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We present a one-step deterministic multipartite entanglement purification scheme for an N-photon
system in a Greenberger–Horne–Zeilinger state with linear optical elements. The parties in quantum
communication can in principle obtain a maximally entangled state from each N-photon system with
a success probability of 100%. That is, it does not consume the less-entangled photon systems largely,
which is far different from other multipartite entanglement purification schemes. This feature maybe
make this scheme more feasible in practical applications.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

The distribution of entanglement between distant locations
plays an important role in quantum information processing [1],
such as quantum teleportation [2], quantum dense coding [3–5]
and quantum cryptograph [6–11]. Without entanglement, any
quantum computation and long-distance quantum communication
would become no more efficient than the classical ones. Bipar-
tite maximally entangled states, such as the Bell diagonal states
|φ±〉 = 1√

2
(|00〉 ± |11〉) and |ψ±〉 = 1√

2
(|01〉 ± |10〉), are the ba-

sic entanglement form. Here |0〉 ≡ |H〉 and |1〉 ≡ |V 〉 represent
the horizontal and the vertical polarizations of photons, respec-
tively. They are the two eigenvectors of the basis σz . However,
a multipartite entangled state exhibits various characters more
than a bipartite entangled one. For instance, the tripartite sys-
tem can be entangled into two kinds of tripartite systems, i.e.,
a Greenberger–Horne–Zeilinger (GHZ) state or a W state. By lo-
cal operations and classical communications (LOCC), these two
types of entangled states cannot be converted to each other [12].
Now multipartite entangled states also provide the superpower
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in quantum computation and quantum communication. For in-
stance, the controlled teleportation [13,14], quantum secret sharing
[15–17], and quantum state sharing [18–22] all resort to multipar-
tite entanglement.

In order to share a maximally entangled state among some
distant locations, the parties in quantum communication should
transmit the entangled state over a practical quantum channel
such as an optical fiber. Unfortunately, the entangled state will
degrade and become a mixed state due to the dissipative effects
of the noisy quantum channel. If the fidelity of the entangled
state decreases, some quantum communication processes will be-
come insecure. Entanglement purification [23–40] provides us a
powerful tool to recover a subset of maximally entangled states
from a set of mixed entangled states. By far, most of entan-
glement purification schemes are focused on bipartite entangled
quantum systems, only a little have been studied for multipartite
quantum entangled systems because of their complicated struc-
tures.

The first multipartite entanglement purification protocol (MEPP)
was presented by Murao et al. [36] in 1998. Their protocol is used
to purify GHZ states with some controlled-NOT (CNOT) gates. In
their protocol, the whole purification protocol is divided into two
steps. One is used to purify the bit-flip error and the other is
used to purify the phase-flip error. After performing the CNOT
operations and measurements, by communicating the results and
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selecting the subensemble of the initial ensemble of pairs, the
parties can finally improve the fidelity of the remained mixed en-
tangled systems. This protocol works in a probabilistic way as the
parties in quantum communication can only obtain a subset of
high-fidelity multipartite entangled states from a large set of less-
entangled states probabilistically, as the same as almost all the en-
tanglement purification protocols for two-photon systems [23–30].
This protocol has been extended to high-dimensional multipartite
quantum systems by Cheong et al. [40] in 2007. In their pro-
tocol, the two-dimensional Hadamard operation is extended to
quantum Fourier transformation and the CNOT gates are substi-
tuted by the generalized XOR gates in high-dimensional quantum
systems. However, the CNOT gate is much difficult in current ex-
periment, and the maximal success probability for achieving a
CNOT gate is only 1/4 with only linear elements and single pho-
ton sources [41]. Recently, we also proposed a MEPP [37] with
cross-Kerr nonlinearities. In this protocol, we use cross-Kerr non-
linearities to construct a quantum nondemolition detector (QND)
[42] which has the functions of both parity-check measurements
and single-photon detections. With QNDs, we can perform our
MEPP repeatedly and get some high-fidelity GHZ states. How-
ever, the cross-Kerr nonlinearity is too small in nature, most of
works based on cross-Kerr nonlinearity focus on the study in
theory [43]. This protocol cannot be realized easily at present.
Moreover, the previous works on multipartite entanglement pu-
rification [36–38] are essentially used to get a high-fidelity en-
tangled state and none can get a maximally pure entangled state.
In 2002, Simon and Pan [27] showed that entanglement purifica-
tion can be performed between different degrees of freedom of
photons. They have used the spatial entanglement to purify the po-
larization entanglement to correct the bit-flip errors in entangled
photon pairs. In 2010, the concept of deterministic entanglement
purification was proposed for entangled photon pairs with hyper-
entanglement [31]. Subsequently, the schemes for deterministic
bipartite polarization entanglement purification by using spatial
entanglement were proposed [32,33]. In deterministic entangle-
ment purification, the parties in quantum communication can in
principle obtain a maximally entangled state from each photon
pair transmitted and do not consume the entangled photon sys-
tems after they have been transmitted over a noisy channel in
theory.

In this Letter, we present a one-step deterministic multipar-
tite entanglement purification protocol (DMEPP) for an N-photon
system in a GHZ state with linear optical elements. The parties
in quantum communication can obtain the maximally entangled
N-photon systems without largely consuming the less-entangled
systems but rather only the spatial entanglements by postselection.
Compared with the previous MEPPs [36–38], the present DMEPP
has some advantages. First, it works in a deterministic way. That is,
the parties in quantum communication can obtain a maximally en-
tangled state from each entangled photon system after it has been
transmitted over a noisy channel, by performing this protocol only
one time with the success probability of 100% in principle, which
is far different from the previous MEPPs [36–38] as they can only
get some mixed states with a higher fidelity, by consuming a large
number of less-entanglement photon systems. Second, it does not
require the photon systems to be entangled in the polarization de-
gree of freedom before they are transmitted over noisy channels
but spatial entanglements. Moreover, the present DMEPP may be
feasible at present as a good mode overlap on the PBSs and the
phase stability have been achieved in the previous works [26,27]
and the spatial entanglement for an N-photon system can be ob-
tained by converting the polarization entanglement into the spatial
degree of freedom with only linear optical elements. This DMEPP
may be very useful in long-distance multi-party quantum commu-
nication in future.
2. One-step deterministic three-photon entanglement
purification

To show how this DMEPP works for quantum systems in a GHZ
state explicitly, we first take three-photon GHZ-state systems as an
example for describing its principle and then we discuss the case
for N-photon GHZ-state systems.

Generally speaking, the three-photon GHZ states for a spin 1/2
system can be described as

∣∣Φ±〉
ABC = 1√

2

(|000〉 ± |111〉)ABC , (1)

∣∣Φ±
1

〉
ABC = 1√

2

(|100〉 ± |011〉)ABC , (2)

∣∣Φ±
2

〉
ABC = 1√

2

(|010〉 ± |101〉)ABC , (3)

∣∣Φ±
3

〉
ABC = 1√

2

(|001〉 ± |110〉)ABC . (4)

Here the subscripts A, B , and C denote the three photons trans-
mitted to the three remote parties, say Alice, Bob, and Charlie,
respectively.

Let us assume that the initial three-photon GHZ state which
will be transmitted to the three parities is |Φ+〉ABC . In order to
share the polarization entangled state |Φ+〉ABC , the three par-
ties add the entanglement in another degree of freedom in their
transmission of photons. That is, the spatial entanglement of an
entangled photon system is added for its transmission, similar to
the two-photon polarization entanglement purification using spa-
tial entanglement by Simon and Pan in Ref. [27]. So the initial
state of each three-photon system which will be transmitted over
a noisy channel can be written as

∣∣φ+
ABC

〉 = 1

2

(|000〉 + |111〉)ABC ⊗ (|a1a2a3〉 + |b1b2b3〉
)

ABC . (5)

We denote the spatial entangled state (or called it the path en-
tangled state) of a three-photon system as |Ψ 〉s = 1√

2
(|a1a2a3〉 +

|b1b2b3〉)ABC , similar to the two-photon spatial state in Ref. [27].
Here ai and bi (i = 1,2,3) are the two spatial modes (i.e., the up-
per path a and the lower path b) for the i-th photon (i.e., A, B ,
or C ), shown in Fig. 1. The state shown in Eq. (5) is given a term
as hyperentanglement, which has been used to complete the Bell-
state analysis [44–48].

During a practical transmission, the channel noise leads the ini-
tial state in the polarization degree of freedom to become a mixed
state. For example, the photons traveling from the source to the
three parities will suffer from the depolarization of noisy channels,
consisting of both bit-flip errors and phase-flip errors. The spatial
entanglement can also be affected. Fortunately, the bit-flip error of
spatial part does not exist and the phase-flip error can be elimi-
nated by controlling the lengths of the channels exactly. From the
view of the outcome of the measurement on the photon systems
in the polarization degree of freedom with a product basis, say
σ A

z ⊗ σ B
z ⊗ σ C

z , the state of the polarization part after the trans-
mission over noisy channels can be described as

ρp = F0|000〉〈000| + F1|001〉〈001| + F2|010〉〈010|
+ F3|011〉〈011| + F4|100〉〈100| + F5|101〉〈101|
+ F6|110〉〈110| + F7|111〉〈111|, (6)

where Fi (i = 0,1,2, . . .) are the probabilities of the eight three-
photon product states {|000〉, |001〉, |010〉, |011〉, |100〉, |101〉,
|110〉, |111〉} when Alice, Bob, and Charlie measure their photons
with the basis σz , and F0 + F1 + F2 + F3 + F4 + F5 + F6 + F7 = 1. The
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Fig. 1. Schematic illustration for the principle of the present one-step deterministic multipartite entanglement purification. PBS represents a polarizing beam splitter and it
is used to transfer |H〉 polarization photon and reflet |V 〉 polarization photon. HWP represents a half wave plate and it can convert |H〉 into |V 〉, and |V 〉 into |H〉. For
three-photon entanglement purification, only six detectors are required here. After the detection for each spatial mode, the parties in quantum communication can obtain
a maximally entangled polarization state from each photon system in a deterministic way in principle. The present protocol can be extended to a more generalized case
for N-photon systems (N > 3). Here the dashed lines with black dots represent the similar devices for other parties and the rectangles with dashed lines represent the
laboratories controlled by the parties in quantum communication. The circles with real lines represent the optical fibers. Di (i = 1,2,3, . . . ,2N) represent the output modes
for photons and the parties can obtain the standard N-photon GHZ state |Φ+〉A···Y Z if they add a bit-flip operation σx on each of the output modes D2k (k = 1,2, . . . , N).
whole mixed state of each three-photon system after the transmis-
sion over noisy channels can be described as

ρ = ρp ⊗ ρs, (7)

where ρs = |Ψs〉〈Ψs|.
Similar to entanglement purification protocols [23–33] for two-

photon systems, the mixed state shown in Eq. (7) can be viewed
as a probabilistic mixture of eight pure states: the three-photon
system is in the state |000〉 ⊗ |Ψ 〉s with a probability of F0, in the
state |001〉 ⊗ |Ψ 〉s with a probability of F1, and so on.

The principle of our one-step DMEPP is shown in Fig. 1. We first
consider the item |000〉⊗ |Ψ 〉s . After the PBSs and HWPs shown in
Fig. 1, it evolves as

|000〉 ⊗ |Ψ 〉s = |000〉 ⊗ 1√
2

(|a1a2a3〉 + |b1b2b3〉
)

= 1√
2

(|0a1 0a2 0a3〉 + |0b1 0b2 0b3〉
)

PBSs+HWPs−−−−−−−→ 1√
2

(|0c1 0c2 0c3〉 + |1d1 1d2 1d3〉
)

ABC

= 1√
2

(|000〉 + |111〉)D1,D3,D5
. (8)

From Eq. (8), |000〉⊗ |Ψs〉 will become the three-photon maximally
entangled state |Φ+〉ABC and the three photon will emit from the
output modes D1, D3 and D5, respectively.

If a bit-flip error occurs on the first qubit after the transmission
over a noisy channel, the item |000〉 becomes |100〉 with the prob-
ability of F4. With the setup shown in Fig. 1, the whole state of
the three-photon system evolves as
|100〉 ⊗ |Ψs〉 = |100〉 ⊗ 1√
2

(|a1a2a3〉 + |b1b2b3〉
)

= 1√
2

(|1a1 0a2 0a3〉 + |1b1 0b2 0b3〉
)

PBSs+HWPs−−−−−−−→ 1√
2

(|1e1 0c2 0c3〉 + |0 f1 1d2 1d3〉
)

ABC

= 1√
2

(|100〉 + |011〉)D2,D3,D5
. (9)

Alice, Bob, and Charlie will obtain the state |Φ+
1 〉ABC and the three

photons will emit from the output modes D2, D3 and D5, respec-
tively. Alice needs only perform a bit-flip operation on her qubit to
transform |Φ+

1 〉ABC to |Φ+〉ABC . Followed by the same principle,
the item |001〉 ⊗ |Ψ 〉s will become 1√

2
(|001〉 + |110〉)D1,D3,D6 and

the three photons will emit from the output modes D1, D3 and
D6, respectively. The other items can also be used to get three-
photon maximally entangled states following the same principle.
The relation between output modes and the maximally entangled
states emitted from PBSs are shown in Table 1. With different out-
put modes, the three parties can get different maximally entangled
states. With some suitable unitary operations, the three parties can
in principle obtain the standard GHZ state |Φ+〉ABC , shown in Ta-
ble 1. Here I A = |0〉〈0| + |1〉〈1| and σ A

x = |1〉〈0| + |0〉〈1| represent
the unit operation and the bit-flip operation on the photon A, re-
spectively. From Table 1, one can see that Alice, Bob and Charlie
can obtain the standard GHZ state |Φ+〉ABC if they perform their
bit-flip operations σx with HWPs on the output modes D2, D4 and
D6, respectively.
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Table 1
The relation between the output modes and the purified entangled states.

Initial item |000〉 |001〉 |010〉 |100〉 |011〉 |101〉 |110〉 |111〉
Output mode D1 D3 D5 D1 D3 D6 D1 D4 D5 D2 D3 D5 D1 D4 D6 D2 D3 D6 D2 D4 D5 D2 D4 D6

Final state |Φ+〉 |Φ+
3 〉 |Φ+

2 〉 |Φ+
1 〉 |Φ+

1 〉 |Φ+
2 〉 |Φ+

3 〉 |Φ+〉
Operations I A I B IC I A I Bσ C

x I Aσ B
x IC σ A

x I B IC I Aσ B
x σ C

x σ A
x I Bσ C

x σ A
x σ B

x IC σ A
x σ B

x σ C
x

3. One-step deterministic N-photon entanglement purification

It is straightforward to extend the present DMEPP to the case
with an N-photon GHZ state. An N-photon hyperentangled GHZ
state in both the polarization and the spatial-mode degrees of free-
dom of photons can be described as

∣∣φ+
N

〉 = 1

2

(|0 · · · 00〉 + |1 · · ·11〉)A···Y Z ⊗ (|a1 · · ·aN−1aN〉
+ |b1 · · ·bN−1bN〉)A···Y Z . (10)

Here ai and bi (i = 1,2, . . . , N − 1, N) are the two spatial modes
for the i-th photon (i.e., A, . . . , Y , or Z ), shown in Fig. 1. If
the polarization part of each N-photon system suffers from
the channel noise after the system is transmitted over a long-
distance noisy channel, with the set of normal orthogonal basis
{|0 · · ·00〉, |0 · · · 01〉, |0 · · · 10〉, . . . , |1 · · ·11〉}, its state in the polar-
ization degree of freedom can be written as

ρN
P = f1|0 · · · 00〉〈0 · · · 00| + f2|0 · · · 01〉〈0 · · · 01| + · · ·

+ f2N |1 · · ·11〉〈1 · · · 11|, (11)

where f1 + f2 + · · · + f2N = 1. Similar to the case with three-
photon systems, let us assume that the bit-flip error of spatial part
in a multipartite entangled photon system does not exist and its
phase-flip error can be eliminated by controlling the lengths of the
channels exactly. Therefor, after the transmission over optical-fiber
channels, the whole state of an N-photon system can be described
as

ρN = ρN
P ⊗ ρN

S . (12)

Here we denote the spatial entangled state of an N-photon system
as |Ψ 〉N

s = 1√
2
(|a1 · · ·aN−1aN 〉 + |b1 · · ·bN−1bN 〉)A···Y Z and ρN

S =
|Ψ 〉N

s 〈Ψ |.
The mixed state shown in Eq. (12) can be viewed as a prob-

abilistic mixture of 2N pure states: the N-photon system is in
the state |0 · · ·00〉 ⊗ |Ψ 〉N

s with a probability of f1, in the state
|0 · · ·01〉 ⊗ |Ψ 〉N

s with a probability of f2, and so on.
We first consider the item |0 · · ·00〉 ⊗ |Ψ 〉N

s . After the PBSs and
HWPs shown in Fig. 1, the initial item evolves as

|0 · · ·00〉 ⊗ |Ψ 〉N
s

= |0 · · ·00〉 ⊗ 1√
2

(|a1 · · ·aN−1aN〉 + |b1 · · ·bN−1bN〉)

= 1√
2

(|0a1 · · · 0aN−1 0aN 〉 + |0b1 · · ·0bN−1 0bN 〉)

PBSs+HWPs−−−−−−−→ 1√
2

(|0c1 · · · 0cN−1 0cN 〉 + |1d1 · · · 1dN−1 1dN 〉)

= 1√
2

(|0 · · · 00〉 + |1 · · · 11〉)D1,...,D2N −3,D2N −1
. (13)

That is, |0 · · ·00〉 ⊗ |Ψ N
s 〉 will become the N-photon maximally en-

tangled state |Φ+〉A···Y Z = 1√
2
(|0 · · ·00〉 + |1 · · ·11〉)A···Y Z and the

N-photons will emit from the output modes D1, . . . , D2N−3, and
D2N−1, respectively. For other items, we can get the similar out-
come. In detail, for the item |i · · · jk〉 ⊗ |Ψ 〉N

s (i, j,k ∈ {0,1}), after
the PBSs and HWPs shown in Fig. 1, it evolves as
|i · · · jk〉 ⊗ |Ψ 〉N
s

= |i · · · jk〉 ⊗ 1√
2

(|a1 · · ·aN−1aN〉 + |b1 · · ·bN−1bN〉)

= 1√
2

(|ia1 · · · jaN−1kaN 〉 + |ib1 · · · jbN−1kbN 〉)

PBSs+HWPs−−−−−−−→ 1√
2

(|ic1 · · · jcN−1kcN 〉

+ |īd1 · · · j̄dN−1 k̄dN 〉)D1+i ,...D2N−3+ j,D2N−1+k
. (14)

Here ī = 1 − i, j̄ = 1 − j, and k̄ = 1 − k. That is, the parties can
determinate the state of their N-photon system by detecting the
outputs of their photons, as the same as the case with a three-
photon system. With some unitary operations on the multipartite
entangled system, the parties in quantum communication can ob-
tain the standard N-photon GHZ state |Φ+〉A···Y Z .

4. Discussion and summary

By far, we have briefly been talking about our DMEPP. It is
interesting to compare this protocol with the conventional mul-
tipartite entanglement purification protocols (CMEPP), such as the
ones in Refs. [36,37]. In Ref. [36], Murao et al. used the setups
P1 and P2 to purify the phase-flip and bit-flip errors, respec-
tively. As a phase-flip error cannot be purified directly, it should
be transformed into a bit-flip error with a Hadamard operation
on each qubit in Ref. [36]. In the present one-step DMEPP, there
are no phase-flip errors in the mixed state in the polarization
degree of freedom and only bit-flip errors exist, as shown in
Eq. (11). Moreover, this protocol does not require the N-photon
system to be entangled in the polarization degree of freedom ini-
tially. That is, the initial input state in Eq. (10) can be ρ ′ N =
ρ ′ N

P ⊗ ρN
S . Here ρ ′ N

P = f ′
1|0 · · ·00〉〈0 · · · 00| + f ′

2|0 · · ·01〉〈0 · · · 01| +
· · · + f ′

2N |1 · · ·11〉〈1 · · · 11| means that the initial polarization state
of each N-photon system can be an arbitrary mixed state and
f ′
1 + f ′

2 + · · · + f ′
2N = 1. This protocol requires only that the spatial

part is the maximally entangled state. After performing the present
DMEPP, a maximally entangled state can be obtained from each
N-photon system, but the spatial entanglement is consumed. This
DMEPP is essentially some a kind of entanglement transfer. That is,
the spatial entanglement has been transferred into the polarization
entanglement of an N-photon system. This transfer is completed
between two different degrees of freedom in the N-photon sys-
tem itself. In fact, the CMEPPs [36–38] can also be regarded as
entanglement transfer. It is the transfer between the same degree
of freedom, i.e., polarization entanglement, but different N-photon
systems. However, the present DMEPP works in a deterministic
way as the parties can obtain a maximally entangled state from
each N-photon system in principle and the CMEPPs [36–38] work
in a probabilistic way as the parties can only obtain a subset of
high-fidelity entangled states from a large set of less-entangled
states probabilistically.

In Eq. (5), we initially explain our DMEPP with a hyperentan-
gled state for clarity. In order to share the state |Φ+〉ABC , in
a common way, parties should prepare it locally and then send
the three photons to different locations. The spatial entanglement
added here is used to purify the state |Φ+〉ABC if it suffers from
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the noise. In this way, it is similar to that in Ref. [27]. From the
above discussion, one can see that this DMEPP is essentially a kind
of entanglement transfer between two different degrees of free-
dom of a photon system, with the success probability of 100%.
Once the spatial entanglement is transferred into the polarization
entanglement completely, the initial polarization entanglement be-
comes redundant and can be removed. This is the reason that we
do not require the initial state to be the hyperentangled one shown
in Eq. (5), and we only need to prepare the spatial entanglement
and depress the effect of noise on it when the photon system is
transmitted over an optical-fiber channel.

So far, we have fully described our DMEPP. Compared with the
previous purification protocols, this present protocol has a suc-
cess probability of 100% in theory. In Ref. [27], Simon and Pan
have also exploited a spatial entanglement to purify a polariza-
tion entanglement of entangled photon pairs. However, they have
used it to correct the bit-flip error only. The phase-flip error
cannot be corrected directly and they have to use the conven-
tional entanglement purification protocol to purify the phase-flip
error by sacrificing a large number of less-entangled photon pairs.
Meanwhile, we suppose the spatial entanglement do not suffer
from the noise in the present DMEPP. In a practical transmis-
sion, the relative phase between different remote entangled pairs
is sensitive to path length instabilities, which has to be kept con-
stant [49].

In summary, we have presented a one-step deterministic mul-
tipartite entanglement purification scheme for an N-photon sys-
tem in a Greenberger–Horne–Zeilinger state with linear optics.
It has some advantages. First, it does not require CNOT gates
and QNDs, which makes it more feasible than others. Second, it
works in a deterministic way for an N-photon system and the
parties in quantum communication can obtain a maximally entan-
gled state from each photon system after it has been transmitted
over a noisy channel, by performing this protocol only one time
with the success probability of 100%, which is far different from
the previous MEPPs [36–38] as they can only get a high-fidelity
mixed state probabilistically by consuming a large number of less-
entanglement photon systems. Third, it does not require the pho-
ton systems to be entangled in the polarization degree of freedom
before they are transmitted over noisy channels. Moreover, this
protocol may be feasible with current technology as only simple
linear optical elements are required and a good mode overlap on
the PBSs and the phase stability have been achieved in the previ-
ous works [26,27]. This DMEPP may be very useful in long-distance
multi-party quantum communication in future.
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Appendix A

At present, it is not easy to prepare the spatial entanglement
in Eq. (10) directly. Fortunately, this DMEPP dose not require the
N-photon system be entangled in the polarization degree of free-
dom initially, which means that the initial state of each N-photon
system in the polarization part can be a product one before it
is transmitted over noisy channels. We can exploit the polariza-
Fig. 2. The principle for the generation of the multipartite spatial entanglement from
the polarization entanglement of an N-photon system. The dashed lines with black
dots represent the similar devices for other parties in quantum communication.

tion entanglement to produce the spatial entanglement before the
transmission over a noisy channel. We take a three-particle GHZ
system as an example for describing the principle. Before transmis-
sion, we first prepare the three-photon entangled state |Φ+〉ABC =

1√
2
(|000〉 + |111〉)ABC . By using the setup shown in Fig. 2, the

whole state evolves as

∣∣Φ+〉
ABC

PBSs+HWPs−−−−−−−→ 1√
2

(|0a10b10c1〉 + |0a20b20c2〉
)

= 1√
2
|000〉 ⊗ (|a1b1c1〉 + |a2b2c2〉

)
. (A.1)

Eq. (A.1) is a spatial entangled three-photon GHZ state.
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