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Abstract: A Smarandache geometry is a geometry which has at least one Smarandachely

denied axiom(1969), i.e., an axiom behaves in at least two different ways within the same

space, i.e., validated and invalided, or only invalided but in multiple distinct ways and a

Smarandache n-manifold is a n-manifold that support a Smarandache geometry. Iseri pro-

vided a construction for Smarandache 2-manifolds by equilateral triangular disks on a plane

and a more general way for Smarandache 2-manifolds on surfaces, called map geometries was

presented by the author in [9] − [10] and [12]. However, few observations for cases of n ≥ 3

are found on the journals. As a kind of Smarandache geometries, a general way for con-

structing dimensional n pseudo-manifolds are presented for any integer n ≥ 2 in this paper.

Connection and principal fiber bundles are also defined on these manifolds. Following these

constructions, nearly all existent geometries, such as those of Euclid geometry, Lobachevshy-

Bolyai geometry, Riemann geometry, Weyl geometry, Kähler geometry and Finsler geometry,

...,etc., are their sub-geometries.
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§1. Introduction

Various geometries are encountered in update mathematics, such as those of Euclid geometry,

Lobachevshy-Bolyai geometry, Riemann geometry, Weyl geometry, Kähler geometry and Finsler

geometry, ..., etc.. As a branch of geometry, each of them has been a kind of spacetimes in

physics once and contributes successively to increase human’s cognitive ability on the natural

world. Motivated by a combinatorial notion for sciences: combining different fields into a

unifying field, Smarandache introduced neutrosophy and neutrosophic logic in references [14]−
[15] and Smarandache geometries in [16].

Definition 1.1([8][16]) An axiom is said to be Smarandachely denied if the axiom behaves in

at least two different ways within the same space, i.e., validated and invalided, or only invalided

but in multiple distinct ways.

A Smarandache geometry is a geometry which has at least one Smarandachely denied
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axiom(1969).

Definition 1.2 For an integer n, n ≥ 2, a Smarandache n-manifold is a n-manifold that support

a Smarandache geometry.

Smarandache geometries were applied to construct many world from conservation laws as

a mathematical tool([2]). For Smarandache n-manifolds, Iseri constructed Smarandache mani-

folds for n = 2 by equilateral triangular disks on a plane in [6] and [7] (see also [11] in details).

For generalizing Iseri’s Smarandache manifolds, map geometries were introduced in [9] − [10]

and [12], particularly in [12] convinced us that these map geometries are really Smarandache 2-

manifolds. Kuciuk and Antholy gave a popular and easily understanding example on an Euclid

plane in [8]. Notice that in [13], these multi-metric space were defined, which can be also seen

as Smarandache geometries. However, few observations for cases of n ≥ 3 and their relations

with existent manifolds in differential geometry are found on the journals. The main purpose

of this paper is to give general ways for constructing dimensional n pseudo-manifolds for any

integer n ≥ 2. Differential structure, connection and principal fiber bundles are also introduced

on these manifolds. Following these constructions, nearly all existent geometries, such as those

of Euclid geometry, Lobachevshy-Bolyai geometry, Riemann geometry, Weyl geometry, Kähler

geometry and Finsler geometry, ...,etc., are their sub-geometries.

Terminology and notations are standard used in this paper. Other terminology and nota-

tions not defined here can be found in these references [1], [3]− [5].

For any integer n, n ≥ 1, an n-manifold is a Hausdorff space Mn, i.e., a space that satisfies

the T2 separation axiom, such that for ∀p ∈ Mn, there is an open neighborhood Up, p ∈ Up ⊂
Mn and a homeomorphism ϕp : Up → Rn or Cn, respectively.

Considering the differentiability of the homeomorphism ϕ : U → Rn enables us to get the

conception of differential manifolds, introduced in the following.

An differential n-manifold (Mn,A) is an n-manifold Mn,Mn =
⋃
i∈I

Ui, endowed with a Cr

differential structure A = {(Uα, ϕα)|α ∈ I} on Mn for an integer r with following conditions

hold.

(1) {Uα;α ∈ I} is an open covering of Mn;

(2) For ∀α, β ∈ I, atlases (Uα, ϕα) and (Uβ , ϕβ) are equivalent, i.e., Uα

⋂
Uβ = ∅ or

Uα

⋂
Uβ 6= ∅ but the overlap maps

ϕαϕ
−1
β : ϕβ(Uα

T
Uβ

)→ ϕβ(Uβ) and ϕβϕ
−1
α : ϕβ(Uα

T
Uβ

)→ ϕα(Uα)

are Cr;

(3) A is maximal, i.e., if (U,ϕ) is an atlas of Mn equivalent with one atlas in A, then

(U,ϕ) ∈ A.

An n-manifold is smooth if it is endowed with a C∞ differential structure. It is well-known

that a complex manifold Mn
c is equal to a smooth real manifold M2n

r with a natural base

{ ∂

∂xi
,
∂

∂yi
| 1 ≤ i ≤ n}

for TpM
n
c , where TpM

n
c denotes the tangent vector space of Mn

c at each point p ∈Mn
c .
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§2. Pseudo-Manifolds

These Smarandache manifolds are non-homogenous spaces, i.e., there are singular or inflection

points in these spaces and hence can be used to characterize warped spaces in physics. A

generalization of ideas in map geometries can be applied for constructing dimensional n pseudo-

manifolds.

Construction 2.1 Let Mn be an n-manifold with an atlas A = {(Up, ϕp)|p ∈Mn}. For ∀p ∈
Mn with a local coordinates (x1, x2, · · · , xn), define a spatially directional mapping ω : p→ Rn

action on ϕp by

ω : p→ ϕω
p (p) = ω(ϕp(p)) = (ω1, ω2, · · · , ωn),

i.e., if a line L passes through ϕ(p) with direction angles θ1, θ2, · · · , θn with axes e1, e2, · · · , en

in Rn, then its direction becomes

θ1 −
ϑ1

2
+ σ1, θ2 −

ϑ2

2
+ σ2, · · · , θn −

ϑn

2
+ σn

after passing through ϕp(p), where for any integer 1 ≤ i ≤ n, ωi ≡ ϑi(mod4π), ϑi ≥ 0 and

σi =





π, if 0 ≤ ωi < 2π,

0, if 2π < ωi < 4π.

A manifold Mn endowed with such a spatially directional mapping ω : Mn → Rn is called an

n-dimensional pseudo-manifold, denoted by (Mn,Aω).

Theorem 2.1 For a point p ∈ Mn with local chart (Up, ϕp), ϕ
ω
p = ϕp if and only if ω(p) =

(2πk1, 2πk2, · · · , 2πkn) with ki ≡ 1(mod2) for 1 ≤ i ≤ n.

Proof By definition, for any point p ∈ Mn, if ϕω
p (p) = ϕp(p), then ω(ϕp(p)) = ϕp(p).

According to Construction 2.1, this can only happens while ω(p) = (2πk1, 2πk2, · · · , 2πkn)

with ki ≡ 1(mod2) for 1 ≤ i ≤ n. �

Definition 2.1 A spatially directional mapping ω : Mn → Rn is euclidean if for any point p ∈
Mn with a local coordinates (x1, x2, · · · , xn), ω(p) = (2πk1, 2πk2, · · · , 2πkn) with ki ≡ 1(mod2)

for 1 ≤ i ≤ n, otherwise, non-euclidean.

Definition 2.2 Let ω : Mn → Rn be a spatially directional mapping and p ∈ (Mn,Aω),

ω(p)(mod4π) = (ω1, ω2, · · · , ωn). Call a point p elliptic, euclidean or hyperbolic in direction ei,

1 ≤ i ≤ n if o ≤ ωi < 2π, ωi = 2π or 2π < ωi < 4π.

Then we get a consequence by Theorem 2.1.

Corollary 2.1 Let (Mn,Aω) be a pseudo-manifold. Then ϕω
p = ϕp if and only if every point

in Mn is euclidean.
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Theorem 2.2 Let (Mn,Aω) be an n-dimensional pseudo-manifold and p ∈ Mn. If there are

euclidean and non-euclidean points simultaneously or two elliptic or hyperbolic points in a same

direction in (Up, ϕp), then (Mn,Aω) is a Smarandache n-manifold.

Proof On the first, we introduce a conception for locally parallel lines in an n-manifold.

Two lines C1, C2 are said locally parallel in a neighborhood (Up, ϕp) of a point p ∈Mn if ϕp(C1)

and ϕp(C2) are parallel straight lines in Rn.

In (Mn,Aω), the axiom that there are lines pass through a point locally parallel a given

line is Smarandachely denied since it behaves in at least two different ways, i.e., one parallel,

none parallel, or one parallel, infinite parallels, or none parallel, infinite parallels.

If there are euclidean and non-euclidean points in (Up, ϕp) simultaneously, not loss of

generality, we assume that u is euclidean but v non-euclidean, ω(v)(mod4π) = (ω1, ω2, · · · , ωn)

and ω1 6= 2π. Now let L be a straight line parallel the axis e1 in Rn. There is only one line

Cu locally parallel to ϕ−1
p (L) passing through the point u since there is only one line ϕp(Cq)

parallel to L in Rn by these axioms for Euclid spaces. However, if 0 < ω1 < 2π, then there

are infinite many lines passing through u locally parallel to ϕ−1
p (L) in (Up, ϕp) since there are

infinite many straight lines parallel L in Rn, such as those shown in Fig.2.1(a) in where each

straight line passing through the point u = ϕp(u) from the shade field is parallel to L.

Fig.2.1

But if 2π < ω1 < 4π, then there are no lines locally parallel to ϕ−1
p (L) in (Up, ϕp) since there

are no straight lines passing through the point v = ϕp(v) parallel to L in Rn, such as those

shown in Fig.2.1(b).

Fig.2.2

If there are two elliptic points u, v along a direction
−→
O , consider the plane P determined
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by ω(u), ω(v) with
−→
O in Rn. Let L be a straight line intersecting with the line uv in P . Then

there are infinite lines passing through u locally parallel to ϕp(L) but none line passing through

v locally parallel to ϕ−1
p (L) in (Up, ϕp) since there are infinite many lines or none lines passing

through u = ω(u) or v = ω(v) parallel to L in Rn, such as those shown in Fig.2.2.

Similarly, we can also get the conclusion for the case of hyperbolic points. Since there exists

a Smarandachely denied axiom in (Mn,Aω), it is a Smarandache manifold. This completes the

proof. �

For an Euclid space Rn, the homeomorphism ϕp is trivial for ∀p ∈ Rn. In this case, we

abbreviate (Rn,Aω) to (Rn, ω).

Corollary 2.2 For any integer n ≥ 2, if there are euclidean and non-euclidean points simulta-

neously or two elliptic or hyperbolic points in a same direction in (Rn, ω), then (Rn, ω) is an

n-dimensional Smarandache geometry.

Particularly, Corollary 2.2 partially answers an open problem in [12] for establishing

Smarandache geometries in R3.

Corollary 2.3 If there are points p, q ∈ R3 such that ω(p)(mod4π) 6= (2π, 2π, 2π) but ω(q)(mod4π) =

(2πk1, 2πk2, 2πk3), where ki ≡ 1(mod2), 1 ≤ i ≤ 3 or p, q are simultaneously elliptic or hyper-

bolic in a same direction of R3, then (R3, ω) is a Smarandache space geometry.

Definition 2.3 For any integer r ≥ 1, a Cr differential Smarandache n-manifold (Mn,Aω) is

a Smarandache n-manifold (Mn,Aω) endowed with a differential structure A and a Cr spatially

directional mapping ω. A C∞ Smarandache n-manifold (Mn,Aω) is also said to be a smooth

Smarandache n-manifold.

According to Theorem 2.2, we get the next result by definitions.

Theorem 2.3 Let (Mn,A) be a manifold and ω : Mn → Rn a spatially directional mapping

action on A. Then (Mn,Aω) is a Cr differential Smarandache n-manifold for an integer r ≥ 1

if the following conditions hold:

(1) there is a Cr differential structure A = {(Uα, ϕα)|α ∈ I} on Mn;

(2) ω is Cr;

(3) there are euclidean and non-euclidean points simultaneously or two elliptic or hyperbolic

points in a same direction in (Up, ϕp) for a point p ∈Mn.

Proof The condition (1) implies that (Mn,A) is a Cr differential n-manifold and conditions

(2), (3) ensure (Mn,Aω) is a differential Smarandache manifold by definitions and Theorem

2.2. �

For a smooth differential Smarandache n-manifold (Mn,Aω), a function f : Mn → R is

said smooth if for ∀p ∈Mn with an chart (Up, ϕp),

f ◦ (ϕω
p )−1 : (ϕω

p )(Up)→ Rn

is smooth. Denote by ℑp all these C∞ functions at a point p ∈Mn.
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Definition 2.4 Let (Mn,Aω) be a smooth differential Smarandache n-manifold and p ∈ Mn.

A tangent vector v at p is a mapping v : ℑp → R with these following conditions hold.

(1) ∀g, h ∈ ℑp, ∀λ ∈ R, v(h+ λh) = v(g) + λv(h);

(2) ∀g, h ∈ ℑp, v(gh) = v(g)h(p) + g(p)v(h).

Denote all tangent vectors at a point p ∈ (Mn,Aω) by TpM
n and define addition+and

scalar multiplication·for ∀u, v ∈ TpM
n, λ ∈ R and f ∈ ℑp by

(u+ v)(f) = u(f) + v(f), (λu)(f) = λ · u(f).

Then it can be shown immediately that TpM
n is a vector space under these two operations+and·.

Let p ∈ (Mn,Aω) and γ : (−ε, ε) → Rn be a smooth curve in Rn with γ(0) = p. In

(Mn,Aω), there are four possible cases for tangent lines on γ at the point p, such as those

shown in Fig.2.3, in where these bold lines represent tangent lines.

Fig.2.3

By these positions of tangent lines at a point p on γ, we conclude that there is one tangent

line at a point p on a smooth curve if and only if p is euclidean in (Mn,Aω). This result enables

us to get the dimensional number of a tangent vector space TpM
n at a point p ∈ (Mn,Aω).

Theorem 2.4 For any point p ∈ (Mn,Aω) with a local chart (Up, ϕp), ϕp(p) = (x,
1x

0
2, · · · , x0

n),

if there are just s euclidean directions along ei1 , ei2 , · · · , eis
for a point , then the dimension of

TpM
n is

dimTpM
n = 2n− s

with a basis

{ ∂

∂xij
|p | 1 ≤ j ≤ s}

⋃
{ ∂

−

∂xl
|p,

∂+

∂xl
|p | 1 ≤ l ≤ n and l 6= ij, 1 ≤ j ≤ s}.

Proof We only need to prove that

{ ∂

∂xij
|p | 1 ≤ j ≤ s}

⋃
{ ∂

−

∂xl
,
∂+

∂xl
|p | 1 ≤ l ≤ n and l 6= ij , 1 ≤ j ≤ s} (2.1)

is a basis of TpM
n. For ∀f ∈ ℑp, since f is smooth, we know that
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f(x) = f(p) +
n∑

i=1

(xi − x0
i )
∂ǫif

∂xi

(p)

+

n∑

i,j=1

(xi − x0
i )(xj − x0

j)
∂ǫif

∂xi

∂ǫjf

∂xj

+Ri,j,··· ,k

for ∀x = (x1, x2, · · · , xn) ∈ ϕp(Up) by the Taylor formula in Rn, where each term in Ri,j,··· ,k

contains (xi − x0
i )(xj − x0

j) · · · (xk − x0
k), ǫl ∈ {+,−} for 1 ≤ l ≤ n but l 6= ij for 1 ≤ j ≤ s and

ǫl should be deleted for l = ij , 1 ≤ j ≤ s.
Now let v ∈ TpM

n. By Definition 2.4(1), we get that

v(f(x)) = v(f(p)) + v(
n∑

i=1

(xi − x0
i )
∂ǫif

∂xi

(p))

+ v(

n∑

i,j=1

(xi − x0
i )(xj − x0

j)
∂ǫif

∂xi

∂ǫjf

∂xj

) + v(Ri,j,··· ,k).

Application of the condition (2) in Definition 2.4 shows that

v(f(p)) = 0,

n∑

i=1

v(x0
i )
∂ǫif

∂xi

(p) = 0,

v(
n∑

i,j=1

(xi − x0
i )(xj − x0

j )
∂ǫif

∂xi

∂ǫjf

∂xj

) = 0

and

v(Ri,j,··· ,k) = 0.

Whence, we get that

v(f(x)) =

n∑

i=1

v(xi)
∂ǫif

∂xi

(p) =

n∑

i=1

v(xi)
∂ǫi

∂xi

|p(f). (2.2)

The formula (2.2) shows that any tangent vector v in TpM
n can be spanned by elements

in (2.1).

All elements in (2.1) are linearly independent. Otherwise, if there are numbers a1, a2, · · · , as,

a+
1 , a

−
1 , a

+
2 , a

−
2 , · · · , a+

n−s, a
−
n−s such that

s∑

j=1

aij

∂

∂xij

+
∑

i6=i1,i2,··· ,is,1≤i≤n

aǫi

i

∂ǫi

∂xi

|p = 0,

where ǫi ∈ {+,−}, then we get that

aij
= (

s∑

j=1

aij

∂

∂xij

+
∑

i6=i1,i2,··· ,is,1≤i≤n

aǫi

i

∂ǫi

∂xi

)(xij
) = 0
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for 1 ≤ j ≤ s and

aǫi

i = (
s∑

j=1

aij

∂

∂xij

+
∑

i6=i1,i2,··· ,is,1≤i≤n

aǫi

i

∂ǫi

∂xi

)(xi) = 0

for i 6= i1, i2, · · · , is, 1 ≤ i ≤ n. Therefore, (2.1) is a basis of the tangent vector space TpM
n at

the point p ∈ (Mn,Aω). �

Notice that dimTpM
n = n in Theorem 2.4 if and only if all these directions are euclidean

along e1, e2, · · · , en. We get a consequence by Theorem 2.4.

Corollary 2.4([4]-[5]) Let (Mn,A) be a smooth manifold and p ∈Mn. Then

dimTpM
n = n

with a basis

{ ∂

∂xi
|p | 1 ≤ i ≤ n}.

Definition 2.5 For ∀p ∈ (Mn,Aω), the dual space T ∗
pM

n is called a co-tangent vector space

at p.

Definition 2.6 For f ∈ ℑp, d ∈ T ∗
pM

n and v ∈ TpM
n, the action of d on f , called a differential

operator d : ℑp → R, is defined by

df = v(f).

Then we immediately get the following result.

Theorem 2.5 For any point p ∈ (Mn,Aω) with a local chart (Up, ϕp), ϕp(p) = (x,
1x

0
2, · · · , x0

n),

if there are just s euclidean directions along ei1 , ei2 , · · · , eis
for a point , then the dimension of

T ∗
pM

n is

dimT ∗
pM

n = 2n− s

with a basis

{dxij |p | 1 ≤ j ≤ s}
⋃
{d−xl

p, d
+xl|p | 1 ≤ l ≤ n and l 6= ij, 1 ≤ j ≤ s},

where

dxi|p(
∂

∂xj
|p) = δi

j and d
ǫixi|p(

∂ǫi

∂xj
|p) = δi

j

for ǫi ∈ {+,−}, 1 ≤ i ≤ n.

§3. Pseudo-Manifold Geometries

Here we introduce Minkowski norms on these pseudo-manifolds (Mn,Aω).
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Definition 3.1 A Minkowski norm on a vector space V is a function F : V → R such that

(1) F is smooth on V \{0} and F (v) ≥ 0 for ∀v ∈ V ;

(2) F is 1-homogenous, i.e., F (λv) = λF (v) for ∀λ > 0;

(3) for all y ∈ V \{0}, the symmetric bilinear form gy : V × V → R with

gy(u, v) =
∑

i,j

∂2F (y)

∂yi∂yj

is positive definite for u, v ∈ V .

Denote by TMn =
⋃

p∈(Mn,Aω)

TpM
n.

Definition 3.2 A pseudo-manifold geometry is a pseudo-manifold (Mn,Aω) endowed with a

Minkowski norm F on TMn.

Then we get the following result.

Theorem 3.1 There are pseudo-manifold geometries.

Proof Consider an eucildean 2n-dimensional space R2n. Then there exists a Minkowski

norm F (x) = |x| at least. According to Theorem 2.4, TpM
n is Rs+2(n−s) if ω(p) has s euclidean

directions along e1, e2, · · · , en. Whence there are Minkowski norms on each chart of a point in

(Mn,Aω).

Since (Mn,A) has finite cover {(Uα, ϕα)|α ∈ I}, where I is a finite index set, by the

decomposition theorem for unit, we know that there are smooth functions hα, α ∈ I such that

∑

α∈I

hα = 1 with 0 ≤ hα ≤ 1.

Choose a Minkowski norm Fα on each chart (Uα, ϕα). Define

Fα =





hαFα, if p ∈ Uα,

0, if p 6∈ Uα

for ∀p ∈ (Mn, ϕω). Now let

F =
∑

α∈I

Fα.

Then F is a Minkowski norm on TMn since it satisfies all of these conditions (1) − (3) in

Definition 3.1. �

Although the dimension of each tangent vector space maybe different, we can also introduce

principal fiber bundles and connections on pseudo-manifolds.

Definition 3.3 A principal fiber bundle (PFB) consists of a pseudo-manifold (P,Aω
1 ), a projec-

tion π : (P,Aω
1 )→ (M,Aπ(ω)

0 ), a base pseudo-manifold (M,Aπ(ω)
0 ) and a Lie group G, denoted

by (P,M, ωπ , G) such that (1), (2) and (3) following hold.
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(1) There is a right freely action of G on (P,Aω
1 ), i.e., for ∀g ∈ G, there is a diffeomorphism

Rg : (P,Aω
1 )→ (P,Aω

1 ) with Rg(p
ω) = pωg for ∀p ∈ (P,Aω

1 ) such that pω(g1g2) = (pωg1)g2 for

∀p ∈ (P,Aω
1 ), ∀g1, g2 ∈ G and pωe = pω for some p ∈ (Pn,Aω

1 ), e ∈ G if and only if e is the

identity element of G.

(2) The map π : (P,Aω
1 )→ (M,Aπ(ω)

0 ) is onto with π−1(π(p)) = {pg|g ∈ G}, πω1 = ω0π,

and regular on spatial directions of p, i.e., if the spatial directions of p are (ω1, ω2, · · · , ωn),

then ωi and π(ωi) are both elliptic, or euclidean, or hyperbolic and |π−1(π(ωi))| is a constant

number independent of p for any integer i, 1 ≤ i ≤ n.
(3) For ∀x ∈ (M,Aπ(ω)

0 ) there is an open set U with x ∈ U and a diffeomorphism T
π(ω)
u :

(π)−1(Uπ(ω)) → Uπ(ω) × G of the form Tu(p) = (π(pω), su(pω)), where su : π−1(Uπ(ω)) → G

has the property su(pωg) = su(pω)g for ∀g ∈ G, p ∈ π−1(U).

We know the following result for principal fiber bundles of pseudo-manifolds.

Theorem 3.2 Let (P,M, ωπ , G) be a PFB. Then

(P,M, ωπ, G) = (P,M, π,G)

if and only if all points in pseudo-manifolds (P,Aω
1 ) are euclidean.

Proof For ∀p ∈ (P,Aω
1 ), let (Up, ϕp) be a chart at p. Notice that ωπ = π if and only if

ϕω
p = ϕp for ∀p ∈ (P,Aω

1 ). According to Theorem 2.1, by definition this is equivalent to that

all points in (P,Aω
1 ) are euclidean. �

Definition 3.4 Let (P,M, ωπ , G) be a PFB with dimG = r. A subspace family H = {Hp|p ∈
(P,Aω

1 ), dimHp = dimTπ(p)M} of TP is called a connection if conditions (1) and (2) following

hold.

(1) For ∀p ∈ (P,Aω
1 ), there is a decomposition

TpP = Hp

⊕
Vp

and the restriction π∗|Hp
: Hp → Tπ(p)M is a linear isomorphism.

(2) H is invariant under the right action of G, i.e., for p ∈ (P,Aω
1 ), ∀g ∈ G,

(Rg)∗p(Hp) = Hpg.

Similar to Theorem 3.2, the conception of connection introduced in Definition 3.4 is more

general than the popular connection on principal fiber bundles.

Theorem 3.3(dimensional formula) Let (P,M, ωπ , G) be a PFB with a connection H. For

∀p ∈ (P,Aω
1 ), if the number of euclidean directions of p is λP (p), then

dimVp =
(dimP − dimM)(2dimP − λP (p))

dimP
.
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Proof Assume these euclidean directions of the point p being e1, e2, · · · , eλP (p). By defi-

nition π is regular, we know that π(e1), π(e2), · · · , π(eλP (p)) are also euclidean in (M,Aπ(ω)
1 ).

Now since

π−1(π(e1)) = π−1(π(e2)) = · · · = π−1(π(eλP (p))) = µ = constant,

we get that λP (p) = µλM , where λM denotes the correspondent euclidean directions in (M,Aπ(ω)
1 ).

Similarly, consider all directions of the point p, we also get that dimP = µdimM . Thereafter

λM =
dimM

dimP
λP (p). (3.1)

Now by Definition 3.4, TpP = Hp

⊕
Vp, i.e.,

dimTpP = dimHp + dimVp. (3.2)

Since π∗|Hp
: Hp → Tπ(p)M is a linear isomorphism, we know that dimHp = dimTπ(p)M .

According to Theorem 2.4, we have formulae

dimTpP = 2dimP − λP (p)

and

dimTπ(p)M = 2dimM − λM = 2dimM − dimM

dimP
λP (p).

Now replacing all these formulae into (3.2), we get that

2dimP − λP (p) = 2dimM − dimM

dimP
λP (p) + dimVp.

That is,

dimVp =
(dimP − dimM)(2dimP − λP (p))

dimP
. �

We immediately get the following consequence by Theorem 3.3.

Corollary 3.1 Let (P,M, ωπ , G) be a PFB with a connection H. Then for ∀p ∈ (P,Aω
1 ),

dimVp = dimP − dimM

if and only if the point p is euclidean.

Now we consider conclusions included in Smarandache geometries, particularly in pseudo-

manifold geometries.

Theorem 3.4 A pseudo-manifold geometry (Mn, ϕω) with a Minkowski norm on TMn is a

Finsler geometry if and only if all points of (Mn, ϕω) are euclidean.
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Proof According to Theorem 2.1, ϕω
p = ϕp for ∀p ∈ (Mn, ϕω) if and only if p is eucildean.

Whence, by definition (Mn, ϕω) is a Finsler geometry if and only if all points of (Mn, ϕω) are

euclidean. �

Corollary 3.1 There are inclusions among Smarandache geometries, Finsler geometry, Rie-

mann geometry and Weyl geometry following

{Smarandache geometries} ⊃ {pseudo−manifold geometries}
⊃ {Finsler geometry} ⊃ {Riemann geometry}
⊃ {Weyl geometry}.

Proof The first and second inclusions are implied in Theorems 2.1 and 3.3. Other inclusions

are known in a textbook, such as [4]− [5]. �

Now we consider complex manifolds. Let zi = xi +
√
−1yi. In fact, any complex manifold

Mn
c is equal to a smooth real manifold M2n with a natural base { ∂

∂xi ,
∂

∂yi } for TpM
n
c at each

point p ∈ Mn
c . Define a Hermite manifold Mn

c to be a manifold Mn
c endowed with a Hermite

inner product h(p) on the tangent space (TpM
n
c , J) for ∀p ∈Mn

c , where J is a mapping defined

by

J(
∂

∂xi
|p) =

∂

∂yi
|p, J(

∂

∂yi
|p) = − ∂

∂xi
|p

at each point p ∈Mn
c for any integer i, 1 ≤ i ≤ n. Now let

h(p) = g(p) +
√
−1κ(p), p ∈Mm

c .

Then a Kähler manifold is defined to be a Hermite manifold (Mn
c , h) with a closed κ satisfying

κ(X,Y ) = g(X, JY ), ∀X,Y ∈ TpM
n
c , ∀p ∈Mn

c .

Similar to Theorem 3.3 for real manifolds, we know the next result.

Theorem 3.5 A pseudo-manifold geometry (Mn
c , ϕ

ω) with a Minkowski norm on TMn is a

Kähler geometry if and only if F is a Hermite inner product on Mn
c with all points of (Mn, ϕω)

being euclidean.

Proof Notice that a complex manifold Mn
c is equal to a real manifold M2n. Similar to the

proof of Theorem 3.3, we get the claim. �

As a immediately consequence, we get the following inclusions in Smarandache geometries.

Corollary 3.2 There are inclusions among Smarandache geometries, pseudo-manifold geometry

and Kähler geometry following

{Smarandache geometries} ⊃ {pseudo−manifold geometries}
⊃ {Kähler geometry}.
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§4. Further Discussions

Undoubtedly, there are many and many open problems and research trends in pseudo-manifold

geometries. Further research these new trends and solving these open problems will enrich one’s

knowledge in sciences.

Firstly, we need to get these counterpart in pseudo-manifold geometries for some important

results in Finsler geometry or Riemann geometry.

4.1. Stokes Theorem Let (Mn,A) be a smoothly oriented manifold with the T2 axiom hold.

Then for ∀̟ ∈ An−1
0 (Mn),

∫

Mn

d̟ =

∫

∂Mn

̟.

This is the well-known Stokes formula in Riemann geometry. If we replace (Mn,A) by (Mn,Aω),

what will happens? Answer this question needs to solve problems following.

(1) Establish an integral theory on pseudo-manifolds.

(2) Find conditions such that the Stokes formula hold for pseudo-manifolds.

4.2. Gauss-Bonnet Theorem Let S be an orientable compact surface. Then

∫ ∫

S

Kdσ = 2πχ(S),

where K and χ(S) are the Gauss curvature and Euler characteristic of S This formula is

the well-known Gauss-Bonnet formula in differential geometry on surfaces. Then what is its

counterpart in pseudo-manifold geometries? This need us to solve problems following.

(1) Find a suitable definition for curvatures in pseudo-manifold geometries.

(2) Find generalizations of the Gauss-Bonnect formula for pseudo-manifold geometries,

particularly, for pseudo-surfaces.

For a oriently compact Riemann manifold (M2p, g), let

Ω =
(−1)p

22pπpp!

∑

i1,i2,··· ,i2p

δ
i1,··· ,i2p

1,··· ,2p Ωi1i2 ∧ · · · ∧ Ωi2p−1i2p
,

where Ωij is the curvature form under the natural chart {ei} of M2p and

δ
i1,··· ,i2p

1,··· ,2p =





1, if permutation i1 · · · i2p is even,

−1, if permutation i1 · · · i2p is odd,

0, otherwise.

Chern proved that[4]−[5]

∫

M2p

Ω = χ(M2p).

Certainly, these new kind of global formulae for pseudo-manifold geometries are valuable to

find.
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4.3. Gauge Fields Physicists have established a gauge theory on principal fiber bundles

of Riemannian manifolds, which can be used to unite gauge fields with gravitation. Similar

consideration for pseudo-manifold geometries will induce new gauge theory, which enables us

to asking problems following.

Establish a gauge theory on those of pseudo-manifold geometries with some additional con-

ditions.

(1) Find these conditions such that we can establish a gauge theory on a pseudo-manifold

geometry.

(2) Find the Yang-Mills equation in a gauge theory on a pseudo-manifold geometry.

(2) Unify these gauge fields and gravitation.
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