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Abstract: One-parameter planar homothetic motion of 3-lorentzian planes, two are moving

and one is fixed, have been considered in ref. [19]. In this paper we have given the canonical

relative systems of a plane with respect to other planes so that the plane has a curve on

it, which is spacelike or timelike under homothetic motion. Therefore, Euler-Savary formula

giving the relation between curvatures of the trajectory curves drawn on the points on moving

L and fixed plane L′ is expressed separately for the cases whether the curves are spacelike

or timelike. As a result it has been found that Euler-Savary formula stays the same whether

these curves are spacelike or timelike. We have also found that if homothetic scala h is equal

to 1 then the Euler-Savary formula becomes an equation which exactly the same is given by

ref. [6].
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§1. Introduction

We know that the angular velocity vector has an important role in kinematics of two rigid bodies,

especially one Rolling on another, [15] and [16]. To investigate to geometry of the motion of a

line or a point in the motion of plane is important in the study of planar kinematics or planar

mechanisms or in physics. Mathematicians and physicists have interpreted rigid body motions

in various ways. K. Nomizu [16] has studied the 1-parameter motions of orientable surface

M on tangent space along the pole curves using parallel vector fields at the contact points

and he gave some characterizations of the angular velocity vector of rolling without sliding.

H.H. Hacısalihoğlu showed some properties of 1-parameter homothetic motions in Euclidean

space [8]. The geometry of such a motion of a point or a line has a number of applications

in geometric modeling and model-based manufacturing of the mechanical products or in the

design of robotic motions. These are specifically used to generate geometric models of shell-type

objects and thick surfaces, [4,7,17].
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As a model of spacetimes in physics, various geometries such as those of Euclid, Riemannian

and Finsler geometries are established by mathematicians.

A Smarandache geometry is a geometry which has at least one Smarandachely denied

axiom(1969), i.e., an axiom behaves in at least two different ways within the same space, i.e.,

validated and invalided, or only invalided but in multiple distinct ways, [11, 18].

In the Euclidean geometry, also called parabolic geometry, the fifth Euclidean postulate

that there is only one parallel to a given line passing through an exterior point, is kept or

validated. While in the Riemannian geometry, called elliptic geometry, the fifth Euclidean

postulate is also invalidated as follows: there is no parallel to a given line passing through an

exterior point [11].

Thus, as a particular case, Euclidean, Lobachevsky-Bolyai-Gauss, and Riemannian geome-

tries may be united altogether, in the same space, by some Smarandache geometries. These

last geometries can be partially Euclidean and partially Non-Euclidean. Howard Iseri [10] con-

structed a model for this particular Smarandache geometry, where the Euclidean fifth postulate

is replaced by different statements within the same space, i.e. one parallel, no parallel, infinitely

many parallels but all lines passing through the given point, all lines passing through the given

point are parallel. Linfan Mao [12,13] showed that Smarandache geometries are generalizations

of Pseudo-Manifold Geometries, which in their turn are generalizations of Finsler Geometry,

and which in its turn is a generalization of Riemann Geometry.

The Euler-Savary theorem is a well-known theorem and studied systematically in two and

three dimensional Euclidean space E2 and E3 by [2,3,14]. This theorem is used in serious

fields of study in engineering and mathematics. For each mechanism type a simple graphical

procedure is outlined to determine the circles of inflections and cusps, which are useful to

compute the curvature of any point of the mobile plane through the Euler-Savary equation. By

taking Lorentzian plane L2 instead of Euclidean plane E2, Ergin [5] has introduced 1-parameter

planar motion in Lorentzian plane. Furthermore he gave the relation between the velocities,

accelerations and pole curves of these motions. In the L2 Lorentz plane Euler-Savary formula

is given in references, [1], [6] and [9].

Let L (moving), L′ (fixed) be planes and the coordinate systems of these planes be {O;~e1,

~e2(timelike)} and {O′;~e′1, ~e
′
2(timelike)}, respectively. Therefore, one-parameter Lorentzian pla-

nar homothetic motion is defined by the transformation [19]

~x′ = h~x− ~u, (1)

where h is homothetic scale,
−−→
OO′ = ~u, is vector combining the systems (fixed and moving)

initial points and the vectors ~X , ~X ′ show the position vectors of the point X ∈ L with respect

to moving and fixed systems, respectively. In the one-parameter Lorentzian planar homothetic

motion the relation
~Va = ~Vf + h~Vr

holds where ~Va, ~Vf and ~Vr represent to absolute, sliding and relative velocity of the motion,

respectively [19].

We have given the canonical relative systems of a plane with respect to others planes so

that the plane has a curve on it which is spacelike or timelike under homothetic motions. Thus
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Euler-Savary formula, which gives the relation between the curvatures of the trajectory curves

drawn an the points of moving plane L and fixed plane L′, is expressed separately for the cases

whether the curves are spacelike or timelike. Finally it has been observed that Euler-Savary

formula does not change whether these curves are spacelike or timelike and if homothetic scale

is equal to 1 then the Euler-Savary formula takes the form in reference [6].

§2. Moving Coordinate Systems and Their Velocities

Let L1, L be the moving planes and L′ be the fixed plane. The perpendicular coordinate

systems of the planes L1, L and L′ are {B;~a1,~a2}, {O;~e1, ~e2} and {O′;~e′1, ~e
′
2}, respectively.

Suppose that θ and θ′ are the rotation angles of one parameter Lorentzian homothetic motions

of L1 with respect to L and L′, respectively. Therefore, in one parameter Lorentzian homothetic

motions L1/L and L1/L
′ following relations are holds

~a1 = cosh θ~e1 + sinh θ~e2

~a2 = sinh θ~e1 + cosh θ~e2
(2)

−−→
OB = ~b = b1~a1 + b2~a2 (3)

and

~a1 = cosh θ′~e′1 + sinh θ′~e′2

~a2 = sinh θ′~e′1 + cosh θ′~e′2
(4)

−−→
O′B = ~b′ = b′1~a1 + b′2~a2 (5)

respectively [19]. If we consider equations (2)-(3) and (4)-(5), then the differential equations

for the motions L1/L and L1/L
′ are as follows, respectively [19]

d~a1 = dθ~a2, d~a2 = dθ~a1

d~b = (db1 + b2dθ)~a1 + (db2 + b1dθ)~a2

(6)

and

d′~a1 = dθ′~a2, d′~a2 = dθ′~a1

d′~b′ = (db′1 + b′2dθ
′)~a1 + (db′2 + b′1dθ

′)~a2.
(7)

If we use the following abbreviations

dθ = λ, dθ′ = λ′

db1 + b2dθ = σ1, db2 + b1dθ = σ2

db′1 + b′2dθ
′ = σ′

1, db′2 + b′1dθ
′ = σ′

2

(8)

then the differential equations for L1/L and L1/L
′ become

d~a1 = λ~a2, d~a2 = λ~a1, d~b = σ1~a1 + σ2~a2 (9)
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and

d′~a1 = λ′~a2, d′~a2 = λ′~a1, d′~b = σ′
1~a1 + σ′

2~a2 (10)

respectively. Here the quantities σj , σ
′
j , λ and λ′ are Pfaffian forms of one parameter Lorentzian

homothetic motion [19].

For the point X with the coordinates of x1 and x2 in plane L1 we get

−−→
BX = x1~a1 + x2~a2

~x = (hx1 + b1)~a1 + (hx2 + b2)~a2

~x′ = (hx1 + b′1)~a1 + (hx2 + b′2)~a2.

(11)

Therefore one obtains

d~x = (dhx1 + hdx1 + σ1 + hx2λ)~a1+(dhx2 + hdx2 + σ2 + hx1λ)~a2 (12)

and

d′~x = (dhx1 + hdx1 + σ′
1 + hx2λ

′)~a1 + (dhx2 + hdx2 + σ′
2 + hx1λ

′)~a2, (13)

where ~Vr = d~x
dt and ~Va = d′~x

dt are called relative and absolute velocities of the point X , [19]. If
~Vr = 0 (i.e. d~x = 0) and ~Va = 0 (i.e. d′~x = 0), then the point X is fixed in the Lorentzian

planes L and L′, respectively. Thus, from equations (12) and (13) the condition that the point

X are fixed in L and L′ are given by following equations

hdx1 = −dhx1 − σ1 − hx2λ

hdx2 = −dhx2 − σ2 − hx1λ
(14)

and

hdx1 = −dhx1 − σ′
1 − hx2λ

′

hdx2 = −dhx2 − σ′
2 − hx1λ

′
(15)

respectively. Substituting equation (14) into equation (13), sliding velocities ~Vf =
df~x
dt of the

point X becomes

df~x = [(σ′
1 − σ1) + hx2 (λ′ − λ)]~a1 + [(σ′

2 − σ2) + hx1 (λ′ − λ)]~a2. (16)

Thus, for the pole point P = (p1, p2) of the motion, we write [19]

x1 = p1 = − σ′
2 − σ2

h (λ′ − λ)
, x2 = p2 = − σ′

1 − σ1

h (λ′ − λ)
. (17)

§3. Euler-Savary Formula For One Parameter Lorentzian

Planar Homothetic Motions

Now, we consider spacelike and timelike pole curves of one parameter lorentzian planar homo-

thetic motions and calculate Euler-Savary formula for both cases individually.
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3.1 Canonical Relative System For Spacelike Pole Curves and Euler-Savary For-

mula

Now, let us choose the moving plane A represented by the coordinate system {B;~a1,~a2} in such

way to meet following conditions:

i) The origin of the system B and the instantaneous rotation pole P coincide with each

other, i.e. B = P ;

ii) The axis {B;~a1} is the pole tangent, that is, it coincides with the common tangent of

spacelike pole curves (P ) and (P ′), (see Figure 1).

Figure 1. Spacelike Pole Curves (P ) and (P ′)

If we consider the condition (i), then from equation (17) we reach that σ1 = σ′
1 and σ2 = σ′

2.

Thus, from equation (9) and (10) we get

d~b = d~p = σ1~a1 + σ2~a2 = d′~p = d′~b.

Therefore, we have given the tangent of pole and constructed the rolling for the spacelike pole

curves (P ) and (P ′). Considering the condition (ii) yields us that σ2 = σ′
2 = 0. If we choose

σ1 = σ′
1 = σ and consider equations (6) and (7), then we get the following equations for the

differential equations related to the canonical relative system {P ;~a1,~a2} of the plane denoted

by L1p,

d~a1 = λ~a2, d~a2 = λ~a1, d~p = σ~a1 (18)

and

d′~a1 = λ′~a2, d′~a2 = λ′~a1, d′~p = σ~a1 (19)
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where σ = ds is scalar arc element of the spacelike pole curves of (P ) and (P ′) and λ is

central cotangent angle, i.e. the angle between two neighboring tangents of (P ). Therefore,

the curvature of (P ) at the point P is λ/σ. Similarly, taking λ′ to be central cotangent angle,

the curvature (P ′) at the point P becomes λ′/σ. Therefore, r = σ/λ and r′ = σ/λ′ are the

curvature radii of spacelike pole curves (P ) and (P ′), respectively. Lorentzian plane L with

respect to lorentz plane L′ rotates about infinitesimal rotation angle dv = λ′ − λ at the time

interval dt around the rotation pole P . Thus the rotational motions velocity of L with respect

to L′ becomes

λ′ − λ

dt
=
dv

dt
=

.
v . (20)

Let us suppose that the direction of the unit tangent vector ~a1 is same as the direction of

spacelike pole curves (P ) and (P ′) (i.e., ds/dt > 0). In this case for the curvature radii (P ) and

(P ′), r > 0 and r′ > 0, respectively.

Now we investigate the velocities of the point X which has the coordinates x1 and x2 with

respect to canonical relative system. Considering equation (12) and (13) we find

d~x = (dhx1 + hdx1 + σ + hx2λ)~a1 + (dhx2 + hdx2 + hx1λ)~a2 (21)

d′~x = (dhx1 + hdx1 + σ + hx2λ
′)~a1 + (dhx2 + hdx2 + hx1λ

′)~a2. (22)

Thus, the condition that the point X to be fixed in the Lorentzian planes L and L′ becomes

hdx1 = −dhx1 − σ − hx2λ

hdx2 = −dhx2 − hx1λ
(23)

and

hdx1 = −dhx1 − σ − hx2λ
′

hdx2 = −dhx2 − hx1λ
′.

(24)

Therefore, the sliding velocity ~Vf is written to be

df~x = h (x2~a1 + x1~a2) (λ′ − λ) .

Any point X chosen at the moving Lorentzian plane L draws a trajectory at the fixed lorentz

plane L′ during one parameter Lorentzian planar homothetic motion L/L′. Now we search for

the planar curvature center X ′ of this trajectory at the time t.

The points X and X ′ have coordinates (x1, x2) and (x′1, x
′
2) with respect to canonical

relative system and stay on the trajectory normal of X at every time t with the instantaneous

rotation pole P . Generally a curvature center of a planar curve with respect to the point of

the plane stays on the normal with respect to the point of the curve. In addition to that, this

curvature center can be thought to be the limit of the intersection’s normal of two neighboring

points on the curve (see Figure 2). Therefore the vectors

−−→
PX = x1~a1 + x2~a2
−−→
PX ′ = x′1~a1 + x′2~a2
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Figure 2. Spacelike vectors
→

PX and
→

PX ′

have same direction crossing the point P . Hence, the coordinates of the point X and X ′ satisfies

the following equation:

x1x
′
2 − x2x

′
1 = 0. (25)

Differentiation the last equation yields

dx1x
′
2 + x1dx

′
2 − dx′1x2 − x′1dx2 = 0. (26)

The condition of being fixed of X in the Lorentzian plane L was given in equations (23).

Moreover, the condition of being fixed of X ′ in the Lorentzian plane L′ is

hdx′1 = −dhx′1 − σ − hx′2λ
′

hdx′2 = −dhx′2 − hx′1λ
′.

(27)

Considering equation (26) with equations (23) and (27), we find

(x′2 − x2) σ + h (x1x
′
1 − x2x

′
2) (λ′ − λ) = 0. (28)

Taking the vectors
−−→
PX and

−−→
PX ′ to be spacelike vectors and switching to the polar coordinates,

i.e.,

x1 = a coshα, x2 = a sinhα

x′1 = a′ coshα, x′2 = a′ sinhα

we find

σ (a′ − a) sinhα+ haa′ (λ′ − λ) = 0. (29)



Euler-Savary Formula for the Lorentzian Planar Homothetic Motions 109

From equations (20) and (28) we obtain
(

1

a′
− 1

a

)

sinhα = h

(

1

r′
− 1

r

)

= h
dv

ds
. (30)

This last equation is called Euler-Savary formula for the lorentzian homothetic motion.

Therefore we can give the following theorem.

Theorem 1 In the one parameter Lorentzian planar homothetic motion of moving Lorentz

plane L with respect to fixed Lorentz plane L′, any point X at the plane L draws a trajectory

with the instantaneous curvature center X ′ in the plane L′. In reverse motion, any point X ′ at

the plane L′ draws a trajectory at the lorentz plane L, being the curvature center at the initial

point X. The interrelation between the points X and X ′ is expressed in equation (30) which is

Euler-Savary formula in the sense of Lorentz.

3.2 Canonical Relative System For Timelike Pole Curves and Euler-Savary Formula

Let us choose the moving plane A represented by the coordinate system {B;~a1,~a2} in such way

to meet following conditions:

i) The origin of the system B and the instantaneous rotation pole P coincide with each other,

i.e. B = P ,

ii) The axis {B;~a2} is the pole tangent, that is, it coincides with the common tangent of timelike

pole curves (P ) and (P ′), (see Figure 3.).

Figure 3. Timelike pole curves (P ) and (P ′)

Thus, if the operations in III.1 section are performed considering the conditions i) and ii),

the Euler-Savary formula for one-parameter lorentzian planar homothetic motion remains un-

changed, that is, it is the same as in the equation (30), (see Figure 4.).
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Figure 4. Timelike vectors
→

PX and
→

PX ′

Following Theorem 1 we reach the following corollaries:

Corollary 1 In the one parameter Lorentzian homothetic motion L/L′, whether the pole

curves spacelike or timelike, the interrelation between the points X and X ′ is given by
(

1

a′
− 1

a

)

sinhα = h

(

1

r′
− 1

r

)

which is Euler-Savary formula in the sense of Lorentz.

Corollary 2 If h ≡ 1, then we reach the formula
(

1

a′
− 1

a

)

sinhα =

(

1

r′
− 1

r

)

which is Euler-Savary formula in the Lorentzian plane given in references [1,6,9].
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