
JAVACONCURENTPROGRAMFORTHESAMARANDACBE

FUNCTION

David Power* Sabin Tabirca* Tatiana Tabirca**
·University College Corle, COIllpUter Science Departmeut

*University ofMancbesta-, computer Science Department

Abstract: The aim of this article is to propose a Java concurrent program for the
Smarandache fimction based on the equation sept' p:.) = max{s(p~'), ... ,S(p:·)}.
Some results concerning the theoretical complexity of this program are proposed. Fmally,
the experimental results of the sequential and Java programs are given in order to
demonstrate the efficiency of the conament implementation.

1. INTRODUcnON

In this section the results used in this article are presented briefly. These concern the

Smarandache and the main methods of its computation. The Smarandache function

[Smarandache, 1980] is S: N* ~ N defined by

Sen) = min{k E Nlk!: n}(Vn EN *). (1)

The main properties of this function are presented in the following

(Va,bEN*)(a,b)= l=>S(a ·b) = max {S(a),s(b)} (2)

that gives us

S(p;1 p:.) = max{S(p~1), ... ,S(P:·)}. (3)

An important inequality satisfied by the function S is

(Va E N *) S(a) ~ a, the equality occurring iff a is prime. (4)

When the number a is not prime this inequality can be improved by

(VaEN*:a notprime)S(a)~ a.
2

During the last few years, several implementation of The Smarandache function have been

proposed. Ibstedt [1997, 1999] developed an algorithm based on Equation (3). The

72

implementation in U Basic provided a efficient and useful program for computing the values of S

for large numbers. Based on it Ibstedt [1997, 1999] studied several conjectures on the

Smarandache function. No study of the theoretical complexity bas provided for this algorithm so

fur.

The second attempt to develop a program for the Smarandache function was made by Tabirca

[1997]. Tabirca started from Equation (I) and considered the sequence xt =k! mod n. The first

term equal to 0 provides the value S(n). Unfortunately, the C+!- implementation of this

algorithm has been proved not to be useful because it cannot be applied for large value of n.

Furthermore, this is not an efficient computation because the value Sen) is computed in

O(S(n»). A study of the average complexity [Tabirca, 1997a, 1998], [Luca, 1999] gave that the

average complexity of this algorithm is O(~) .
_ logn

2. AN EFFICIENT ALGORITHM FOR THE SMARANDACHE FUNCflON

In this section we develop an efficient version of the algorithm proposed by lbsedt. A theoretical

study of this algorithm is also presented. Equation (3) reduces the computation of Sen) to the

computation of the values S(P:'),i = l, ... ,s. The equation [Smarandache, 1980] that gives the

value S(pt) is given by

(5)

This means that if (d"d,_I, ... ,dl) is the representation of k in the generalized base

p2 -I pi -I . . k. .
1,--, ... ,--. then (dz,d/_I, ... ,dl) IS the representation of S(p) k m the generalized

p-l p-I

base p,p2 , ... ,pl. Denote bl[i] = pi -1 and b2[i] = pi the general tenus of these two bases.
- p-l

We remark that the terms of the above generalized bases satisfied:

bl[l] = l,bl[i + 1] = 1 + p. bl[i]

b2[IJ = p, b2[i + 1] = p. b2[i].

73

(6)

(7)

public static long Value (final long p, final long k) {

long 1, j, value=O;

}

long bID == new long [1000]; long b2D == new long [1000];

b 1[0]== I;b2[O]==p;

for(int 1==O;bl [l]<==k;l++){b 1[1+ 1]==1+p*b 1 [1]; b2[l+ 1]==p*b2[I];}

for(l-j==Ij>==Oj-){d==plblfj];p=p%bl[j];value+==d*b2[j]; }

return value;

Figure 1. Java function for S(pt).

Equation (5) provides an algorithm that is presented in Figure 1. At the first stage this algorithm

finds the largest 1 such that hI[l] ~k < hl[/ + 1] and computes the generalized bases hI and h2.

At the second stage the algorithm determines the representation of k in the base b I and the Value

of this representation in the base b2.

Theorem 1. The complerity of the computation S(pl:) is O(logp p. k).

Proof. Let us remark that the operation number of the function Value is 5·/, where 1 is the

largest value such that b I[l] :s; k < hI[/ + I]. This gives the following equivalences

I 1 1+1 1
~:s; k < P - <;:::> pi -I:s;k .(p -1) <pl+1 -1 <;:::>
p-l p-l

<;:::> p' :s; k· (p - I) + 1 < pl+1 <;:::> / :s; log p [k· (p -1) + 1] < 1 + I <;:::>

<;:::> / = llogp (k· (p -1) + 1)j.

Therefore, the number of operations is 5· ~ogp(k. (p -1)+ l)J=O(logp(k. p). •

The computation of Sen) is obtained in two steps. Firstly, the prime number decomposition

n = p:l P:' is detennined and all the values S(p:'),i = 1, ... ,s are found by using a

calling of the function Value. Secondly, the maximum computation is used to find

max.{S(p:l), ... ,S(p:·)}. A complete description of this algorithm is presented in Figure 2.

74

public static long S (final long n) {

long d, valueMax=O, s=-l;

if(n= =1) return 0;

}

long pO = new long [1000]; long kO = new long [1000]; long valueD = new long [1000];

for(d=2;d<n;d++) if(n % d = O){

s++;p[s]=d;for(k[s]=O;no/od==O;k[s]++ ,nI=d);

value[s]=Value(p[s],k[sJ);

}

for(j=O;j<=s;j++) if (valueMax<va1ue[jJ)valueMax=value[j];

return valueMax;

Figure 2. Java function for S(n).

n
Theorem 2. The complexity of the function Sis 0(--).

. logn

Proof. In order to find the prime number decomposition, all the prime numbers less than n should

n
be checked. Thus, at most ;r(n) = 0(--) checking operations are performed [Bach & Shallit,

logn -.

1996] to:find the prime divisors PI ' ... 'Ps ofn. The exponents k1, ... ,ks of these prime numbers

are found by kl + ... + ks divisions. An upper bound for this sum is obtained as follows

k k Ilk k 1 kIt n= PI 1
••••• P/ => ogn= ogPl l

••••• P/ = ogPl l + ... + ogP/ =

=k(logpl + ... +ks·logps ~l+ ... +ks'

because each logarithm is greatertban 1. Thus, we have kl + '.' +ks ~logn =O(logn).

The computation of all the values S(p~'), i = 1, .. . ,s gives a complexity equal to

if

2)og PI Pi . k j • An upper bound for this sum is provided by the following inequality
i=1

75

log P.·k.<kthat is true because of p .. k.:::;p.Ci. Taking the sum we find
Pi I I - I I I I

s S

"log p .. k. <"k. =O(logn) therefore the complexity of this computation is O(logn). £.,.. pj J I-£.,.. , '
;=1 ;=1

Finally, observe that the maximum max {S(p~1), ... ,S(p;,)} is determined in s :::; log n

operations.

n
In conclusion, the complexity of the Smarandache function computation is 0(-1 -).

ogn

n=10000 n=20ooo n=30000 0==40000 n=50000 n=60oo0

Ai 2804 10075 21411 36803 56271 79304

A2 2925 10755 23284 39967 61188 86555

Table 1. Running times for the efficient and Tabirca's algorithms.

350000
300000
250000
200000
150000
100000
50000

o

Figure 3. Graphics of the Running Times.

I ~ A21 -+-A1

n=7oo00

105922

115837

•

n=80000

136567

149666

Several remarks can be made after this theorem. Firstly, we have found that finding the prime

divisors of n represents the most expensive operation and this gives the complexity of the

function computation. Secondly, we have obtained an algorithm with the complexity o(~J.
logn

Therefore, this is better than the algorithm proposed by Tabirca [1988] that has the average

complexity o(~J . Table 1 shows that this algorithm also offers better running times than the
logn

76

algorithm proposed in [Tabirca. 1997]. These two algorithms were implemented in Java and

executed on PENTIUM II machine. The times [milliseconds] of the computation for all the values

S(i) , i=I, ... ,n were found, where n=10000, ,80000. Row A 1 gives the times for this efficient

algorithm and row A 2 gives the times for the algorithm proposed in [Tabirca, 1999]. Another

important remark drawn from Table I is that the difference between the times of each column

does not increase faster [see Figure 3]. This is happen because the complexity of the algorithm

proposed by Tabirca (1997] is o(_n_J.
logn

3. JAVA CONCURRENT ALGORITHM FOR THE SMARANDACHE FUNCTION

In this section we present a Java concurrent program for the computation descnoed in Section 2.

Firstly, remark that many operations of this algorithm can be performed in parallel. Consider that

we know all the prime numbers less than n. Usually, this can be done by using special libraries.

Let PI , .. . ,p /I be these numbers. Therefore, we can concurrently execute the computation of the

exponent of Pi and the computation of the value S(p~) .

A Java program may contain sections of code that are executed simultaneously. An independent

section of code is known as a thread or lightweight process [Smith, 1999]. The implementation

presented here is based on equation (3): S(pf'· p!') = max{S(pt,), ... ,S(P:·)}. Each

S(P:') is calculated concurrently in a thread. On single processor systems, the use of threads

simulates the concurrent execution of some piece of sequential code. The worst case execution

time can be taken as the longest execution time for a single thread. On a multi processor system,

given enough processors, each thread should ideally be allocated to a processor. If there are not

enough processors available, threads will be allocated to processors in groups. Unlike pure

concurrent processes, threads are used to simulate concurrency within a single program. Most

current everyday programs use threads to handle different tasks. When we click a save icon on a

word processing document typically a thread is created to handle the actual saving action. This

allows the user to continue working on the document while another process (thread in this case) is

writing the file to disk.

For the concurrent algorithm consider the Java function for S(n) in Figure 2. Typical areas that

can be executed concurrently can be found in many loops, where successive iterations of the loop

77

do not depend on results of previous iterations. In Figure 4, we adapt the for loop (Figure 2) to

execute the Value function (Figure 1), responsible for calculating S(P"), concurrently by

creating and executing a ValueTbread object. When all the required threads have begun

execution, the value of max will not be known until they have completed. To detect this, a simple

counter mechanism is employed. As threads are created the counter is incremented and as threads

complete their tasks the counter is decremented. All threads are completed when this counter

reaches O.

public long S(long n)
{

if(n 1) return (long);

Prime decom = new Prime(n);
noPrimes=decom.noPrime();
if (noPrimes = 0)

value = null;
value = new 10ng[noPrimes];

for (int k=O;k<noPrimes;k++)
{

started++. ,
new ValueThread(decom.getPrime(k), decom.getPow(k), this, k);

}

}

while (started> 0)
{

}

try
{

Thread.yieldO;
}catch (Exception e)
{
}

return max;

Figure 4. Modified Java function for S(n) , used to concurrently execute the Value function

As each thread completes its task it executes a callback method, addValue (Figure 5). This

method is declared as synchronized to prevent multiple threads calling the addValue method at

the same time. Should this be allowed to occur, an incorrect value of the number of threads

executing would be created. Execution of this method causes the value anay declared in method

78

S (Figure 3) to be filled. This value array will only be completely filled after the last thread makes
a call to the addVaIue method. At this point, the value of max can be determined.

public synchronized void addVaIue(int k, long val)
{

}

value[k] = val;
max = value[O];
started-;
if (started = 0)

for (int i= 1; i<=k; i++)
if (value[i] > max)

max = value[i];

Figure 5. The addValue method called by a Thread when its task is completed.

This algorithm illustrates how concurrency can be employed to improve execution time. It is also
possible to parallelise the algorithm at a higher level, by executing the function responsible for
calculating each Sen) in an independent thread also. Tests of this mechanism however show that

it is more efficient to only paraIIeIise the execution of S(pt) .

The concurrent Java program has been run on a SGI Origin 2000 parnllel machine with 16
processors. The execution was done with 1, 2,4 processors only and the execution times are
shown in Table 1. The first line of Table I shows the running times for AJgorithm Al on this
machine. The next three lines present the running times for the concurrent Java program when
p=l, p=3 and p=4 processors are used.

n=20000 n=30oo0 n=40000 0=50000 n=60000 0=70000 n=80000
Ai 9832 19703 31237 49774 68414 96242 115679
CA (p=I) 9721 19474 30195 49412 68072 95727 115161
CA (p=2) 5786 11238 22872 31928 42825 60326 75659
CA (p=4) 3863 7881 14017 19150 30731 42508 53817

Table 2. Running Times for the Concurrent Program.

79

4. CONCLUSSIONS

Several remarks can be drawn after this study. Firstly, Equation (3) represents the source of any

efficient implementation of the Smarandache function. In Section 2 we have proposed a

sequential algorithm with the complexity O(~). We have also proved both theoretically and
logn

practically that this algorithm is better that the algorithm developed in [fabirca, 1997].

Secondly, we have developed a Java concurrent program in order to decrease the computation

time. Based on the thread technique we have performed concurrently the computation of the

values S(p:'). This concurrent implem~tation has proved to be better than the sequential one.

Even running with one single processor the times of the concurrent Java program were found

better than the times of the sequential program.

References

Bach, E. and Sballit, J. (1996) Algorithmic Number Theory, MIT Press, Cambridge,

~sachusetts, lJSll

Ibstedt, H. (1997) Surfing on the Ocean of Numbers - a few Smarandache Notions and

Similar Topics, Erhus University Press, New Mexico, USll

Ibstedt, H. (1999) Computational Aspects of Number Sequences, American Research

Press, Lupton, USA

Luca, F. (1999) The average Smarandache function, Personal communication to S. Tabirca. [will

appear in Smarandache Notion Journal].

Tabirca, S. and Tabirca, T. (1997) Some Computational Remarks on the Smarandache Function,

Proceedings of the First International Conference on the Smarandache Type Notions,

Craiova, Romania.

Tabirca, S. and Tabirca, T. (1997a) Some upper bounds for Smarandache's function,

Smarandache Notions Journal, 8, 205-2ll.

Tabirca, S. and Tabirca, T. (1998) Two new functions in number theory and some upper bounds

for Smarandache's function, Smarandache Notions Journal, 9, No. 1-2, 82-91.

Smarandache, F. (1980) A Function in number theory, Analele Univ. Timisoara, XVIII.

Smith, M. (1999) Java an Object - Oriented Language, McGraw Hill, London, UK.

80

Appendix A

The full code for the concurrent implementation presented in Section 3.

II Smarandache.java

import java.io. *;
import java. uti!. *;

public class Smarandache
{

}

public SmarandacheO
{

}

long n=O, i, j;
long val;
BufferedReader br = new BufferedReader(new InputStreamReader(System.in»);
try
{

System.outprint ("n = ");
n = Integer.parseInt(br.readLine();

}catch (IOException e)
{

}

System.out.println ("IOException : "+e.getMessageO);
System.exit(l);

Smar sm = new SmarO;

Date begin = new DateO;
for (i=l; i<=n; i++)
{

val = sm.s(i);
}
Date end = new Date();
System.out.println (''Time good is "+ (end.getTimeO - begin.getTime());

public static void main (String args[])
{

new SmarandacheO;

81

/I Smar.java

public class Smar
{

}

private long valueD;
private long max = Long.MIN_ VALUE;
private int noPrirnes=O;
private int started = 0;

public Smar()
{
}

public long S(long n)
{

if (n-l)
return (long) 0;

Prime decom = new Prime(n);
noPrimes=decom.n.oPrime();
if (noPrimes = 0)

value = null;
value = new long[noPrimes];

for (int k=O;k<noPrimes;k++)
{

started++. ,

}
new ValueThread(decom.getPrime(k), decom.getPow(k), this, k);

while (started > 0)
{

}

try
{

Thread.yieldO;
}catch (Exception e)
{
}

return max;

82

}

public synchronized void addValue(int Ie, long val)
{

}

value[k] = val;
started-;
if (started = 0)
{

max = value[O];
for (int i=l; i<=k; i++)

if(value[i] > max)
max = value[i];

}

!/Prime.java

public class Prime
{

private int s;
private long p[]=new long [1000];
private int ord[]=new int [1000];

public Prime()
{

s=O. ,
}

public Prime(long n)
{

long d;
for(d=2,s=O;d<=n;d++)
if(n%d=O)
{

p[s]=d;
for(ord[s]=O;;ord[s]++,n=nld) {if(no/od!=O)break;};
s++;

}
}

public int noPrimeQ
{

return s;
}

public long getPrime(int i)
{

return p[i];
}

83

}

}

public int getPow(int i)
{

return ord[i];
}

1/ ValueThread.java

public class ValueThread
{

private long p=O, a=O;
private Smar owner;
private int index = 0;

public ValueThread (long p, long a, Smar owner, int index)
{

}

this.p = p;
this.a= a;
this.owner = owner;
this.index = index;
runO;

public long pseuPow(long p, long a)
{

}

if (a = I)
return (long) I;

return 1+p*pseuPow(p,a-I);

public long Pow(long p, long a)
{

}

if(a = I)
return (long) p;

return p*Pow(p,a-I);

public void runO
{

long rest=a, val=O;
int Ie, i;
for(k=l;pseuPow(P,k)<=a;k++);k-;
for(i=k;i>O;i-)

}

{

}

val += Pow(p,i)* (long)(rest / pseuPow(p,i»;
rest %= pseuPow(p,i);

owner.addValue(index, val);

84

