., the Einstein
formula:

Dxx(t) =
1

2

d

dt
∆x2(t) , (3.97)

where the MSD ∆x2(t) is defined as

∆x2(t) =

⟨
1

N

N∑
i=1

[xi(t)− xi(0)]
2

⟩
=

1

N

N∑
i=1

⟨
[xi(t)− xi(0)]

2⟩ . (3.98)

Here is the proof. Starting from the relation between position and velocity,

xi(t)− xi(0) =

∫ t

0

dt′vxi(t
′), (3.99)

we have

[xi(t)− xi(0)]
2 =

∫ t

0

dt′vxi(t
′)

∫ t

0

dt′′vxi(t
′′) =

∫ t

0

dt′
∫ t

0

dt′′vxi(t
′)vxi(t

′′). (3.100)

Then, the MSD can be expressed as

∆x2(t) =
1

N

N∑
i=1

∫ t

0

dt′
∫ t

0

dt′′ ⟨vxi(t′)vxi(t′′)⟩ . (3.101)

Using Lebniz’s rule, we have

Dxx(t) =
1

2

d

dt
∆x2(t) =

1

N

N∑
i=1

∫ t

0

dt′ ⟨vxi(t)vxi(t′)⟩ , (3.102)

which can be rewritten as

Dxx(t) =
1

N

N∑
i=1

∫ t

0

dt′ ⟨vxi(0)vxi(t′ − t)⟩ . (3.103)

Letting τ = t′ − t, we get (note that here t is considered as a constant)

Dxx(t) =
1

N

N∑
i=1

∫ 0

−t

dτ ⟨vxi(0)vxi(τ)⟩ , (3.104)
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which can be rewritten as

Dxx(t) =
1

N

N∑
i=1

∫ 0

−t

dτ ⟨vxi(−τ)vxi(0)⟩ . (3.105)

Letting t′ = −τ , we finally get

Dxx(t) =
1

N

N∑
i=1

∫ t

0

dt′ ⟨vxi(t′)vxi(0)⟩ =
∫ t

0

dt′ VACxx(t
′). (3.106)

We thus have derived the Green-Kubo formula from the Einstein formula.
In summary,

• The derivative of half of the MSD gives the running diffusion coefficient.

• The integral of the VAC gives the running diffusion coefficient.

• One can obtain the MSD by integrating the VAC twice (numerically).

3.7.2 Phonon density of states

It is interesting that the same VAC can be used to compute the PDOS, as first demon-
strated by Dickey and Paskin [5]. The PDOS is simply the Fourier transform of the
normalized VAC:

ρx(ω) =

∫ ∞

−∞
dteiωt VACxx(t). (3.107)

Here, VACxx(t) should be understood as the normalized function VACxx(t)/VACxx(0).
Although it looks simple, it does not mean that one can get the correct PDOS by a naive
fast Fourier transform (FFT) routine. Actually, this computation is very cheap and we
do not need FFT at all. What we need is a discrete cosine transform. To see this, we first
note that, by definition, VACxx(−t) = VACxx(t). Using this, we have

ρx(ω) =

∫ ∞

−∞
dt cos(ωt) VACxx(t). (3.108)

Because we only have the VAC data at the Nc discrete time points, the above integral is
approximated by the following discrete cosine transform:

ρx(ω) ≈
Nc−1∑
nc=0

(2− δnc0)∆τ cos(ωnc∆τ) VACxx(nc∆τ). (3.109)

Here, δnc0 is the Kronecker δ function and the factor (2− δnc0) accounts for the fact that
there is only one point for t = 0 and there are two equivalent points for t ̸= 0. Last, we
note that a window function is needed to suppress the unwanted Gibbs oscillation in the
calculated PDOS. In GPUMD, the Hann window H(nc) is applied:

ρx(ω) ≈
Nc−1∑
nc=0

(2− δnc0)∆τ cos(ωnc∆τ) VACxx(nc∆τ)H(nc); (3.110)

H(nc) =
1

2

[
cos

(
πnc

Nc

)
+ 1

]
. (3.111)
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Here are some comments on the normalization of the PDOS. In the literature, one
usually uses an arbitrary unit for the PDOS, but it actually has a dimension of [time],
and an appropriate unit for it can be 1/THz or ps. The normalization of ρx(ω) can be
determined by the inverse Fourier transform:

VACxx(t) =

∫ ∞

−∞

dω

2π
e−iωtρx(ω). (3.112)

As we have normalized the VAC, we have

1 = VACxx(0) =

∫ ∞

−∞

dω

2π
ρx(ω). (3.113)

Because ρx(−ω) = ρx(ω), we have ∫ ∞

0

dω

2π
ρx(ω) =

1

2
. (3.114)

The calculated PDOS should meet this normalization condition (approximately).
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Chapter 4

Potential models implemented in
GPUMD

In this chapter, we discuss in detail the potential models that have been implemented in
GPUMD. The formats of the potential files for the potential models are also presented.
In the potential files, the unit of energy is eV and the unit of length is Å. One should be
able to deduce the dimension of all parameters from the relevant equations defining them.

4.1 Conventions

The following conventions are used in this chapter:

• The position difference vector from particle i to particle j is denoted

rij ≡ rj − ri . (4.1)

The component form of this equation is

xij = xj − xi; yij = yj − yi; zij = zj − zi. (4.2)

• The angle formed by rij and rik is denoted

cos θijk = cos θikj =
rij · rik

rijrik
. (4.3)

• The derivative ∂/∂rij should be understood as a vector operator with components
∂/∂xij, ∂/∂yij, and ∂/∂zij.

• It is easy to verify that

∂rij
∂rij

=
rij

rij
. (4.4)

• It is also easy to verify that

∂ cos θijk
∂rij

=
1

rij

[
rik

rik
− rij

rij
cos θijk

]
. (4.5)
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• If f is a function of x, then f ′(x) is understood as ∂f/∂x.

In the force evaluation kernel for any potential model, the key quantities to be calcu-
lated are ∂Ui

∂rij
and

∂Uj

∂rji
, the latter being related to the former by an exchange of the indices,

i ↔ j. We thus need to derive an explicit expression of ∂Ui

∂rij
for each potential model.

This is trivial for two-body potentials and we only present expressions for many-body
potentials. We will call ∂Ui

∂rij
the partial force.

4.2 The Lennard-Jones potential

The Lennard-Jones potential is one the most simplest two-body potentials used in MD
simulations. The pair potential between particle i and j is

Uij = 4ϵ

(
σ12

r12ij
− σ6

r6ij

)
. (4.6)

The current version of GPUMD only implements the single-element version of the Lennard-
Jones potential with a simple cutoff (without potential and/or force shifts). More variants
will be added in the future.

The potential file for this potential model reads

lj1

epsilon sigma cutoff

Here, cutoff is the cutoff distance.

4.3 The rigid-ion potential

By rigid-ion potential, we mean a potential model consisting of a short range part in the
Buckingham form

Uij = Aij exp (−bijrij)−
Cij

r6ij
(4.7)

and a Coulomb potential. The Coulomb potential is evaluated using the damped-shifted-
force (DSF) method by Fennell and Gezelter [10], which is based on the Wolf summation
method [30]. The DSF version of the pairwise Coulomb potential can be written as:

Uij =
qiqj
4πϵ0

[
erfc(αrij)

rij
− erfc(αRc)

Rc

+

(
erfc(αRc)

R2
c

+
2α√
π

exp(−α2R2
c)

Rc

)
(rij −Rc)

]
,

(4.8)
where α and Rc are the electrostatic damping factor and the cutoff radius, respectively.
A good choice is α = 0.2 and Rc ≥ 15 Å. In GPUMD, we fix α to 0.2 and let the users to
specify the cutoff distance.

The potential file for this potential model reads

ri

q_1 q_2 cutoff

A_11, b_11 C_11

A_22, b_22 C_22

A_12, b_12 C_12
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4.4 The EAM potential

This is a simple many-body potential. The site potential energy is

Ui =
1

2

∑
j ̸=i

ϕ(rij) + F (ρi). (4.9)

Here, the part with ϕ(rij) is a pairwise potential and F (ρi) is the embedding potential,
which depends on the electron density ρi at site i. This density is contributed by the
neighbors of i:

ρi =
∑
j ̸=i

f(rij). (4.10)

The many-body part of the EAM potential comes from the embedding potential. The
partial force in our formulation is

∂Ui

∂rij

=
1

2
ϕ′(rij)

∂rij
∂rij

+ F ′(ρi)f
′(rij)

∂rij
∂rij

. (4.11)

All the three functions above, ϕ(rij), F (ρi), and f(rij) are usually given as splines,
but in the current version of GPUMD, we have only implemented two analytical forms.

4.4.1 The analytical form by Zhou et al.

The pair potential between two atoms of the same type a is

ϕaa(r) =
Aa exp[−α(r/rae − 1)]

1 + (r/rae − κa)20
− Ba exp[−β(r/rae − 1)]

1 + (r/rae − λa)20
. (4.12)

The contribution of the electron density from an atom of type a is

fa(r) =
fa
e exp[−β(r/rae − 1)]

1 + (r/rae − λa)20
. (4.13)

The pair potential between two atoms of different types a and b is then constructed as

ϕab(r) =
1

2

[
f b(r)

fa(r)
ϕaa(r) +

fa(r)

f b(r)
ϕbb(r)

]
. (4.14)

The embedding energy function is piecewise:

F (ρ) =
3∑

i=0

Fni

(
ρ

ρn
− 1

)i

, (ρ < 0.85ρe) (4.15)

F (ρ) =
3∑

i=0

Fi

(
ρ

ρe
− 1

)i

, (0.85ρe ≤ ρ < 1.15ρe) (4.16)

F (ρ) = Fe

[
1− ln

(
ρ

ρs

)η](
ρ

ρs

)η

, (ρ ≥ 1.15ρe) (4.17)

For each element, there are 20 parameters, which are re, fe, ρe, ρs, α, β, A, B, κ, λ, Fn0,
Fn1, Fn2, Fn3, F0, F1, F2, F3, η, and Fe. Parameter values for 16 metals are tabulated
in the paper by Zhou et al. [32]. Although we have presented the potential in a form
applicable to systems with more than one atom type, the current version of GPUMD only
supports a single atom type for this potential model. Extensions will be made in a future
version.

The potential file for this potential model reads
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eam_zhou_2004

r_e

f_e

rho_e

rho_s

alpha

beta

A

B

kappa

lambda

F_n0

F_n1

F_n2

F_n3

F_0

F_1

F_2

F_3

eta

F_e

cutoff

The last parameter cutoff is the cutoff distance which is not intrinsic to the model. The
order of the parameters is the same as in Table III of Ref. [32].

4.4.2 The extended Finnis-Sinclair potential by Dai et al.

This is a very simple EAM-type potential which is an extension of the Finnis-Sinclair
potential. The function for the pair potential is

ϕ(r) =

{
(r − c)2

∑4
n=0 cnr

n r ≤ c

0 r > c
(4.18)

The function for the density is

ϕ(r) =

{
(r − d)2 +B2(r − d)4 r ≤ d

0 r > d
(4.19)

The function for the embedding energy is

F (ρ) = −Aρ1/2. (4.20)

For each element, there are 9 parameters, which are A, d, c, c0, c1, c2, c3, c4, and B.
The original Finnis-Sinclair potential corresponds to the case where the parameters c3,
c4, and B are all zero. Parameter values for 12 metals can be found from the paper by
Dai et al. [3].

The potential file for this potential model reads
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eam_dai_2006

A

d

c

c_0

c_1

c_2

c_3

c_4

B

4.5 The Stillinger-Weber potential

Here we consider the original Stillinger-Weber potential as proposed by Stillinger and
Weber in 1985 [25]. The total potential energy consists of a two-body part and a three-
body part. The site potential is

Ui =
1

2
V2(rij) +

1

2

∑
j ̸=i

∑
k ̸=i,j

hijk, (4.21)

where the two-body part is

V2(rij) = Aϵ

[
B

(
σ

rij

)4

− 1

]
exp

(
1

rij/σ − a

)
(4.22)

and the three-body part is

hijk = λ exp

[
γ

rij/σ − a
+

γ

rik/σ − a

]
(cos θijk − cos θ0)

2 . (4.23)

Here, A, B, ϵ, σ, a, λ, γ, and cos θ0 are parameters. Here is an explicit expression of the
partial force for the three-body part:

∂Ui

∂rij

=

[
λ

γ

rij/σij − aij
+

γ

rik/σik − aik

]
(cos θijk − cos θ0)

×

2∂ cos θijk
∂rij

− γ

σij

(
rij
σij
− aij

)2 (cos θijk − cos θ0)
∂rij
∂rij

 . (4.24)

The potential file for this potential model reads

sw

epsilon lambda A B a gamma sigma cos_theta_0

4.6 The modified Stillinger-Weber potential for single-

layer black phosphorene

In version 1.1, we added a modified Stillinger-Weber potential model for single-layer
black phosphorene (SLBP) as introduced by Xu et al. [31]. SLBP is not strictly flat.
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The phosphorous atoms in SLBP occupy two planes and the potential model by Xu et al.
[31] distinguishes atoms in different planes. Therefore, this potential model assumes the
topology of SLBP and should not be used to study extreme conditions such as melting. In
GPUMD, one has to define the atoms in the two planes as types 0 and 1 when preparing
the xyz.in file to be introduced in Chapter 5.

The potential file for this potential model reads

sw_bp

# Nothing here, because this is a special potential model and

# the parameters are thus hard coded

4.7 The Tersoff potential

There are many variants of the Tersoff potential. In the current version of GPUMD, we
only consider the form as described in Ref. [27] published in 1989.

The site potential can be written as

Ui =
1

2

∑
j ̸=i

fC(rij) [fR(rij)− bijfA(rij)] . (4.25)

The function fC is a cutoff function, which is 1 when rij < Rij and 0 when rij > Sij and
takes the following form in the intermediate region:

fC(rij) =
1

2

[
1 + cos

(
π
rij −Rij

Sij −Rij

)]
. (4.26)

The repulsive function fR and the attractive function fA take the following forms:

fR(r) = Aije
−λijrij ; (4.27)

fA(r) = Bije
−µijrij . (4.28)

The bond-order is
bij = χij

(
1 + βni

i ζni
ij

)− 1
2ni , (4.29)

where
ζij =

∑
k ̸=i,j

fC(rik)gijk, (4.30)

and

gijk = 1 +
c2i
d2i
− c2i

d2i + (hi − cos θijk)2
. (4.31)

Here, Aij, Bij, λij, µij, βi, ni, ci, di, hi, Rij, Sij, and χij are material-specific parameters.
The parameter values can be found in Tersoff’s original paper [27] and a later erratum
[28]. Note that when i ̸= j, the following mixing rules are used to determining some
parameter values:

Aij =
√
AiiAjj; (4.32)

Bij =
√
BiiBjj; (4.33)

Rij =
√

RiiRjj; (4.34)

Sij =
√
SiiSjj; (4.35)
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λij = (λii + λjj)/2; (4.36)

µij = (µii + µjj)/2. (4.37)

The parameter χij is 1 for i = j and can deviate slightly from 1 for i ̸= j.
In the current version of GPUMD, one can simulate systems with two atom types

(such as SiC and SiGe) as well as those with a single atom type.
An expression of the partial force has been presented in Ref. [8] and we repeat it

here:

∂Ui

∂rij

=
1

2
f ′
C(rij)[fR(rij)− bijfA(rij)]

∂rij
∂rij

+
1

2
fC(rij)[f

′
R(rij)− bijf

′
A(rij)]

∂rij
∂rij

− 1

2
f ′
C(rij)

∑
k ̸=i,j

fC(rik)fA(rik)b
′
ikgijk

∂rij
∂rij

− 1

2
fC(rij)fA(rij)b

′
ij

∑
k ̸=i,j

fC(rik)g
′
ijk

∂ cos θijk
∂rij

− 1

2
fC(rij)

∑
k ̸=i,j

fC(rik)fA(rik)b
′
ikg

′
ijk

∂ cos θijk
∂rij

. (4.38)

The potential file for the single-element version reads

tersoff_1989_1

A B lambda mu beta n c d h R S

The potential file for the double-element version reads

tersoff_1989_2

A_1 B_1 lambda_1 mu_1 beta_1 n_1 c_1 d_1 h_1 R_1 S_1

A_2 B_2 lambda_2 mu_2 beta_2 n_2 c_2 d_2 h_2 R_2 S_2

chi
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Chapter 5

Using GPUMD

After downloading and unpacking GPUMD, one can see the following folders:

• src, which contains all the source files of GPUMD and a makefile

• potentials, which contains all the potential files we have prepared

• examples, which contains all the examples (each in a sub-folder) we have prepared

• doc, which contains the source files for the manual

5.1 Compile and run GPUMD

5.1.1 Compile GPUMD

To compile GPUMD, one just needs to go to the src directory and type make. one may
want to first do make clean. When the compilation finishes, an executable named gpumd

will be generated in the src directory.
In the makefle, the default compiling flag is

CFLAGS = -O3 -use_fast_math -DUSE_DP -arch=sm_35

If you want to obtain a version using single-precision arithmetics for all the floating point
calculations in the code, you can remove -DUSE_DP in the first line. If you want to obtain
a version without any randomness in the calculations, which is suitable for debugging,
you can add -DDEBUG in this line. The last option -arch=sm_35 specifies the compute
capability of the target GPU card (e.g., 3.5 for Tesla K40) you will use. Note that GPUs
with compute capability less than 2.0 are not supported by GPUMD.

5.1.2 Run simulations with GPUMD

To run a simulation or a set of simulations with GPUMD, one needs to first prepare some
input files. For any individual simulation, one needs to prepare a file named xyz.in and
a file named run.in, and put them into the same directory. Then, one just needs an
extra input file, which we call a “driver input file”, to specify the path(s) of the folder(s)
containing the input files. This “driver input file” should have the following format:
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number_of_simulations

path_1

path_2

...

Let us consider two explicit examples. Consider a “driver input file” which reads

1

examples/lattice_constant/si_tersoff

This means that there will be one simulation and the input files (xyz.in and run.in)
are prepared in the folder examples/lattice_constant/si_tersoff. One can also run
multiple simulations using a single “driver input file”. An example is:

2

examples/lattice_constant/si_tersoff

examples/lattice_constant/si_sw

In this case, it means that two sets of inputs will be processed consecutively.
Now we are ready to run the code. Suppose that the “driver input file” is named as

input and is in the folder where we can see the src folder, we can run the code using the
following command:

src/gpumd < input

Output files will be created in the folders containing the corresponding input files.
The next two sections are devoted to describing the structures of the input and output

files, respectively.

5.2 Input files of GPUMD

5.2.1 The xyz.in input file

A file named xyz.in should be prepared and should have the following format (empty
lines and comments are not allowed):

N M cutoff

pbc_x pbc_y pbc_z L_x L_y L_z

type_1 group_1 mass_1 x_1 y_1 z_1

type_2 group_2 mass_2 x_2 y_2 z_2

...

type_N group_N mass_N x_N y_N z_N

We explain line by line:

• In the first line, N is the number of atoms, M is the maximum possible number of
neighbor atoms for one atom, and cutoff is the initial cutoff distance used for
building the neighbor list.
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• In the second line, pbc_x, pbc_y, and pbc_z can only be 1 or 0. If pbc_x is 1, it
means that periodic boundary conditions will be applied to the x direction; if pbc_x
is 0, it means that free boundary conditions will be applied to the x direction.
Similar descriptions apply to the other two directions. The next three items in the
second line, L_x, L_y, and L_z, are the initial lengths of the (rectangular) simulation
box along the x, y, and z directions, respectively.

• In the third line, type_1, group_1, and mass_1 are respectively the type, group
label, and mass of the first atom. The next three items, x_1, y_1, and z_1, are the
coordinates of this atom.

• Similarly, the (m+2)th line gives the information for the mth atom. This file should
have N+2 lines.

The atom type will be used to determine which potential parameters to use. The group
label will be used for some other purposes such as calculating the block temperatures in
NEMD simulations or realize fixed boundaries. We use integers to record the atom types
and group labels and the indices start from 0. Explicit examples will be presented in the
next chapter.

The mass should be given in unit of the unified atomic mass unit (amu). The cutoff
distance, box lengths and atom coordinates should be given in unit of angstrom (Å).

5.2.2 The run.in input file

Then, a file named run.in should also be prepared. In this input file, blank lines and
lines starting with # are ignored. All the other lines should be of the following form:

keyword parameter_1 parameter_2 ...

The overall structure of a run.in file is as follows:

#--------------------------------------------------------------------

# First, write these two keywords in any order (group-1)

potential

velocity

# Then, write (all or part of) these keywords in any order (group-2)

ensemble

time_step

neighbor

fix

dump_thermo

dump_position

dump_velocity

dump_force

dump_potential

dump_virial

compute_temp

compute_shc

compute_vac

compute_hac
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# Then write the keyword run (group-3)

run

# Now one can repeat the last two groups as many times as one wants

#--------------------------------------------------------------------

We now describe the use of the keywords in detail.

1. The potential keyword.

This keyword only has one parameter, which is the file name (including the absolute
or relative path) containing the information of the potential that the user wants to
use. An example is

potential potentials/tersoff/si_tersoff_1989_1.txt

By writing this, one has to make sure that the file si_tersoff_1989_1.txt has been
prepared in the folder potentials/tersoff/. The potential files are discussed in
the previous chapter.

2. The velocity keyword.

This keyword only has one parameter, which is the initial temperature of the system.
For example, the command

velocity 10

means that one wants to set the initial temperature to 10 K.

3. The ensemble keyword.

This keyword specifies the ensemble type (including external conditions such as
local heating and cooling) and the relevant parameters. The number of parameters
depends on the first parameter, which can be:

• nve. This corresponds to the NV E ensemble and there is no need to further
specify any other parameters. Therefore, the full command is

ensemble nve

• nvt_ber. This corresponds to the NV T ensemble using the Berendsen method.
In this case, one needs to specify an initial target temperature T_1, a final target
temperature T_2, and a parameter T_coup which reflects the strength of the
coupling between the system and the thermostat. The full command is

ensemble nvt_ber T_1 T_2 T_coup

The target temperature (not the instant system temperature) will vary linearly
from T_1 to T_2 during a run.

• nvt_nhc. This corresponds to the NV T ensemble using the Nosé-Hoover chain
method. The full command is

ensemble nvt_nhc T_1 T_2 T_coup
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• npt_ber. This corresponds to the NPT ensemble using the Berendsen method.
In this case, apart from the same parameters as in the case of nvt_ber, one
needs to further specify 3 target pressures, Px, Py, and Pz, and a pressure
coupling constant P_coup. The full command is

ensemble npt_ber T_1 T_2 T_coup Px Py Pz P_coup

• heat_nhc. This corresponds to heating a source region and simultaneously
cooling a sink region using local Nosé-Hoover chain thermostats. The full
command is

ensemble heat_nhc T T_coup delta_T label_source label_sink

The target temperatures in the source region (with label label_source) and
sink region (with label label_sink) are T + delta_T and T - delta_T, re-
spectively. Therefore, the temperature difference between the two regions is
twice of delta_T.

The units of temperature and pressure for this keyword are K and GPa, respectively.
The temperature coupling constant in the Berendsen method can be any positive
number less than or equal to 1 and we recommend a value in the range of [0.01, 1].
A larger number results in a faster control of the temperature. The temperature
coupling constant in the Nosé-Hoover chain method is in unit of the time step
and is recommended to be in the range of [100, 1000]. Here, a larger number
results in a slower control of the temperature. The pressure coupling constant in
the Berenden method should be a small positive number in the unit system adopted
by GPUMD. We recommend a value in the range of [0.01, 0.0001]. For a stiffer
material (like diamond or graphene), one should use a smaller value. In practice,
all these parameters should be determined by try and error.

4. The time_step keyword.

This keyword only requires a single parameter, which is the time step for integration
in unit of fs (10−15 s). For example, the command

time_step 1

means that the time step for the current run is 1 fs. Note that the value of time
step does not need to be set for each run in a “run.in” file. If you do not set a new
value of time step in a run, the value in the previous run will be used.

5. The neighbor keyword.

This keyword only requires a single parameter, which is the skin distance (the
difference between the cutoff distance used in neighbor list construction and that
used in force evaluation) in unit of Å. For example, the command

neighbor 1

means that the neighbor list will be updated when necessary (the code determines
automatically when the neighbor list needs to be updated) and the skin distance is
1 Å. If this keyword is absent in a run, the neighbor list will not be updated during
the run.
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6. The dump_thermo, dump_position, dump_velocity, dump_force, dump_potential,
and dump_virial keywords.

These keywords only requires a single parameter, which is the output frequency
for the relevant quantities: global thermodynamic quantities for dump_thermo, per-
atom positions for dump_position, per-atom velocities for dump_velocity, per-
atom forces for dump_force, per-atom potential energies for dump_potential, and
per-atom virial for dump_virial. For example, the command

dump_thermo 1000

means that the thermodynamic quantities will be written into the file thermo.out

(in the folder which contains the run.in file) every 1000 steps. By default, G-
PUMD does not dump these quantities. For example, if there is no dump_position

command for one run, positions will not be output for that run.

7. The fix keyword.

This keyword requires a single parameter which is the label of the group in which
the atoms are to be fixed (velocities and forces are set to zero such that the atoms
in the group do not move). For example, command

fix 0

means that atoms in group 0 will be fixed during the current run.

8. The compute_temp keyword.

This keyword is used to compute and output the block temperatures (local temper-
atures in each group) and requires a single parameter which is the sampling interval
for the block temperatures. For example, the command

compute_temp 1000

means that the block temperatures will be computed every 1000 time steps.

9. The compute_shc keyword.

This keyword is used to compute the nonequilibrium heat flux correlation function
KA→B(t) define in Eq. (3.86) and requires 5 parameters. The first parameter is the
sampling interval between two correlation steps. The second parameter is the total
correlation steps. The third parameter is the number of steps used to calculate one
correlation function. The last two parameters are the labels of the groups A and B
as used in Eq. (3.86). For example, the command

compute_shc 1 500 5000 10 11

means that (1) you want to do this calculation; (2) the relevant data will be sampled
every step; (3) the maximum number of correlation steps is 500; (4) the correlation
function KA→B(t) will be calculated every 5000 steps (If the number of steps in this
run is 100000, there will be 100000/5000 = 20 independent correlation functions
calculated); (5) the group label of A is 10 and that of B is 11. The results will be
written into a file named shc.out in the same folder where you put your run.in
file in.
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10. The compute_vac keyword.

This keyword is related to the calculations of VAC (velocity autocorrelation) and
two other related quantities: RDC (running diffusion coefficient) and DOS (phonon
density of states). If this keyword appears in a run, VAC and related quantities will
be calculated in the run. This keyword requires 3 parameters. The first parameter
for this keyword is the sampling interval of the velocity data. The second parameter
is the maximum number of correlation steps. The third parameter is the maximum
angular frequency ωmax = 2πνmax used in the DOS calculations. For example, the
command

compute_vac 5 200 350

means that (1) you want to calculate the VAC and related quantities; (2) the velocity
data will be recorded every 5 steps; (3) the maximum number of correlation steps is
200; (4) the maximum angular frequency you want to consider is ωmax = 2πνmax =
350 THz. The results will be written into a file named vac.out in the same folder
where you put your run.in file in.

11. The compute_hac keyword.

The compute_hac keyword is similar to the compute_vac keyword. It is used to
calculate HAC (heat current autocorrelation) and RTC (running thermal conduc-
tivity). It has 3 parameters. The first parameter is the sampling interval for the heat
current data. The second parameter is the maximum correlation steps. These two
parameters are similar to those for the compute_vac keyword. The third parameter
for compute_hac is the output interval of the HAC and RTC data. For example,
the command

compute_hac 20 50000 10

means that (1) you want to calculate the thermal conductivity using the Green-
Kubo method; (2) the heat current data will be recorded every 20 steps; (3) the
maximum number of correlation steps is 50000; (4) the HAC/RTC data will be
averaged for every 10 data and the number of HAC/RTC data output in a given
direction is then 50000/10 = 5000. The results will be written into a file named
hac.out in the same folder where you put your run.in file in.

12. The run keyword.

This keyword only requires a single parameter, which is the number of steps for
the current run. The time-evolution will only start when a run keyword has been
reached. Before reaching this keyword, the code just collects the parameters for the
current run. In the case where the VAC or the HAC is calculated, the number of
steps should be larger than the product of the sampling interval and the number of
correlation data. For example, the parameters in the commands

compute_hac 10 100000 10

run 10000000
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are reasonably good because the number of steps (107) is 10 times as large as the
product of the sampling interval and the number of correlation data (10×105 = 106).
In the case of calculating the VAC, it is important to first estimate the amount of
memory to be used. Denote the number of steps as Nrun and the sampling interval as
Nsamp, the memory to be used for holding the velocity data is (Nrun/Nsamp)×N×3×8
bytes if using double-precision. If the number of atoms is N = 104, Nsamp = 5, and
Nrun = 105, the memory to be used for holding the velocity data is about 4.8 GB.
This is ok for Tesla K40 and K80, but may be too much for older GPUs.

5.3 Output files of GPUMD

In this section, we describe the formats of the output files. The output files and the
corresponding keywords (used in the run.in file) generating them are:

• thermo.out is generated by dump_thermo

• xyz.out is generated by dump_position

• velocity.out is generated by dump_velocity

• force.out is generated by dump_force

• potential.out is generated by dump_potential

• virial.out is generated by dump_virial

• vac.out is generated by compute_vac

• hac.out is generated by compute_hac

• shc.out is generated by compute_shc

• temperature.out is generated by compute_temp

5.3.1 An important note

For all the output files, data from a new simulation will be appended to existing data.
Therefore, if you do not intend to append new data to existing ones, you’d better first
remove the existing output file or rename it.

5.3.2 The thermo.out file

This file is generated by using the dump_thermo keyword in the run.in file. There are
9 columns in the thermo.out file, each containing the values of a quantity at increasing
time points. The quantities are as follows:

• column 1: temperature (in unit of K)

• column 2: total energy (in unit of eV) of the system if the thermostat method is
Nosé-Hoover chain and kinetic energy (in unit of eV) of the system otherwise

• column 3: total energy (in unit of eV) of the thermostat if the thermostat method
is Nosé-Hoover chain and potential energy (in unit of eV) of the system otherwise
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• column 4: pressure (in unit of GPa) in the x direction

• column 5: pressure (in unit of GPa) in the y direction

• column 6: pressure (in unit of GPa) in the z direction

• column 7: box length (in unit of Å) in the x direction

• column 8: box length (in unit of Å) in the y direction

• column 9: box length (in unit of Å) in the z direction

5.3.3 The xyz.out file

There are 3 columns in the xyz.out file, corresponding to the x, y, and z coordinates of
the system at increasing time points. For example, if there are 4 atoms (labelled from 0
to 3) and you have saved 2 frames (corresponding to t0 and t1) of the configuration into
the xyz.out file, the data will be arranged in the following way:

x_0(t_0) y_0(t_0) z_0(t_0)

x_1(t_0) y_1(t_0) z_1(t_0)

x_2(t_0) y_2(t_0) z_2(t_0)

x_3(t_0) y_3(t_0) z_3(t_0)

x_0(t_1) y_0(t_1) z_0(t_1)

x_1(t_1) y_1(t_1) z_1(t_1)

x_2(t_1) y_2(t_1) z_2(t_1)

x_3(t_1) y_3(t_1) z_3(t_1)

5.3.4 The velocity.out file

Similar to the xyz.out file, but for the velocities, in the natural unit used in GPUMD.

5.3.5 The force.out file

Similar to the xyz.out file, but for the forces, in unit of eV/Å.

5.3.6 The potential.out file

Similar to the xyz.out file, but for the potentials in unit of eV. Note that there is only
one column, as potential is a scalar.

5.3.7 The virial.out file

Similar to the xyz.out file, but for the virial stresses, in unit of eV. Note that the three
columns correspond to the three diagonal elements of the virial stress tensor. The off-
diagonal elements are not dumped.
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5.3.8 The vac.out file

This file contains the data of VAC (velocity autocorrelation) and related quantities, name-
ly, the RDC (running diffusion coefficient) and the PDOS (phonon density of states). The
data in this file are organized as follows:

• column 1: correlation time (in unit of ps)

• column 2: VAC (in unit of Å2/ps2) in the x direction

• column 3: VAC (in unit of Å2/ps2) in the y direction

• column 4: VAC (in unit of Å2/ps2) in the z direction

• column 5: RDC (in unit of Å2/ps) in the x direction

• column 6: RDC (in unit of Å2/ps) in the y direction

• column 7: RDC (in unit of Å2/ps) in the z direction

• column 8: angular frequency ω in unit of THz

• column 9: DOS (in unit of 1/THz) in the x direction

• column 10: DOS (in unit of 1/THz) in the y direction

• column 11: DOS (in unit of 1/THz) in the z direction

5.3.9 The hac.out file

This file contains the data of HAC (heat current autocorrelation) and RTC (running
thermal conductivity), organized in the following way:

• column 1: correlation time (in unit of ps)

• column 2: ⟨J in
x (0)J in

x (t)⟩ (in unit of eV3/amu)

• column 3: ⟨Jout
x (0)Jout

x (t)⟩ (in unit of eV3/amu)

• column 4: 2⟨J in
x (0)Jout

x (t)⟩ (in unit of eV3/amu)

• column 5: ⟨J in
y (0)J in

y (t)⟩ (in unit of eV3/amu)

• column 6: ⟨Jout
y (0)Jout

y (t)⟩ (in unit of eV3/amu)

• column 7: 2⟨J in
y (0)Jout

y (t)⟩ (in unit of eV3/amu)

• column 8: ⟨Jz(0)Jz(t)⟩ (in unit of eV3/amu)

• column 9: κin
x (t) (in unit of Wm−1K−1)

• column 10: κout
x (t) (in unit of Wm−1K−1)

• column 11: κcross
x (t) (in unit of Wm−1K−1)

• column 12: κin
y (t) (in unit of Wm−1K−1)
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• column 13: κout
y (t) (in unit of Wm−1K−1)

• column 14: κcross
y (t) (in unit of Wm−1K−1)

• column 15: κz(t) (in unit of Wm−1K−1)

Note that the HAC and the RTC have been decomposed as described in Ref. [7]. This
decomposition is useful for 2D materials but is not necessary for 3D materials. For 3D
materials, one can sum up some columns to ge the conventional data. For example:

⟨Jx(0)Jx(t)⟩ = ⟨J in
x (0)J in

x (t)⟩+ ⟨Jout
x (0)Jout

x (t)⟩+ 2⟨J in
x (0)Jout

x (t)⟩. (5.1)

κx(t) = κin
x (t) + κout

x (t) + κcross
x (t). (5.2)

5.3.10 The temperature.out file

This file contains data related to NEMD simulations of heat transport. Assuming that
the system is divided into M groups, then

• columns 1 to M are the block temperatures

• the last second column is the total energy of the thermostat coupling to the heat
source region

• the last column is the total energy of the thermostat coupling to the heat sink region

5.3.11 The shc.out file

This file contains data for the nonequilibrium heat current correlation function KA→B(t)
as defined in Eq. (3.86). There are two columns, which are K in

A→B(t) and Kout
A→B(t) defined

in Ref. [7]. If one does not need the decomposition, one can sum up the two columns to get
the total correlation function. Note that an individual correlation function corresponds
to Nc consecutive rows.
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Chapter 6

Examples

In this chapter, we give some examples to illustrate the usage of GPUMD. All the results
presented here are obtained by using the double-precision version of the code. The
single-precision version is faster but we are not sure whether it is always as safe to use.
Note that even the double-precision version of GPUMD is highly efficient. For details of
the performance of GPUMD, see Ref. [6].

For each example, we have provided a run.in file and two or more MATLAB scripts:

• create_xyz.m, which can be used to create the xyz.in input file

• script(s) starting with plot_, which can be used to analyze the output data

After gaining some experiences in using GPUMD, one can use any other program to do
these pre-processing and post-processing jobs.

6.1 Thermal expansion of silicon crystal

A given crystal should have a well defined average lattice constant at a given pressure and
temperature. Here we use silicon as an example to show how to calculate lattice constants
using GPUMD. We use a cubic system (of diamond structure) consisting of 103×8 = 8000
silicon atoms and use the Tersoff-1989 potential.

The first few lines of the xyz.in file created by the create_xyz.m MATLAB script
are:

8000 4 3

1 1 1 54.3 54.3 54.3

0 0 28 0 0 0

0 0 28 0 2.715 2.715

0 0 28 2.715 0 2.715

0 0 28 2.715 2.715 0

The first line tells that the number of particles is 8000, the neighbor list size will be
8000 × 4, and the initial cutoff distance for the neighbor list construction is 3 Å. These
parameters are good for silicon crystal described by the Tersoff potential, because no atom
can have more than 4 neighbor atoms in the temperature range studied. One can make
the second number larger, which only results in using more memory. If this numver is not
large enough, GPUMD will give an error message and exit. Note that all the atom types
and group labels are 0 in this simulation.
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The “run.in” input file is given below. The first line of command tells that the potential
to be used is specified in the file potentials/si_tersoff_1989_1.txt. The second line
of the command tells that the velocities will be initialized with a temperature of 1 K.
Then, the next 4 lines tell how to do the first run. This run will be in the NPT ensemble,
using the Berendsen method. The temperature is 1 K and the pressures are zero in all the
directions. The coupling constants are 0.01 (dimensionless) and 0.0005 (in the natural
unit system adopted by GPUMD) for the thermostat and the barostat, respectively. The
time step for integration is 1 fs. There are 105 steps for this run and the thermodynamic
quantities will be output every 100 steps. After this run, there are 5 other runs with the
same parameters but the target temperature. Note that the time step only needs to be
set once if one is intended to use the same time step in the whole simulation. In contrast,
one has to use the dump_thermo keyword for each run in order to get outputs for each
run.

#-------------------------------------------------------------------

potential potentials/si_tersoff_1989_1.txt

velocity 1

ensemble npt_ber 1 1 0.01 0 0 0 0.0005

time_step 1

dump_thermo 100

run 100000

ensemble npt_ber 200 200 0.01 0 0 0 0.0005

dump_thermo 100

run 100000

ensemble npt_ber 400 400 0.01 0 0 0 0.0005

dump_thermo 100

run 100000

ensemble npt_ber 600 600 0.01 0 0 0 0.0005

dump_thermo 100

run 100000

ensemble npt_ber 800 800 0.01 0 0 0 0.0005

dump_thermo 100

run 100000

ensemble npt_ber 1000 1000 0.01 0 0 0 0.0005

dump_thermo 100

run 100000

#-------------------------------------------------------------------

It takes about 4 min to run this example when a Tesla K40 card is use. The speed of
the run is about 1.9× 107 atom× step/second.

The output file thermo.out contains many useful data, which can be analyzed by the
MATALB script plot_results.m. The results are shown in Fig. 6.1:

50



0 200 400 600
0

200

400

600

800

1000

1200

Time (ps)

T
em

pe
ra

tu
re

 (
K

)

(a)

0 200 400 600
−0.1

0

0.1

0.2

0.3

Time (ps)

P
re

ss
ur

e 
(G

P
a)

(b)

0 200 400 600
5.43

5.44

5.45

5.46

5.47

5.48

Time (ps)

a 
(A

ng
st

ro
m

)

(c)

0 200 400 600 800 1000
1

1.002

1.004

1.006

1.008

Temperature (K)

a(
T

)/
a(

1 
K

)

(d)

Figure 6.1: (a) Instant temperature as a function of simulations time. (b) Instant pressure
as a function of simulation time. (c) Instant lattice constant as a function of simulations
time. (d) Normalized average lattice constant (over the last 50 ps in each run for a given
temperature) as a function of temperature.

• (a): The temperature for each run quickly reaches the target temperature (with
fluctuations).

• (b): The pressure (averaged over the three directions) for each run quickly reaches
the target pressure zero (with fluctuations).

• (c): The lattice constant (averaged over the three directions) for each run reaches a
plateau (with fluctuations) after some steps.

• (d): We calculate the average lattice constant at each temperature by averaging the
second half of the data for each run. The average lattice constants at different tem-
peratures can be well fit by a linear function, with the thermal expansion coefficient
being estimated to be α ≈ 6.5× 10−6 K−1.

6.2 Phonon density of states of graphene

In this example, we calculate the phonon density of states of graphene at 300 K and zero
pressure. The simulated cell size is about 15 nm × 15 nm (8 640 atoms). The first few
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lines of the xyz.in file are:

8640 3 2.1

1 1 0 149.649 155.52 3.35

0 0 12 1.24708 0 0

0 0 12 0 0.72 0

0 0 12 0 2.16 0

0 0 12 1.24708 2.88 0

This is a stable structure with 3 neighbors for each atom when periodic boundary con-
ditions are applied in the planar directions (x and y). In the z direction, free boundary
conditions are used. Every atom is of type 0 and in group 0.

The run.in file reads:

#-------------------------------------------------------------------

potential potentials/c_tersoff_fan_2017.txt

velocity 300

ensemble npt_ber 300 300 0.01 0 0 0 0.0005

time_step 1

dump_thermo 1000

run 1000000

ensemble nve

compute_vac 5 200 400

run 100000

ensemble nve

compute_vac 5 200 400

run 100000

ensemble nve

compute_vac 5 200 400

run 100000

ensemble nve

compute_vac 5 200 400

run 100000

ensemble nve

compute_vac 5 200 400

run 100000

#-------------------------------------------------------------------

The potential model is Tersoff-1989, but some parameters are those reparameterized
by Lindsay and Broido [17]. In the version by Lindsay and Broido, the carbon-carbon
bond length at zero temperature is 1.44 Å, which is larger than the experimental value,
1.42 Å. Because the only relevant length parameters in the Tersoff-1989 potential are λ
and µ in the repulsive and attractive functions, we can simply correct the bond length by
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Figure 6.2: (a) VAC as a function of correlation time for the separate directions. (b)
PDOS as a function of the phonon frequency for the separate directions. (c) VAC as a
function of correlation time averaged over the separate directions. (d) PDOS as a function
of the phonon frequency average over the separate directions.

a proper scaling of these two parameters. All the other parameters are not affected by
this scaling.

There are 6 runs. The first run serves as the equilibration stage, where the NPT
ensemble is used. This run lasts 1 ns. The other 5 runs are identical production runs.
In each production run, the NV E ensemble is used. The line with compute_vac means
that velocities will be recorded every 5 steps (5 fs) and 200 VAC data (the maximum
correlation time is then about 1 ps) will be calculated. The last parameter in this line is
the maximum angular frequency considered, ωmax = 2πνmax = 400 THz, which is large
enough for graphene. Each production run lasts 100 ps. The major reason for using
multiple production runs rather a single one is that computing the VAC requires a lot of
memory, which prevents using very long runs.

This simulation takes about 7 min when a Tesla K40 is used. The speed of this
simulation, being about 3.6× 107 atom× step/second, is higher than that of the previous
example because the number of neighbors for each atom is smaller here (numbers of atoms
are comparable and the potential models are the same).

Figure 6.2 shows the calculated VAC and PDOS. For 3D isotropic systems, the re-
sults along different directions are equivalent and can be averaged, but for 2D materials
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like graphene, it is natural to consider the in-plane part (the x and y directions in the
simulation) and the out-of-plane part (the z direction) separately. It can be seen that
the two components behave very differently. We can see that the cutoff frequency for
the out-of-plane component (∼ 40 THz) is smaller than that for the in-plane component
(∼ 52 THz), which means that the two components have different Debye temperatures.

6.3 Thermal conductivity of graphene

In this example, we use the Green-Kubo method to calculate the lattice thermal conductiv-
ity of graphene at 300 K and zero pressure. The xyz.in file and the potential parameters
used are the same as in the last example. Note that the thickness of the graphene sheet
is set to 3.35 Å according to the convention in the literature. This thickness is needed to
calculate an effective 3D thermal conductivity for a 2D material.

The run.in file for this simulation reads:

#-------------------------------------------------------------------

potential potentials/c_tersoff_fan_2017.txt

velocity 300

ensemble npt_ber 300 300 0.01 0 0 0 0.0005

time_step 1

dump_thermo 1000

run 1000000

ensemble nve

compute_hac 20 50000 10

run 10000000

#-------------------------------------------------------------------

The equilibrium stage is the same as in the last example. In the production stage, we
use the NVE ensemble and calculate the HAC (heat current autocorrelation) and RTC
(running thermal conductivity). The sampling interval is 20, the number of correlation
steps is 50000 (such that the maximum correlation time is about 106 fs = 1 ns), and the
HAC and RTC are averaged for every 10 data points before written out. The production
time is 10 ns, which is 10 times as long as the maximum correlation time. This is a
reasonable choice.

It takes about one hour to complete the simulation using a Tesla K40 card. Figure
shows the results from a single simulation. Note that the output file hac.out contain
decomposed HACs and RTCs as described in Ref. [7]. As the system is essentially
isotropic, we can average over the two directions. The results are presented in Fig. 6.3.
From (a), we can see that the in-plane component and the out-of-plane component have
different time scales. The latter decays much more slowly. In (b), the RTC components
κin, κout, κcross, together with the RTC in the z direction κz, are presented. It is clear
that κout converges much more slowly than κin and to a larger magnitude. This is an
accepted result stating that heat transport in suspended pristine graphene is dominated
by the flexural (out-of-plane) phonons. Note that heat transport in the z direction here
is meaningless because free boundary conditions are applied in this direction. However,
the fact that the calculated κz should converged to zero can provide a validation of the
results.
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Figure 6.3: (a) Normalized HAC as a function of correlation time for the in-plane and out-
of-plane components. (b) RTC as a function of correlation time for various components.

Accurately calculating thermal conductivity of graphene can be a very time consuming
task. The results we presented are from a single simulation with a production time of 10
ns. It can been seen that the data already becomes very noisy when the correlation time
is 100 ps. To obtain accurate results, one needs to do many independent simulations and
do a statistical average. Much more accurate data were presented in Fig. 2 of Ref. [7].
Here are the simulation parameters used in Ref. [7] which differ from those used in this
example:

• The simulation cell size used in Ref. [7] is larger, which is about 25 nm × 25 nm
(24000 atoms).

• The maximum correlation time used in Ref. [7] is larger, which is 10 ns.

• The production time used in Ref. [7] for one independent simulation is larger, which
is 50 ns.

• There are 100 independent simulations in Ref. [7], not a single one here.

Each independent simulation in Ref. [7] took about 10 GPU hours (using Tesla K40)
and about 1000 GPU hours were used to obtain the results shown in Fig. 2 of Ref. [7].

6.4 Ballistic thermal conductance of graphene

In this example, we show how to study heat transport using the NEMD method combined
with the spatial and spectral decompositions as described in Ref. [7]. We aim to obtain
similar results for the case of unstrained graphene as presented in Fig. 4 of Ref. [7].

In the NEMD simulation, periodic boundary conditions are applied to the transverse
direction (chosen as the zigzag direction) and fixed boundary conditions are applied to
the transport direction (chosen as the armchair direction). The width of the simulated
system is about 10 nm and the total length in the transport direction is about 70 nn.
One major difference from the previous simulations is that here the group labels are not
identically 0. We divide the system into 8 groups along the transport direction and label

55



the groups from 1 to 8. Groups and 1 and 8 are taken as the source and sink regions,
respectively. The number of atoms in groups 1 to 8 are 8000, 1600, 1600, 1600, 1600,
1600, 1600, and 8000, respectively. Some extra fixed atoms are put into group 0. Here
are two important notes on the group label:

• It starts from 0.

• In the xyz.in file, an atom with smaller group label should appear earlier than that
with a larger group label. We may remove this restriction in a future version but
one should remember this rule when using the current version.

The run.in file for this example reads:

#-------------------------------------------------------------------

potential potentials/c_tersoff_fan_2017.txt

velocity 300

ensemble nvt_ber 300 300 0.01

fix 0

time_step 1

dump_thermo 1000

run 1000000

ensemble heat_nhc 300 100 10 1 8

fix 0

compute_temp 1000

compute_shc 2 250 100000 4 5

run 2000000

#-------------------------------------------------------------------

In this simulation, we fix the lattice constant and only control the temperature in the
equilibration stage. The fix 0 command is used to realize the fixed boundary conditions
by fixing the atoms in group 0. In the production stage, the heat_nhc “ensemble” type
is used to generate the nonequilibrium heat current. The heat source (group 1) and
the heat sink (group 8) will be maintained at 310 K and 290 K, respectively. The block
temperatures will be output every 1000 integration steps. The command with the keyword
compute_shc means that the nonequilibrium heat current correlation function defined in
Eq. (3.86) will be computed: the sampling interval is 2, the number of correlation steps is
250, the number of steps for calculating one correlation function is 100000, and the heat
current considered flows from group 4 to group 5 (the middle interface of the simulated
system).

This simulation takes about 40 min using a Tesla K40 card. Figure 6.4 shows the
results obtained from the temperature.out file:

• (a): The block temperatures show a relatively smooth profile, but no clear linear
region can be identified. Actually, heat transport here is ballistic and we do not
expect to find a well defined temperature gradient (which is need for computing
the thermal conductivity). What is important is that a well defined temperature
difference (20 K), which is needed for computing the ballistic thermal conductance,
can be established.
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Figure 6.4: (a) Temperature profile in the NEMD simulation. (b) Total energy of the
thermostats as a function of simulation time in the production stage.

• (b): A steady energy exchange between the system and the thermostats in the
source and sink regions has been well established. The nonequilibrium heat current
can be estimated to be about Q = 4.2 eV/ps. Then a ballistic conductance of about
G = 10.2 GW m−2 K−1 can be obtained. This classical value overestimates the
correct one and we will add discussion about quantum corrections after some of our
submitted manuscripts get published.
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Figure 6.5: (a) The nonequilibrium heat current autocorrelation function as define in
Eq. (3.86) as a function of correlation time. (b) The spectrally decomposed ballistic
conductance as a function of phonon frequency.

The shc.out file contains data for the nonequilibrium heat current autocorrelation
function K(t) as define in Eq. (3.86). Also, the in-out decompositions introduced in
Ref. [7] is considered. The calculated K(t) and the spectrally decomposed conductance
g(ω) for the in-plane and the out-of-plane components are shown in Fig. 6.5. One can
see that they are similar to the velocity autocorrelation and the phonon density of states
discussed in a previous example. This is reasonable because the ballistic conductance is
proportional to the product of the phonon density of states and the group velocity.

One can check the consistency of the results at least in the following two ways:
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• When steady state is achieved, the correlation function K(t) evaluated at zero cor-
relation time should be consistent with the heat current calculated from the energy
exchange rate between the system and the thermostats. That is, K(0) = Q.

• The total thermal conductance G should equal the integration of the spectral con-
ductance. That is, G =

∫∞
0

dω
2π
g(ω).

One should always make sure that the obtained data pass these tests approximately.
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