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Abstract

Chemical vapour deposition (CVD), and its variants, is a more viable technology than the addition of surface

active agents to modify nanoparticle surfaces. While thermally-activated CVD simply works by initiating

the monomers using heat, some other techniques are more powerful and versatile. Indeed, higher energy

CVD methods open up possibilities to a wider range of monomers. Unfortunately, di↵erent terminology

and classifications due to parallel work have led to confusion. This paper presents and explains the dif-

ferent techniques as well as their equivalent terminologies to clarify the big picture. While the demand

for functionalized nanoparticles grows rapidly, current functionalization methods are still too expensive for

most applications. This paper is intended to be a practical review of the gas phase methods available in

order to identify a potential candidate for large scale functionalization of nanoparticles. This study identifies

Photo-Initiated CVD (PICVD) as an ideal solution for scalable particle functionalization technology.

Keywords: Photo-Initiated CVD, PhotoCVD, Photopolymerization, Functionalization, Nanoparticles

Nomenclature

CV D Chemical vapour deposition

HWCVD Hot-wire chemical vapour deposition

(i)CV D Initiated chemical vapour deposition

LCV D Luminous chemical vapour deposition

MLCVD Magneto luminous chemical vapour deposition

MOCVD Metalorganic chemical vapour deposition

(o)CV D Oxidative Chemical Vapour Deposition
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PACV D Plasma- or photo-assisted chemical vapour deposition

PECV D Plasma-enhanced chemical vapour deposition

(pi)CV D/PICV D Photo-induced or -initiated chemical vapour deposition

TACV D Thermally-activated chemical vapour deposition

V DP Vapour deposition polymerization

1. Introduction

Due to their high surface/volume ratio, nanoparticles exhibit properties that di↵er greatly from their bulk

ones, which makes them popular in almost every field of natural science [1]; emerging applications can be

found in optics [2], biomedicine [3, 4], heat transfer [5], catalysis [6], architecture [7], energy [8], environment

[9] and computer science [10]. For the same reason, nanoparticles also possess extremely high surface

energy. Thus, the particles strive towards a lower-energy thermodynamic state through agglomeration,

leading to larger e↵ective particle sizes. In terms of nano range applications, this phenomenon is usually

undesirable since the properties attributable to individual nanoparticles are lost or diminished. Traditionally,

agglomeration phenomena have been overcome e↵ectively through the use of surface-active compounds such

as surfactants. Despite the apparent e�ciency of this method, it has been found to be inapplicable for a

wide range of application due to the poor thermal stability of surfactants. In fact, many surfactants desorb

from nanoparticle surfaces at temperature as low as 350K (70 �C) [5], leading to particle agglomeration.

This makes surfactants unusable for several applications where tolerance to high thermal cycling is required

(e.g.: nanofluids, thermoset polymer nanocomposites, etc.).

Where thermal stability can be an issue, the best way to counter the agglomeration is through covalent

functionalization of the particles with organic or inorganic groups in order to change their surface charge

[11, 12]. Nanoparticle functionalization can be achieved following two di↵erent methods, both based on

in situ polymerization. The first is classical wet chemistry method (also known as sol-gel), which may

upon first inspection appear quite simple, but is limited to small quantities due to the use of multi-step

reactions requiring specialized knowledge and, most importantly, the high cost of downstream separation.

Moreover, potentially toxic solvents and/or reactant are typically involved, further limiting scalability. The

second method is through gas phase techniques, usually called either vapour deposition polymerization

(VDP) or chemical vapour deposition (CVD). Vapour deposition methods allow for a higher purity surface

coating without the use of organometallic compounds [13]. Currently, CVD seems to be the most promising

technology for the functionalization of nanoparticles on an industrially-relevant scale. Multiple variants of

this method exist, such as thermally-activated, plasma-enhanced, photo-initiated and oxidative, to name

just a few. It is generally accepted that gas phase polymerization is cleaner and by definition more adequate
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for applications that require uniform coating thickness at nanoscale level [13]. Even if several papers have

already been published on the scientific relevance of these techniques, there is still no gas phase method that

is economically viable at a large scale for the coating of nanoparticles. Despite this, the industrial demand for

functionalized nanoparticles continues to grow, extending its field to new markets, such as nanocomposites

and biomedical applications [14, 15]. The limiting step between the research and the development appears

to be cost-e↵ectiveness. Despite the interesting results obtained in laboratory, the value gained is still not

always economically balanced and leveraged to a useful scale. New solutions have to be proposed. This

paper is not intended to be an extensive review from a fundamental point of view since this work has already

been done many times by di↵erent groups [13, 16, 17]. However, by reading those reviews, one can be easily

be distracted by the terminology which lacks standardization and classification. This can be due to the

fact that those di↵erent research groups tend not to share the same vision or point of view of gas-phase

deposition mechanisms. This paper will attempt to unify these diverging terminologies and concepts into

more objective point of view or at least a bigger picture of vapour deposition methods. Some equivalencies

will be proposed in order to position the reader. Hopefully, this will allow for greater innovation in the field

of particle functionalization by levelling the playing field. An overview of three initiated CVD ((i)CVD)

techniques will be presented as well as a comparison of those technique and their potential as nanoparticle

coating system at large scale. Knowledge gaps will be identified and resources will be presented in order to

potentially fill these gaps.

2. Chemical Vapour Deposition (CVD)

2.1. Overview

Chemical vapour deposition is a chemical process that consists in reacting volatile precursors in the gas

phase to form a solid compound that deposits on surfaces. This technique is widely used in the semiconductor

industry to produce dense thin films.

In terms of mechanism, chemical vapour deposition can occur in two di↵erent ways. The gaseous species

can either polymerize in the gas phase and then adsorb to the surface, or adsorb first on the surface and then

polymerize in situ using the substrate as a foundation. The first case has been demonstrated to create poorer

coating adhesion compared to the second one [13]. A third possible mechanism could be the combination of

the previous two; There is no apparent reason why the polymerization process could not begin in the gas

phase and continue to growth once adsorbed onto the surface.

CVD processes are often achieved under low-pressure conditions for two reasons. First, the monomers

used as reactants are often liquid under normal conditions. The amount of monomer gas flow is then

directly dependant of the evaporation rate achieved through pressure decrease. Though thermal energy

may be supplied to further increase the evaporation rate, temperature will be limited by the types of

monomer used, as will be discussed further. Secondly, it is often desired that the reaction occur onto the
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substrate rather than in the gas phase for reasons mentioned previously (the lower the pressure, the lower

the probability of gaseous species colliding and reacting with each other in the gas phase). This means that

if using gaseous monomers at normal conditions coupled with a tolerance to reaction in the gas phase, it

could be possible to operate at atmospheric pressure. This would have a tremendous e↵ect on the feasibility

as well as the operational cost of an industrial-scale system.

As mentioned previously, reactions occurring in the gas phase can be used for functionalization, but

adherence to the substrate may be weakened. However, some polymers and resins that can be formed

exhibit very strong adhesive properties, depending on the monomers used [18].

3. Description of (i)CVD techniques

The concept of initiated CVD was introduced by Gleason et al. to describe the general mechanism of

polymerization that needs the formation of radicals to occur [16]. This radical formation can be achieved

by adding energy to the system in the form of heat (thermal), electricity (plasma), light (photo) or a

combination thereof. The current section describes more specific details for each technique.

3.1. Thermally-activated CVD (TACVD)

Thermally-activated CVD is considered as the conventional CVD process [13] and consists of initiating

the monomers by means of heat. The heat source can come from one or di↵erent sources such as infrared

radiation, inductive heating, or electrical resistivity. In most cases, a resistive hot wire is used to induce the

reaction as shown in figure 1. This specific technique is sometimes called hot wire CVD (HWCVD) [19].

Usually, the gas phase is heated in order to create reactive species and promote the kinetics. Alternatively,

the substrate temperature may also be increased independently to promoted surface reactions. However,

substrate temperature is critical, since there are two phenomena competing against each other: increasing

the temperature will increase the polymerization kinetics, but also promote desorption. TACVD has been

used extensively in industry for surface coatings though not for nanoparticle functionalization. Examples

of application are thin films for semi-conductors, protective coatings for ceramics and fiber coatings. Major

drawbacks of this technique are the limited range of monomers that can be used, since some monomers will

degrade when exposed to heat, and its poor thermal transfer e�ciency [13]. Moreover, while the heating

methods do not necessarily require a large capital investment, high temperature operation tends to increase

operating cost namely as a result of poor e�ciency, especially when heating gases. The major advantage of

TACVD is its simplicity along with the fact that it can be operated at normal pressure. However, it might

be necessary to increase the temperature tremendously to make the environment reactive, which can play

important role on the materials used and, thus, the capital cost of the equipment.

[Figure 1 about here.]
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3.2. Plasma-enhanced CVD (PECVD)

Plasma-enhanced CVD (PECVD) uses non-equilibrium or cold plasma to initiate the polymerization

reaction, through a combination of light emission, typically ultraviolet (UV), radical formation and ion-

ization. Figure 2 illustrates the principle of a PECVD setup. Only a small percentage of electrons are

excited to a level su�cient to drive forward chemical reactions. A great deal of energy is wasted on lower

energy electron, which makes the technique poor in terms of e�ciency. Nonetheless, due to its high energy

transfer to the reactive species, PECVD is the most powerful CVD technique. PECVD has been proven to

functionalize nanoparticles very e�ciently [11, 20], but tends to make reaction happen too quickly, resulting

in unstructured coatings with low crosslinking. A variant of this technique consists in pulsing the plasma in

order to allow the functional coating to restructure itself between pulses. Pulsed-PECVD tends to increase

the density of the coating though the trade-o↵ is a decrease in the deposition rate. Choy, Gleason and

Yasuda have contributed greatly to di↵use the knowledge acquired through extensive reviews [13, 16] and

books [19, 21, 22], and PECVD can now be described as a well-known technique. However, this technique

has tremendous practical limitations; since it typically operates under vacuum, one can expect the scale-up

to be costly. Moreover, the operating cost versus the equipment size usually increases exponentially for

plasma systems. While it is possible to operate cold plasma discharges at atmospheric or near-atmospheric

pressures [23, 24, 25], discharge volumes are severely limited and thus not appropriate for large-scale particle

functionalization. Recently, PECVD has also been used for the growth of carbon nanotube [26].

[Figure 2 about here.]

3.3. Photo-initiated CVD (PICVD)

Photo-initiated CVD uses the light to initiate the polymerization reaction through the formation of

radicals. Unfortunately, there is still very little information available on PICVD, beyond that of the groups

presented in the previous section. This can be explained by the fact that CVD techniques have been mainly

developed to respond to semiconductor industry demands, which is more focused on high deposition rates.

PICVD is very close to PECVD since they share common basics; a UV lamp is simply an arc or a glow

discharge plasma confined in a bulb that is transparent to UV, such as quartz. Indeed, the energy supplied

by the UV lamp is inferior to that supplied by plasma since ionization and radical formation through electron

bombardment are not available to stimulate the reaction. The main advantages of PICVD are clear; it is

more e�cient in terms of energy consumption (lamps have been optimized), the reactor can operate under

normal conditions and, most importantly, the polymers formed are more structured than with unpulsed

PECVD. However, because the initiation caused by the plasma is not introduced, only its UV content, the

reactive mixture has to be photosensitive. Therefore, the reactive mixture has to be photosensitive. This

reduces the range of monomers that can be used, but can lead to a better control on the reaction. As

previously discussed, PECVD can be sometimes too energetic: the polymerization process moves too fast
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to allow the molecules on the substrate to restructure, which is not usually the case with PICVD. By this

very fact, PICVD will tend to produce more crosslinked structures. For applications that do not require

the polymerization of heavy monomers at high deposition rate, UV radiation should be adequate [27]. A

technical barrier of this technology is the need for transparent-to-light reactor walls. Moreover, as mentioned

in two patents on PICVD, the polymerized compounds tend to stick to the window of the reactor and block

further radiation, but solutions to counter this e↵ect exist [28, 29]. Figure 3 illustrates the concept of a

PICVD system.

[Figure 3 about here.]

4. Diverging terminologies

Surprisingly, many reviews have been published by di↵erent research groups, but without referring to

each other [13, 16, 19, 30]. Another interesting fact is that these groups, even if they are working in same

field, do not share the same terminology. This review intends to reduce the gap between the di↵erent fields

that have been working in parallel until now by combining the di↵erent terminologies into a more consistent

system.

4.1. Gleason et al.

Gleason’s research group has published many relevant article on the subject of CVD, focusing namely

on particle encapsulation and electrically-conductive thin coatings. [12, 16, 31, 32, 33, 34]. Gleason et al.

have developed their own terminology. Their nomenclature philosophy is based on adding a lower case

acronym, describing the nature of the technique, contained between parentheses as a prefix to CVD. More

precisely, (i)CVD and (o)CVD stand for initiated and oxidative CVD, respectively. PECVD is an exception

to this rule and is considered as a category by itself. Furthermore, they use the term VDP to describe a

CVD that does not require additional heating nor any other form of intiation, while usually other reseach

groups consider CVD and VDP as synonyms. (pi)CVD, which stands for photo-initiated CVD, is included

in (i)CVD, but (i)CVD refers to thermally-activated CVD most of the time, more specifically using heating

filament that is refered elsewhere by hot wire chemical vapour deposition (HWCVD) [19, 13]. Based on

the inclusion of (pi)CVD, PECVD could also have been categorized as a type of (i)CVD, but it is not, for

unknown reasons. It is important to not confuse the term initiated from (i)CVD with photo-initiator, which

will be detailed later in this paper.

The interesting aspect of this terminology is the classification based on mechanism type. On the other

hand, the actual system shows some inconsistencies between categories and techniques. Moreover, this

terminology is not often used outside of their research group [16, 31]. Therefore, the concept of classification

of techniques based mechanisms will be kept but consolidated with other used terminologies. Table 1

summarizes Gleason’s terminology.
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[Table 1 about here.]

4.2. Choy

In 2003, Choy has published an extensive review on the field, stemming from work on process-structure-

properties relationships, especially with regards to nanomaterials processing [13]. From Choy’s point of

view, the conventional CVD method is thermally-activated CVD (TACVD). Therefore, other techniques

are considered as variants of TACVD, altogether under the general CVD label. Choy’s terminology uses

PECVD and PACVD to describe plasma-enhanced and photo-assisted CVD, respectively [13]. A confusion

occurs since PACVD can refer to plasma-assisted CVD in some reports [19, 35]. Choy also presents other,

more exotic variants such as metalorganic (MOCVD) and flame-assisted (FACVD). The first can be related

to (o)CVD (from Gleason’s group), while flame-assisted could be considered as a Gleason (i)CVD technique.

From Choy’s point of view, CVD without initiation does not exist. Choy’s nomenclature is widely used in

the field. As such, it serves as the principal resource for the terminology developed in this work. Table 2

summarizes Choy’s terminology.

[Table 2 about here.]

4.3. Yasuda

Even if Yasuda’s field of interest is mainly focused on plasma polymerization methods, his knowledge

is very useful for the purpose of this article. Contrary to Choy, PACVD stands for plasma-assisted rather

than photo-assisted in Yasuda’s work [36]. Yasuda [19, 21] introduced the term luminous CVD (LCVD)

to describe every technique that actively uses plasma in the reaction. Counter-intuitively, LCVD does not

include photo-induced methods; if it does, it is implicit that every potential source of light is coming from

a plasma source. Also, Yasuda makes a distinction between plasma polymerization, plasma CVD, plasma-

assisted CVD and plasma-enhanced CVD which are the same technique with the exception that the substrate

is heated in the case of PECVD and PACVD. The use of a heated filament (HWCVD) is referred to the

traditional CVD method. More recently, Yasuda has added the magneto luminous polymerization (MLP) to

his vocabulary which he describes as the process of dielectric breakdown of gas molecules under the influence

of a magnetic field [37]. Finally, for Yasuda, CVD without additional acronyms means a thermally-assisted

CVD in which the heat is coming from the substrate surface. Table 3 summarizes Yasuda’s terminology.

[Table 3 about here.]

4.4. Other terminologies

Many other authors use an amalgam of all terminologies mentioned earlier or di↵erent ones without

being systematic or consistent in their usage. Also, other authors, such as Wertheimer et al. [38, 39] and

Scherzer [40, 41, 42] use the term photopolymerization to describe the use of vacuum-ultraviolet (VUV)
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radiation to achieve the functionalization of a surface. Those articles do not mention the term CVD. This is

surprising because the term photopolymerization by itself describes the polymerization reaction by the use

of light, but does not necessarily implies a coating process. From a more technical point of view, the major

disadvantage of the use of VUV is its absorption in the air. Since very few materials are transparent to

those wavelengths, its usage requires exotic and sensitive materials such as MgF2 or LiF2 (the only materials

transparent to UV light below 200 nm) as reactor window. Therefore, this technique introduces high costs

and would be di�cult to integrate in common industrial context.

Another term, FACVD, that sometimes stands for flame-assisted CVD and sometimes for flame aerosol

CVD, consist to spray the monomer into a flame. This technique can be seen as a hybrid between PECVD

and TACVD. Pratsinis et al. [43] has used this technique to achieve the surface functionalization of nanopar-

ticles.

4.5. This paper

In an attempt to unify the terminology, some aspects of each terminological system have been retained,

with consistency between terms as main objective. Table 4 describes this new terminology system.

[Table 4 about here.]

The basis of this new terminology is that all chemical reactions require energy to move forward, even if

this energy source is as weak as the heat available at room temperature. Therefore, the term VDP has been

discarded. The technique of using light as initiator was originally named photo-assisted CVD on its first

patent [44], then took the name of photo-CVD on the two following patents on the subject [28, 29]. To avoid

any confusion between the possible meanings of PACVD (photo- or plasma-assisted), this acronym has been

discarded. PhotoCVD would have been an appropriate choice, but since it is not based on acronyms, it has

been rejected for the sake of uniformity. Since the use of light to achieve the chemical vapour deposition

can be called both photo-initiated and photo-induced, the PICVD acronym seems a fair choice. This term

is very close to the (pi)CVD acronym proposed by Gleason et al., but without the use of parentheses since

it is not consistent with other specific techniques. Since PECVD is the most common term for plasma

enhanced polymerization, it is retained. As mentioned earlier Wertheimer et al. used photopolymerization

to describe PICVD. For the purpose of this paper, it is preferred to consider photopolymerization as part

of photochemistry, which is a related but distinctive field. It is true however, that photopolymerization and

PICVD share a basic common knowledge. This aspect will be discussed later in this paper. The lower capital

acronym between parentheses has been kept for general CVD categories. (or)CVD stands for oxidative or

reductive CVD and has replaced (o)CVD in order to include metalorganic CVD (MOCVD) that occurs

under reductive conditions. With this new system, as shown in table 4, CVD, (i)CVD and (or)CVD do not

correspond to specific techniques but to categories of techniques. In doing so, a great deal of confusion is

thus avoided. Table 5 shows the equivalence between terms used by each group.
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[Table 5 about here.]

From this point, the proposed terminological system will be used. The following sections will primarily

on (i)CVD-based methods. For further information on (o)CVD, please refer to Gleason et al. [16, 31, 33].

5. Comparison of techniques

In order to compare and propose di↵erent potential solution, it is pertinent to define some key guidelines

related to the context. To be satisfactory, the selected method for nanoparticle functionalization should

meet the following criteria:

• Low processing cost

• Low capital cost

• Operate at low temperature

• Operate at normal pressure

These first 4 criteria are unified under the term scalability.

• Produce dense uniform high quality coatings

• Allows for acceptable deposition rate

• Able to process a range of monomers wide enough to o↵er an interesting selection of functional prop-

erties that can be transferred to the coated material

These last 3 criteria are unified under the term versatility.

[Table 6 about here.]

[Table 7 about here.]

Table 6 shows qualitatively and subjectively how each technique respects the previously presented criteria

while table 7 summarizes the advantages and disadvantages of each (i)CVD technique. What can be retained

of this study are the following statements:

• TACVD can be good under certain circumstances but remains the weakest form of (i)CVD methods.

• PECVD is the most versatile (i)CVD method, but its implementation is not realistic due to its pressure

constraints and high scaling costs.

• PICVD seems to be the only (i)CVD technique that has the potential to respect the criteria.

It can be concluded from this comparison that PICVD seems to be a promising avenue of research for

the functionalization of nanoparticles at large scale.
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6. Knowledge gap and avenues of research

While a wide range of publications has been published on the coating of nanoparticles, it is unexpected

to see that so little work has been conducted to investigate the use of PICVD as a potential solution. The

authors truly believe that more work has to be done in that direction since, as shown earlier, PICVD seems

to be the best compromise for the functionalization of surfaces. It seems obvious that there is a knowledge

gap to be filled. This paper aims to provide key resources needed to get started.

6.1. Avenues of research

Zhang et al., from the University of Minnesota, have demonstrated the feasibility of using PICVD to

deposit coatings on nanoparticles [45, 46, 47, 48]. Surprisingly, it is the only research group that have

reported work on the subject that the authors are aware of. More precisely, the papers reported the growth

of organic coating on sodium chloride and silicon dioxide nanoparticles.

6.2. Current knowledge gap

As mentioned before, there is still little knowledge about PICVD. However, the PICVD technique inherits

a solid theoretical background from related fields. To close the gap of information available for PICVD, the

actual review will draw its resources from PECVD and photopolymerization knowledge.

From PECVD. PECVD and PICVD have a lot in common. If the deposition rates may di↵er, the mecha-

nisms would, at least in part, be similar. For example, the functional coating will be subject to the same

problems. Therefore, work conducted by Wertheimer et al. on coating aging (hydrophobic recovery) [49]

as well as stability of film by spectrometry [20] is quite useful. The critical issues of PECVD demonstrated

by Bunshah [35] coupled with the mass transport considerations proposed by Goyal et al. [50] and the

critical review from Liston et al.[51] can be used to assist in reactor design. Moreover, the kinetic and ther-

modynamic considerations presented by Choy [13] are valid for all CVD techniques. Finally, the optimal

characterization techniques developed by Holländer et al. [52], Scherzer et al. [40, 41] and Khudyakov et

al. [53] can be re-used as well. Those techniques includes photo di↵erential scanning calorimetry (photo-

DCS) (Khudyakov), real-time fourier transform infrared spectroscopy (Scherzer), fluorescence dye fluram

and several chemical analysis (Holländer).

From Photopolymerization and Photochemistry. A great deal of PICVD knowledge comes from photopoly-

merization and photochemistry. In fact, the idea of coating surfaces by this method is not young. The book

”Photopolymerization of coating surfaces” is a great example that came out in 1982 [54]. Extensive work

on the subject has been done around the 1940s [55, 56]. Recently, the photochemistry trend has resurrected

vividly, often using acrylates or thiolene acrylates as monomers [38, 42, 57, 58, 59, 60, 61, 62, 63, 64]. The

field has garnered renewed interest in the two last decades, mainly due to its application to many fields such
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as coatings and adhesives. More specifically, this trend is going in the direction of self-initiating monomers

[65, 66]. While photopolymerization usually refers to UV emission, it has also been accomplished with visible

light [30, 67, 68], and even near-infrared light [69], though these cases required the use of photo-initiators

(detailed further on). Some reviews have also been published out on the subject [39, 70]. Pargon et al. have

compared plasma against VUV [71] on chemical modification of surface and reported similar results for both

technologies.

In order to be able to initiate the polymerization process, a bond has to adsorb enough energy to break

itself and create a free-radical site through light-initiated means. Ideally, the absorption spectrum of the

compound would match perfectly the lamp emission spectrum. Unfortunately, this is rarely, if not ever,

the case. Often, the actual emission frequency does not exceed the energy required to break the bond.

Sometimes, the desired reactant is almost transparent to UV. In those cases, photosensitizers or photo-

initiators can be added to the gas phase.

Photopolymerization in the presence of diverse photo-initiators has been studied extensively. When the

retained monomer is transparent to the emission spectrum of the light, the photo-initiators becomes a prereq-

uisite. In other cases, the photo-initiators accelerated the reaction kinetics. Ideally, the photopolymerization

process would not need the assistance of a photo-initiator since the use of photo-initiator contaminates the

final product [55, 70]. Moreover, commonly used photo-initiators are rather expensive or toxic, if not both

[70]. More recently, the trend is in the direction of photo-initiator-free reaction solutions [58, 59]. The terms

sensitizer and photo-initiator have been interchanged for a long time now [55]. As a main distinction, while

photo-initiators are consumed in the reaction and thus generate by-products, photosensitizers are not. This

means that photosensitizers are simply sensitive to the light used, without being a reactant. This subtlety

makes a di↵erence in terms of contamination of the polymer generated. Photosensitizers are further distin-

guished from photo-initiators by the mechanism by which they act; indeed, photosensitizers are compounds

that absorb the light radiation used and convert it either to a wavelength that can be absorbed by the

reactant or to thermal energy to stimulate the reaction.

Another important consideration is the polymerization mechanism itself. It can be either step or chain

growth. Chain growth is the most common and consists of similar monomers adding one by one, forming a

chain. Co-polymerization can also be considered as chain growth (one monomer is alternated with another).

Step growth, on the other hand, is more chaotic and can include several reactions forming intermediate

products that will form the polymer that is obtained at the end. Alf et al. seem to imply that every CVD

process is based on chain growth, but this position is not clearly stated nor demonstrated [31].

The field of photopolymerization is growing quickly in terms of its knowledge and comprehension. For

example, Andrzejewska [72] and Friedrich [17] wrote impressive reviews exclusively on the photopolymeriza-

tion kinetics. Boies et al., from the same research group as Zhang, have recently published a kinetic study

of the PICVD applied to the coating of silver nanoparticles in the gas phase [47].
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Among the monomers tested, many studies have been focused on photopolymerization of acrylates.

The choice of this monomer is based on the fact that it o↵ers high deposition rates without requiring

photoinitiators [14]. Most of the work on photopolymerization has been done on liquids, not on gases.

Therefore, there is still a lot of work to be done. To be optimal, PICVD should use reactants that either

strongly absorb in the lamp emission range or include photosensitizers or, if contamination can be tolerated

in the targeted application, photo-initiators.

7. Conclusion

In summary, gas-phase polymerization is a more viable technology than the addition of surfactant agent

for the dispersion of nanoparticles in fluids. Among these gas-phase reactions, called CVD, many versions

exist. While the traditional method (TACVD) simply works by initiating the monomers using heat, some

other techniques are more versatile. Higher energy CVD methods (such as PECVD and PICVD) allow

for a wider range of monomers. Unfortunately, di↵erent terminology and classifications due to parallel

work have led to confusion. The present work attempted to present and explain the di↵erent techniques

and nomenclatures available to clarify the big picture. Indeed, the most versatile subcategory of CVD is

the PECVD due to its high-energy state (ionization, electron bombardment) combined with its rich UV

content radiation. In terms of surface functionalization, the e↵ectiveness of PECVD is proven. However,

some technical constraints are limiting its adoption by the industry, especially in the case of lower value-

added products. While some technologies might be scaled up quite easily, it is not the case of PECVD.

As demonstrated in this paper, PICVD using UV lamps seems to be a good compromise with regards to

particle functionalization on a large scale. Basically, the use of UV lamps consists of decoupling the plasma

source from its reactor, therefore allowing the reactor to operate under more gentle conditions. While the

range of reactants that can be used is slightly reduced, the cost e↵ectiveness rises tremendously. Further

work in the field of PICVD is thus warranted, and this work can build on an existing foundation in the fields

of photopolymerization and, more generally, photochemistry.
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(2006) 6057–6065.
[62] N. B. Cramer, C. N. Bowman, Kinetics of thiol-ene and thiol-acrylate photopolymerizations with real-time fourier trans-

form infrared, Journal of Polymer Science Part A: Polymer Chemistry 39 (2001) 3311–3319.
[63] S. C. Clark, C. E. Hoyle, S. Jönsson, F. Morel, C. Decker, Photopolymerization of acrylates using n-aliphaticmaleimides

as photoinitiators, Polymer 40 (1999) 5063–5072.
[64] T. Scherzer, H. Langguth, Temperature dependence of the oxygen solubility in acrylates and its e↵ect on the induction

period in uv photopolymerization, Macromolecular Chemistry and Physics 206 (2005) 240–245.
[65] E. Jonssön, T. Lee, K. Viswanathan, C. Hoyle, T. Roper, C. Guymon, C. Nason, I. Khudyakov, Photoinduced free radical

polymerization using self-initiating monomers, Progress in Organic Coatings 52 (2005) 63–72.
[66] T. Scherzer, Photopolymerization of acrylates without photoinitiators with short-wavelength uv radiation: A study with

real-time fourier transform infrared spectroscopy, Journal of Polymer Science Part A: Polymer Chemistry 42 (2004)
894–901.

[67] D. Burget, C. Mallein, J. Fouassier, Visible light induced polymerization of maleimide-vinyl and maleimide-allyl ether
based systems, Polymer 44 (2003) 7671–7678.

[68] A. Fozza, A. Kruse, A. Holländer, A. Ricard, M. Wertheimer, Vacuum ultraviolet to visible emission of some pure gases
and their mixtures used for plasma processing, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films
16 (1998) 72.

[69] T. Scherzer, M. R. Buchmeiser, Photoinitiated cationic polymerization of cycloaliphatic epoxide/vinyl ether systems
studied by near-infrared reflection spectroscopy, Macromolecular Chemistry and Physics 208 (2007) 946–954.

[70] T. Scherzer, Vuv-induced photopolymerization of acrylates, Macromolecular Chemistry and Physics 213 (2012) 324–334.
[71] E. Pargon, L. Azarnouche, M. Fouchier, K. Menguelti, R. Tiron, C. Sourd, O. Joubert, Hbr plasma treatment versus

vuv light treatment to improve 193nm photoresist pattern linewidth roughness, Plasma Processes and Polymers 8 (2011)

14

Christopher Dion

Christopher Dion

Christopher Dion

Christopher Dion

Christopher Dion

Christopher Dion

Christopher Dion

Christopher Dion



1184–1195.
[72] E. Andrzejewska, Photopolymerization kinetics of multifunctional monomers, Progress in Polymer Science 26 (2001)

605–665.
[73] G. Ozaydin-Ince, K. K. Gleason, Transition between kinetic and mass transfer regimes in the initiated chemical vapor

deposition from ethylene glycol diacrylate, Journal of Vacuum Science Technology A: Vacuum, Surfaces, and Films 27
(2009) 1135–1143.

[74] C. D. Dion, J. Tavares, Scalable gas phase nanoparticle treatment methods required for large-scale nanofluid and nanocom-
posite synthesis, Nanotechnology 2012: Electronics, Devices, Fabrication, MEMS, Fluidics and Computational 2 (2012)
392–395.

15

Christopher Dion

Christopher Dion

Christopher Dion



List of Figures

1 Schematic of a HWCVD setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Schematic of a PECVD setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Schematic of a PICVD setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

16
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Figure 2: Schematic of a PECVD setup
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Table 1: Terminology used by Gleason et al.

CVD

VDP PECVD (i)CVD (o)CVD

(pi)CVD
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Table 2: Terminology used by Choy

CVD

CVD TACVD PECVD PACVD MOCVD
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Table 3: Terminology used by Yasuda

TACVD LCVD

HWCVD PP PACVD PECVD MLCVD
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Table 4: Terminology used in this paper

CVD

(i)CVD (or)CVD

TACVD PECVD PICVD MOCVD
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Table 5: Summary: Equivalence between terms

Yasuda Choy Gleason et al. This paper

- - VDP CVD

HWCVD CVD (i)CVD TACVD

- PACVD (pi)CVD PICVD

LCVD PECVD PECVD PECVD
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Table 6: Comparison of di↵erent (i)CVD techniques by means of subjective grades.(A=excellent, B=good,

C=mediocre).*

Criteria TA PE PI References

Low operating cost B C A [13, 31, 33, 73, 74]

Low capital cost A C A [13, 16, 31, 32, 48, 74]

Low temperature C A A [12, 13, 16, 19, 21, 31, 32, 33, 45, 47, 48, 73]

Atmospheric pressure B C A [12, 13, 16, 19, 21, 31, 32, 45, 48, 73]

Scalability B+ B- A -

Coating quality A B A [11, 12, 13, 19, 31, 32, 33, 48]

Deposition rate B A B [11, 13, 21, 31, 33, 48, 73]

Monomer selection C A B [11, 13, 16, 21, 33]

Versatility B+ A- B+ -

Average B+ B A- -

*To evaluate the resulting grades for the major categories (Scability, Versatility), numerical values to each letter

grade have been assigned (A=3, B=2, C=1) and calculated an average of the criteria grades for each category. The

final average corresponds to the average of all grades.
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Table 7: Comparison of di↵erent (i)CVD techniques by means of technical aspects

Techniques Advantages Disadvantages References

TACVD Simplicity Low energy [12, 13, 32]

Well documented Necessity to operate under vacuum

PECVD High deposition rates Necessity to operate under vacuum [11, 13, 19, 21]

Well documented High energy consumption

Wide range of monomer usable Low crosslinking

PICVD High crosslinking Slower reaction rate than PECVD [16, 45, 46, 47, 48]

High control on deposition Gas mixture has to be photosensitive

Can operate at room temperature Little work has been done

Can operate at atmosperic pressure
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