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Free Energies from Adaptive Reaction Coordinate Forces (FEARCF):

an application to ring puckering

Christopher B. Barnett and Kevin J. Naidoo*

Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa

(Received 4 November 2008; final version received 24 February 2009)

Previously an adaptive reaction coordinate force biasing method based on probability distributions has been
used to calculate the free energy of conformation, configuration and chemical reactions. This method has recently
been generalised to perform calculations on multidimensional reaction coordinates. This paper presents details
of this method, termed Free Energies from Adaptive Reaction Coordinate Forces (FEARCF). The efficiency of
sampling of this method is demonstrated by applying it to the problem of sampling the many characteristic
pucker conformations of a �-D-glucose pyranose using a semi-empirical PM3 Hamiltonian. The sampling ratio
of the global minimum conformer (4C1) to the highest energy conformer (a planar hexapyranose ring) is 1.7:1.
Pucker free energy surfaces such as the one presented here can be a useful tool in the analysis of enzymatic
reactions involving molecular ring puckers in the Michaelis complex.

Keywords: free energy; carbohydrate ring pucker; adaptive forces; QM/MM; FEARCF; reaction coordinate

1. Introduction

The pathways and manner in which molecular rings

deform plays a critical role in key molecular reactions

and processes. A notable case is the puckering of a

carbohydrate ring when forming a glycosidic bond

with another carbohydrate (in the case of oligosac-

charides) or a chemical moiety such as a nucleobase

(in the case of nucleosides) or degrading the already

formed glycosidic linkage through hydrolyses. Gly-

cosyl transferases catalyse the synthesis of glycosidic
bonds to form oligosaccharides [1] while glycosidases

hydrolyse glycosidic bonds [2, 3]. Both enzyme classes

whether promoting the formation of the glycosidic

bond or degrading of it have a strong affinity for the

reducing carbohydrate to take on high energy con-

formations [4]. An oxocarbenium ion forms in the

Michaelis complex accompanied by the distortion of

the saccharide ring. The nature of the distortion is

complex and poorly understood. This is mainly

because enzyme substrates often contain saccharide
rings which exhibit several forms of puckering in the

transition state [5, 6]. The puckering conformation of

saccharides in the transition state of various glycosi-

dases results in selective reaction pathways and specific

reaction products. In the case of pyranose rings

competing puckers have been observed for several

members of the glycoside hydrolase family [5, 7]. The

puckering conformers observed in X-ray experiments

and proposed from computational analysis include
1S5, B3,O,

OS2 [7, 8].
The analysis and categorisation of the puckering

of molecular rings is marked by the seminal work of

Cremer and Pople [9]. Since then several researchers

[7, 8, 10] have shown interest in the calculation and

designation of puckering for monosaccharides. Here

we report an adaptive force based method for

calculating the potential of mean force of ring

pucker. We reported the calculation of the potential

of mean force (PMF) for glycosidic linkage rotation

[11] and chemical reactions [12] using this approach

which we now term Free Energies from Adaptive

Reaction Coordinate Forces (FEARCF). We will

detail the FEARCF method here in the context of

ring puckering and then calculate the three-dimen-

sional PMF for the �-D-glucose pyranose ring.

Although we will present the minima pucker

conformations in this paper we will not discuss the

stereoelectronic rationale for their existence as this

will be reported elsewhere [13].

2. Method and theory

The force biasing method presented here is a general-

isation of the method used to produce two dimensional

conformational [11,14] and reaction [12] free energy

surfaces. The concept of adjusting the biasing potential
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iteratively to evolve the free energy was first presented

by Mezei as adaptive umbrella sampling [15]. Other

methods have subsequently employed this concept and

extended it using either forces to directly bias the

system or potential biasing. A popular adaptive

umbrella potential method developed by Laio and

Parrinello uses a combination of Gaussians as a

biasing potential from which course-grained forces

are calculated to direct the system to regions that have

not been previously sampled [16]. Of particular

relevance here is Darve and Pohorille’s adaptive

biasing force (ABF) routine for thermodynamic

integration that continuously updates the biasing

forces at every step during the simulation [17]. The

biasing force is estimated locally from sampled

conformations of the system gained from previous

steps in the simulation. The bias at a specified point in

the reaction coordinate is applied as soon as the bin for

that point has enough samples to estimate the mean

force. These forces are then applied along generalised

system coordinates. The result is that the instantaneous

force acting on the coordinates of interest when

subtracted from the equations of motion results in

zero acceleration along the reaction coordinate. The

choice of sample size is recommended to be small

(�100) and the sampling is then improved by applying

a biasing force of the form �r� where � is a Langrange

multiplier that can be related to the derivative of the

free energy dA=d�.
The FEARCF method is based on probability

distributions and histograms. The reaction coordinate

space is a discretised n-dimensional grid where the

sampling frequency for a bin site is recorded for each

simulation. In the case of ring puckering the dimen-

sionality of the grid is N� 3 where N¼ number of ring

atoms. The population of this grid represents a running

tally of the reaction coordinate probability density,

derived from the history of simulations to that point. It

is used as input for a multidimensional cubic-spline

interpolation from which the reaction coordinate

biasing forces are calculated. These forces are applied

to all atoms used in the reaction coordinate definition

to bias the next simulation’s reaction coordinate

trajectory away from previously sampled areas. The

entire reaction coordinate space is equally sampled

when the biasing forces are derived from the true PMF.

The method requires no intervention from the user

other than a physical understanding of the complexity

of the computer experiment, which is used to make a

judicious choice of reaction coordinate, and simulation

length at each update of the biasing force. A

combination of relatively short simulation times at

the start of FEARCF experiment increasing to longer

times (three or more times as long) as convergence is
reached is recommended.

2.1. Hill–Reilly pucker coordinates

Hill and Reilly proposed an intuitive description of
ring puckering [18]. For an N membered ring they
reduced the Cartesian coordinates to N� 3 ring pucker
coordinates. Similar to the classic Cremer–Pople
definition a puckering conformation is described as
the combination of deviations of each coordinate from
a mean plane. The Cremer–Pople pucker coordinates
(amplitude–phase pairs (qi, �i) and a single puckering
coordinate qN/2 for even numbered rings) are usually
translated to a spherical polar set to describe the
pucker conformation in the case of six membered rings.
This set consists of a pucker amplitude (Q), a phase
angle (�, 0��5 2�) which in combination with
another angle (�, 0� ���), where q2 ¼ Q sin � and
q3 ¼ Q cos �, describe the chair, twist and boat
conformations.

The Hill–Reilly definitions are derived from trian-
gular decomposition of an N membered ring, which is
easily visualised in terms of deviations of the atoms
that comprise the ring, from mean planes. A mono-
cyclic ring is decomposed into rotatable planes and a
reference plane. The pucker coordinates are specified
by the angle the rotatable planes make with respect to
the reference plane. In this paper we consider only six
membered rings and so we illustrate the Hill–Reilly
definitions in Figure 1. For N¼ 6 there are three
puckering coordinates �0, �1, �22 [��,�] where a
positive angle indicates rotation of that ring plane
above the reference plane. The angle of puckering is
calculated from

�i ¼ �=2� cos�1½ðqi � nÞ � ðjjqijj � jjnjjÞ
�1
� ð1Þ

where qi is a vector normal to the rotatable plane i and
n is the vector normal to the reference plane. We define
a three dimensional reaction coordinate (�) as the
combination of these pucker coordinates, i.e. �¼
(�0, �1, �2).

2.2. Free Energies from Adaptive Reaction
Coordinate Forces (FEARCF)

The potential of mean force, W(�) is calculated as a
function of the three-dimensional coordinate set � and
is related to the probability density, P(�) by

Wð�Þ ¼ �kBT lnPð�Þ ð2Þ

where kB is the Boltzmann constant and T is the
temperature in kelvin. The PMF is derived in a
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canonical ensemble (constant NVT), which gives the
Helmholtz free energy puckering surface. A correct
analysis of free energy pathways is only possible if the
reaction coordinate is sampled uniformly. To approach
uniform sampling we used a variant of Mezei’s
adaptive umbrella sampling [15] which we applied to
a two dimensional dihedral angle PMF earlier [11] and
more completely to a four-dimensional intermolecular
association hypersurface [19].

To traverse barrier heights larger than 3kBT a
biasing potential, U(�) is applied. The best choice for
U(�) would be

Uð�Þ ¼ kBT lnPð�Þ: ð3Þ

The objective is to bias the new trajectory away
from reaction coordinate space that has been sampled
in previous simulations towards reaction coordinates
that have not been sampled. The concept of iteratively
adapting an umbrella potential by using the informa-
tion collected from previous simulations to uniformly
sample a single degree of freedom was proposed by

Mezei [15]. In this procedure the umbrella potential
U(�) is adapted from the first guess until it is equal to
the inverse of the PMF. At the final stage of the
adaptive umbrella sampling when U(�) is applied to the
system the entire configurational space (high and low
energy regions) will be sampled [15]. The method has
been extended to multidimensional conformational
space for proteins [20].

We modified the macromolecular program
CHARMM [21] to calculate the effect of the perturb-
ing forces generated from the surface of the adapting
umbrella potential for three independent reaction coor-
dinates [11]. We have generalised the method to multi-
dimensions [19] and described it here for the three-
dimensional pucker free energy calculation. At each
step of the simulation the biasing force for �i applied to
the atoms involved in the rotatable plane is calculated
from the gradient of the umbrella potential for that
puckering coordinate. For three-dimensional surfaces
these are

�
@U �ð Þ

@�i
¼ Fð�iÞ ð4Þ

where the force F is calculated as the partial derivative
�i of the applied biasing reaction coordinate umbrella
potential. The result is the ith ring plane is biased away
from the areas it has sampled with a force opposite
to the accumulated sampling density as shown in
Equation (3). When implemented in a molecular
dynamics (MD) routine the biasing forces for each
puckering coordinate is added to the forces from the
equilibrium Boltzmann dynamic forces applied to each
atom. The biasing forces on each ring atom can be
recovered from the reaction coordinate forces by
recasting them in terms of the PMF:

@Wð�Þ

@�i
¼ Fi ð5Þ

which can be rewritten in terms of the vector qi using
the chain rule:

@Wð�Þ

@�i

@�i
@qi
¼
@Wð�Þ

@qi
: ð6Þ

Similarly the forces can be written in terms of the
vector n,

@Wð�Þ

@�i

@�i
@n
¼
@Wð�Þ

@n
: ð7Þ

When these are combined (and including all other
contributions), the Cartesian biasing forces (@W(�)/@xi)
on the ring atoms xi originating from the pucker axis ai
(see Figure 1(a)) are calculated as

@Wð�Þ

@ai

@ai
@x2ðiþ1Þ

¼
@Wð�Þ

@x2ðiþ1Þ
;

@Wð�Þ

@ai

@ai
@x2i
¼
@Wð�Þ

@x2i
ð8Þ

Figure 1. Definition for the Hill–Reilly ring puckering
coordinates. (a) Illustrates an overhead view of a 6-mem-
bered ring with x, the ring atoms and a, the puckering axes.
(b) Description of pucker angle relative to the reference plane
and rotatable plane 0 (r.p.0). A simple example of a negative
force (to bend the flap towards the reference plane) applied
to theta and perpendicular to the reference plane will apply
forces to atoms 0, 1, 2 and 4 as indicated.
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which are due to the reaction coordinate �i. The total

biasing force is calculated by summing the contribu-
tions from each reaction coordinate which is then

applied to the ring atoms. This can be calculated for
each of the ring atoms i where i are the labels (1–6) for
the ring atoms (C1,C2,C3,C4,C5,O5).

At the start of the FEARCF simulations W(�) and
likewise P(�) are not known. To initialise the simula-

tions a zero biasing potential is applied (U(�)¼ 0). The
resulting probability distribution is used as a first guess

for W(�) from which an improved biasing potential
U(�) for the next simulation is obtained. This process
continues iteratively until the pucker conformational

space is adequately sampled.
The FEARCF method is similar to the ABF

method in that it uses external forces derived from
the derivative of the free energy to achieve unbiased
sampling of the reaction coordinate. The ABF method

however, calculates the adaptive forces on the fly at
each bin and uses a ramp function to reduce errors

emanating from the incomplete sampling of bins. The
ABF method therefore could converge faster in cases
where the statistical errors arising from sampling not

being optimal for all bins. We have however, not
directly compared the two methods to make any
definitive statements on this. The FEARCF method

calculates new biasing forces over all bins from the
histogram P(�), which is constructed after each
iteration together with all previous iterations using

the WHAM procedure. This is done numerically using
a multidimensional cubic-spline routine. The major
advantage of the FEARCF method is therefore that it

is easily extended to multiple dimensions as we show
here while in the ABF method it is not straightforward
to reconstruct A �ð Þ from its derivatives.

3. Simulations details for b-D-glucose

We modelled the glucose molecule with the
PM3CARB-1 [22] semi-empirical potential and con-
ducted in vacuo dynamics in CHARMM 33b2 [21].

Each simulation was of 0.2 ns in length (first 17
iterations and from then on 0.6 ns), at a temperature
of 298.15K. Velocity-verlet dynamics were implemen-

ted with the Nosé temperature thermostat. The
potential of mean force was calculated using an
iterative procedure. To further increase the reaction

coordinate sampling, batches of eight simulations
starting from various pucker conformations (initially

all 4C1 and then the last conformer sampled from the
previous run) were used with an initial biasing
potential of zero. The sampled areas were collated to

acquire P(�) from which the first guess for W(�) was

calculated and the associated U(�) applied to the next

batch of eight simulations. From this the biasing forces

were derived from the reaction coordinate surface as

described above to improve the sampling. This iterative

procedure was completed 24 times totaling a sampling

of 51.2 ns (17� 0.2� 8þ 0.6� 5� 8).
Summing and weighting the histograms of all the

biased simulations appropriately further improved the

sampling rate of the reaction coordinate space. This

was done using the Weighted Histogram Analysis

Method (WHAM) [23]. The WHAM equations were

applied iteratively as shown previously [24]; until the

maximum difference (tolerance) between the previous

and current iteration weighting coefficients (| f ij – f
i�1

j|)

was less than 0.001.

4. Free energy of b-D-glucose ring pucker

A pyranose carbohydrate ring has 38 characteristic

puckering conformers that are strainless [25]. These

can be reduced to simpler unique classifications such as

chairs (C), half chairs (H), boats (B), skews (S), and

envelopes (E), which are illustrated in Figure 2. The

individual conformers are named with a superscript

indicating a ring atom positioned above a plane

formed by the remaining atoms while a subscript

indicates a position below this plane. It should be

noted that this relative plane is not the same as the one

we use in the Hill–Reilly description (Figure 1). It is

not surprising that the three dimensional free energy

surface, W(�), which we calculated using the FEARCF

method for �-D-glucose is complex (Figure 3). The

reaction coordinate axes (�0, �1, �2) are orthogonal to

each other and the fourth dimension, free energy (FE)

is drawn in colour. In this figure, blue represents low

energy conformers that are close in energy to the global

minimum and red represents conformations that are at

Figure 2. The 38 canonical conformers available to a six-
membered ring: Two chairs (C), six boats (B), six twists (S),
twelve half-chairs (H) and twelve envelopes (E). The shaded
area connects atoms in the same plane.
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least 30 kcalmol�1 greater in energy than the global

minimum conformation. To enhance the viewing of the

conformers relative to each other we project two

contoured slices W(�0, �1) and W(�1, �2) across the FE
volume. Two perspectives are given, with Figure 3(a)

displaying the chair conformations while Figure 3(b)

shows the B1,4 conformation on the opposite side of the

FE volume.

All the stable low energy conformers have been

identified and are shown in Table 1. First we consider

the pathways between the two chair conformations.
The optimal path goes via a minima boat conforma-

tion (Figure 3(a)). A significant advantage of the four-
dimensional free energy volume is the opportunity to

accurately locate minima free energy pathways that
connect the various low energy conformations. We

extract the values for conformations linking the two

chairs where the 4C1 conformer is the lowest in energy
(0.00 kcalmol�1) followed by the B3,O (2.00 kcalmol�1)

and 1C4 (4.86 kcal mol�1) pucker conformations and
plot this in a single conflated dimension (Figure 4(a)).

In the context of glycosyl transferases [1] and glycosyl
hydrolases [3, 26] reaction mechanisms this process of

identifying pucker transitions from the stable 4C1

conformer to the thermodynamically less favoured E
and H puckers surface can be an important tool in the

analysis of catalytic reaction mechanisms. A confor-
mational change in the ring of the �-D-pyranoside

substrate is required for nucleophilic assistance of the
cleavage according to an intermediate SN1/SN2

mechanism. Heterolytic cleavage of the acetal C –O

bond requires an antiperiplanar orientation of a
doubly occupied, non-bonding orbital. This is referred

to as the antiperiplanar lone pair hypothesis (ALPH)
and implies that hydrolysis of �-D-pyranoside requires

a conformational change of the tetrahydropyran ring
from a chair to a twist-boat or boat resulting in a

pseudoaxial orientation of the aglycon [26, 27].

Figure 3. (a) The three-dimensional free energy surface for
glucose calculated using the Hill–Reilly reduced coordinate
set. The transition path from 1C4 through B3,O until 1C4 is
indicated. (b) Another viewpoint of the three-dimensional
free energy surface for glucose calculated using the Hill–
Reilly reduced coordinate set. The transition path from B1,4

through E4 until 1C4 is indicated. Another pathway is
also possible; the transition conformers for this (E2,

1H2)
are indicated.

Table 1. Conformers sampled and free energies for �-D-
glucose.

Reaction coordinates

Conformer �0 �1 �2

Free energy
(kcalmol�1)

4C1 30.0 32.5 35.0 0.00
E3 32.5 40.0 �12.5 4.38
B3,O 25.0 40.0 �52.5 2.00
5E 25.0 �37.5 �30.0 7.93
1H2 �45.0 15.0 �7.5 8.32
E2 �47.5 5.0 10.0 8.30
1C4 �30.0 �22.5 �22.5 4.86
E4 5.0 �47.5 12.5 9.49
B1,4 22.5 �50.0 40.0 7.91
E1 30.0 �47.5 42.5 8.05
EO �2.5 7.5 �42.5 11.42

Planar 2.5 �2.5 7.5 16.97
OE �2.5 �10.0 50.0 10.83
1S5 �42.5 50.0 5.0 5.64
OS2 �45.0 0.0 57.5 5.48
3,OB �27.5 �22.5 65.0 6.05
3E �47.5 27.5 52.5 7.39
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The ALPH is supported by the crystal structures of
three endo-glycosidases in complex with substrate
analogues showing a skew boat or a flattened boat
conformation of the tetrahydropyran ring [28].

Atomic force microscopy (AFM) experiments were
performed on an amylose strand and the yielding
behavior has been attributed to transitions of the
�-linked glucose rings from the 4C1 chair to a twist-
boat conformation [29]. Previously using a classical
carbohydrate force field potential [30] we calculated
AFM profiles for amylose. In contrast to the earlier
proposal our classical AFM simulations revealed that
the unfolding mechanism of amylose was principally
due to the rotation of glycosidic bonds and not
the puckering of individual glucose units [31].

The B1,4 conformation which we observe here from

the semi-empirical FE pucker volume resides in a
shallow equilibrium well that is 7.91 kcal mol�1 above

the 4C1 chair conformation and separated from it by
a barrier height of 9.49 kcalmol�1 (Figure 4(b)). The

high barriers separating the boat from the chair

conformations supports our previous interpretation
of the AFM experiment. That is, that the pyranose

transition to boat conformers early on in the amylose
pulling experiment is not possible.

The accuracy of the free energy volume is validated

when all states in the reaction coordinate space are
adequately sampled. Adequate sampling is generally

accepted when a ratio of most sampled to least sampled

states is at least 1:50 [20, 32]. However, using the
adaptive reaction coordinate forces to bias the simula-

tion away from equilibrium favoured sites, sampling
ratios of 1:5 have been calculated [11, 14, 24, 30, 31].

When we contour the high energy pucker conforma-
tions (Figure 5), it is apparent that these bound the

reaction coordinate volume, with a singular high energy

conformer in the centre. Upon inspection of the high
energy conformers on the periphery, we note that they

are not of chemical interest, as they represent con-
formers where the pyranose ring is ‘wrung’ out or

‘folded’ up. The single conformer in the centre of the

volume is planar with the closest equilibrium confor-
mers being OE above it and EO below it.

The extent of conformational space is shown from

the first unbiased simulation through to the 24th

Figure 4. (a) A one dimensional curve generated by selecting
points from the three-dimensional energy path shows the free
energies required to traverse from the 1C4 to the 1C4

conformer. 5E/
1H2/E2 indicates that there are three traver-

sable routes from the B3,O to the 1C4 conformer with almost
the same energy barrier (although different paths).
(b) Another possible pathway between the 1C4 and 1C4

conformers. This path differs from (a) as the traversal
between 1C4 and

1C4 is via the B1,4 not B3,O conformer.

Figure 5. A viewpoint of the three-dimensional free energy
surface for glucose indicating the high in energy planar
conformation, which is sampled. A transition from OE to EO

can occur via this high energy planar conformer.
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iteration (Figure 6). The 4C1 conformer is mostly

sampled when there are no biasing forces applied with

very few transitions to the E3, B3,O, and
1S5 conforma-

tions. After application of the biasing forces, calculated

from a first guess at the PMF, the ratio of sampling of

E3, B3,O, and 1S5 improve considerably. More of �
space is explored with conformers OS2

3,OB and 1C4

now evident. After 24 iterations we achieve a ratio of

1:1.7 where the least sampled planar conformer is

nearly equal to 4C1, the most stable conformer. This

far exceeds the 1:50 ratio used in other studies as a

measure of convergence. The high energy planar and

E4 conformers have similar sampling.
Sampling ratios for several conformers relative to

the lowest energy conformer (4C1) are even more

favourable (Table 2). We compare the free energies for

several conformers calculated here with the FEARCF

with those reported using a metadynamics routine [7].

The energy differences between the favoured 4C1

conformer are similar to that found by Parrinello

et al. using their metadynamics routine. However, in

the latter case the free energies of the less favoured

conformers are slightly higher than the FEARCF free

energies. This difference may be due to either the

difference in theory used (i.e. density functional theory

in the case of metadynamics simulations compared
with the carbohydrate specific PM3 semi-empirical
quantum description employed here) or it may be due
to the extent of reaction coordinate sampling (sam-
pling ratios were not reported in the metadynamics
study).

5. Conclusions

Details of the adaptive reaction coordinate force
method, which we have previously developed and
used to derive specific conformational, configurational
and reaction free energy surfaces, have been presented
here. Specifically, we generalised the method for free
energies from adaptive reaction coordinate forces
method (FEARCF) and implemented it in
CHARMM showing it possible to converge to the
full free energy volume. While any PMF can be
calculated using this method its use is particularly
significant for the calculation of multidimensional free
energy surfaces. To illustrate the accuracy and
versatility of the method we apply it to a demanding
problem of exploring the hexapyranose ring pucker
conformational free energy space using a semi-
empirical PM3 quantum Hamiltonian. Excellent sam-
pling of the conformational space is achieved
demonstrating how high energy conformers are acces-
sible using this adaptive reaction coordinate force to
bias the trajectory about the reaction coordinate
multidimensional volume. Although the FEARCF
application presented here is in vacuo using a PM3-
CARB1 semi-empirical level of theory it is easily
applied to condensed phase explicit solvent simulations
using either classical or higher level quantum theory.
Furthermore, while this implementation has been done
in CHARMM the method could be incorporated into
any molecular dynamics algorithm.

Figure 6. Histograms showing the conformer sampling
distributions (P(�) on the scale 10�4) taken from (a) the
first, (b) the second and (c) the 24th PMF iterative
calculation. Both low energy and high energy conformers
are shown to illustrate the improvement in sampling from the
first until to the final iteration.

Table 2. Conformer sampling ratios and comparison
between FEARCF and metadynamics energies for selected
conformers.

FEARCF
Metadynamics

Conformer
Relative
sampling

Free energy
(kcalmol�1)

Free energy
(kcalmol�1)

4C1 1.00 0.00 0
B3,O 0.81 2.00 2.6
1C4 0.58 4.86 –
B1,4 0.41 7.90 7.9
1S5 0.56 5.64 5.8
3,OB 0.61 6.05 7.2

Note: Sampling ratios relative to the lowest energy con-
former – 4C1 and averaged over the 24th batch).
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There are several pathways from the global minima
4C1 chair to 1C4 chair conformation. Two possible

pathways go via B3,O or B1,4 boat conformations with

half chair and envelope conformational barriers reach-

ing more than 10 kcalmol�1. This illustrates that

necessary high energy glucopyranose ring conforma-

tions observed in glycosylase pockets requires the

enzyme to induce and preserve high energy half chair

and envelope conformations required for successful

hydrolyses and synthesis of the glycosidic bond.
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