Scientia Magna

Vol. 2 (2006), No. 1, 42-44

On the mean value of the Smarandache ceil function ${ }^{1}$

Wang Xiaoying
Research Center for Basic Science, Xi'an Jiaotong University
Xi'an, Shaanxi, P.R.China

Abstract

For any fixed positive integer n, the Smarandache ceil function of order k is denoted by $N^{*} \rightarrow N$ and has the following definition: $$
S_{k}(n)=\min \left\{x \in N: n \mid x^{k}\right\}, \quad \forall n \in N^{*}
$$

In this paper, we study the mean value properties of the Smarandache ceil function, and give a sharp asymptotic formula for it.

Keywords Smarandache ceil function; Mean value; Asymptotic formula.

§1. Introduction

For any fixed positive integer n, the Smarandache ceil function of order k is denoted by $N^{*} \rightarrow N$ and has the following definition:

$$
S_{k}(n)=\min \left\{x \in N: n \mid x^{k}\right\}, \quad \forall n \in N^{*}
$$

For example, $S_{2}(1)=1, S_{2}(2)=2, S_{2}(3)=3, S_{2}(4)=2, S_{2}(5)=5, S_{2}(6)=6, S_{2}(7)=7$, $S_{2}(8)=4, S_{2}(9)=3, \cdots$. This was introduced by Smarandache who proposed many problems in [1]. There are many papers on the Smarandache ceil function. For example, Ibstedt [2] [3] studied this function both theoretically and computationally, and got the following conclusions:

$$
\begin{gathered}
(a, b)=1 \Rightarrow S_{k}(a b)=S_{k}(a) S_{k}(b), \quad a, b \in N^{*} . \\
S_{k}\left(p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}\right)=S_{k}\left(p_{1}^{\alpha_{1}}\right) \cdots S_{k}\left(p_{r}^{\alpha_{r}}\right) .
\end{gathered}
$$

In this paper, we study the mean value properties of the Smarandache ceil function, and give a sharp asymptotic formula for it. That is, we shall prove the following:

Theorem. For any real number $x \geq 2$, we have the asymptotic formula

$$
\sum_{n \leq x} \frac{1}{S_{2}(n)}=\frac{3}{2 \pi^{2}} \ln ^{2} x+A_{1} \ln x+A_{2}+O\left(x^{-\frac{1}{4}+\epsilon}\right)
$$

where A_{1} and A_{2} are two computable constants, ϵ is any fixed positive integer.

[^0]
§2. Proof of the theorem

To complete the proof of the theorem, we need the following Lemma, which is called the Perron's formula (See reference [4]):

Lemma. Suppose that the Dirichlet series $f(s)=\sum_{n=1}^{\infty} a(n) n^{-s}, s=\sigma+i t$, convergent absolutely for $\sigma>\sigma_{a}$, and that there exist a positive increasing function $H(u)$ and a function $B(u)$ such that

$$
a(n) \leq H(n), \quad n=1,2, \cdots
$$

and

$$
\sum_{n=1}^{\infty}|a(n)| n^{-\sigma} \leq B(\sigma), \quad \sigma>\sigma_{a}
$$

Then for any $s_{0}=\sigma_{0}+i t_{0}, b_{0}>\sigma_{a}, b_{0} \geq b>0, b_{0} \geq \sigma_{0}+b>\sigma_{a}, T \geq 1$ and $x \geq 1, x$ not to be an integer, we have

$$
\begin{aligned}
& \sum_{n \leq x} a(n) n^{-s_{0}}=\frac{1}{2 \pi i} \int_{b-i T}^{b+i T} f\left(s_{0}+s\right) \frac{x^{s}}{s} \mathrm{~d} s+O\left(\frac{x^{b} B\left(b+\sigma_{0}\right)}{T}\right) \\
+ & O\left(x^{1-\sigma_{0}} H(2 x) \min \left(1, \frac{\log x}{T}\right)\right)+O\left(x^{-\sigma_{0}} H(N) \min \left(1, \frac{x}{T\|x\|}\right)\right),
\end{aligned}
$$

where N is the nearest integer to $x,\|x\|=|N-x|$.
Now we complete the proof of the theorem. Let $s=\sigma+i t$ be a complex number and

$$
f(s)=\sum_{n=1}^{\infty} \frac{1}{S_{2}(n) n^{s}} .
$$

Note that $\left|\frac{1}{S_{2}(n)}\right| \leq \frac{1}{\sqrt{n}}$, so it is clear that $f(s)$ is a Dirichlet series absolutely convergent for $\operatorname{Re}(s)>\frac{1}{2}$, by Euler product formula [5] and the definition of $S_{2}(n)$ we have

$$
\begin{aligned}
f(s)= & \prod_{p}\left(1+\frac{1}{S_{2}(p) p^{s}}+\frac{1}{S_{2}\left(p^{2}\right) p^{2 s}}+\frac{1}{S_{2}\left(p^{3}\right) p^{3 s}}\right. \\
& \left.+\frac{1}{S_{2}\left(p^{4}\right) p^{4 s}}+\cdots+\frac{1}{S_{2}\left(p^{2 k}\right) p^{2 k s}}+\frac{1}{S_{2}\left(p^{2 k+1}\right) p^{(2 k+1) s}}+\cdots\right) \\
= & \prod_{p}\left(1+\frac{1}{p^{s+1}}+\frac{1}{p^{2 s+1}}+\frac{1}{p^{3 s+2}}+\frac{1}{p^{4 s+2}}+\cdots+\frac{1}{p^{2 k s+k}}+\frac{1}{p^{(2 k+1) s+k+1}}\right. \\
& \left.+\frac{1}{p^{2(k+1) s+k+1}}+\frac{1}{p^{(2(k+2)+1) s+k+2}}+\cdots\right) \\
= & \prod_{p} \frac{1}{1-\frac{1}{p^{2 s+1}}}\left(1+\frac{1}{p^{s+1}}\right) \\
= & \frac{\zeta(2 s+1) \zeta(s+1)}{\zeta(2 s+2)},
\end{aligned}
$$

where $\zeta(s)$ is the Riemann zeta-function and \prod_{p} denotes the product over all primes.

Taking

$$
H(x)=1 ; \quad B(\sigma)=\frac{2}{2 \sigma-1}, \quad \sigma>\frac{1}{2} ;
$$

$s_{0}=0 ; b=1 ; T=x^{\frac{5}{4}}$ in the above Lemma we may get

$$
\sum_{n \leq x} \frac{1}{S_{2}(n)}=\frac{1}{2 i \pi} \int_{1-i x^{\frac{5}{4}}}^{1+i x^{\frac{5}{4}}} f(s) \frac{x^{s}}{s} d s+O\left(x^{-\frac{1}{4}+\varepsilon}\right) .
$$

To estimate the main term, we move the integral line in the above formula from $s=1 \pm i x^{\frac{5}{4}}$ to $s=-\frac{1}{4} \pm i x^{\frac{5}{4}}$. This time, the function $f(s) \frac{x^{s}}{s}$ have a third order pole point at $s=0$ with residue

$$
\frac{3}{2 \pi^{2}} \ln ^{2} x+A_{1} \ln x+A_{2},
$$

where A_{1} and A_{2} are two computable constants.
Hence, we have

$$
\begin{aligned}
& \frac{1}{2 \pi i}\left(\int_{1-i x^{\frac{5}{4}}}^{1+i x^{\frac{5}{4}}}+\int_{1+i x^{\frac{5}{4}}}^{-\frac{1}{4}+i x^{\frac{5}{4}}}+\int_{-\frac{1}{4}+i x^{\frac{5}{4}}}^{-\frac{1}{4}-i x^{\frac{5}{4}}}+\int_{-\frac{1}{4}-i x^{\frac{5}{4}}}^{1-i x^{\frac{5}{4}}}\right) \frac{\zeta(2 s+1) \zeta(s+1) x^{s}}{\zeta(2 s+2) s} d s \\
= & \frac{3}{2 \pi^{2}} \ln ^{2} x+A_{1} \ln x+A_{2} .
\end{aligned}
$$

We can easily get the estimate

$$
\left|\frac{1}{2 \pi i}\left(\int_{1+i x^{\frac{5}{4}}}^{-\frac{1}{4}+i x^{\frac{5}{4}}}+\int_{-\frac{1}{4}+i \frac{5}{4}}^{-\frac{1}{4}-i \frac{5}{4}}+\int_{-\frac{1}{4}-i x^{\frac{5}{4}}}^{1-i x^{\frac{5}{4}}}\right) \frac{\zeta(2 s+1) \zeta(s+1) x^{s}}{\zeta(2 s+2) s} d s\right| \ll x^{-\frac{1}{4}+\epsilon} .
$$

From above we may immediately get the asymptotic formula:

$$
\sum_{n \leq x} \frac{1}{S_{2}(n)}=\frac{3}{2 \pi^{2}} \ln ^{2} x+A_{1} \ln x+A_{2}+O\left(x^{-\frac{1}{4}+\epsilon}\right)
$$

This completes the proof of the theorem.

References

[1] F. Smarandache, Only problems, not Solutions, Xiquan Publ. House, Chicago, 1993, pp. 42.
[2] Ibstedt, Surfing on the ocean of numbers-a few Smarandache notions and similar topics, Erhus University press, New Mexico, 1997.
[3] Ibstedt, Computational Aspects of Number Sequences, American Research Press, Lupton, 1999.
[4] Pan Chengdong and Pan Chengbiao, Goldbach conjecture, Science Press, Beijing, 1992, pp. 145.
[5] Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.

[^0]: ${ }^{1}$ This work is supported by the N.S.F(10271093) and P.N.S.F of P.R.China

