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If you don’t learn to think when you are young, you may never learn.

By Thomas Edison, an American inventor.
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Abstract: In this paper, we introduce the concept of fuzzy singleton to bigroup, and uses

it to define (∈ v q)- fuzzy bigroup and discuss its properties. We investigate whether or

not the fuzzy point of a bigroup will belong to or quasi coincident with its fuzzy set if the

constituent fuzzy points of the constituting subgroups both belong to or quasi coincident

with their respective fuzzy sets, and vise versa. We also prove that a fuzzy bisubset µ is an

(∈ vq)-fuzzy subbigroup of the bigroup G if its constituent fuzzy subsets are (∈ vq)-fuzzy

subgroups of their respective subgroups among others.

Key Words: Bigroups, fuzzy bigroups, fuzzy singleton on bigroup, (∈ vq)- fuzzy sub-

groups, (∈ vq)- fuzzy bigroup

AMS(2010): 03E72, 20D25

§1. Introduction

Fuzzy set was introduced by Zadeh[14] in 1965. Rosenfeld [9] introduced the notion of fuzzy

subgroups in 1971. Ming and Ming [8] in 1980 gave a condition for fuzzy subset of a set to be a

fuzzy point, and used the idea to introduce and characterize the notions of quasi coincidence of

a fuzzy point with a fuzzy set. Bhakat and Das [2,3] used these notions by Ming and Ming to

introduce and characterize another class of fuzzy subgroup known as (∈ vq)- fuzzy subgroups.

This concept has been further developed by other researchers. Recent contributions in this

direction include those of Yuan et al [12,13].

The notion of bigroup was first introduced by P.L.Maggu [5] in 1994. This idea was

extended in 1997 by Vasantha and Meiyappan [10]. These authors gave modifications of some

results earlier proved by Maggu. Among these results was the characterization theorems for

sub-bigroup. Meiyappan [11] introduced and characterized fuzzy sub-bigroup of a bigroup in

1998.

In this paper, using these mentioned notions and with emphases on the elements that are

both in G1 and G2 of the bigroup G, we define the notion of (∈,∈ vq) - fuzzy sub bigroups as

an extension of the notion of (∈,∈ vq)- fuzzy subgroups and discuss its properties. Apart from

this section that introduces the work, section 2 presents the major preliminary results that are

useful for the work. In section 3, we define a fuzzy singleton on a bigroup. Using this definition,

1Received August 9, 2010. Accepted December 6, 2010.
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we investigate whether or not the fuzzy point of a bigroup will belong to or quasi coincident

with its fuzzy set if the constituent fuzzy points of the constituting subgroups both belong to

or quasi coincident with their respective fuzzy sets, and vise versa. Theorems 3.4 and 3.5 give

the results of these findings. In the same section, we define (∈ vq)- fuzzy subgroup and prove

that a fuzzy bisubset µ is an (∈ vq)- fuzzy sub bigroup of the bigroup G if its constituent fuzzy

subsets are (∈ vq)- fuzzy subgroups of their respective subgroups.

§2. Preliminary Results

Definition 2.1([10,11]) A set (G,+, ·) with two binary operations ” + ” and ” · ” is called a

bi-group if there exist two proper subsets G1 and G2 of G such that

(i) G = G1 ∪G2;

(ii) (G1,+) is a group;

(iii) (G2, ·) is a group.

Definition 2.2([10]) A subset H(6= 0) of a bi-group (G,+, ·) is called a sub bi-group of G if H

itself is a bi-group under the operations of ” + ” and ” · ” defined on G.

Theorem 2.3([10]) Let (G,+, ·) be a bigroup. If the subset H 6= 0 of a bigroup G is a sub

bigroup of G, then (H,+) and (H, ·) are generally not groups.

Definition 2.4([14]) Let G be a non empty set. A mapping µ : G → [0, 1] is called a fuzzy

subset of G.

Definition 2.5([14]) Let µ be a fuzzy set in a set G. Then, the level subset µt is defined as:

µt = {x ∈ G : µ(x) ≥ t} for t ∈ [0, 1].

Definition 2.6([9]) Let µ be a fuzzy set in a group G. Then, µ is said to be a fuzzy subgroup

of G, if the following hold:

(i) µ(xy) ≥ min{µ(x), µ(y)} ∀ x, y ∈ G;

(ii) µ(x−1) = µ(x) ∀ x ∈ G.

Definition 2.7([9]) Let µ be a fuzzy subgroup of G. Then, the level subset µt, for t ∈ Imµ is

a subgroup of G and is called the level subgroup of G.

Definition 2.8 ([8]) A fuzzy subset µ of a group G of the form

µ(y) =







t(6= 0) if y = x,

0 if y 6= x

is said to be a fuzzy point with support x and value t and is denoted by xt.

Definition 2.9([11]) Let µ1 be a fuzzy subset of a set X1 and µ2 be a fuzzy subset of a set X2,

then the fuzzy union of the sets µ1 and µ2 is defined as a function µ1 ∪µ2 : X1 ∪X2 −→ [0, 1]

given by:
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(µ1 ∪ µ2)(x) =















max(µ1(x), µ2(x)) if x ∈ X1 ∩X2,

µ1(x) if x ∈ X1, x 6∈ X2

µ2(x) if x ∈ X2&x 6∈ X1

Definition 2.10([11]) Let G = (G1 ∪G2,+, ·) be a bigroup. Then µ : G→ [0, 1] is said to be a

fuzzy sub-bigroup of the bigroup G if there exist two fuzzy subsets µ1(ofG1) and µ2(ofG2) such

that:

(i) (µ1,+) is a fuzzy subgroup of (G1,+),

(ii) (µ2, ·) is a fuzzy subgroup of (G2, ·), and

(iii) µ = µ1 ∪ µ2.

Definition 2.11([8]) A fuzzy point xt is said to belong to (resp. be quasi-coincident with) a

fuzzy set µ , written as xt ∈ µ (resp. xt q µ) if µ(x) ≥ t(resp. µ(x) + t > 1).

”xt ∈ µ or xt q µ” will be denoted by xt ∈ vq µ).

Definition 2.12([2,3]) A fuzzy subset µ of G is said to be an (∈ vq)- fuzzy subgroup of G if

for every x, y ∈ G and t, r ∈ (0, 1]:

(i) xt ∈ µ, yr ∈ µ ⇒ (xy)M(t,r) ∈ vq µ

(ii) xt ∈ µ⇒ (x−1)t ∈ vq µ.

Theorem 2.13([3]) (i) A necessary and sufficient condition for a fuzzy subset µ of a group G

to be an (∈,∈ vq)-fuzzy subgroup of G is that µ(xy−1) ≥M(µ(x), µ(y), 0.5) for every x, y ∈ G.

(ii). Let µ be a fuzzy subgroup of G. Then µt = {x ∈ G : µ(x) ≥ t} is a fuzzy subgroup of G

for every 0 ≤ t ≤ 0.5. Conversely, if µ is a fuzzy subset of G such that µt is a subgroup of G

for every t ∈ (0, 0.5], then µ is an fuzzy (∈,∈ vq)-fuzzy subgroup of G.

Definition 2.14([3]) Let X be a non empty set. The subset µt = {x ∈ X : µ(x) ≥ t} or {µ(x)+

t > 1}= {x ∈ X : xt ∈ vq µ} is called (∈ vq)- level subset of X determined by µ and t.

Theorem 2.15([3]) A fuzzy subset µ of G is a fuzzy subgroup of G if and only if µt is a subgroup

for all t ∈ (0, 1].

§3. Main Results

Definition 3.1 Let G = G1 ∪ G2 be a bi-group. Let µ = µ1 ∪ µ2 be a fuzzy bigroup. A fuzzy

subset µ = µ1 ∪ µ2 of the form:

µ(x) =







M(t, s) 6= 0 if x = y ∈ G,

0 if x 6= y

where t, s ∈ [0, 1] such that

µ1(x) =







t 6= 0 ifx = y ∈ G1,

0 if x 6= y



4 Akinola L.S. and Agboola A.A.A.

and

µ2(x) =







s 6= 0 ifx = y ∈ G2,

0 if x 6= y

is said to be a fuzzy point of the bi-group G with support x and value M(t, s) and is denoted by

xM(t,s).

Theorem 3.2 Let xM(t,s) be a fuzzy point of the bigroup G = G1 ∪G2. Then:

(i) xM(t,s) = xt ⇔ x ∈ G1 ∩Gc
2 or t > s

(ii) xM(t,s) = xs ⇔ x ∈ Gc
1 ∩G2 or t < s

∀ t, s ∈ [0, 1], where xt, xs are fuzzy points of the groups G1 and G2 respectively.

Proof (i) Suppose xM(t,s) = xt. Then M(t, s) = t ⇒ t > s. And t > s ⇒ 0 ≤ s < t.

Hence, if s = 0 then x ∈ G1 ∩Gc
2.

Conversely, suppose

x ∈ G1 ∩Gc
2 , then x ∈ G1 and x 6∈ G2,

which implies that xs = 0. Therefore xM(t,s) = xt. Also, if t > 0, xM(t,s) = xt. Hence the

proof.

(ii) Similar to that of (i). �

Definition 3.3 A fuzzy point xM(t,s) of the bigroup G = G1 ∪G2, is said to belong to (resp. be

quasi coincident with) a fuzzy subset µ = µ1 ∪ µ2 of G, written as xM(t,s) ∈ µ[resp. xM(t,s)qµ]

if µ(x) ≥ M(t, s)(resp. µ(x) + M(t, s) > 1). xM(t,s) ∈ µ or xM(t,s) qµ will be denoted by

xM (t, s) ∈ vqµ.

Theorem 3.4 Let G = G1 ∪ G2 be a bigroup. Let µ1 and µ2 be fuzzy subsets of G1 and G2

respectively. Suppose that xt and xs are fuzzy points of the groups G1 and G2 respectively such

that xt ∈ vqµ1 and xs ∈ vqµ2, then xM(t,s) ∈ vqµ where xM(t,s) is a fuzzy point of the bigroup

G, and µ : G→ [0, 1] is such that µ = µ1 ∪ µ2.

Proof Suppose that

xt ∈ vqµ1 and xs ∈ vqµ2,

then we have that

µ1(x) ≥ t or µ1(x) + t > 1,

and

µ2(x) ≥ s or µ2(x) + s > 1.

µ1(x) ≥ t and µ2(x) ≥ s⇒Max[µ1(x), µ2(x)] ≥M(t, s).

This means that

(µ1 ∪ µ2)(x) ≥M(t, s) since x ∈ G1 ∩G2

That is

µ(x) ≥M(t, s) (1)
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Similarly,

µ1(x) + t > 1 and µ2(x) + s > 1

imply that

µ1(x) + t + µ2(x) + s > 2

⇒ 2Max[µ1(x), µ2(x)] + 2M [t, s] > 2

⇒Max[µ1(x), µ2(x)] +M [t, s] > 1

⇒ (µ1 ∪ µ2)(x) +M(t, s) > 1

⇒ µ(x) +M(t, s) > 1 (2)

Combining (1) and (2), it follows that:

µ(x) ≥M(t, s) or µ(x) +M(t, s) > 1

which shows that

xM(t,s) ∈ vqµ

hence the proof. �

Theorem 3.5 Let G = G1 ∪ G2 be a bigroup. µ = µ1 ∪ µ2 a fuzzy subset of G, where µ1, µ2

are fuzzy subsets of G1 and G2 respectively. Suppose that xM(t,s) is a fuzzy point of the bigroup

G then xM(t,s) ∈ vqµ does not imply that xt ∈ vqµ1 and xs ∈ vqµ2, where xt and xs are fuzzy

points of the groups G1 and G2, respectively.

Proof Suppose that xM(t,s) ∈ vqµ, then

µ(x) ≥M(t, s) or µ(x) + M(t, s) > 1

By definition 2.9, this implies that

(µ1 ∪ µ2)(x) ≥M(t, s) or (µ1 ∪ µ2)(x) + M(t, s) > 1

⇒Max[µ1(x), µ2(x)] ≥M(t, s) or Max[µ1(x), µ2(x)] + M(t, s) > 1

Now, suppose that t > s, so that M(t, s) = t, we then have that

Max[µ1(x), µ2(x)] ≥ t or (Max[µ1(x), µ2(x)] + t) > 1

which means that xt ∈ vqMax[µ1, µ2], and by extended implication, we have that

xs ∈ vqMax[µ1, µ2].

If we assume that Max[µ1, µ2] = µ1, then we have that

xt ∈ vqµ1 and xs ∈ vqµ1,

and since 0 ≤ s < t < 1, we now need to show that at least xs ∈ vqµ2

since by assumption, µ1 > µ2. To this end, let the fuzzy subset µ2 and the fuzzy singleton xs
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be defined in such a way that µ2 < s < 0.5, then it becomes a straight forward matter to see

that xs ¯∈ vqµ2. Even though, xM(t,s) ∈ vqµ still holds. And the result follows accordingly. �

Corollary 3.6 Let G = G1 ∪G2 be a bigroup. µ = µ1 ∪ µ2 a fuzzy subset of G, where µ1, µ2

are fuzzy subsets of G1 and G2 respectively. Suppose that xM(t,s) is a fuzzy point of the bigroup

G then xM(t,s) ∈ vqµ imply that xt ∈ vqµ1 and xs ∈ vqµ2, if and only if

0.5 < min[t, s] ≤ min[µ1(x), µ2(x)] < 1

where xt and xs are fuzzy points of the groups G1 and G2 respectively.

Definition 3.7 A fuzzy bisubset µ of a bigroup G is said to be an (∈ v q)- fuzzy sub bigroup

of G if for every x, y ∈ G and t1, t2, s1, s2, t, s, ∈ [0, 1],

(i) xM(t1,t2) ∈ µ, yM(s1,s2) ∈ µ ⇒ (xy)M(t,s) ∈ vqµ

(ii) xM(t1,t2) ∈ µ ⇒ (x−1)M(t1,t2) ∈ vqµ

where t = M(t1, t2) and s = M(s1, s2).

Theorem 3.8 Let µ = µ1 ∪ µ2 : G = G1 ∪G2 → [0, 1] be a fuzzy subset of G. Suppose that

µ1 is an (∈ vq)-fuzzy subgroup of G1 and µ2 is an (∈ vq)-fuzzy subgroup of G2, then µ is an

(∈ vq)-fuzzy subgroup of G.

Proof Suppose that µ1 is an (∈ vq)-fuzzy subgroup of G1 and µ2 is an (∈ vq)-fuzzy

subgroup of G2. Let x, y, ∈ G1, G2 and t1, t2, s1, s2 ∈ [0, 1] for which

xt1 ∈ µ1 , ys1 ∈ µ1 ⇒ (xy)M(t1,s1) ∈ vqµ1

and

xt2 ∈ µ2 , ys2 ∈ µ2 ⇒ (xy)M(t2,s2) ∈ vqµ2.

This implies that

µ1(xy) ≥M(t1, s1) or µ1(xy) +M(t1, s1) > 1,

and

µ2(xy) ≥M(t2, s2) or µ2(xy) +M(t2, s2) > 1.

⇒ µ1(xy) + µ2(xy) ≥M(t1, s1) + M(t2, s2)

or µ1(xy) + µ2(xy) + M(t1, s1) + M(t2, s2) > 2

⇒ 2Max[µ1(xy), µ2(xy)] ≥ 2M [t, s]

or 2Max[µ1(xy), µ2(xy)] + 2M [t, s] > 2

⇒Max[µ1(xy), µ2(xy)] ≥M [t, s]

or Max[µ1(xy), µ2(xy)] +M [t, s] > 1

⇒ µ1 ∪ µ2(xy) ≥M [t, s] or µ1 ∪ µ2(xy) +M [t, s] > 1



On (∈ vq)- Fuzzy Bigroup 7

⇒ µ(xy) ≥M [t, s] or µ(xy) +M [t, s] > 1

⇒ (xy)M(t,s) ∈ vqµ.

To conclude the proof, we see that

xt1 ∈ µ1 ⇒ (x−1)t1 ∈ vqµ1, and xt2 ∈ µ2 ⇒ (x−1)t2 ∈ vqµ2

And since it is a straightforward matter to see that

(x−1)t1 ∈ vqµ1, and (x−1)t2 ∈ vqµ2 ⇒ (x−1)M(t1,t2) ∈ vq µ,

then, the result follows accordingly. �
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Abstract: Let G(V, E) be a graph. Let U ⊆ V (G) and X ⊆ E(G). For each vertex

u ∈ U , a new vertex u
′

is taken and the resulting set of vertices is denoted by V1(G). The

Smarandachely splitting graph SU (G) of a graph G is defined as the graph having vertex set

V (G)
⋃

V1(G) with two vertices adjacent if they correspond to adjacent vertices of G or one

corresponds to a vertex u
′

of V1 and the other to a vertex w of G where w is in NG(u).

Particularly, if U = V (G), such a Smarandachely splitting graph SV (G)(G) is abbreviated to

Splitting graph of G and denoted by S(G). The open neighborhood N(ei) of an edge ei in

E(G) is the set of edges adjacent to ei. For each edge ei ∈ X, a new vertex e
′

i is taken and

the resulting set of vertices is denoted by E1(G). The Smarandachely line splitting graph

LX
s (G) of a graph G is defined as the graph having vertex set E(G)

⋃

E1(G) and two vertices

are adjacent if they correspond to adjacent edges of G or one corresponds to an element e
′

i of

E1 and the other to an element ej of E(G) where ej is in NG(ei). Particularly, if X = E(G),

such a Smarandachely line splitting graph L
V (G)
S (G) is abbreviated to Line Splitting Graph

of G and denoted by LS(G). In this paper, we study the connectivity of line splitting graphs.

Key Words: Line graph, Smarandachely splitting graph, splitting graph, Smarandachely

line splitting graph, line splitting graph.

AMS(2010): 05C40

§1. Introduction

By a graph, we mean a finite, undirected graph without loops or multiple edges. Definitions

not given here may be found in [2]. For a graph G, V (G) and E(G) denote its vertex set and

edge set respectively.

A vertex-cut in a graph G is a set S of vertices of G such that G \ S is disconnected.

Similarly, an edge-cut in a graph G is a set X of edges of G such that G \X is disconnected.

The open neighborhood N(u) of a vertex u in V (G) is the set of vertices adjacent to u.

N(u) = {v/uv ∈ E(G)}.
Let U ⊆ V (G) and X ⊆ E(G). For each vertex u ∈ U , a new vertex u

′

is taken and the

resulting set of vertices is denoted by V1(G). The Smarandachely splitting graph SU (G) of a

1Received September 1, 2010. Accepted December 6, 2010.
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graph G is defined as the graph having vertex set V (G)
⋃

V1(G) with two vertices adjacent if

they correspond to adjacent vertices of G or one corresponds to a vertex u
′

of V1 and the other

to a vertex w of G where w is in NG(u). Particularly, if U = V (G), such a Smarandachely

splitting graph SV (G)(G) is abbreviated to Splitting graph of G and denoted by S(G). The

concept of Splitting Graph was introduced by Sampathkumar and Walikar in [4].

The open neighborhood N(ei) of an edge ei in E(G) is the set of edges adjacent to ei.

N(ei) = {ej/ei, ej are adjacent in E(G)}.
For each edge ei ∈ X , a new vertex e

′

i is taken and the resulting set of vertices is denoted

by E1(G). The Smarandachely line splitting graph LX
s (G) of a graph G is defined as the graph

having vertex set E(G)
⋃

E1(G) and two vertices are adjacent if they correspond to adjacent

edges of G or one corresponds to an element e
′

i of E1 and the other to an element ej of E(G)

where ej is in NG(ei). Particularly, if X = E(G), such a Smarandachely line splitting graph

L
V (G)
s (G) is abbreviated to Line Splitting Graph of G and denoted by Ls(G). The concept of

Line splitting graph was introduced by Kulli and Biradar in [3].

We first make the following observations.

Observation 1. The graph G is an induced subgraph of S(G). The line graph L(G) is an

induced subgraph of Ls(G).

Observation 2. If G = Ls(H) for some graph H , then G = S(L(H)).

The following will be useful in the proof of our results.

Theorem A([1]) If a graph G is m-edge connected, m ≥ 2, then its line graph L(G) is m-

connected.

Theorem B([2]) A graph G is n-connected if and only if every pair of vertices are joined

by at least n vertex disjoint paths.

$2. Main Results

Theorem 1 Let G be a (p, q) graph. Then Ls(G) is connected if and only if G is a connected

graph with p ≥ 3.

Proof Let G be a connected graph with p ≥ 3 vertices. Let V (Ls(G)) = V1

⋃

V2 where

< V1 >= L(G) and V2 is the set of all newly introduced vertices, such that v1 → v2 is a bijective

map from V1 onto V2 satisfying N(v2) = N(v1)
⋂

V1 for all v1 ∈ V1 . Let a, b ∈ V (Ls(G)). We

consider the following cases.

Case 1. a, b ∈ V1. Since G is a connected graph with p ≥ 3 , L(G) is a nontrivial connected

graph. Since L(G) is an induced subgraph of Ls(G), there exists an a− b path in Ls(G).

Case 2. a ∈ V1 and b ∈ V2. Let v ∈ V1 be such that N(b) = N(v)
⋂

V1. Choose w ∈ N(b).

Since a and w ∈ V1, as in Case 1, a and w are joined by a path in Ls(G). Hence a and b are

connected by a path in Ls(G).

Case 3. a, b ∈ V2. As in Case 2, there exist w1 and w2 in V1 such that w1 ∈ N(a) and
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w2 ∈ N(b) . Consequently, w1a,w2b ∈ E(Ls(G)). Also w1 and w2 are joined by a path in

Ls(G). Hence a and b are connected by a path in Ls(G).

In all the cases, a and b are connected by a path in Ls(G). Thus Ls(G) is connected.

Conversely, if G is disconnected or G = K2, then obviously Ls(G) is disconnected. �

Theorem 2 For any graph G, κ(Ls(G)) = min{2κ(L(G)), δe(G) − 2}.

Proof By Whitney’s result, κ(Ls(G)) ≤ λ(Ls(G)) ≤ δ(Ls(G)). Also, κ(L(G)) ≤ λ(L(G)) ≤
δ(L(G)). Since L(G) is an induced subgraph of Ls(G), κ(Ls(G)) ≥ κ(L(G)). We have the fol-

lowing cases.

Case 1. If κ(L(G)) = 0, then obviously κ(Ls(G)) = 0.

Case 2. If κ(L(G)) = 1, then L(G) = K2 or it is connected with a cut-vertex ei.

We consider the following subcases.

Subcase 2.1. L(G) = K2, then Ls(G) = P4. Consequently, κ(Ls(G)) = δ(L(G)) = 1.

Subcase 2.2. L(G) is connected with a cut-vertex ei. Let ej be a pendant vertex of L(G)

which is adjacent to ei. Then e
′

j is a pendant vertex of Ls(G) and ei is also a cut-vertex

of Ls(G). Hence κ(Ls(G)) = δ(L(G)). If δ(L(G)) ≥ 2, then the removal of a cut-vertex ei

of L(G) and its corresponding vertex e
′

i from Ls(G) results in a disconnected graph. Hence

κ(Ls(G)) = 2κ(L(G)).

Now suppose κ(L(G)) = n. Then L(G) has a minimum vertex-cut {el : 1 ≤ l ≤ n} whose

removal from L(G) results in a disconnected graph. There are two types of vertex-cuts in

Ls(G) depending on the structure of L(G). Among these, one vertex-cut contains exactly 2n

vertices, el’s and e
′

l’s of Ls(G) whose removal increases the components of Ls(G) and the other

is δ(L(G))-vertex-cut. Thus we have

κ(Ls(G)) =















2n, if n ≤ δ(L(G))
2 = δe(G)−2

2 ;

δ(L(G)) = δe(G) − 2, otherwise.

Hence,

κ(Ls(G)) = min{2κ(L(G)), δ(L(G))}
= min{2κ(L(G)), δe(G) − 2}. �

Theorem 3 For any graph G, λ(Ls(G)) = min{3λ(L(G)), δe(G) − 2}.

Proof Since δ(Ls(G)) = δ(L(G)), by Whitney’s result κ(Ls(G)) ≤ λ(Ls(G)) ≤ δ(L(G)).

Since L(G) is an induced subgraph of Ls(G), λ(Ls(G)) ≥ λ(L(G)).

We consider the following cases.

Case 1. If λ(L(G)) = 0, then obviously λ(Ls(G)) = 0.

Case 2. If λ(L(G)) = 1, then L(G) = K2 or it is connected with a bridge x = eiej.

We have the following subcases of this case.
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Subcase 2.1. L(G) = K2, then Ls(G) = P4. Consequently, λ(Ls(G)) = δ(L(G)) = 1.

Subcase 2.2. L(G) is connected with a bridge eiej. If ei is a pendant vertex, then Ls(G)

is connected with the some pendant vertex e
′

i. There is only one edge incident with e
′

i whose

removal disconnects it. Thus λ(Ls(G)) = δ(L(G)) = 1. If neither ei nor ej is a pendant vertex

and δ(L(G)) = 2, then δ(Ls(G)) = 2 and let ek be a vertex of Ls(G) with degLs(G)ek = 2. In

Ls(G), there are only two edges incident with ek and the removal of these disconnects Ls(G).

So λ(Ls(G)) = δ(L(G)). If δ(L(G)) ≥ 3, then the removal of edges eiej, e
′

iej and eie
′

j from

Ls(G) results in a disconnected graph. Hence λ(Ls(G)) = 3λ(L(G)).

Now suppose λ(L(G)) = n. Then L(G) has a minimum edge-cut {el = ulvl : 1 ≤ l ≤ n}
whose removal from L(G) results in a disconnected graph. As above, there are two types of

edge-cuts in Ls(G) depending on the structure of L(G). Among these, one edge-cut contains

exactly 3n edges {ulvl, u
′

lvl, ulv
′

l , 1 ≤ l ≤ n} whose removal increases the components of Ls(G)

and the other is δ(L(G))−edge-cut. Thus we have

λ(Ls(G)) =















3n, if n ≤ δ(L(G))
3 = δe(G)−2

3 ;

δ(L(G)) = δe(G) − 2, otherwise.

Hence,

λ(Ls(G)) = min{3λ(L(G)), δ(L(G))}
= min{3λ(L(G)), δe(G) − 2} �

Theorem 4 If a graph G is n-edge connected, n ≥ 2, then Ls(G) is n-connected.

Proof Let G be a n-edge connected graph, n ≥ 2. Then by Theorem A, L(G) is n-

connected. We show that there exist n-disjoint paths between any two vertices of Ls(G). Let

x and y be two distinct vertices of Ls(G). We consider the following cases.

Case 1. Let x, y ∈ E(G). Then by Theorem B, x and y are joined by n-disjoint paths in

L(G). Since L(G) is an induced subgraph of Ls(G), there exist n-disjoint paths between x and

y in Ls(G).

Case 2. Let x ∈ E(G) and y ∈ E1(G). Since λ(G) ≤ δ(G) < 2δ(G) ≤ δe(G), there are

at least n edges adjacent to x. Let xi, i = 1, 2, ..., n be edges of G, adjacent to x. Then the

vertices x
′

i, i = 1, 2, ..., n are adjacent to the vertex x in Ls(G), where x
′

i ∈ E1(G), i = 1, 2, ..., n.

It follows from Case 1, that there exist n-disjoint paths from x to xi, i = 1, 2, ..., n in Ls(G).

Since y ∈ E1(G), we have N(y) = N(w)
⋂

E, for some w ∈ E(G). Since |N(w)| ≥ n, let

y1, y2, ..., yn ∈ E(G) such that yi ∈ N(w), i = 1, 2, ..., n. So yi ∈ N(y), i = 1, 2, ..., n. Also, since

x and yi ∈ E(G), i=1,2,...,n, as in Case 1, there exist n-disjoint paths in Ls(G) between x and

yi, i = 1, 2, ..., n. Hence x and y are joined by n-disjoint paths in Ls(G).

Case 3. Let x, y ∈ E1(G). As in Case 2, xi ∈ N(x), i = 1, 2, ..., n and yi ∈ N(y), i = 1, 2, ..., n

for some xi, yi ∈ E(G), i = 1, 2, ..., n. Consequently, xix and yiy ∈ E(Ls(G)), i = 1, 2, ..., n.
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Also by Case 1, every pair of xi and yi are joined by n-disjoint paths in Ls(G). Hence x and y

are joined by n-disjoint paths in Ls(G).

Thus it follows from Theorem B that Ls(G) is n-connected. �

However, the converse of the above Theorem is not true. For example, in Figure 1, Ls(G1)

is 2-connected, whereas G1 is edge connected.

e3
e4
e5e2

e1

e1 e2

e
′

1

e
′

2

e
′

5

e4 e5 e
′

4

e
′

3

Ls(G1)G1

Figure 1

e3

Corollary 5 If a graph G is n-connected, n ≥ 2, then Ls(G) is n-connected.

The converse of above corollary is not true. For instance, In Figure 2, Ls(G2) is 2-

connected, but G2 is connected.

e1

e2

e3 e4

e5

e6

e
′

3

e
′

2

e1

e2
e
′

1
e
′

4 e
′

5
e6

e5

e
′

6

e4
e3

G2 Ls(G2)

Figure 2
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Abstract: We separate the differential operator A of the form Au (x) = −∆3u (x) +

V (x)u (x) for all x ∈ Rn, in the Hilbert space H = L2 (Rn, H1) with the operator potential

V (x) , where L(H1) is the space of all bounded operators on an arbitrary Hilbert space H1,

and ∆ =
∑n

i=1
∂2

∂x2
i

is the Laplace operator on Rn. Moreover, we study the existence and

uniqueness of the solution of the equation Au (x) = −∆3u (x) + V (x)u (x) = f(x), in the

Hilbert space H , where f(x) ∈ H .

Key Words: Separation, Tricomi differential operator, Hilbert space.
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§1. Introduction

The concept of separation for differential operators was first introduced by Everitt and Giertz

[6, 7]. They have obtained the separation results for the Sturm Liouville differential operator

Ay (x) = −y′′ (x) + V (x) y (x) , x ∈ R, (1)

in the space L2 (R) . They have studied the following question: What are the conditions

on V (x) such that if y (x) ∈ L2 (R) and Ay (x) ∈ L2 (R) imply that both of y′′ (x) and

V (x) y (x) ∈ L2 (R)? More fundamental results of separation of differential operators were ob-

tained by Everitt and Giertz [8,9]. A number of results concerning the property referred to

the separation of differential operators was discussed by Biomatov [2], Otelbaev [16], Zettle

[21] and Mohamed etal [10-15]. The separation for the differential operators with the matrix

potential was first studied by Bergbaev [1]. Brown [3] has shown that certain properties of pos-

itive solutions of disconjugate second order differential expressions imply the separation. Some

separation criteria and inequalities associated with linear second order differential operators

have been studied by many authors, see for examples [4,5,11,13,14,15,17,19].

Recently, Zayed [20] has studied the separation for the following biharmonic differential

operator

Au (x) = ∆∆u (x) + V (x) u (x) , x ∈ Rn, (2)

1Received October 18, 2010. Accepted December 12, 2010.
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in the Hilbert spaceH = L2 (Rn, H1) with the operator potential V (x) ∈ C1(Rn, L (H1)) where

∆∆u (x) is the biharmonic differential operator, while ∆u (x) =
∑n

i=1
∂2u(x)

∂x2
i

is the Laplace

operator in Rn.

The main objective of the present paper is to study the separation of the differential

operator A of the form

Au (x) = −∆3u (x) + V (x) u (x) . (3)

We construct the coercive estimate for the differential operator (3). The existence and unique-

ness Theorem for the solution of the differential equation

Au (x) = −∆3u (x) + V (x)u (x) = f (x) (4)

in the Hilbert space H = L2 (Rn, H1) is also given, where f (x) ∈ H.

§2. Some Notations

In this section we introduce the definitions that will be used in the subsequent section. We con-

sider the Hilbert space H1 with the norm ‖.‖1and the inner product space 〈u, v〉1 .We introduce

the Hilbert space H = L2 (Rn, H1) of all functions u(x), x ∈ Rn equipped with the norm

‖u‖2
=

∫

Rn

‖u(x)‖2
1 dx. (5)

The symbol 〈u, v〉 where u, v ∈ H denotes the scalar product in H which is defined by

〈u, v〉 =

∫

Rn

〈u, v〉1 dx. (6)

Let W 2
2 (Rn, H1) be the space of all functions u (x) , x ∈ R which have generalized derivatives

Dαu (x) , α ≤ 2 such that u (x) and Dαu (x) belong to H. We say that the function u (x)

for all x ∈ R belongs to W 2
2, loc (Rn, H1) if for all functions Q (x) ∈ C∞

0 (Rn) the functions

Q (x) y (x) ∈W 2
2, loc (Rn, H1) .

§3. Main Results

Definition 3.1 The operator A of the form Au (x) = −∆3u (x) + V (x)u (x) , x ∈ Rn is said

to be separated in the Hilbert space H if the following statement holds:

If u(x) ∈ H ∩W 2
2, loc (Rn, H1) and Au (x) ∈ H imply that both −∆3u (x) and V (x)u (x) ∈

H.

Theorem 3.1 If the following inequalities are holds for all x ∈ Rn,

∥

∥

∥

∥

V
− 1

2
0

∂3v

∂x3
i

V −1V u

∥

∥

∥

∥

≤ σ1 ‖V u‖ , (7)

∥

∥

∥

∥

V
− 1

2
0

∂v

∂xi

∂2u

∂x2
i

∥

∥

∥

∥

≤ σ2 ‖V u‖ , (8)
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∥

∥

∥

∥

V
− 1

2
0

∂u

∂xi

∂2v

∂x2
i

∥

∥

∥

∥

≤ σ3 ‖V u‖ , (9)

where σ1, σ2 and σ3 are positive constants satisfy σ1 + σ2 + σ3 < 2
n
, V0 = ReV , then the

coercive estimate

‖V u‖ +
∥

∥∆3u
∥

∥ +

∥

∥

∥

∥

∥

n
∑

i=1

V
1
2

0

∂3u

∂x3
i

∥

∥

∥

∥

∥

≤ N ‖V u‖ , (10)

is valid, where

N = 1 + 2

[

1 − n

2β
(σ1 + 2σ2 + 3σ3)

]−1

+

[

1 − n

2β
(σ1 + 2σ2 + 3σ3)

]− 1
2

[

1 − nβ

2
(σ1 + 2σ2 + 3σ3)

]− 1
2

,

is a constant independent on u(x) while β is given by n
2 (σ1 + 2σ2 + 3σ3) < β < 2

n(σ1+2σ2+3σ3) .

Then the operator A given by (3) is separated in the Hilbert space H.

Proof From the definition of the inner product in the Hilbert space H , we can obtain
〈

∂u
∂xi

, v
〉

= −
〈

u, ∂v
∂xi

〉

, i = 1, 2, 3, ..., n for all u, v ∈ C∞
0 (Rn) .

Hence

〈Au, V u〉 =
〈

−∆3u+ V u, V u
〉

=
〈

−∆3u, V u
〉

+ 〈V u, V u〉

Setting −∆2u = Ω, we have

〈Au, V u〉 = 〈∆Ω, V u〉 + 〈V u, V u〉

=

〈

n
∑

i=1

∂2Ω

∂x2
i

, V u

〉

+ 〈V u, V u〉

= −
n

∑

i=1

〈

∂Ω

∂xi

,
∂(V u)

∂xi

〉

+ 〈V u, V u〉

= −
n

∑

i=1

〈

∂Ω

∂xi

, V
∂u

∂xi

+ u
∂V

∂xi

〉

+ 〈V u, V u〉

=

n
∑

i=1

〈

Ω,
∂

∂xi

(V
∂u

∂xi

)

〉

+

n
∑

i=1

〈

Ω,
∂

∂xi

(u
∂V

∂xi

)

〉

+ 〈V u, V u〉

=

n
∑

i=1

〈

Ω, V
∂2u

∂x2
i

+
∂u

∂xi

∂V

∂xi

〉

+

n
∑

i=1

〈

Ω, u
∂2V

∂x2
i

+
∂V

∂xi

∂u

∂xi

〉

+ 〈V u, V u〉

=
n

∑

i=1

〈

Ω, V
∂2u

∂x2
i

〉

+
n

∑

i=1

〈

Ω, u
∂2V

∂x2
i

〉

+ 2
n

∑

i=1

〈

Ω,
∂u

∂xi

∂V

∂xi

〉

+ 〈V u, V u〉 .

(11)
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Setting ∆u = W , we have Ω = −∆W and hence (11) reduces to

〈Au, V u〉 = −
n

∑

i=1

〈

∂2W

∂x2
i

, V
∂2u

∂x2
i

〉

−
n

∑

i=1

〈

∂2W

∂x2
i

, u
∂2V

∂x2
i

〉

−2

n
∑

i=1

〈

∂2W

∂x2
i

,
∂u

∂xi

∂V

∂xi

〉

+ 〈V u, V u〉

=

n
∑

i=1

〈

∂W

∂xi
,
∂

∂xi

(V
∂2u

∂x2
i

)

〉

+

n
∑

i=1

〈

∂W

∂x1i

,
∂

∂xi

(u
∂2V

∂x2
i

)

〉

+2
n

∑

i=1

〈

∂W

∂xi

,
∂

∂xi

(
∂u

∂xi

∂V

∂xi

)

〉

+ 〈V u, V u〉

=

n
∑

i=1

〈

∂W

∂xi

, V
∂3u

∂x3
i

〉

+

n
∑

i=1

〈

∂W

∂xi

, u
∂3V

∂x3
i

〉

+3

n
∑

i=1

〈

∂W

∂xi
,
∂u

∂xi

∂2V

∂xi

i

〉

+ 3

n
∑

i=1

〈

∂W

∂xi

,
∂2u

∂x2
i

∂V

∂xi

〉

+ 〈V u, V u〉

= −
n

∑

i=1

〈

W,
∂

∂xi

(V
∂3u

∂x3
i

)

〉

−
n

∑

i=1

〈

W,
∂

∂xi

(u
∂3V

∂x3
i

)

〉

−3

n
∑

i=1

〈

W,
∂

∂xi

(
∂u

∂xi

∂2V

∂x2

i

)

〉

− 3

n
∑

i=1

〈

W,
∂

∂xi

(
∂2u

∂x2
i

∂V

∂xi

)

〉

+ 〈V u, V u〉

= −
n

∑

i=1

〈

W,
∂

∂xi

V
∂4u

∂x4
i

〉

−
n

∑

i=1

〈

W,u
∂4V

∂x4
i

〉

− 4

n
∑

i=1

〈

W,
∂u

∂xi

∂3V

∂x3
i

〉

−4

n
∑

i=1

〈

W,
∂V

∂xi

∂3u

∂x3
i

〉

− 6

n
∑

i=1

〈

W,
∂2u

∂x2
i

∂2V

∂x2
i

〉

+ 〈V u, V u〉 .

= −
n

∑

i=1

〈

∂2u

∂x2
i

, V
∂4u

∂x4
i

〉

−
n

∑

i=1

〈

∂2u

∂x2
i

, u
∂4V

∂x4
i

〉

− 4
n

∑

i=1

〈

∂2u

∂x2
i

,
∂u

∂xi

∂3V

∂x3
i

〉

−4

n
∑

i=1

〈

∂2u

∂x2
i

,
∂V

∂xi

∂3u

∂x3
i

〉

− 6

n
∑

i=1

〈

∂2u

∂x2
i

,
∂2u

∂x2
i

∂2V

∂x2
i

〉

+ 〈V u, V u〉 (12)

Let us rewrite (12) as follows:

〈Au, V u〉 = −I1 − I2 − 4I3 − 4I4 − 6I5 + 〈V u, V u〉 , (13)

where

I1 =
n

∑

i=1

〈

∂2u

∂x2
i

, V
∂4u

∂x4
i

〉

= −
n

∑

i=1

〈

∂3u

∂x3
i

, V
∂3u

∂x3
i

〉

, (14)
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I2 =
n

∑

i=1

〈

∂2u

∂x2
i

, u
∂4V

∂x4
i

〉

=
n

∑

i=1

〈

u
∂2u

∂x2
i

,
∂4V

∂x4
i

〉

= −
n

∑

i=1

〈

∂

∂xi

(u
∂2u

∂x2
i

),
∂3V

∂x3
i

〉

= −
n

∑

i=1

〈

u
∂3u

∂x3
i

,
∂3V

∂x3
i

〉

−
n

∑

i=1

〈

∂2u

∂x2
i

∂u

∂xi

,
∂3V

∂x3
i

〉

= −
n

∑

i=1

〈

∂3u

∂x3
i

, u
∂3V

∂x3
i

〉

+

n
∑

i=1

〈

∂

∂xi

(
∂2u

∂x2
i

∂u

∂xi

),
∂2V

∂x2
i

〉

= −
n

∑

i=1

〈

∂3u

∂x3
i

, u
∂3V

∂x3
i

〉

+

n
∑

i=1

〈

(
∂2u

∂x2
i

)2,
∂2V

∂x2
i

〉

+

n
∑

i=1

〈

∂u

∂xi

∂3u

∂x3
i

,
∂2V

∂x2
i

〉

= −
n

∑

i=1

〈

∂3u

∂x3
i

, u
∂3V

∂x3
i

〉

−
n

∑

i=1

〈

∂

∂xi

(
∂2u

∂x2
i

)2,
∂V

∂xi

〉

+

n
∑

i=1

〈

∂3u

∂x3
i

,
∂u

∂xi

∂2V

∂x2
i

〉

= −
n

∑

i=1

〈

∂3u

∂x3
i

, u
∂3V

∂x3
i

〉

− 2

n
∑

i=1

〈

∂2u

∂x2
i

∂3u

∂x3
i

,
∂V

∂xi

〉

+

n
∑

i=1

〈

∂3u

∂x3
i

,
∂u

∂xi

∂2V

∂x2
i

〉

= −
n

∑

i=1

〈

∂3u

∂x3
i

, u
∂3V

∂x3
i

〉

− 2

n
∑

i=1

〈

∂3u

∂x3
i

,
∂2u

∂x2
i

∂V

∂xi

〉

+

n
∑

i=1

〈

∂3u

∂x3
i

,
∂u

∂xi

∂2V

∂x2
i

〉

, (15)

I3 =

n
∑

i=1

〈

∂2u

∂x2
i

,
∂3u

∂x3
i

∂V

∂xi

〉

=

n
∑

i=1

〈

∂3u

∂x3
i

,
∂2u

∂x2
i

∂V

∂xi

〉

, (16)

I4 =
n

∑

i=1

〈

∂2u

∂x2
i

,
∂u

∂xi

∂3V

∂x3
i

〉

=
n

∑

i=1

〈

∂u

∂xi

∂2u

∂x2
i

,
∂3V

∂x3
i

〉

= −
n

∑

i=1

〈

∂

∂xi

(
∂u

∂xi

∂2u

∂x2
i

),
∂2V

∂x2
i

〉

= −
n

∑

i=1

〈

∂u

∂xi

∂3u

∂x3
i

,
∂2V

∂x2
i

〉

−
n

∑

i=1

〈

(
∂2u

∂x2
i

)2,
∂2V

∂x2
i

〉

= −
n

∑

i=1

〈

∂3u

∂x3
i

,
∂u

∂xi

∂2V

∂x2
i

〉

+

n
∑

i=1

〈

∂

∂xi

(
∂2u

∂x2
i

)2,
∂V

∂xi

〉

= −
n

∑

i=1

〈

∂3u

∂x3
i

,
∂u

∂xi

∂2V

∂x2
i

〉

+ 2

n
∑

i=1

〈

∂2u

∂x2
i

∂3u

∂x3
i

,
∂V

∂xi

〉

= −
n

∑

i=1

〈

∂3u

∂x3
i

,
∂u

∂xi

∂2V

∂x2
i

〉

+ 2

n
∑

i=1

〈

∂3u

∂x3
i

,
∂2u

∂x2
i

∂V

∂xi

〉

, (17)

I5 =

n
∑

i=1

〈

∂2u

∂x2
i

,
∂2u

∂x2
i

∂2V

∂x2
i

〉

=

n
∑

i=1

〈

(
∂2u

∂x2
i

)2,
∂2V

∂x2
i

〉

= −
n

∑

i=1

〈

∂

∂xi

(
∂2u

∂x2
i

)2,
∂V

∂xi

〉

= −2

n
∑

i=1

〈

∂2u

∂x2
i

∂3u

∂x3
i

,
∂V

∂xi

〉

= −2
n

∑

i=1

〈

∂3u

∂x3
i

,
∂2u

∂x2
i

∂V

∂xi

〉

. (18)
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Substitute(14)-(17) into (13) , we get

〈Au, V u〉 =
n

∑

i=1

〈

∂3u

∂x3
i

, V
∂3u

∂x3
i

〉

+
n

∑

i=1

〈

∂3u

∂x3
i

, u
∂3V

∂x3
i

〉

+

2

n
∑

i=1

〈

∂3u

∂x3
i

,
∂2u

∂x2
i

∂V

∂xi

〉

+ 3

n
∑

i=1

〈

∂3u

∂x3
i

,
∂u

∂xi

∂2V

∂x2
i

〉

+ 〈V u, V u〉 .

(19)

Equating the real parts of the two sides of (19), we get

Re 〈Au, V u〉 =

n
∑

i=1

〈

V
1
2

0

∂3u

∂x3
i

, V
1
2

0

∂3u

∂x3
i

〉

+

n
∑

i=1

Re

〈

V
1
2

0

∂3u

∂x3
i

, V
− 1

2
0

∂3V

∂x3
i

V −1V u

〉

+2

n
∑

i=1

Re

〈

V
1
2

0

∂3u

∂x3
i

, V
− 1

2
0

∂2u

∂x2
i

∂V

∂xi

〉

+3

n
∑

i=1

Re

〈

V
1
2

0

∂3u

∂x3
i

, V
− 1

2
0

∂u

∂xi

∂2V

∂x2
i

〉

+ 〈V u, V u〉 . (20)

Since for any complex number Z,we have

− |Z| ≤ ReZ ≤ |Z| ,

then by the Cauchy- Schwarz inequality, we obtain

Re 〈Au, V u〉 ≤ |〈Au, V u〉| ≤ ‖Au‖ ‖V u‖ . (21)

With the help of (21) we have

Re

n
∑

i=1

〈

V
1
2

0

∂3u

∂x3
i

, V
− 1

2
0

∂3V

∂x3
i

V −1V u

〉

≥ −
∥

∥

∥

∥

∥

n
∑

i=1

V
1
2

0

∂3u

∂x3
i

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

n
∑

i=1

V
− 1

2
0

∂3V

∂x3
i

V −1V u

∥

∥

∥

∥

∥

≥ −nσ1

∥

∥

∥

∥

∥

n
∑

i=1

V
1
2

0

∂3u

∂x3
i

∥

∥

∥

∥

∥

‖V u‖ , (22)

Re

n
∑

i=1

〈

V
1
2

0

∂3u

∂x3
i

, V
− 1

2
0

∂2u

∂x2
i

∂V

∂xi

〉

≥ −
∥

∥

∥

∥

∥

n
∑

i=1

V
1
2

0

∂3u

∂x3
i

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

n
∑

i=1

V
− 1

2
0

∂2u

∂x2
i

∂V

∂xi

∥

∥

∥

∥

∥

≥ −nσ2

∥

∥

∥

∥

∥

n
∑

i=1

V
1
2

0

∂3u

∂x3
i

∥

∥

∥

∥

∥

‖V u‖ , (23)

Re
n

∑

i=1

〈

V
1
2

0

∂3u

∂x3
i

, V
− 1

2
0

∂u

∂xi

∂2V

∂x2
i

〉

≥ −
∥

∥

∥

∥

∥

n
∑

i=1

V
1
2

0

∂3u

∂x3
i

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

n
∑

i=1

V
− 1

2
0

∂u

∂xi

∂2V

∂x2
i

∥

∥

∥

∥

∥

≥ −nσ3

∥

∥

∥

∥

∥

n
∑

i=1

V
1
2

0

∂3u

∂x3
i

∥

∥

∥

∥

∥

‖V u‖ . (24)

It is easy to see that for any β > 0 and y1,y2 ∈ Rn, the inequality

|y1| |y2| ≤
β |y1|2

2
+

|y2|2
2β

. (25)
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is valid. Applying (25) to (22)-(24), we have

Re

n
∑

i=1

〈

V
1
2

0

∂3u

∂x3
i

, V
− 1

2
0

∂3V

∂x3
i

V −1V u

〉

≥ −nβσ1

2

∥

∥

∥

∥

∥

n
∑

i=1

V
1
2

0

∂3u

∂x3
i

∥

∥

∥

∥

∥

2

− nσ1

2β
‖V u‖2

, (26)

Re

n
∑

i=1

〈

V
1
2

0

∂3u

∂x3
i

, V
− 1

2
0

∂2u

∂x2
i

∂V

∂xi

〉

≥ −nβσ2

2

∥

∥

∥

∥

∥

n
∑

i=1

V
1
2

0

∂3u

∂x3
i

∥

∥

∥

∥

∥

2

− nσ2

2β
‖V u‖2

, (27)

Re

n
∑

i=1

〈

V
1
2

0

∂3u

∂x3
i

, V
− 1

2
0

∂u

∂xi

∂2V

∂x2
i

〉

≥ −nβσ3

2

∥

∥

∥

∥

∥

n
∑

i=1

V
1
2

0

∂3u

∂x3
i

∥

∥

∥

∥

∥

2

− nσ3

2β
‖V u‖2

, (28)

From (20),(21) and (26) - (28), we conclude that

[

1 − nβ

2
(σ1 + 2σ2 + 3σ3)

]

∥

∥

∥

∥

∥

n
∑

i=1

V
1
2

0

∂3u

∂x3
i

∥

∥

∥

∥

∥

2

+

[

1 − n

2β
(σ1 + 2σ2 + 3σ3)

]

‖V u‖2

≤ ‖V u‖ ‖Au‖ (29)

Choosing n
2 (σ1 + 2σ2 + 3σ3) < β < 2

n
(σ1 + 2σ2 + 3σ3), we obtain from (29) that

‖V u‖ ≤
[

1 − n

2β
(σ1 + 2σ2 + 3σ3)

]−1

‖Au‖ , (30)

∥

∥

∥

∥

∥

n
∑

i=1

V
1
2

0

∂3u

∂x3
i

∥

∥

∥

∥

∥

≤
[

1 − nβ

2
(σ1 + 2σ2 + 3σ3)

]− 1
2

[

1 − n

2β
(σ1 + 2σ2 + 3σ3)

]− 1
2

‖Au‖ . (31)

From (3) and (30) we get

∥

∥∆3u
∥

∥ ≤ ‖V u‖ + ‖Au‖ ≤
[

1 − n

2β
(σ1 + 2σ2 + 3σ3)

]−1

‖Au‖ . (32)

Consequently, we deduce from (30)-(32) that

‖V u‖ +
∥

∥∆3u
∥

∥ +

∥

∥

∥

∥

∥

n
∑

i=1

V
1
2

0

∂3u

∂x3
i

∥

∥

∥

∥

∥

≤ N ‖Au‖ (33)

where

N = 1 + 2

[

1 − n

2β
(σ1 + 2σ2 + 3σ3)

]−1

+

[

1 − n

2β
(σ1 + 2σ2 + 3σ3)

]− 1
2

[

1 − nβ

2
(σ1 + 2σ2 + 3σ3)

]− 1
2

,

and this completes the proof. �

Theorem 3.2 If the operator A given by (3) is separated in the Hilbert space H and if there

are positive functions ψ(x) and t(x) ∈ C1(Rn) satisfying

∥

∥

∥

∥

t−1(
∂t

∂xi

)V
− 1

2
0

∥

∥

∥

∥

≤ 2
√
σ1, (34)
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∥

∥

∥

∥

ψ−1(
∂ψ

∂xi

)V
− 1

2
0

∥

∥

∥

∥

≤ 2
√
σ2, (35)

∥

∥

∥

∥

t
1
2ψ− 1

2 (
∂u

∂xi

)

∥

∥

∥

∥

≤ 2
√
σ3

∥

∥

∥
t

1
2ψ− 1

2 V
1
2

0 u
∥

∥

∥
, (36)

∥

∥

∥

∥

t
1
2ψ− 1

2 (
∂Ω

∂xi

)

∥

∥

∥

∥

≤ √
σ4

∥

∥

∥

∥

t
1
2ψ− 1

2
∂ψ

∂xi

∥

∥

∥

∥

, (37)

where 0 < σ1 + σ2 + σ3 <
β
2n
, and β is defined in Theorem 1. Then the differential operator

Au = −∆3u+ V u = f, f ∈ H , has a unique solution on the Hilbert space H.

Proof First, we prove the differential equation

Au = −∆3u+ V u = 0, (38)

as the only zero solution u(x) = 0 for all x ∈ Rn. To this end we assume that t(x) and ψ(x)

are two positive functions belonging to C1(Rn).

On setting Ω = −∆2u, we get

〈V u, tψu〉 = 〈−∆Ω, tψu〉 = −
〈

n
∑

i=1

∂2Ω

∂x2
i

, tψu

〉

=

n
∑

i=1

〈

∂Ω

∂xi

,
∂

∂xi

(tψu)

〉

=

n
∑

i=1

〈

∂Ω

∂xi

, tψ
∂u

∂xi

〉

+

n
∑

i=1

〈

∂Ω

∂xi

, tu
∂ψ

∂xi

〉

+

n
∑

i=1

〈

∂Ω

∂xi

, uψ
∂t

∂xi

〉

,

(39)

Equating the real parts of both sides of (39), we have

〈V0u, tψu〉 =
〈

t
1
2ψ− 1

2 V
1
2

0 u, t
1
2ψ− 1

2V
1
2

0 u
〉

=

n
∑

i=1

Re

〈

∂Ω

∂xi

, tψ
∂u

∂xi

〉

+

n
∑

i=1

Re

〈

∂Ω

∂xi

, tu
∂ψ

∂xi

〉

+

n
∑

i=1

Re

〈

∂Ω

∂xi

, uψ
∂t

∂xi

〉

. (40)

By using Cauchy- Schwarz inequality, we obtain

Re

〈

∂Ω

∂xi

, tψ
∂u

∂xi

〉

= Re

〈

t
1
2ψ− 1

2
∂Ω

∂xi

, t
1
2ψ− 1

2
∂u

∂xi

〉

≤
∥

∥

∥

∥

t
1
2ψ− 1

2
∂Ω

∂xi

∥

∥

∥

∥

∥

∥

∥

∥

t
1
2ψ− 1

2
∂u

∂xi

∥

∥

∥

∥

, (41)

Re

〈

∂Ω

∂xi

, tu
∂ψ

∂xi

〉

= Re

〈

t
1
2ψ− 1

2
∂Ω

∂xi

, t
1
2ψ− 1

2

[

ψ−1 ∂ψ

∂xi

V
− 1

2
0

]

V
1
2

0 u

〉

≤
∥

∥

∥

∥

t
1
2ψ− 1

2
∂Ω

∂xi

∥

∥

∥

∥

∥

∥

∥

∥

t
1
2ψ

−1
2

[

ψ−1 ∂ψ

∂xi

V
− 1

2
0

]

V
1
2

0 u

∥

∥

∥

∥

, (42)
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Re

〈

∂Ω

∂xi

, uψ
∂t

∂xi

〉

= Re

〈

t
1
2ψ− 1

2
∂Ω

∂xi

, t
1
2ψ− 1

2

[

t−1 ∂t

∂xi

V
− 1

2
0

]

V
1
2

0 u

〉

≤
∥

∥

∥

∥

t
1
2ψ− 1

2
∂Ω

∂xi

∥

∥

∥

∥

∥

∥

∥

∥

t
1
2ψ− 1

2

[

t−1 ∂t

∂xi

V
− 1

2
0

]

V
1
2

0 u

∥

∥

∥

∥

, (43)

From (25) in (41)- (43), we have

Re

〈

∂Ω

∂xi

, tψ
∂u

∂xi

〉

≤ β

2

∥

∥

∥

∥

t
1
2ψ− 1

2
∂Ω

∂xi

∥

∥

∥

∥

2

+
2

β
σ1

∥

∥

∥
t

1
2ψ− 1

2V
1
2

0 u
∥

∥

∥

2

, (44)

Re

〈

∂Ω

∂xi

, tu
∂ψ

∂xi

〉

≤ β

2

∥

∥

∥

∥

t
1
2ψ− 1

2
∂Ω

∂xi

∥

∥

∥

∥

2

+
2

β
σ2

∥

∥

∥
t

1
2ψ− 1

2V
1
2

0 u
∥

∥

∥

2

, (45)

Re

〈

∂Ω

∂xi

, uψ
∂t

∂xi

〉

≤ β

2

∥

∥

∥

∥

t
1
2ψ− 1

2
∂Ω

∂xi

∥

∥

∥

∥

2

+
2

β
σ3

∥

∥

∥
t

1
2ψ− 1

2V
1
2

0 u
∥

∥

∥

2

, (46)

From (39) and (44)-(46) we have the following inequality:

[

1 − 2n

β
(σ1 + σ2 + σ3)

]

∥

∥

∥
t

1
2ψ− 1

2 V
1
2

0 u
∥

∥

∥

2

≤ 3β

2

n
∑

i=1

∥

∥

∥

∥

t
1
2ψ− 1

2
∂Ω

∂xi

∥

∥

∥

∥

2

≤ 3β

2
σ4

n
∑

i=1

∥

∥

∥

∥

t
1
2ψ− 1

2
∂ψ

∂xi

∥

∥

∥

∥

2

(47)

Choosing ψ(x) = 1, for all x ∈ Rn , then if 0 < 2n
β

(σ1 + σ2 + σ3) < 1, we have

0 <

[

1 − 2n

β
(σ1 + σ2 + σ3)

]

∥

∥

∥
t

1
2ψ− 1

2 V
1
2

0 u
∥

∥

∥

2

≤ 0, (48)

and consequently, we have

0 <

[

1 − 2n

β
(σ1 + σ2 + σ3)

]
∫

Rn

∥

∥

∥
t

1
2ψ− 1

2 V
1
2

0 u
∥

∥

∥

2

1
dx ≤ 0. (49)

The inequality (49) holds only for u(x) = 0. This proves that u(x) = 0 is the only solution

of Eq.(38).

Second, We know that the linear manifold M = {f : Au = f, u ∈ C∞
0 (Rn)} is dense

everywhere in H, so there exist a sequence of functions {ur} ∈ C∞
0 (Rn), such that for all

f ∈ H, ‖Aur − f‖ −→ 0, as r −→ ∞.

By applying the coercive estimate (33), we find that

‖V (up − ur)‖ +
∥

∥∆3(up − ur)
∥

∥ +

∥

∥

∥

∥

∥

n
∑

i=1

V
1
2

0

∂3(up − ur)

∂x3
i

∥

∥

∥

∥

∥

≤ N ‖A(up − ur)‖ , (50)

that ‖V (ur − w0)‖ ,
∥

∥∆3(ur − w1)
∥

∥ and
∥

∥

∥

∑n
i=1 V

1
2

0
∂3(ur−w2)

∂x3
i

∥

∥

∥
are convergent to zero, as r −→

∞. This implies that ur −→ V −1w0 = u, ∆3ur −→ ∆3u and
∑n

i=1 V
1
2

0
∂3ur

∂x3
i

−→ ∑n
i=1 V

1
2

0
∂3u
∂x3

i

as r −→ ∞. Hence for any f ∈ H there exist u ∈ H ∩W 2
2,loc(R

n, H1), such that Au = f.
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Suppose that u is another solution of the equation Au = f , then A(u − u) = 0. But Au = 0

has only zero solution, then u = u and the uniqueness is proved. Hence the proof of theorem

3.2 is completed. �
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§1. Definitions and Background

Definition 1([2]) A graph G is a triple consisting of a vertex set V (G), an edge set E(G),

and a relation that associates with each edge two vertices (not necessarily distinct) called its

endpoints

Definition 2([1,2,4,7,8]) A loop is an edge whose endpoints are equal. Multiple edges are edges

have the same pair of endpoints.

Definition 3([2,6]) A simple graph is a graph having no loops or multiple edges . We specify

a simple graph by its vertex set and edge set, treating the edge set as a set of unordered pairs

of vertices and writing e = uv (or e = vu) for an edge e with end points u and v.

Definition 4([2]) A directed graph or digraph G is a triple consisting of a vertex set V (G), an

edge set E(G) , and a function assigning each edge an ordered pair of vertices. the first vertex

of the ordered pair is the tail of the edge, and the second is the head; together, they are the

endpoints. We say that an edge is an edge from its tail to its head.

Definition 5([2]) A digraph is simple if each ordered pair is the head and tail of at most one

edge. In a simple digraph, we write uv for an edge with tail u and head v. If there is an edge

from u to v, then v is a successor of u, and u is a predecessor of v. We write u→ v for ”there

is an edge from u to v”.

Definition 6([7,8]) A null graph is a graph containing no edges.

Definition 7([2]) The order of a graph G, written n(G), is the number of vertices in G. An

n-vertex graph is a graph of order n. The size of a graph G, written e(G), is the number of

1Received June 2, 2010. Accepted December 10, 2010.
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edges in G for n ∈ N.

Definition 8 Let f (x, y) be areal valued function of two variable defined for a ≤ x ≤ b and

all real y, then

y′ = f (x, y), x ∈ S = [0, T ] ⊆ R (1)

y(x0) = y0 (2)
(1.1)

is called initial value problem (I.V.P.), where (1) is called ordinary differential equation (O.D.E)

of the first order and equation (2) is called the initial value.

Definition 9([3,6]) For the problem (1.1) where the function f (x, y) is continuous on the region

(0 ≤ x ≤ T, |y| ≤ R) and differentiable with respect to x such that
∣

∣

∣

df
dy

∣

∣

∣
≤ L,L = const.Divide

the segment [0, T ] into n equal parts by the points xi = ih, h = T
n

is called a step size, (i = 0, n)

such that x0 = 0 < x1 < ... < xn−1 < xn = T the approximate numerical solutions for this

problem at the mesh points x = xi will be denoted by yj.

Definition 10([3]) Numerical answers to problems generally contain errors. Truncation error

occurs as a result of truncating an infinite process to get a finite process.

Definition 11 For Riemannian manifolds M and N (not necessarily of the same dimension),

a map f : M → N is said to be a topological folding of M into N if, for each piecewise geodesic

path γ : I → M(I = [0, 1] ⊆ R), the induced path f ◦ γ : I → N is piecewise geodesic. If,

in addition, f : M → N preserves lengths of paths, we call f an isometric folding of M into

N . Thus an isometric folding is necessarily a topological folding [9]. Some applications are

introduced in [5].

§2. Main Results

We will introduce several types of approximate differentiable graph which represent the solution

of initial value problems I.V.P.

y′ = f(x, y),

y(x0) = y0. (2.1)

According to the used methods for solving these problems.

Definition 12 We can study the solution of ordinary differential equation y′ = f (x, y) using

differentiable graph which is a smooth graph with vertex set {(x, y(x)) : x, y ∈ R} and edge

set d((xi, y(xi)), (xi+1, y(xi+1))) where d represent the distance function. A differentiable graph

is a smooth graph represent the solution of ordinary differential equation y′ = f (x, y), x ∈ S

whose vertices are (x, y(x)), ∀x ∈ S and its edges are the distance between any two consequent

points. In this graph the number of vertices is ∞,the number of edges is so.

Since the finite difference methods which solve (I.V.P.) divided into the following:
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(i) general multi-step methods (implicit-explicit).

(ii) general single-step methods (implicit-explicit).

So we have the following new types of differentiable graph:

Type [1]: Single-Compound digraph HN1

Definition 13 A numerical digraph GN is a simple differentiable digraph consists of numerical

vertices V j
N which represent the numerical solutions yj of (I.V.P.), and ordered numerical edge

set EN = {e1N , e2N , ..., en
N} where ej+1

N = |(xj+1, yj+1) − (xj , yj)| =
∣

∣

∣
vj+1

N − v j
N

∣

∣

∣
, v j

N is the tail

of the edge, and v j+1
N is the head.

Definition 14 A compound graph (digraph) H is a graph (digraph) whose vertex set consists

of a set of graphs (digraphs) i.e. V (G) = {G1, G2, ...} and an edge set of unordered (ordered )

pairs of this graphs i.e. E(G) = {(G1, G2), (G2, G3), · · · }.

Corollary 1 The compound digraph H of a numerical digraph is numerical digraph HN .

Definition 15 A single-compound digraph HN1 is a compound digraph HN has one null graph

is the tail of digraph.

Theorem 1 The single-step methods (implicit) due to a single-compound digraph HN1 .

Proof The basis of many simple numerical technique for solving the differential equation

y′ = f(x, y), y(x0) = y0, a ≤ x ≤ b (2.2)

is to find some means of expressing the solution at x + h i.e., y(x + h) in terms of y(x).where

(x, y(x)) represent a vertex in the differentiable graph, (x+ h, y(x+ h)) is the next vertex, the

initial value (x0, y0) is called the source of graph. An approximate solution can be generated

at the discrete points x0 + h, x0 + 2h, ...representing the vertices of the induced differentiable

graph.

All these methods where yn+1 is given in terms of yn alone, n = 0, 1, 2,..., are called single

step methods. The general linear single step method is given by

yn+1 +α1yn = h[β0f (xn+1, yn+1) + β1f (xn, yn)] where α1, β0, β1 are constants. If β0 = 0

then the method gives yn+1 explicitly otherwise it is given implicitly. The trapezium method

yn+1 = yn + h
2 [f (xn+1, yn+1)+ f (xn, yn)] is implicit. In general this equation would be solved

by using the iteration method i.e.,

{yn+1}r+1 = yn + h
2 [f (xn+1, yn+1) + f (xn, {yn}r)] , r = 0, 1, 2, ..., where {yn+1}0 can

be obtained from a single -step method and represents a source of numerical digraph GN+1in

the vertex Vn+1 of compound graph HN . Finally we get A single-compound digraph HN1 . As

shown in Figure 1. �
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6 6 6 6: : : :
x0 x1 x2 x3 x4

Figure 1. Single Compound Graph HN1

Definition 16 A single-compound digraph HN1 is a Compound numerical digraph has a unique

null graph which is the source of graph.

Type [2]: A simple numerical digraph GN

Definition 17 A numerical digraph GN is a simple differentiable digraph consists of numerical

vertices V j
N which represent the numerical solutions yj of (I.V.P.) and ordered numericaledge

set EN = {e1N , e2N , ..., en
N} where ej+1

N = |(xj+1, yj+1) − (xj , yj)| =
∣

∣

∣
vj+1

N − v j
N

∣

∣

∣
, v j

N is the tail

of the edge, and v j+1
N is the head.

Theorem 2 The explicit single-step method get a simple numerical digraph GN .

Proof The general single step given by

yn+1 = yn + hφ(xn, yn, h), xn = x0 + nh, y(x0) = y0.

For example, Euler’s method has φ(x, y, h) = f(x, y),then

yn+1 = yn + hf(xn, yn), and for differential equation (2.1) give the following

differentiable digraph (Figure 2)

� 1 * *-
x0 x1 x2 x3 x4

y0

v1
n

v2
n

e2N

Figure 2: Simple numerical graph
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where (xn, yn) represent the set of vertices
{

vj
N

}

, j = 0, 1, ...,and |(xj+1, yj+1) − (xj , yj)| rep-

resent the set of edges
{

ej+1
N

}

.The initial value y0 represent the source of simple numerical

digraph GN . �

Type [3]: Multi-Compound Digraph HNm

Definition 18 A multi-compound digraph HNm
is a compound digraph HN has m null graphs

are the tail of digraph.

Theorem 3 The implicit multi-step method give a multi-compound digraph HNm
.

Proof The general multi-step method is defined to be

yn+1+α1yn+...+αmyn−m+1 = h[β0fn+1+β1fn+...+βmfn−m+1], (2.3)

where fp is used to denote f(xp, yp), n = m − 1,m − 2, ... . To apply this general method we

need m steps which represent m null graphs GN0 , GN1 , ..., GNm−1 in a multi-compound digraph

HNm
as indicate in the following example. If β0 = 0 then the method (2.3) gives yn+1 explicitly

otherwise it is given implicitly, when m = 1 equation (2.3) reduce to the single step method.�

Example 1 Find the differentiable graph of y′ = y2, y(0) = 1 using a 3-step method.

Solution 1. by using

yn+1−yn = h[9fn+1+19fn−5fn−1+fn−2]/24, h = 0.1, (2.4)

then n = 2, 3, ...,⇒ {y3}r+1 − y2 = 0.1[9 {f3}r
+ 19f2 − 5f1 + f0]/24, r = 0, 1, 2, ..., so the

iterative vertex (x3, {y3}r+1
) depend on the vertex (x3, {y3}0

) which can be determined from

an explicit 3-srep method say

yn+1− yn = h[23fn−16fn−1 +5fn−2]l12, (2.5)

at n = 2 ⇒ y3 − y2 = h[23f(x2, y2) − 16f(x1, y1) + 5f(x0, y0)]l12, where V0 = (x0, y0), V1 =

(x1, y1), V2 = (x2, y2) represent three null graphs GN0 , GN1 , GN2 in the induced compound

digraph by predictor method (2.5) we get the vertex vN3 = (x3, {y3}0
)which is the tail of the

digraph GN3 in the compound digraph HN3then correct {y3}0using equation (2.4) until we get

the fixed vertex vf
N3

. This gives a numerical digraph GN3 = V3 and similarly we get the other

vertices (simple digraphs) V4 = GN4 , ..., Vl = GNl
, l is a + ve integer. Finally we get bounded

compound digraph HN3 as shown in Figure 3.
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Figure 3: Multi-compound digraph

Definition 19 A fixed vertex V f
N is a numerical vertex which all next vertices coincided on it.

Corollary 2 The multi-compound digraph HNm
must have null graphs.

Type [4]: Nonhomogeneous Numerical Digraph GNm

Definition 20 A nonhomogeneous graph G is a graph whose vertices divided into multi-groups

such that each one has a specific character.

Definition 21 A nonhomogeneous numerical digraph GNm
is a numerical digraph whose ver-

tices divided into multi-groups such that each one has a specific character.

Theorem 4 The explicit multi -step method give nonhomogeneous numerical digraph GNm
.

Proof The general explicit multi-step method

yn+1 +α1yn + ...+αmyn−m+1 = h[β1fn +β2fn−1 + ...+βmfn−m+1], i.e., to determine the

vertex (xn+1, yn+1) we need know m vertices begin from (x0, y0) up to (xn, yn).

for example: The difference method

yn+1−yn = h[23fn−16fn−1+5fn−2]/12, n = 2, 3, ..., is 3-step method, the group of vertices

(x3, y3), (x4, y4), ..., are given by this multi-step method whenever the group (x0, y0), (x1, y1), (x2, y2)

are gotten from single-step method .See Figure 3. �
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Figure 4: Nonhomogenous Numerical Digraph GNm

There is an important role to the step size h in the all types of numerical digraphs.

Definition 22 The initial tight graph (digraph) T is a package of graphs (digraph) which have

one source.

Figure 5: Initial Tight Digraph T

Theorem 5 As the order of numerical digraph in bounded interval → ∞ the consistent digraph

is obtained.

Proof Since the local error of the approximate solution of (I.V.P.)(1.1) depends on the

step size h s.t. sup |E(h, x)| ≤ Mhk, where M, k is a positive integers [4], for all sufficiently

small h, the order of bounded numerical digraph→ ∞, and then the difference method is said

to be consistent of order k. �
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Theorem 6 The limit of foldings Fjof initial tight graph give a convergent numerical graph.

Proof Let Fi : T → T be a folding map of an initial tight graph T s.t., Fi(G
j
N ) = Gm

N ,

where order of (Gj
N ) ≤ order of (Gm

N ), then lim
i→∞

Fi = The highest order numerical digraph,

which is required. As shown in Figure 6. �

Figure 6: Limit of Foldings Fj
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Abstract: The notion of equitable coloring was introduced by Meyer in 1973. In this

paper we obtain interesting results regarding the equitable chromatic number χ= for the

Helm Graph Hn, line graph of Helm graph L(Hn), middle graph of Helm graph M(Hn),

total graph of Helm graph T (Hn), Gear graph Gn, line graph of Gear graph L(Gn), middle
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§1. Introduction

Let G = (V,E) be a graph. If the vertices of G can be partitioned into m classes V1, V2, ...., Vm

such that each Vi, (1 ≤ i ≤ m) are independent and ||Vi| − |Vj || ≤ 1 holds for every pair

(1 ≤ i, j ≤ k), where k ≤ m, then the graph G is said to be Smarandachely equitable k-

colorable. Particularly, if k = m, we abbreviated it to equitably k-colorable. The smallest

integer k for which G is Smarandachely equitable k-colorable or equitable k-colorable is known

as the Smarandachely equitable chromatic number or equitable chromatic number [1,3,7-10] of

G and denoted by χ=(G), respectively.

This model of graph coloring has many applications. Every time when we have to divide a

system with binary conflicting relations into equal or almost equal conflict-free subsystems we

can model such situation by means of equitable graph coloring. This subject is widely discussed

in literature [3,8-10]. In general, the problem of optimal equitable coloring, in the sense of the

number color used, is NP-hard. So we have to look for simplified structure of graphs allowing

polynomial-time algorithms. This paper gives such solution for Helm graph and Gear graph

families: Helm graph, its line, middle and total graphs; Gear graph, its line, middle and total

graphs.

1Received August 23, 2010. Accepted December 12, 2010.
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§2. Preliminaries

The Helm graph Hn is the graph obtained from an n-wheel graph by adjoining a pendent edge

at each node of the cycle.

The Gear graph Gn, also known as a bipartite wheel graph, is a wheel graph with a graph

vertex added between each pair of adjacent graph vertices of the outer cycle.

The line graph [2,5] of G, denoted by L(G) is the graph with vertices are the edges of G

with two vertices of L(G) adjacent whenever the corresponding edges of G are adjacent.

The middle graph [4] of G, is defined with the vertex set V (G) ∪E(G) where two vertices

are adjacent iff they are either adjacent edges of G or one is the vertex and the other is an edge

incident with it and it is denoted by M(G).

Let G be a graph with vertex set V (G) and edge set E(G). The total graph [2,4,5] of G,

denoted by T (G) is defined in the following way. The vertex set of T (G) is V (G) ∪E(G). Two

vertices x, y in the vertex set of T (G) are adjacent in T (G) in case one of the following holds:

(i) x, y are in V (G) and x is adjacent to y in G. (ii) x, y are in E(G) and x, y are adjacent in G.

(iii) x is in V (G), y is in E(G), and x, y are incident in G. Additional graph theory terminology

used in this paper can be found in [2,5,9].

§3. Equitable Coloring on Helm Graph

Theorem 3.1 If n ≥ 4 the equitable chromatic number of Helm graph Hn,

χ=(Hn) =







3 if n is even,

4 if n is odd.

Proof Let Hn be the Helm graph obtained by attaching a pendant edge at each vertex of

the cycle. Let V (Hn) = {v} ∪ {v1, v2, · · · , vn} ∪ {u1, u2, · · · , un} where vi’s are the vertices of

cycles taken in cyclic order and ui’s are pendant vertices such that each viui is a pendant edge

and v is a hub of the cycle.

Case i: If n is even.

Case i-a: If n = 6k − 2 for some positive integer k, then set the partition of V as below.

V1 = {v} ∪ {ui : 2k + 1 ≤ i ≤ 6k − 2}; V2 = {v2i−1 : 1 ≤ i ≤ 3k − 1} ∪ {u2i : 1 ≤ i ≤ k};
V3 = {v2i : 1 ≤ i ≤ 3k − 1} ∪ {u2i−1 : 1 ≤ i ≤ k}. Clearly V1, V2, V3 are independent sets of

V (Hn). Also |V1| = |V2| = |V3| = 4k − 1, it holds the inequality ||Vi| − |Vj || ≤ 1 for every pair

(i, j).

Case i-b: If n = 6k for some positive integer k, then set the partition of V as below.

V1 = {v} ∪ {ui : 2k + 2 ≤ i ≤ 6k}; V2 = {v2i−1 : 1 ≤ i ≤ 3k} ∪ {u2i : 1 ≤ i ≤ k};
V3 = {v2i : 1 ≤ i ≤ 3k} ∪ {u2i−1 : 1 ≤ i ≤ k + 1}. Clearly V1, V2, V3 are independent sets of

V (Hn). Also |V1| = |V2| = 4k and |V3| = 4k + 1, it holds the inequality ||Vi| − |Vj || ≤ 1 for
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every pair (i, j).

Case i-c: If n = 6k + 2 for some positive integer k, then set the partition of V as below.

V1 = {v}∪ {ui : 2k+ 3 ≤ i ≤ 6k+ 2}; V2 = {v2i−1 : 1 ≤ i ≤ 3k+ 1}∪ {u2i : 1 ≤ i ≤ k+ 1};
V3 = {v2i : 1 ≤ i ≤ 3k + 1} ∪ {u2i−1 : 1 ≤ i ≤ k + 1}. Clearly V1, V2, V3 are independent sets

of V (Hn). |V1| = 4k + 1 and |V2| = |V3| = 4k + 2, it holds the inequality ||Vi| − |Vj || ≤ 1 for

every pair (i, j).

In all the three subcases of Case i, χ=(Hn) ≤ 3. Since χ(Hn) ≥ 3, χ=(Hn) ≥ χ(Hn) ≥ 3,

χ=(Hn) ≥ 3. Therefore χ=(Hn) = 3.

Case ii: If n is odd.

Case ii-a: If n = 6k − 3 for some positive integer k, then set the partition of V as below.

V1 = {v} ∪ {ui : 3k + 1 ≤ i ≤ 5k − 1}; V2 = {v3i−2 : 1 ≤ i ≤ 2k − 1} ∪ {u3i : 1 ≤ i ≤ k};
V3 = {v3i−1 : 1 ≤ i ≤ 2k − 1} ∪ {u3i−2 : 1 ≤ i ≤ k}; V4 = {v3i : 1 ≤ i ≤ 2k − 1} ∪ {u3i−1 :

1 ≤ i ≤ k}. Clearly V1, V2, V3 are independent sets of V (Hn). Also |V1| = 3k − 2 and

|V2| = |V3| = |V4| = 3k − 1, it holds the inequality ||Vi| − |Vj || ≤ 1 for every pair (i, j).

Case ii-b: If n = 6k − 1 for some positive integer k, then set the partition of V as below.

V1 = {v}∪ {ui : 3k+ 2 ≤ i ≤ 6k− 1}; V2 = {v3i−2 : 1 ≤ i ≤ 2k}∪ {u3i−1 : 1 ≤ i ≤ 2k− 1};
V3 = {v3i−1 : 1 ≤ i ≤ 2k} ∪ {u3i : 1 ≤ i ≤ 2k − 1}; V4 = {v3i : 1 ≤ i ≤ 2k − 1} ∪ {u3i−2 :

1 ≤ i ≤ 2k}. Clearly V1, V2, V3 are independent sets of V (Hn). Also |V1| = 4k − 2 and

|V2| = |V3| = |V4| = 4k − 1, it holds the inequality ||Vi| − |Vj || ≤ 1 for every pair (i, j).

Case ii-c: If n = 6k + 1 for some positive integer k, then set the partition of V as below.

V1 = {v} ∪ {ui : 3k + 2 ≤ i ≤ 6k+ 1};V2 = {v3i−2 : 1 ≤ i ≤ 2k} ∪ {u3i−1 : 1 ≤ i ≤ 2k− 1};
V3 = {v3i−1 : 1 ≤ i ≤ 2k}∪{vn}∪{u3i : 1 ≤ i ≤ 2k−1}; V4 = {v3i : 1 ≤ i ≤ 2k}∪{u1}∪{u3i+1 :

1 ≤ i ≤ 2k− 1}. Clearly V1, V2, V3 are independent sets of V (Hn). |V1| = |V3| = |V4| = 4k and

|V2| = 4k − 1, it holds the inequality ||Vi| − |Vj || ≤ 1 for every pair (i, j).

In all the three subcases of cases (ii), χ=(Hn) ≤ 4. Since χ(Hn) ≥ 4, χ=(Hn) ≥ χ(Hn) ≥ 4,

χ=(Hn) ≥ 4. Therefore χ=(Hn) = 4. �

§4. Equitable Coloring on Line graph, Middle Graph and Total Graph of

Helm Graph

Theorem 4.1 If n ≥ 4 the equitable chromatic number on line graph of Helm graph L(Hn),

χ=(L(Hn)) = n.

Proof Let V (Hn) = {v} ∪ {v1, v2, · · · , vn} ∪ {u1, u2, · · · , un} and E(Hn) = {ei : 1 ≤ i ≤
n}∪{e′i : 1 ≤ i ≤ n−1}∪{e′n}∪{si : 1 ≤ i ≤ n} where ei is the edge vvi (1 ≤ i ≤ n), e′i is the edge

vivi+1 (1 ≤ i ≤ n−1), e′n is the edge vnv1 and si is the edge viui (1 ≤ i ≤ n). By the definition

of line graph V (L(Hn)) = E(Hn) = {ei : 1 ≤ i ≤ n} ∪ {e′i : 1 ≤ i ≤ n} ∪ {si : 1 ≤ i ≤ n}.
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Now, we partition the vertex set of V (L(Hn)) as below.

V1 = {e1, e′2, sn}; Vi = {ei, e
′
i+1, si−1 : 2 ≤ i ≤ n − 1}; Vn = {en, e

′
1, sn−1}. Clearly

V1, Vi, Vn (2 ≤ i ≤ n − 1) are independent sets of L(Hn). Also |V1| = |Vi| = |Vn| = 3

(2 ≤ i ≤ n − 1), it holds the inequality ||Vi| − |Vj || ≤ 1 for every pair (i, j). χ=(L(Hn)) ≤ n.

Since ei(1 ≤ i ≤ n) forms a clique of order n, χ(L(Hn)) ≥ n, χ=(L(Hn)) ≥ χ(L(Hn)) ≥ n,

χ=(L(Hn)) ≥ n. Therefore χ=(L(Hn)) = n. �

Theorem 4.2 If n ≥ 5 the equitable chromatic number on middle graph of Helm graph M(Hn),

χ=(M(Hn)) = n+ 1.

Proof Let V (Hn) = {v} ∪ {v1, v2, · · · , vn} ∪ {u1, u2, · · · , un} and E(Hn) = {ei : 1 ≤ i ≤
n} ∪ {e′i : 1 ≤ i ≤ n − 1} ∪ {e′n} ∪ {si : 1 ≤ i ≤ n} where ei is the edge vvi (1 ≤ i ≤ n), e′i is

the edge vivi+1 (1 ≤ i ≤ n − 1), e′n is the edge vnv1 and si is the edge viui (1 ≤ i ≤ n). By

the definition of middle graph V (M(Hn)) = V (Hn) ∪E(Hn) = {vi : 1 ≤ i ≤ n} ∪ {ui : 1 ≤ i ≤
n} ∪ {ei : 1 ≤ i ≤ n} ∪ {e′i : 1 ≤ i ≤ n} ∪ {si : 1 ≤ i ≤ n}.

Now, we partition the vertex set of V (M(Hn)) as below.

V1 = {e1, e′2, u1, sn}; Vi = {vi−1, ui, ei, e
′
i+1 : 2 ≤ i ≤ n− 1} ∪ {si−2 : 3 ≤ i ≤ n+ 1}; Vn =

{vn−1, sn−2, en, e
′
1, }; Vn+1 = {v, vn, sn−1, un}. Clearly V1, V2, · · ·Vn, Vn+1 are independent sets

of M(Hn). Also |V1| = |V2| = |Vn| = |Vn+1| = 4 and |Vi| = 5 (3 ≤ i ≤ n − 1), it holds the

inequality ||Vi|−|Vj || ≤ 1 for every pair (i, j). χ=(M(Hn)) ≤ n+1. Since vei(1 ≤ i ≤ n) forms a

clique of order n+1, χ(M(Hn)) ≥ n+1, χ=(M(Hn)) ≥ χ(M(Hn)) ≥ n+1, χ=(M(Hn)) ≥ n+1.

Therefore χ=(M(Hn)) = n+ 1. �

Theorem 4.3 If n ≥ 5 the equitable chromatic number on total graph of Helm graph T (Hn),

χ=(T (Hn)) = n+ 1.

Proof Let V (Hn) = {v} ∪ {v1, v2, · · · , vn} ∪ {u1, u2, · · · , un} and E(Hn) = {ei : 1 ≤ i ≤
n} ∪ {e′i : 1 ≤ i ≤ n − 1} ∪ {e′n} ∪ {si : 1 ≤ i ≤ n} where ei is the edge vvi (1 ≤ i ≤ n), e′i is

the edge vivi+1 (1 ≤ i ≤ n − 1), e′n is the edge vnv1 and si is the edge viui (1 ≤ i ≤ n). By

the definition of total graph V (T (Hn)) = V (Hn) ∪ E(Hn) = {vi : 1 ≤ i ≤ n} ∪ {ui : 1 ≤ i ≤
n} ∪ {ei : 1 ≤ i ≤ n} ∪ {e′i : 1 ≤ i ≤ n} ∪ {si : 1 ≤ i ≤ n}.

Now, we partition the vertex set of V (T (Hn)) as below.

V1 = {e1, e′2, u3, vn}; V2 = {e2, v2, e′3, sn, u4}; Vi = {ei, vi−1, e
′
i+1, si−2, ui+2 : 3 ≤ i ≤

n − 2}; Vn−1 = {en−1, vn−2, e
′
n, sn−3}; Vn = {en, vn−1, e

′
1, sn−2}; Vn+1 = {v, sn−1, u1, u2}.

Clearly V1, V2, Vi, Vn−1, Vn, Vn+1 (3 ≤ i ≤ n − 2) are independent sets of T (Hn). Also |V1| =

|Vn| = |Vn+1| = 4 and |V2| = |Vi| = 5 (3 ≤ i ≤ n − 2), it holds the inequality ||Vi| − |Vj || ≤ 1

for every pair (i, j), χ=(T (Hn)) ≤ n + 1. Since vei(1 ≤ i ≤ n) forms a clique of order

n + 1, χ(T (Hn)) ≥ n + 1, χ=(T (Hn)) ≥ χ(T (Hn)) ≥ n + 1, χ=(T (Hn)) ≥ n + 1. Therefore

χ=(T (Hn)) = n+ 1.

§5. Equitable Coloring on Gear Graph, Line Graph, Middle Graph and

Total Graph

Theorem 5.1 If n ≥ 3 the equitable chromatic number of gear graph Gn, χ=(Gn) = 2.
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Proof Let V (Gn) = {v} ∪ {v1, v2, · · · , v2n} where vi’s are the vertices of cycles taken in

cyclic order and v is adjacent with v2i−1(1 ≤ i ≤ n).

Now, we partition the vertex set of V (Gn) as below.

V1 = {v} ∪ {v2i : 1 ≤ i ≤ n− 1}; V2 = {v2i−1 : 1 ≤ i ≤ n}. Clearly V1, V2 are independent

sets of (Gn). Also |V1| = n+1 and |V2| = n, it holds the inequality ||Vi|−|Vj || ≤ 1 for every pair

(i, j). χ=(Gn) ≤ 2. χ(Gn) ≥ 2, χ=(Gn) ≥ χ(Gn) ≥ 2, χ=(Gn) ≥ 2. Therefore χ=(Gn) = 2. �

§6. Equitable Coloring on Line Graph, Middle Graph and Total Graph of

Gear Graph

Theorem 6.1 If n ≥ 3 the equitable chromatic number on line graph of Gear graph L(Gn),

χ=(L(Gn)) = n.

Proof Let V (Gn) = {v} ∪ {v1, v2, · · · , v2n} and E(Gn) = {ei : 1 ≤ i ≤ n} ∪ {e′i :

1 ≤ i ≤ 2n − 1} ∪ {e′n} where ei is the edge vv2i−1 (1 ≤ i ≤ n), e′i is the edge vivi+1

(1 ≤ i ≤ 2n − 1), and e′2n is the edge v2n−1v1. By the definition of line graph V (L(Gn))

= E(Gn) = {v} ∪ {vi : 1 ≤ i ≤ 2n} ∪ {ei : 1 ≤ i ≤ n} ∪ {e′i : 1 ≤ i ≤ 2n}.
Now, we partition the vertex set of V (L(Hn)) as below.

V1 = {e1, e′2, e′2n−1}; Vi = {ei, e
′
2i, e

′
2i−3 : 2 ≤ i ≤ n}. Clearly V1, V2, · · ·Vn are independent

sets of L(Gn). Also |V1| = |Vi| = 3 (2 ≤ i ≤ n), it holds the inequality ||Vi| − |Vj || ≤ 1 for

every pair (i, j). χ=(L(Gn)) ≤ n. Since ei(1 ≤ i ≤ n) forms a clique of order n, χ(L(Gn)) ≥ n,

χ=(L(Gn)) ≥ χ(L(Gn)) ≥ n, χ=(L(Gn)) ≥ n. Therefore χ=(L(Gn)) = n. �

Theorem 6.2 If n ≥ 5 the equitable chromatic number on middle graph of Gear graph M(Gn),

χ=(M(Gn)) = n+ 1.

Proof Let V (Gn) = {v} ∪ {v1, v2, · · · , v2n} and E(Gn) = {ei : 1 ≤ i ≤ n} ∪ {e′i : 1 ≤ i ≤
2n− 1} ∪ {e′n} where ei is the edge vv2i−1 (1 ≤ i ≤ n), e′i is the edge vivi+1 (1 ≤ i ≤ 2n− 1),

and e′2n is the edge v2n−1v1. By the definition of middle graph V (M(Gn)) = V (Gn)∪E(Gn) =

{v} ∪ {vi : 1 ≤ i ≤ 2n} ∪ {ei : 1 ≤ i ≤ n} ∪ {e′i : 1 ≤ i ≤ 2n}.
Now, we partition the vertex set of V (M(Gn)) as below.

V1 = {e1, v2, e′2n−4, e
′
2n−1}; V2 = {e2, v1, v4, e′2n−2}; V3 = {e3, v3, e′1, v6, e′2n}; Vi = {ei, e

′
2i−5,

v2i−3, v2i : 4 ≤ i ≤ n} ∪ {e′2i−8 : 5 ≤ i ≤ n}; Vn+1 = {v, e′2n−6, v2n−1, e
′
2n−3}. Clearly

V1, V2, · · ·Vn, Vn+1 are independent sets of M(Gn). Also |V1| = |V2| = |Vn+1| = 4 and

|Vi| = |V3| = 5 (5 ≤ i ≤ n), it holds the inequality ||Vi| − |Vj || ≤ 1 for every pair (i, j).

χ=(M(Gn)) ≤ n + 1. Since vei(1 ≤ i ≤ n) forms a clique of order n + 1, χ(M(Gn)) ≥ n + 1,

χ=(M(Gn)) ≥ χ(M(Gn)) ≥ n+ 1, χ=(M(Gn)) ≥ n+ 1. Therefore χ=(M(Gn)) = n+ 1. �

Theorem 6.3 If n ≥ 5 the equitable chromatic number on total graph of Gear graph T (Gn),

χ=(T (Gn)) = n+ 1.

Proof Let V (Gn) = {v} ∪ {v1, v2, · · · , v2n} and E(Gn) = {ei : 1 ≤ i ≤ n} ∪ {e′i : 1 ≤ i ≤
2n− 1} ∪ {e′n} where ei is the edge vv2i−1 (1 ≤ i ≤ n), e′i is the edge vivi+1 (1 ≤ i ≤ 2n− 1),
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and e′2n is the edge v2n−1v1. By the definition of total graph V (T (Gn)) = V (Gn) ∪ E(Gn) =

{v} ∪ {vi : 1 ≤ i ≤ 2n} ∪ {ei : 1 ≤ i ≤ n} ∪ {e′i : 1 ≤ i ≤ 2n}.
Now, we partition the vertex set of V (T (Gn)) as below.

V1 = {e1, e′2, v4, v2n−1}; V2 = {e2, v1, e′4, v6}; Vi = {ei, e
′
2i−5, v2i−3, e

′
2i, v2i+2 : 3 ≤ i ≤

n− 1};Vn = {en, e
′
2n−5, v2n−3, e

′
2n}; Vn+1 = {v, v2, e′2n−1, e

′
2n−3}.

Clearly V1, V2, Vi, Vn, Vn+1 (3 ≤ i ≤ n − 1) are independent sets of T (Gn). Also |V1| =

|V2| = |Vn| = |Vn+1| = 4 and |Vi| = 5 (3 ≤ i ≤ n − 1), it holds the inequality ||Vi| − |Vj || ≤ 1

for every pair (i, j), χ=(T (Gn)) ≤ n + 1. Since vei(1 ≤ i ≤ n) forms a clique of order

n + 1, χ(T (Gn)) ≥ n + 1, χ=(T (Gn)) ≥ χ(T (Gn)) ≥ n + 1, χ=(T (Gn)) ≥ n + 1. Therefore

χ=(T (Gn)) = n+ 1. �
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Abstract: For an integer n ≥ 2, let I ⊂ {0, 1, 2, · · · , n}. A Smarandachely Roman s-

dominating function for an integer s, 2 ≤ s ≤ n on a graph G = (V,E) is a function

f : V → {0, 1, 2, · · · , n} satisfying the condition that |f(u)− f(v)| ≥ s for each edge uv ∈ E

with f(u) or f(v) ∈ I . Similarly, a Smarandachely Roman edge s-dominating function for

an integer s, 2 ≤ s ≤ n on a graph G = (V, E) is a function f : E → {0, 1, 2, · · · , n}

satisfying the condition that |f(e) − f(h)| ≥ s for adjacent edges e, h ∈ E with f(e) or

f(h) ∈ I . Particularly, if we choose n = s = 2 and I = {0}, such a Smarandachely Roman s-

dominating function or Smarandachely Roman edge s-dominating function is called Roman

dominating function or Roman edge dominating function. The Roman edge domination

number γre(G) of G is the minimum of f(E) =
∑

e∈E
f(e) over such functions. In this

paper we first show that for any connected graph G of q ≥ 3, γre(G) + γe(G)/2 ≤ q and

γre(G) ≤ 4q/5, where γe(G) is the edge domination number of G. Also we prove that for

any γre(G)-function f = {E0, E1, E2} of a connected graph G of q ≥ 3, |E0| ≥ q/5 + 1,

|E1| ≤ 4q/5 − 2 and |E2| ≤ 2q/5.

Key Words: Smarandachely Roman s-dominating function, Smarandachely Roman edge

s-dominating function.

AMS(2010): 05C69

§1. Introduction

Let G be a simple graph with vertex set V (G) and edge set E(G). As usual |V | = p and

|E| = q denote the number of vertices and edges of the graph G, respectively. The open

neighborhood N(e) of the edge e is the set of all edges adjacent to e in G. And its closed

neighborhood is N [e] = N(e)∪ {e}. Similarly, the open neighborhood of a set S ⊆ E is the set

N(S) =
⋃

e∈S N(e), and its closed neighborhood is N [S] = N(S) ∪ S.

The degree of an edge e = uv of G is defined by deg e = deg u + deg v − 2 and δ′(G)

(∆′(G)) is the minimum (maximum) degree among the edges of G (the degree of an edge is the

number of edges adjacent to it). A vertex of degree one is called a pendant vertex or a leaf and

its neighbor is called a support vertex.

1Received August 3, 2010. Accepted December 15, 2010.
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Let e ∈ S ⊆ E. Edge h is called a private neighbor of e with respect to S (denoted by h is

an S-pn of e) if h ∈ N [e] −N [S − {e}]. An S-pn of e is external if it is an edge of E − S. The

set pn(e, S) = N [e] −N [S − {e}] of all S-pn’s of e is called the private neighborhood set of e

with respect to S. The set S is said to be irredundant if for every e ∈ S, pn(e, S) 6= ∅. And a

set S of edges is called independent if no two edges in S are adjacent.

A set D ⊆ V is said to be a dominating set of G, if every vertex in V −D is adjacent to

some vertex in D. The minimum cardinality of such a set is called the domination number of

G and is denoted by γ(G). For a complete review on the topic of domination and its related

parameters, see [5].

Mitchell and Hedetniemi in [6] introduced the notion of edge domination as follows. A set

F of edges in a graph G is an edge dominating set if every edge in E − F is adjacent to at

least one edge in F . The minimum number of edges in such a set is called the edge domination

number of G and is denoted by γe(G). This concept is also studied in [1].

The concept of Roman dominating function (RDF) was introduced by E. J. Cockayne, P. A.

Dreyer, S. M. Hedetniemi and S. T. Hedetniemi in [3]. (See also [2,4,8]). A Roman dominating

function on a graph G = (V,E) is a function f : V → {0, 1, 2} satisfying the condition that

every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2.

The weight of a Roman dominating function is the value f(V ) =
∑

u∈V f(u). The Roman

domination number of a graph G, denoted by γR(G), equals the minimum weight of a Roman

dominating function on G.

A Roman edge dominating function (REDF) on a graph G = (V,E) is a function f :

E → {0, 1, 2} satisfying the condition that every edge e for which f(e) = 0 is adjacent to at

least one edge h for which f(h) = 2. The weight of a Roman edge dominating function is

the value f(E) =
∑

e∈E f(e). The Roman edge domination number of a graph G, denoted by

γre(G), equals the minimum weight of a Roman edge dominating function on G. A Roman edge

dominating function f : E → {0, 1, 2} can be represented by the ordered partition (E0, E1, E2)

of E, where Ei = {e ∈ E | f(e) = i} and |Ei| = qi for i = 0, 1, 2. This concept is studied in

Soner et al. in [9] (see also [7]). A γ − set, γr − set and γre-set, can be defined as a minimum

dominating set (MDS), a minimum Roman dominating set (MRDS) and a minimum Roman

edge dominating set (MREDS), respectively.

Theorem A. For a graph G of order p,

γe(G) ≤ γre(G) ≤ 2γe(G).

It is clear that if G has at least one edge then 1 ≤ γre(G) ≤ q, where q is the number of

edges in G. However if a graph is totally disconnected or trivial, we define γre(G) = 0. We

note that E(G) is the unique maximum REDS of G. Since every edge dominating set in G is a

dominating set in the line graph of G and an independent set of edges of G is an independent set

of vertices in the line graph of G, the following results can easily be proved from the well-known

analogous results for dominating sets of vertices and independent sets.

Proposition 1. A Roman edge dominating set S is minimal if and only if for each e ∈ S, one

of the following two conditions holds.
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(i) N(e) ∩ S = ∅.

(ii) There exists an edge h ∈ E − S, such that N(h) ∩ S = {e}.

Proposition 2. Let S = E1 ∪ E2 be a REDS such that |E1| + 2|E2| = γre(G). Then

|E(G) − S| ≤
∑

e∈S

deg(e),

and the equality holds if and only if S is independent and for every e ∈ E − S there exists only

one edge h ∈ S such that N(e) ∩ S = {h}.

Proof Since every edge in E(G) − S is adjacent to at least one edge of S, each edge in

E(G) − S contributes at least one to the sum of the degrees of the edges of S, hence

|E(G) − S| ≤ ∑

e∈S deg(e)

Let |E(G) − S| =
∑

e∈S deg(e). Suppose S is not independent. Since S is a REDS, every

edge in E − S is counted in the sum
∑

e∈S deg(e). Hence if e1 and e2 have a common point in

S, then e1 is counted in deg(e2) and vice versa. Then the sum exceeds |E − S| by at least two,

contrary to the hypothesis. Hence S must be independent.

Now suppose N(e) ∩ S = ∅ or |N(e) ∩ S| ≥ 2 for e ∈ E − S. Since S is a REDS the

former case does not occur. Let e1 and e2 belong to N(e)∩S. In this case
∑

e∈S deg(e) exceeds

|E(G) − S| by at least one since e1 is counted twice: once in deg(e1) and once in deg(e2), a

contradiction. Hence equality holds if S is independent and for every e ∈ E − S there exists

only one edge h ∈ S such that N(e) ∩ S = {h}. Conversely, if S is independent and for every

e ∈ E − S there exists only one edge h ∈ S such that N(e) ∩ S = {h}, then equality holds. �

Proposition 3. Let G be a graph and S = E1 ∪ E2 be a minimum REDS of G such that

|S| = 1, then the following condition hold.

(i) S is independent.

(ii) |E − S| =
∑

e∈S deg(e).

(iii) ∆′(G) = q − 1.

(iv) q/(∆′ + 1) = 1.

An immediate consequence of the above result is.

Corollary 1 For any (p, q) graph, γre(G) = p− q+1 if and only if G has γre components each

of which is isomorphic to a star.

Proposition 4. Let G be a graph of q edges which contains a edge of degree q − 1, then

γe(G) = 1 and γre(G) = 2.

Proposition 5.([9]) Let f = (E0, E1, E2) be any REDF. Then

(i) 〈E1〉 has maximum degree one.

(ii) Each edge of E0 is adjacent to at most two edges of E1.

(iii) E2 is an γe-set of H = G[E0 ∪ E2].
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Proposition 6. Let f = (E0, E1, E2) be any γre-function. Then

(i) No any edge of E1 is adjacent to any edge of E2.

(ii) Let H = G[E0 ∪ E2]. Then each edge e ∈ E2 has at least two H-pn’s (i.e private

neighbors relative to E2 in the graph H).

(iii) If e is isolated in G[E2] and has precisely one external H-pn, say h ∈ E0, then

N(h) ∩E1 = ∅.

Proof (i) Let e1, e2 ∈ E, where e1 adjacent to e2, f(e1) = 1 and f(e2) = 2. Form f ′ by

changing f(e1) to 0. Then f’ is a REDF with f ′(E) < f(E), a contradiction.

(ii) By Proposition 5(iii), E2 is an γe-set of H and hence is a maximal irredundant set in

H . Therefore, each e ∈ E2 has at least one E2-pn in H .

Let e be isolated in G[E2]. Then e is a E2-pn of e. Suppose that e has no external E2-pn.

Then the function produced by changing f(e) from 2 to 1 is an REDF of smaller weight, a

contradiction. Hence, e has at least two E2-pns in H .

Suppose that e is not isolated in G[E2] and has precisely one E2-pn (in H), say w. Consider

the function produced by changing f(e) to 0 and f(h) to 1. The edge e is still dominated because

it has a neighbor in E2. All of e’s neighbors in E0 are also obtained, since every edge in E0 has

another neighbor in E2 except for h, which is now in E1. Therefore, this new function is an

REDF of smaller weight, which is a contradiction. Again, we can conclude that e has at least

two E2-pns in H.

(iii) Suppose the contrary. Define a new function f ′ with f ′(e) = 0, f ′(e′) = 0 for e′ ∈
N(h)∩E1, f

′(h) = 2, and f ′(x) = f(x) for all other edges x. f ′(E) = f(E)−|N(h)∩E1 | < f(E),

contradicting the minimality of f . �

Proposition 7. Let f = (E0, E1, E2) be a γre-function of an isolate-free graph G, such that

|E2| = q2 is a maximum. Then

(i) E1 is independent.

(ii) The set E0 dominates the set E1.

(iii) Each edge of E0 is adjacent to at most one edge of E1.

(iv) Let e ∈ G[E2] have exactly two external H-pn’s e1 and e2 in E0. Then there do not

exist edges h1, h2 ∈ E1 such that (h1, e1, e, e2, h2) is the edge sequence of a path P6.

Proof (i) By Proposition 5(i), G[E1] consists of disjoint K2’s and P3’s. If there exists a

P3, then we can change the function values of its edges to 0 and 2. The resulting function

g = (W0,W1,W2) is a γre-function with |W2| > |E2|, which is a contradiction. Therefore, E1 is

an independent set.

(ii) By (i) and Proposition 6(i), no edge e ∈ E1 is adjacent to an edge in E1 ∪ E2. Since

G is isolate-free, e is adjacent to some edge in E0. Hence the set E0 dominates the set E1.

(iii) Let e ∈ E0 and B = N(e) ∩ E1, where |B| = 2. Note that |B| ≤ 2, by Proposition

5(ii). Let

W0 = (E0 ∪B) − {e},
W1 = E1 −B,
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W2 = E2 ∪ {e}.

We know that E2 dominates E0, so that g = (W0,W1,W2) is an REDF.

g(E) = |W1| + 2|W2| = |E1| − B + 2|E2| − 2 = f(E). Hence, g is a γre-function with

|W2| > |E2|, which is a contradiction.

iv) Suppose the contrary. Form a new function by changing the function values of (h1, e1, e, e2, h2)

from (1, 0, 2, 0, 1) to (0, 2, 0, 0, 2). Then the new function is a γre-function with bigger value of

q2, which is a contradiction. �

§2. Graph for Which γre(G) = 2γe(G)

From Theorem A we know that for any graph G, γre(G) ≤ 2γe(G). We will say that a graph

G is a Roman edge graph if γre(G) = 2γe(G).

Proposition 8. A graph G is Roman edge graph if and only if it has a γre-function f =

(E0, E1, E2) with q1 = |E1| = 0.

Proof Let G be a Roman edge graph and let f = (E0, E1, E2) be a γre-function of G.

Proposition 5(iii) we know that E2 dominates E0, and E1 ∪ E2 dominates E, and hence

γe(G) ≤ |E1 ∪ E2| = |E1| + |E2| ≤ |E1| + 2|E2| = γre(G).

But since G is Roman edge, we know that

2γe(G) = 2|E1| + 2|E2| = γre(G) = |E1| + 2|E2|.

Hence, q1 = |E1| = 0.

Conversely, let f = (E0, E1, E2) be a γre-function of G with q1 = |E1| = 0. Then,

γre(G) = 2|E2|, and since by definition E1∪E2 dominates E, it follows that E2 is a dominating

set of G. But by Proposition 5(iii), we know that E2 is a γe-set of G[E0 ∪E2], i.e. γe(G) = |E2|
and γre(G) = 2γe(G), i.e. G is a Roman edge graph. �

§3. Bound on the Sum γre(G) + γe(G)/2

For q-edge graphs, always γre(G) ≤ q, with equality when G is isomorphic with mK2 or mP3.

In this section we prove that γre(G) + γe(G)/2 ≤ q and γre(G) ≤ 4q/5 when G is a connected

q-edge graph.

Theorem 9. For any connected graph G of q ≥ 3,

(i) γre(G) + γe(G)/2 ≤ q.

(ii) γre(G) ≤ 4q/5.

Proof Let f = (E0, E1, E2) be a γre(G)-function such that |E2| is maximum. It is proved

in Proposition 6(i) that for such a function no edge of E1 is adjacent to any edge of E2 and every

edge e of E2 has at least two E2-private neighbors, one of them can be e itself if it is isolated in
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E2 (true for every γre(G)-function). The set E1 is independent and every edge of E0 has at most

one neighbor in E1. Moreover we add the condition the number µ(f) of edges of E2 with only

one neighbor in E0 is minimum. Suppose that NE0(e) = {h} for some e ∈ E2. Then partition

E′
0 = (E0\{h}) ∪ {e} ∪ NE1(h), E

′
1 = E1\NE1(h) and E′

2 = (E2\{e}) ∪ {h} is a Roman edge

dominating function f ′ such that w(f ′) = w(f)−1 if NE1(h) 6= ∅, or w(f ′) = w(f), |E′
2| = |E2|

but µ(f ′) < µ(f) if NE1(h) = ∅ since then, G being connected q ≥ 3, h is not isolated in E0.

Therefore every edge of E2 has at least two neighbors in E0. Let A be a largest subset of E2

such that for each e ∈ A there exists a subset Ae of NE0(e) such that the set Ae is disjoint,

|Ae| ≥ 2 and sets ∪e∈AAe = ∪e∈ANE0(e). Note that Ae contains all the external E2-private

neighbors of e. A′ = E2\A.

Case 1 A′ = ∅.

In this case |E0| ≥ 2|E2| and |E1| ≤ |E0| since every edge of E0 has at most one neighbor

in E1. Since E0 is an edge dominating set of G and |E0|/2 ≥ |E2| we have

(i) γre(G) + γe(G)/2 ≤ |E1| + 2|E2| + |E0|/2 ≤ |E0| + |E1| + |E2| = q.

(ii) 5γre(G) = 5|E1|+10|E2| = 4q−4|E0|+|E1|+6|E2| = 4q−3(|E0|−2|E2|)−(|E0|−|E1|) ≤
4q. Hence γre(G) ≤ 4q/5.

Case 2 A′ 6= ∅.

Let B = ∪e∈AAe and B′ = E0\B. Every edge ε in A′ has exactly one E2-private neighbor

ε′ in E0 and NB′(ε) = {ε′} for otherwise ε could be added to A. This shows that |A′| = |B′|.
Moreover since |NE0(ε)| ≥ 2, each edge ε ∈ A′ has at least one neighbor in B. Let εB ∈
B ∩NE0(ε) and let εA be the edge of A such that εB ∈ AεA

. The edge εA is well defined since

the sets Ae with e ∈ A form a partition of B.

Claim 1 |AεA
| = 2 for each ε ∈ A′ and each εB ∈ B ∩NE0(ε).

Proof of Claim 1 If |AεA
| > 2, then by putting A′

εA
= AεA

\{εB} and Aε = {ε′, εB} we can

see that A1 = A ∪ {ε} contradicts the choice of A. Hence |AεA
| = 2, εA has a unique external

E2-private neighbor ε′A and AεA
= {εB, ε

′
A}. Note that the edges εA and ε are isolated in E2

since they must have a second E2-private neighbor.

Claim 2 If ε, y ∈ A′ then εB 6= yB and AεA
6= AyA

.

Proof of Claim 2 Let ε′ and y′ be respectively the unique external E2-private neighbors of ε

and y. Suppose that εB = yB, and thus εA = yA. The function g : E(G) → {0, 1, 2} defined by

g(εB) = 2, g(ε) = g(y) = g(εA) = 0, g(ε′A) = g(y′) = g(ε′) = 1 and g(e) = f(e) otherwise, is a

REDF of G of weight less than γre(G), a contradiction. Hence εB 6= yB. Since AεA
⊇ {εB, ε

′
A}

and |AεA
| = 2, the edge yB is not in AεA

. Therefore AεA
6= AyA

.

Let A′′ = {εA | ε ∈ A′ and εB ∈ B ∩NE0(ε)} and B′′ = ∪e∈A′′Ae. By Claims 1 and 2,

|B′′| + 2|A′′| and |A′′| ≥ |A′|.

Let A′′′ = E2\(A′ ∪A′′) and B′′′ = ∪e∈A′′′Ae = E0\(B′ ∪B′′). By the definition of the sets Ae,

|B′′′| ≥ |2A′′′|.
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Claim 3 If ε ∈ A′ and εB ∈ B ∩NE0(ε), then ε′, εB and ε′A have no neighbor in E1. Hence

B′′′ dominates E1.

Proof of Claim 3 Let h be a edge of E1. If h has a neighbor inB′∪B′′, Let g : E(G) → {0, 1, 2}
be defined by g(ε′A) = 2, g(h) = g(εA) = 0, g(e) = f(e) otherwise if h is adjacent to ε′A,

g(ε′) = 2, g(h) = g(ε) = 0, g(e) = f(e) otherwise if h is adjacent to ε′,

g(εB) = 2, g(h) = g(εA) = g(ε) = 0, g(ε′A) = g(ε′) = 1 , g(e) = f(e) otherwise if h is

adjacent to εB. In each case, g is a REDF of weight less than γre(G), a contradiction. Therefore

N(h) ⊆ B′′′.

We are now ready to establish the two parts of the Theorem.

(i) By Claim 3, B′′′ ∪A′ ∪A′′ is an edge dominating set of G. Therefore, since |A′| = |B′|
and |B′′′| ≥ |2A′′′| we have,

γe(G) ≤ |B′′′|+ |A′|+ |A′′| ≤ |B′′′|+ |B′′| ≤ (2|B′′′|−2|A′′′|)+ (2|B′′|−2|A′′|)+ (2|B′|−2|A′|).

Hence γe(G) ≤ 2|E0| − 2|E2| and γre(G) + γe(G)/2 ≤ (|E1| + 2|E2|) + (|E0| − |E2|) = q.

(ii) By Claim 3 and since each edge of E1 has at most one neighbor in E0 and |E1| ≤ |B′′′|.
Using this inequality and since |A′| = |B′| and |B′′′| ≥ |2A′′′| we get

5γre(G) = 5|E1| + 10|E2| = 4q − 4|E0| + |E1| + 6|E2| ≤ 4q − 4|B′| − 4|B′′| − 4|B′′′|
+|B′′′| + 6|A′| + 6|A′′| + 6|A′′′| ≤ 4q + 2(|A′| − |A′′|) + 3(2|A′′′| − |B′′′|) ≤ 4q.

Hence γre(G) ≤ 4q/5. �

Corollary 10 Let f = (E0, E1, E2) be a γre(G) − function of a connected graph G. If

k|E2| ≤ |E0| such that k ≥ 4, then γre(G) ≤ (k − 1)q/k.

§4. Bounds on |E0|, |E1| and |E2| for a γre(G)-Function (E0, E1, E2)

Theorem 11. Let f = (E0, E1, E2) be any γre(G)− function of a connected graph G of q ≥ 3.

Then

(1) 1 ≤ |E2| ≤ 2q/5;

(2) 0 ≤ |E1| ≤ 4q/5 − 2;

(3) q/5 + 1 ≤ |E0| ≤ q − 1.

Proof By Theorem 9, |E1| + 2|E2| ≤ 4q/5.

(1) If E2 = ∅, then E1 = q and E0 = ∅. The REDF (0, q, 0) is not minimum since

|E1| + 2|E2| > 4q/5. Hence |E2| ≥ 1. On the other hand, |E2| ≤ 2q/5 − |E1|/2 ≤ 2q/5.

(2) Since |E2| ≥ 1, then |E1| ≤ 4q/5 − 2|E2| ≤ 4q/5 − 2.

(3) The upper bound comes from |E0| ≤ q − |E2| ≤ q − 1. For the lower bound, adding on

side by side 2|E0| + 2|E1| + 2|E2| = 2q,−|E1| − 2|E2| ≥ −4q/5 and −|E1| ≥ −4q/5 + 2 gives

2|E0| ≥ 2q/5 + 2. Therefor, |E0| ≥ q/5 + 1. �
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Abstract: For a connected graph G = (V, E), a Smarandachely k-monophonic set of G

is a set M ⊆ V (G) such that every vertex of G is contained in a path with less or equal

k chords joining some pair of vertices in M . The Smarandachely k-monophonic number

mk
S(G) of G is the minimum order of its Smarandachely k-monophonic sets. Particularly, a

Smarandachely 0-monophonic path, a Smarandachely 0-monophonic number is abbreviated

to a monophonic path, monophonic number m(G) of G respectively. Any monophonic set

of order m(G) is a minimum monophonic set of G. A monophonic set M in a connected

graph G is called a minimal monophonic set if no proper subset of M is a monophonic set

of G. The upper monophonic number m+(G) of G is the maximum cardinality of a minimal

monophonic set of G. Connected graphs of order p with upper monophonic number p and

p− 1 are characterized. It is shown that for every two integers a and b such that 2 ≤ a ≤ b,

there exists a connected graph G with m(G) = a and m+(G) = b.

Key Words: Smarandachely k-monophonic path, Smarandachely k-monophonic number,

monophonic path, monophonic number.

AMS(2010): 05C12

§1. Introduction

By a graph G = (V,E), we mean a finite undirected connected graph without loops or multiple

edges. The order and size of G are denoted by p and q respectively. For basic graph theoretic

terminology we refer to Harary [1]. The distance d(u, v) between two vertices u and v in a

connected graph G is the length of a shortest u− v path in G. An u− v path of length d(u, v)

is called an u− v geodesic. A vertex x is said to lie on a u− v geodesic P if x is a vertex of P

including the vertices u and v. The eccentricity e(v) of a vertex v in G is the maximum distance

from v and a vertex of G. The minimum eccentricity among the vertices of G is the radius, rad

G or r(G) and the maximum eccentricity is its diameter, diam G of G. A geodetic set of G is a

set S ⊆ V (G) such that every vertex of G is contained in a geodesic joining some pair of vertices

of S. The geodetic number g(G) of G is the minimum cardinality of its geodetic sets and any

1Received August 6, 2010. Accepted December 16, 2010.
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geodetic set of cardinality g(G) is a minimum geodetic set of G. The geodetic number of a graph

is introduced in [2] and further studied in [3]. N(v) = {u ∈ V (G) : uv ∈ E(G)} is called the

neighborhood of the vertex v in G. For any set S of vertices of G, the induced subgraph < S >

is the maximal subgraph of G with vertex set S. A vertex v is an extreme vertex of a graph G if

< N(v) > is complete. A chord of a path u0, u1, u2, . . . , uh is an edge uiuj, with j ≥ i+ 2. An

u−v path is called a monophonic path if it is a chordless path. A Smarandachely k-monophonic

set of G is a set M ⊆ V (G) such that every vertex of G is contained in a path with less or

equal k chords joining some pair of vertices in M . The Smarandachely k-monophonic number

mk
S(G) of G is the minimum order of its Smarandachely k-monophonic sets. Particularly, a

Smarandachely 0-monophonic path, a Smarandachely 0-monophonic number is abbrevated to

monophonic path, monophonic number m(G) of G respectively. Thus, a monophonic set of G is

a set M ⊆ V such that every vertex of G is contained in a monophonic path joining some pair

of vertices in M . The monophonic number m(G) of G is the minimum order of its monophonic

sets and any monophonic set of order m(G) is a minimum monophonic set or simply a m− set

of G. It is easily observed that no cut vertex of G belongs to any minimum monophonic set

of G. The monophonic number of a graph is studied in [4, 5, 6]. For the graph G given in

Figure 1.1, S1 = {v2, v4, v5}, S2 = {v2, v4, v6} are the only minimum geodetic sets of G so

that g(G) = 3. Also, M1 = {v2, v4},M2 = {v4, v6},M3 = {v2, v5} are are the only minimum

monophonic sets of G so that m(G) = 2.

Figure 1: G

§2. The Upper Monophonic Number of a Graph

Definition 2.1 A monophonic set M in a connected graph G is called a minimal monophonic

set if no proper subset of M is a monophonic set of G. The upper monophonic number m+(G)

of G is the maximum cardinality of a minimal monophonic set of G.

Example 2.2 For the graph G given in Figure 1.1, M4 = {v1, v3, v5} and M5 = {v1, v3, v6}
are minimal monophonic sets of G so that m+(G) ≥ 3. It is easily verified that no four element

subsets or five element subsets of V (G) is a minimal monophonic set of G and so m+(G) = 3.

Remark 2.3 Every minimum monophonic set of G is a minimal monophonic set of G and

the converse is not true. For the graph G given in Figure 1.1, M4 = {v1, v3, v5} is a minimal
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monophonic set but not a minimum monophonic set of G.

Theorem 2.4 Each extreme vertex of G belongs to every monophonic set of G.

Proof LetM be a monophonic set ofG and v be an extreme vertex ofG. Let {v1, v2, . . . , vk}
be the neighbors of v in G. Suppose that v /∈ M . Then v lies on a monophonic path

P : x = x1, x2, . . . , vi, v, vj , . . . , xm = y, where x, y ∈M . Since vivj is a chord of P and so P is

not a monophonic path, which is a contradiction. Hence it follows that v ∈M . �

Theorem 2.5 Let G be a connected graph with cut-vertices and S be a monophonic set of G.

If v is a cut -vertex of G, then every component of G− v contains an element of S.

Proof Suppose that there is a component G1 of G− v such that G1 contains no vertex of

S. By Theorem 2.4, G1 does not contain any end-vertex of G. Thus G1 contains at least one

vertex, say u. Since S is a monophonic set, there exists vertices x, y ∈ S such that u lies on the

x − y monophonic path P : x = u0, u1, u2, . . . , u, . . . , ut = y in G. Let P1 be a x − u sub path

of P and P2 be a u − y subpath of P . Since v is a cut-vertex of G, both P1 and P2 contain v

so that P is not a path, which is a contradiction. Thus every component of G− v contains an

element of S. �

Theorem 2.6 For any connected graph G, no cut-vertex of G belongs to any minimal mono-

phonic set of G.

Proof Let M be a minimal monophonic set of G and v ∈M be any vertex. We claim that

v is not a cut vertex of G. Suppose that v is a cut vertex of G. Let G1, G2, . . . , Gr(r ≥ 2) be

the components of G− v. By Theorem 2.5, each component Gi(1 ≤ i ≤ r) contains an element

of M . We claim that M1 = M − {v} is also a monophonic set of G. Let x be a vertex of G.

Since M is a monophonic set, x lies on a monophonic path P joining a pair of vertices u and v

of M . Assume without loss of generality that u ∈ G1. Since v is adjacent to at least one vertex

of each Gi(1 ≤ i ≤ r), assume that v is adjacent to z in Gk, k 6= 1. Since M is a monophonic

set, z lies on a monophonic path Q joining v and a vertex w of M such that w must necessarily

belongs to Gk. Thus w 6= v. Now, since v is a cut vertex of G, P ∪ Q is a path joining u

and w in M and thus the vertex x lies on this monophonic path joining two vertices u and w

of M1. Thus we have proved that every vertex that lies on a monophonic path joining a pair

of vertices u and v of M also lies on a monophonic path joining two vertices of M1. Hence

it follows that every vertex of G lies on a monophonic path joining two vertices of M1, which

shows that M1 is a monophonic set of G. Since M1 ( M , this contradicts the fact that M is a

minimal monophonic set of G. Hence v /∈M so that no cut vertex of G belongs to any minimal

monophonic set of G. �

Corollary 2.7 For any non-trivial tree T , the monophonic number m+(T ) = m(T ) = k, where

k is number of end vertices of T .

Proof This follows from Theorems 2.4 and 2.6. �
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Corollary 2.8 For the complete graph Kp(p ≥ 2), m+(Kp) = m(Kp) = p.

Proof Since every vertex of the complete graph, Kp(p ≥ 2) is an extreme vertex, the vertex

set of Kp is the unique monophonic set of Kp. Thus m+(Kp) = m(Kp) = p. �

Theorem 2.9 For a cycle G = Cp(p ≥ 4), m+(G) = 2 = m(G).

Proof Let x, y be two independent vertices of G. Then M = {x, y} is a monophonic set of

G so that m(G) = 2. We show that m+(G) = 2. Suppose that m+(G) > 2. Then there exists

a minimal monophonic set M1 such that |M1| ≥ 3. Now it is clear that M ( M1, which is a

contradiction to M1 a minimal monophonic set of G. Therefore, m+(G) = 2. �

Theorem 2.10 For a connected graph G, 2 ≤ m(G) ≤ m+(G) ≤ p.

Proof Any monophonic set needs at least two vertices and so m(G) ≥ 2. Since every min-

imal monophonic set is a monophonic set, m(G) ≤ m+(G). Also, since V (G) is a monophonic

set of G, it is clear that m+(G) ≤ p. Thus 2 ≤ m(G) ≤ m+(G) ≤ p. �

The following Theorem is proved in [3].

Theorem A Let G be a connected graph with diameter d .Then g(G) ≤ p− d+ 1.

Theorem 2.11 Let G be a connected graph with diameter d .Then m(G) ≤ p− d+ 1.

Proof Since every geodetic set of G is a monophonic set of G, the assertion follows from

Theorem 2.10 and Theorem A. �

Theorem 2.12 For a non-complete connected graph G, m(G) ≤ p−k(G), where k(G) is vertex

connectivity of G.

Proof Since G is non complete, it is clear that 1 ≤ k(G) ≤ p− 2. Let U = {u1, u2, . . . , uk}
be a minimum cutset of vertices ofG. Let G1, G2, . . . , Gr(r ≥ 2) be the components of G − U

and let M = V (G) − U . Then every vertex ui(1 ≤ i ≤ k) is adjacent to at least one vertex of

Gj(1 ≤ j ≤ r). Then it follows that the vertex ui lies on the monophonic path x, ui, y, where

x, y ∈M so that M is a monophonic set. Thus m(G) ≤ p− k(G). �

The following Theorems 2.13 and 2.15 characterize graphs for which m+(G) = p and

m+(G) = p− 1 respectively.

Theorem 2.13 For a connected graph G of order p, the following are equivalent:

(i) m+(G) = p;

(ii) m(G) = p;

(iii) G = Kp.

Proof (i) ⇒ (ii). Let m+(G) = p. Then M = V (G) is the unique minimal monophonic

set of G. Since no proper subset of M is a monophonic set, it is clear that M is the unique

minimum monophonic set of G and so m(G) = p. (ii) ⇒ (iii). Let m(G) = p. If G 6= Kp, then
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by Theorem 2.11, m(G) ≤ p− 1, which is a contradiction. Therefore G = Kp. (ii) ⇒ (iii). Let

G = Kp. Then by Corollary 2.8, m+(G) = p. �

Theorem 2.14 Let G be a non complete connected graph without cut vertices. Then m+(G) ≤
p− 2.

Proof Suppose that m+(G) ≥ p− 1. Then by Theorem 2.13, m+(G) = p− 1. Let v be a

vertex of G and let M = V (G) − {v} be a minimal monophonic set of G. By Theorem 2.4, v

is not an extreme vertex of G. Then there exists x, y ∈ N(v) such that xy 6∈ E(G). Since v is

not a cut vertex of G, < G − v > is connected. Let x, x1, x2, . . . , xn, y be a monophonic path

in < G− v >. Then M1 = M − {x1, x2, . . . , xn} is a monophonic set of G. Since M1 ( M , M1

is not a minimal monophonic set of G, which is a contradiction. Therefore m+(G) ≤ p− 2. �

Theorem 2.15 For a connected graph G of order p, the following are equivalent:

(i) m+(G) = p− 1;

(ii) m(G) = p− 1;

(iii) G = K1 +
⋃

mjKj,
∑

mj ≥ 2.

Proof (i) ⇒ (ii). Let m+(G) = p − 1. Then it follows from Theorem 2.13 that G is

non-complete. Hence by Theorem 2.14, G contains a cut vertex, say v. Since m+(G) = p− 1,

hence it follows from Theorem 2.6 that M = V − {v} is the unique minimal monophonic set

of G. We claim that m(G) = p− 1. Suppose that m(G) < p− 1.Then there exists a minimum

monophonic set M1 such that |M1| < p − 1. It is clear that v /∈ M1. Then it follows that

M1 ( M , which is a contradiction. Therefore m(G) = p − 1. (ii) ⇒ (iii). Let m(G) = p− 1.

Then by Theorem 2.11, d ≤ 2. If d = 1, then G = Kp, which is a contradiction. Therefore

d = 2. If G has no cut vertex, then by Theorem 2.12, m(G) ≤ p− 2, which is a contradiction.

Therefore G has a unique cut-vertex, say v. Suppose that G 6= K1 +
⋃

mjKj . Then there exists

a component, say G1 of G−v such that < G1 > is non complete. Hence |V (G1)| ≥ 3. Therefore

< G1 > contains a chordless path P of length at least two. Let y be an internal vertex of the

path P and let M = V (G) − {v, y}. Then M is a monophonic set of G so that m(G) ≤ p− 2,

which is a contradiction. Thus G = K1 +
⋃

mjKj . (iii) ⇒ (i)). Let G = K1 +
⋃

mjKj. Then

by Theorems 2.4 and 2.6, m+(G) = p− 1. �

In the view of Theorem 2.10, we have the following realization result.

Theorem 2.16 For any positive integers 2 ≤ a ≤ b, there exists a connected graph G such that

m(G) = a and m+(G) = b.

Proof Let G be a graph given in Figure 2.1 obtained from the path on three vertices

P : u1, u2, u3 by adding the new vertices v1, v2, . . . , vb−a+1 and w1, w2, . . . , wa−1 and joining

each vi (1 ≤ i ≤ b − a + 1) to each vj(1 ≤ j ≤ b − a + 1), i 6= j, and also joining each

wi (1 ≤ i ≤ a − 1) with u1 and u2. First we show that m(G) = a. Let M be a monophonic

set of G and let W = {w1, w2, . . . , wa−1}. By Theorem 2.4, W ⊆ M . It is easily seen that W

is not a monophonic set of G. However, W ∪ {u3} is a monophonic set of G and so m(G) = a.

Next we show that m+(G) = b. Let M1 = W ∪ {v1, v2, . . . , vb−a+1}. Then M1 is a monophonic
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Figure 2: G

set of G. If M1 is not a minimal monophonic set of G, then there is a proper subset T of

M1 such that T is a monophonic set of G. Then there exists v ∈ M1 such that v /∈ T . By

Theorem 2.4, v 6= wi (1 ≤ i ≤ a − 1). Therefore v = vi for some i (1 ≤ i ≤ b − a + 1). Since

vivj(1 ≤ i, j ≤ b − a+ 1), i 6= j is a chord, vi does not lie on a monophonic path joining some

vertices of T and so T is not a monophonic set of G, which is a contradiction. Thus M1 is a

minimal monophonic set of G and so m+(G) ≥ b. Let T ′ be a minimal monophonic set of G

with |T ′| ≥ b+1. By Theorem2.4, W ⊆ T ′. Since W ∪{u3} is a monophonic set of G, u3 6∈ T ′.

Since M1 is a monophonic set of G, there exists at least one vi such that vi 6∈ T ′. Without loss

of generality let us assume that v1 6∈ T ′. Since |T ′| ≥ b+1, then u1, u2 must belong to T ′. Now

it is clear that v1 does not lie on a monophonic path joining a pair of vertices of T ′, it follows

that T ′ is not a monophonic set of G, which is a contradiction. Therefore m+(G) = b. �
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Abstract: Let G be a (p, q) graph. An injective map f : V (G) → {±1,±2, · · · ,± p} is

called a pair sum labeling if the induced edge function, fe : E(G) → Z − {0} defined by

fe(uv) = f(u) + f(v) is one-one and fe(E(G)) is either of the form {± k1,± k2, · · · ,± k q
2
}

or {± k1,± k2, . . . ,± k q−1
2

} ∪ {k q+1
2

} according as q is even or odd. Here we study about

the pair sum labeling of some standard graphs.

Key Words: Path, cycle, star, ladder, quadrilateral snake, Smarandachely pair sum V -

labeling.

AMS(2010): 05C78

§1. Introduction

The graphs considered here will be finite, undirected and simple. The symbols V (G) and E(G)

will denote the vertex set and edge set of a graph G. p and q denote respectively the number

of vertices and edges of G. The Union of two graphs G1 and G2 is the graph G1 ∪ G2 with

V (G1 ∪ G2) = V (G1) ∪ V (G2) and E(G1 ∪ G2) = E(G1) ∪ E(G2). If Pn denotes a path on

n vertices, the graph Ln = P2 × Pn is called a ladder. Let G be a graph. A 1-1 mapping

f : V (G) → {± 1,± 2, . . . ,± |V |} is said to be a Smarandachely pair sum V-labeling if the

induced edge function, fe : E(G) → Z − {0} defined by fe(uv) = f(u) + f(v) for uv ∈ E(G)

is also one-one and fe(E(G)) is either of the form {± k1,± k2, . . .± k(|E|2} if |E| ≡ 0(mod 2)

or {± k1,± k2, ± k |E|−1)
2

} ∪ {k (|E|+1)
2

} if |E| ≡ 1(mod 2). Particularly we abbreviate a

Smarandachely pair sum V-labeling to a pair sum labeling and define a graph with a pair sum

labeling to be a pair sum graph. The notion of pair sum labeling has been introduced in [4].

In [4] we investigate the pair sum labeling behavior of complete graph, cycle, path, bistar etc.

Here we study pair sum labeling of union of some standard graphs and we find the maximum

size of a pair sum graph. Terms not defined here are used in the sense of Gary Chartrand [2]

and Harary [3].

1Received August 23, 2010. Accepted December 18, 2010.
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§2. Pair Sum Labeling

Definition 2.1 Let G be a (p, q) graph. A one - one map f : V (G) → {± 1,± 2, . . . ,± p}
is said to be a pair sum labeling if the induced edge function fe : E(G) → Z − {0} defined by

fe(uv) = f(u) + f(v) is one-one and fe(E(G)) is either of the form {± k1,± k2, . . . ,± k q
2
}

or {± k1,± k2, . . . ,± k q−1
2
} ∪ {k q+1

2
} according as q is even or odd. A graph with a pair sum

labeling defined on it is called a pair sum graph.

Notation 2.2 LetG be a pair sum graph with pair sum labeling f . We denoteM = Max{f(u) :

u ∈ V (G)} and m = Min{f(u) : u ∈ V (G)}.

Observation 2.3

(a) If G is an even size pair sum graph then G− e is also a pair sum graph for every edge e.

(b) Let G be an odd size pair sum graph with - fe(e) 6∈ fe(E). Then G − e is a pair sum

graph.

Proof These results follow from Definition 2.1. �

Observation 2.4 Let G be a pair sum graph with even size and let f be a pair sum labeling of

G with f(u) = M . Then the graph G∗ with V (G∗) = V (G) ∪ {v} and E(G∗) = E(G) ∪ {uv} is

also a pair sum graph.

Proof Define f∗ : V (G∗) → {± 1,± 2, ,± (p+ 1)} by f∗(w) = f(w) for all w ∈ V (G) and

f∗(v) = p+ 1. Then fe(E(G∗)) = fe(E(G)) ∪ {M + p+ 1}. Hence f is a pair sum labeling. �

S.M. Lee and W. Wei define super vertex-graceful labeling of a graph [1].

Definition 2.5 A (p, q) graph is said to be super vertex-graceful if there is a bijection f from V

to {0,± 1,± 2, . . . ,± p−1)
2 } when p is odd and from V to {± 1,± 2, . . . ,± p

2} when p is even

such that the induced edge labeling f+ defined by f+(uv) = f(u) + f(v) over all edges uv is a

bijection from E to {0,± 1,± 2, . . . ,± q−1
2 } when q is odd and from E to {± 1,± 2, . . . ,± q

2}
when q is even.

Observation 2.6 Let G be an even order and even size graph. If G is super vertex graceful

then G is a pair sum graph.

Remark. K4 is a pair sum graph but not super vertex graceful graph.

Theorem 2.7 If G is a (p, q) pair sum graph then q ≤ 4p− 2.

Proof Let f be a pair sum labeling of G. Obviously −2p+ 1 ≤ fe(uv) ≤ 2p− 1, fe(uv) 6= 0

for all uv. This forces q ≤ 4p− 2. �

We know that K1,n and K2,n are pair sum graph [4]. Now we have

Corollary 2.8 If m,n ≥ 8, then Km,n is not a pair sum graph.
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Proof This result follows from the inequality (m − 4)(n − 4) ≤ 14 and the condition

m ≥ 8, n ≥ 8. �

§3. Pair Sum Labeling of Union of Graphs

Theorem 3.1 K1,n ∪K1,m is a pair sum graph.

Proof Let u, u1, u2, . . . un be the vertices of K1,n and E(K1,n) = {uui : 1 ≤ i ≤ n}. Let

v, v1, v2, . . . , vm be the vertices of K1,m and E(K1,m) = {vvi : 1 ≤ i ≤ n}.

Case 1 m = n.

Define

f(u) = 1,

f(ui) = i+ 1, 1 ≤ i ≤ m

f(v) = −1,

f(vi) = −(i+ 1), 1 ≤ i ≤ m

Case 2 m > n.

Define

f(u) = 1,

f(ui) = i+ 1, 1 ≤ i ≤ n,

f(v) = −1,

f(vi) = −(i+ 1), 1 ≤ i ≤ n,

f(vn+2i−1) = −(n+ 1 + i), 1 ≤ i ≤ m− n

2
if m− n is even or

1 ≤ i ≤ m− n− 1

2
if m− n is odd,

f(vn+2i) = n+ i+ 3, 1 ≤ i ≤ m− n

2
if m− n is even or

1 ≤ i ≤ m− n− 1

2
if m− n is odd.

Then clearly f is a pair sum labeling. �

Theorem 3.2 Pm ∪K1,n is a pair sum graph.

Proof Let u1, u2, . . . um be the path Pm. Let V (K1,n) = {v, vi : 1 ≤ i ≤ n} and E(K1,n) =

{vvi : 1 ≤ i ≤ n}.

Case 1 m = n.
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Define

f(u) = 1, 1 ≤ i ≤ m,

f(v) = −1,

f(vi) = −2i, 1 ≤ i ≤ m,

Case 2 n > m.

Define

f(ui) = i, 1 ≤ i ≤ m,

f(v) = −1,

f(vi) = −2i, 1 ≤ i ≤ m− 1,

f(vm+2i−1) = 2m+ i, 1 ≤ i ≤ n−m+ 1

2
if n−m is odd or

1 ≤ i ≤ n−m

2
if n−m is even,

f(vm+2i−2) = −(2m+ i− 2), 1 ≤ i ≤ n−m+ 1

2
if n−m is odd or

1 ≤ i ≤ n−m

2
+ 1 if n−m is even.

Then f is a pair sum labeling. �

Theorem 3.3 If m = n, then Cm ∪ Cn is a pair sum graph.

Proof Let u1u2, . . . unu1 be the first copy of the cycle in Cn ∪ Cn and

v1v2 . . . vnv1 be the second copy of the cycle in Cn ∪ Cn.

Case 1 m = n = 4k.

Define

f(ui) = i, 1 ≤ i ≤ 2k − 1,

f(u2k) = 2k + 1,

f(u2k+i) = −i, 1 ≤ i ≤ 2k − 1,

f(un) = −2k − 1,

f(vi) = 2k + 2i, 1 ≤ i ≤ 2k,

f(v2k+i) = −2k − 2i, 1 ≤ i ≤ 2k.

Case 2 m = n = 4k + 2.

Define

f(ui) = i, 1 ≤ i ≤ 2k + 1,

f(u2k+1+i) = −i, 1 ≤ i ≤ 2k + 1,

f(vi) = 2k + 2i, 1 ≤ i ≤ 2k + 1,

f(v2k+1+i) = −2k − 2i, 1 ≤ i ≤ 2k + 1.
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Case 3 m = n = 2k + 1.

Assigning −i to ui and i to vi, we get a pair sum labeling. �

Remark. mG denotes the union of m copies of G.

Theorem 3.4 If n ≤ 4, then mKn is a pair sum graph.

Proof If n = 1, the result is obvious.

Case 1 n = 2.

Assign the label i and i+ 1 to the vertices of ith copy of K2 for all odd i. For even values

of i, label the vertices of the ith copy of K2 by −i+ 1 and −i.

Case 2 n = 3.

Subcase 1 m is even.

Label the vertices of first m
2 copies by 3i− 2, 3i− 1, 3i(1 ≤ i ≤ m/2). Remaining m

2 copies

are labeled by −3i+ 2,−3i+ 1,−3i.

Subcase 2 m is odd.

Label the vertices of first (m − 1) copies as in Subcase (a). In the last copy label the

vertices by 3(m−1)
2 + 1, −3(m−1)

2 − 2, 3(m−1)
2 + 3 respectively.

Case 3 n = 4.

Subcase 1 m is even.

Label the vertices of first m
2 copies by 4i− 3, 4i− 2, 4i− 1, 4i (1 ≤ i ≤ m

2 ). Remaining m
2

copies are labeled by −4i+ 3,−4i+ 2,−4i+ 1,−4i.

Subcase 2 m is odd.

Label the vertices of first (m − 1) copies as in Sub case (a). In the last copy label the

vertices by −2m, 2m+ 1, 2m+ 2 and −2m− 3 respectively. �

Theorem 3.5 If n ≥ 9, then mKn is not a pair sum graph.

Proof Suppose mKn is a pair sum graph. By Theorem 2.7, we know that
mn(n− 1)

2
≤

4mn−2, i.e., mn(n−1) ≤ 8mn−4. That is 8mn−mn2+mn−4 ≥ 0. Whence, 9mn(9−n)−4 ≥ 0,

a contradiction. �

§4. Pair Sum Labeling on Standard Graphs

Theorem 4.1 Any ladder Ln is a pair sum graph.

Proof Let V (Ln) = {ui, vi : 1 ≤ i ≤ n} and E(Ln) = {uivi : 1 ≤ i ≤ n} ∪ {uiui+1, vivi+1 :

1 ≤ i ≤ n− 1}.
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Case 1 n is odd.

Let n = 2m+ 1. Define f : V (Ln) → {± 1,± 2, . . . ,± (4m+ 2)} by

f(ui) = −4(m+ 1) + 2i, 1 ≤ i ≤ m,

f(um+1) = −(2m+ 1),

f(um+1+i) = 2m+ 2i+ 2, 1 ≤ i ≤ m,

f(vi) = −4m− 3 + 2i, 1 ≤ i ≤ m,

f(vm+1) = 2m+ 2

f(vm+1+i) = 2m+ 2i+ 1, 1 ≤ i ≤ m.

Case 2 n is even.

Let n = 2m. Define f : V (Ln) → {± 1,± 2, . . . ,± (4m+ 2)} by

f(um+1−i) = −2i, 1 ≤ i ≤ m,

f(um+i) = 2i− 1, 1 ≤ i ≤ m,

f(um+i) = 2i, 1 ≤ i ≤ m,

f(um+1−i) = −(2i− 1), 1 ≤ i ≤ m.

Then obviously f is a pair sum labeling. �

Notation 4.2 We denote the vertices and edges of the Quadrilateral Snake Qn as follows:

V (Qn) = {ui, vj , wj : 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ n}
E(Qn) = {uivi, viwi, uiui+1, ui+1wi : 1 ≤ i ≤ n}.

Theorem 4.3 The quadrilateral snake Qn is a pair sum graph if n is odd.

Proof Let n = 2m+ 1. Define f : V (G) → {± 1,± 2, . . . ,± (6m+ 4)} by

f(ui) = −3n+ 3i− 4, 1 ≤ i ≤ m+ 1,

f(um+i) = 3n− 3i+ 4, 1 ≤ i ≤ m+ 1,

f(vi) = −3n+ 3i− 3, 1 ≤ i ≤ m+ 1,

f(vm+1+i) = 3n− 3i+ 3, 1 ≤ i ≤ m,

f(wi) = −3n+ 3i− 2, 1 ≤ i ≤ m,

f(wm+1) = 3,

f(wm+i+1) = 3n− 3i+ 2, 1 ≤ i ≤ m,

Then f is a pair sum labeling. �

Example 4.4 A pair sum labeling of Q5 is shown in the following figure.
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−15 −14 −12 −11 −9 3 15 14 12 11

−16 −13 −10 16 13 10

Notation 4.5 We denote the vertices and edges of the triangular snake Tn as follows:

V (Tn) = {ui, vj : 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ n},

E(Tn) = {uiui+1, uivj , vivj+1 : 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1}.

Theorem 4.6 Any triangular snake Tn is a pair sum graph.

Proof The proof is divided into three cases following.

Case 1 n = 4m− 1.

Define

f(ui) = 2i− 1, 1 ≤ i ≤ 2m,

f(u2m+i) = −2i+ 1, 1 ≤ i ≤ 2m,

f(vi) = 2i, 1 ≤ i ≤ 2m− 1,

f(v2m) = −8m+ 3,

f(v2m+i) = −2i, 1 ≤ i ≤ 2m− 1.

Case 2 n = 4m+ 1.

Define

f(ui) = −8m− 3 + 2(i− 1), 1 ≤ i ≤ 2m+ 1,

f(u2m+1+i) = 8m+ 3 − 2(i− 1), 1 ≤ i ≤ 2m+ 1,

f(vi) = −2 + 2(i− 1), 1 ≤ i ≤ 2m,

f(v2m+1) = 3,

f(v2m+i+1) = 8m+ 2 − 2(i− 1), 1 ≤ i ≤ 2m.

Case 3 n = 2m.
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Define

f(um+1) = 1,

f(um+1+i) = 2i, 1 ≤ i ≤ m,

f(um+1−i) = −2i, 1 ≤ i ≤ m,

f(vm) = 3,

f(vm+1) = −5,

f(vm+1+i) = 5 + 2i, 1 ≤ i ≤ m− 1,

f(vm−i) = −(5 + 2i), 1 ≤ i ≤ m− 1.

Clearly f is a pair sum labeling. �

Example 4.7 A pair sum labeling of T7 is shown in the following figure.

1 3

2

5

4

7

6

−1

−13

−3

−2

−5

−4

−7

−6

Theorem 4.8 The crown Cn ⊙K1 is a pair sum graph.

Proof Let Cn be the cycle given by u1u2, . . . , unu1 and let v1, v2, . . . , vn be the pendent

vertices adjacent to u1, u2, . . . , un respectively.

Case 1 n is even.

Subcase (a) n = 4m.

Define

f(ui) = 2i− 1, 1 ≤ i ≤ 2m,

f(u2m+i) = −2i+ 1, 1 ≤ i ≤ 2m,

f(vi) = 4m+ (2i− 1), 1 ≤ i ≤ 2m,

f(v2m+i) = −(4m+ 2i− 1), 1 ≤ i ≤ 2m, .

Subcase (b) n = 4m+ 2.
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Define

f(ui) = i, 1 ≤ i ≤ 2m+ 1,

f(u2m+1+i) = −i, 1 ≤ i ≤ 2m+ 1,

f(vi) = 4m+ i, 1 ≤ i ≤ 2m+ 1,

f(v2m+1+i) = −(4m+ i), 1 ≤ i ≤ 2m+ 1.

obviously f is a pair sum labeling.

Case 2 n = 2m+ 1.

Define

f(u1) = m− 1,

f(ui) = 2m+ 2i+ 1, 2 ≤ i ≤ m+ 1,

f(um+1+i) = −(2m+ 2i+ 1), 1 ≤ i ≤ m,

f(v1) = −3m+ 3,

f(vi) = f(ui) + 1, 2 ≤ i ≤ m+ 1,

f(vm+1+i) = f(um+1+i) − 1, 1 ≤ i ≤ m.

Clearly f is a pair sum labeling. �

References

[1] J.A.Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics,

14 (2009), DS6.

[2] Gary Chartand and Ping Zhang, Introduction to Graph Theory, Tata McGraw-Hill, New-

Delhi.

[3] F.Harary, Graph Theory, Narosa Publishing House, New-Delhi, (1998).

[4] R.Ponraj, J.Vijaya Xavier Parthipan, Pair sum labeling of graphs, The Journal of Indian

Academy of Mathematics, Vol. 32 (2010) No.2.



International J.Math. Combin. Vol.4 (2010), 62-69

Weierstrass Formula for Minimal Surface

in the Special Three-Dimensional Kenmotsu Manifold K with

η-Parallel Ricci Tensor

Talat KÖRPINAR and Essin TURHAN

(Fırat University, Department of Mathematics 23119, Elazığ, TURKEY)
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§1. Introduction

The study of minimal surfaces played a formative role in the development of mathematics over

the last two centuries. Today, minimal surfaces appear in various guises in diverse areas of

mathematics, physics, chemistry and computer graphics, but have also been used in differential

geometry to study basic properties of immersed surfaces in contact manifolds.

Minimal surface, such as soap film, has zero curvature at every point. It has attracted the

attention for both mathematicians and natural scientists for different reasons. Mathematicians

are interested in studying minimal surfaces that have certain properties, such as completed-

ness and finite total curvature, while scientists are more inclined to periodic minimal surfaces

observed in crystals or biosystems such as lipid bilayers.

Weierstrass representations are very useful and suitable tools for the systematic study of

minimal surfaces immersed in n-dimensional spaces. This subject has a long and rich history.

It has been extensively investigated since the initial works of Weierstrass [19]. In the literature

there exists a great number of applications of the Weierstrass representation to various domains

of Mathematics, Physics, Chemistry and Biology. In particular in such areas as quantum field

theory [8], statistical physics [14], chemical physics, fluid dynamics and membranes [16], minimal

surfaces play an essential role. More recently it is worth mentioning that works by Kenmotsu

[10], Hoffmann [9], Osserman [15], Budinich [5], Konopelchenko [6,11] and Bobenko [3, 4] have

1Received September 8, 2010. Accepted December 18, 2010.
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made very significant contributions to constructing minimal surfaces in a systematic way and

to understanding their intrinsic geometric properties as well as their integrable dynamics. The

type of extension of the Weierstrass representation which has been useful in three-dimensional

applications to multidimensional spaces will continue to generate many additional applications

to physics and mathematics. According to [12] integrable deformations of surfaces are generated

by the Davey–Stewartson hierarchy of 2+1 dimensional soliton equations. These deformations

of surfaces inherit all the remarkable properties of soliton equations. Geometrically such defor-

mations are characterized by the invariance of an infinite set of functionals over surfaces, the

simplest being the Willmore functional.

In this paper, we study minimal surfaces for simply connected immersed minimal surfaces

in the special three-dimensional Kenmotsu manifold K with η-parallel ricci tensor. We consider

the Riemannian left invariant metric and use some results of Levi-Civita connection.

§2. Preliminaries

Let M2n+1 (φ, ξ, η, g) be an almost contact Riemannian manifold with 1-form η, the associated

vector field ξ, (1, 1)-tensor field φ and the associated Riemannian metric g. It is well known

that [2]

φξ = 0, η (ξ) = 1, η (φX) = 0, (2.1)

φ2 (X) = −X + η (X) ξ, (2.2)

g (X, ξ) = η (X) , (2.3)

g (φX, φY ) = g (X,Y ) − η (X) η (Y ) , (2.4)

for any vector fields X, Y on M . Moreover,

(∇Xφ)Y = −η (Y )φ (X) − g (X,φY ) ξ, X, Y ∈ χ (M) , (2.5)

∇Xξ = X − η (X) ξ, (2.6)

where ∇ denotes the Riemannian connection of g, then (M,φ, ξ, η, g) is called an almost Ken-

motsu manifold [2].

In Kenmotsu manifolds the following relations hold [2]:

(∇Xη)Y = g (φX, φY ) , (2.7)

η (R (X,Y )Z) = η (Y ) g (X,Z) − η (X) g (Y, Z) , (2.8)

R (X,Y ) ξ = η (X)Y − η (Y )X, (2.9)

R (ξ,X)Y = η (Y )X − g (X,Y ) ξ, (2.10)

R (ξ,X) ξ = X − η (X) ξ, (2.11)

S (φX, φY ) = S (X,Y ) + 2nη (X) η (Y ) , (2.12)

S (X, ξ) = −2nη (X) , (2.13)

(∇XR) (X,Y ) ξ = g (Z,X)Y − g (Z, Y )X −R (X,Y )Z, (2.14)
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where R is the Riemannian curvature tensor and S is the Ricci tensor. In a Riemannian

manifold we also have

g (R (W,X)Y, Z) + g (R (W,X)Z, Y ) = 0, (2.15)

for every vector fields X,Y, Z.

§3. Special Three-Dimensional Kenmotsu Manifold K with η-Parallel Ricci Tensor

Definition 3.1 The Ricci tensor S of a Kenmotsu manifold is called η-parallel if it satisfies

(∇XS) (φY, φZ) = 0.

The notion of Ricci η−parallelity for Sasakian manifolds was introduced by M. Kon [13].

We consider the three-dimensional manifold

K =
{

(x, y, z) ∈ R3 : (x, y, z) 6= (0, 0, 0)
}

,

where (x, y, z) are the standard coordinates in R3. The vector fields

e1 = x3 ∂

∂x1
, e2 = x3 ∂

∂x2
, e3 = −x3 ∂

∂x3
(3.1)

are linearly independent at each point of K. Let g be the Riemannian metric defined by

g (e1, e1) = g (e2, e2) = g (e3, e3) = 1, (3.2)

g (e1, e2) = g (e2, e3) = g (e1, e3) = 0.

The characterizing properties of χ(K) are the following commutation relations:

[e1, e2] = 0, [e1, e3] = e1, [e2, e3] = e2. (3.3)

Let η be the 1-form defined by

η(Z) = g(Z, e3) for any Z ∈ χ(M).

Let be the (1,1) tensor field defined by

φ(e1) = −e2, φ(e2) = e1, φ(e3) = 0.

Then using the linearity of and g we have

η(e3) = 1, (3.4)

φ2(Z) = −Z + η(Z)e3, (3.5)

g (φZ, φW ) = g (Z,W ) − η(Z)η(W ), (3.6)

for any Z,W ∈ χ(M). Thus for e3 = ξ, (φ, ξ, η, g) defines an almost contact metric structure

on M.



Weierstrass Formula for Minimal Surface in the Special Three-Dimensional Kenmotsu Manifold 65

The Riemannian connection ∇ of the metric g is given by

2g (∇XY, Z) = Xg (Y, Z) + Y g (Z,X)− Zg (X,Y )

−g (X, [Y, Z]) − g (Y, [X,Z]) + g (Z, [X,Y ]) ,

which is known as Koszul’s formula.

Koszul’s formula yields

∇e1e1 = 0, ∇e1e2 = 0, ∇e1e3 = e1,

∇e2e1 = 0, ∇e2e2 = 0, ∇e2e3 = e2, (3.7)

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.

§4. Minimal Surfaces in the Special Three-Dimensional Kenmotsu Manifold K

with η-Parallel Ricci Tensor

In this section, we obtain an integral representation formula for minimal surfaces in the special

three-dimensional Kenmotsu manifold K with η-parallel ricci tensor.

We will denote with Ω ⊆ C ∼= R2 a simply connected domain with a complex coordinate

z = u+ iv, u, v ∈ R. Also, we will use the standard notations for complex derivatives:

∂

∂z
:=

1

2

(

∂

∂u
− i

∂

∂v

)

,
∂

∂z
:=

1

2

(

∂

∂u
+ i

∂

∂v

)

. (4.1)

For X ∈ χ(K), denote by ad(X)∗ the adjoint operator of ad(X), i.e., it satisfies the equation

g ([X,Y ] , Z) = g (Y, ad(X)∗ (Z)) , (4.2)

for any Y, Z ∈ χ(K). Let U be the symmetric bilinear operator on χ(M) defined by

U (X,Y ) :=
1

2
{ad(X)∗ (Y ) + ad(Y )∗ (X)} . (4.3)

Lemma 4.1 Let {e1, e2, e3} be the orthonormal basis for an orthonormal basis for χ(K) defined

in (3.1). Then,

U (e1, e1) = e3, U (e1, e3) = −1

2
e1,

U (e2, e2) = e3, U (e2, e3) = −1

2
e2, (4.4)

U (e1, e2) = U (e3, e3) = 0.

Proof Using (4.2) and (4.3), we have

2g (U (X,Y ) , Z) = g ([X,Z] , Y ) + g ([Y, Z] , X) .

Thus, direct computations lead to the table of U above. Lemma 4.1 is proved. �
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Lemma 4.2(see [10]) Let D be a simply connected domain. A smooth map ϕ : D −→ K is

harmonic if and only if

(

ϕ−1ϕu

)

u
+

(

ϕ−1ϕv

)

v
− ad

(

ϕ−1ϕu

)∗ (

ϕ−1ϕu

)

− ad
(

ϕ−1ϕv

)∗ (

ϕ−1ϕv

)

= 0 (4.5)

holds.

Let z = u + iv. Then in terms of complex coordinates z, z̄, the harmonic map equation

(4.5) can be written as

∂

∂z̄

(

ϕ−1 ∂ϕ

∂z

)

+
∂

∂z

(

ϕ−1 ∂ϕ

∂z̄

)

− 2U

(

ϕ−1 ∂ϕ

∂z
, ϕ−1 ∂ϕ

∂z̄

)

= 0. (4.6)

Let ϕ−1dϕ = Adz + Ādz̄. Then, (4.6) is equivalent to

Az̄ + Āz = 2U
(

A, Ā
)

. (4.7)

The Maurer–Cartan equation is given by

Az̄ − Āz =
[

A, Ā
]

. (4.8)

(4.7) and (4.8) can be combined to a single equation

Az̄ = U
(

A, Ā
)

+
1

2

[

A, Ā
]

. (4.9)

(4.9) is both the integrability condition for the differential equation ϕ−1dϕ = Adz + Ādz̄

and the condition for ϕ to be a harmonic map.

Let D(z, z̄) be a simply connected domain and ϕ : D −→ K a smooth map. If we write

ϕ (z) =
(

x1 (z) , x2 (z) , x3 (z)
)

, then by direct calculation

A =
(

x3
)−1 (

x1
ze1 + x2

ze2 + x3
ze3

)

. (4.10)

It follows from the harmonic map equation (4.7) that

Theorem 4.3 ϕ : D −→ K is harmonic if and only if the following equations hold:

x1
zx

3
z̄ + x3

zx
1
z̄ =

(

x3
)−1

x3
z̄x

1
z − 2x1

zz̄ +
(

x3
)−1

x3
zx

1
z̄ , (4.11)

x2
zx

3
z̄ + x3

zx
2
z̄ =

(

x3
)−1

x3
z̄x

2
z − 2x2

zz̄ +
(

x3
)−1

x3
zx

2
z̄ , (4.12)

2
(

x1
zx

1
z̄ + x2

zx
2
z̄

)

=
(

x3
)−1

x3
z̄x

3
z − 2x3

zz̄ +
(

x3
)−1

x3
zx

3
z̄ . (4.13)

Proof From (4.10), we have

Ā =
(

x3
)−1 (

x1
z̄e1 + x2

z̄e2 + x3
z̄e3

)

(4.14)

Using (4.10) and (4.14), we obtain

U
(

A, Ā
)

=
(

x3
)−1

[−
(

1

2
x1

zx
3
z̄ +

1

2
x3

zx
1
z̄

)

e1 −
(

1

2
x2

zx
3
z̄ +

1

2
x3

zx
2
z̄

)

e2

+
(

x1
zx

1
z̄ + x2

zx
2
z̄

)

e3]. (4.15)
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On the other hand, we have

Az̄ = −
(

x3
)−2

x3
z̄

(

x1
ze1 + x2

ze2 + x3
ze3

)

+
(

x3
)−1 (

x1
zz̄e1 + x2

zz̄e2 + x3
zz̄e3

)

, (4.16)

Āz = −
(

x3
)−2

x3
z

(

x1
z̄e1 + x2

z̄e2 + x3
z̄e3

)

+
(

x3
)−1 (

x1
zz̄e1 + x2

zz̄e2 + x3
zz̄e3

)

. (4.17)

By direct computation, we obtain

Az̄ =
(

−
(

x3
)−2

x3
z̄x

1
z +

(

x3
)−1

x1
zz̄

)

e1 +
(

−
(

x3
)−2

x3
z̄x

2
z +

(

x3
)−1

x2
zz̄

)

e2

+
(

−
(

x3
)−2

x3
z̄x

3
z +

(

x3
)−1

x3
zz̄

)

e3, (4.18)

Āz =
(

−
(

x3
)−2

x3
zx

1
z̄ +

(

x3
)−1

x1
zz̄

)

e1 +
(

−
(

x3
)−2

x3
zx

2
z̄ +

(

x3
)−1

x2
zz̄

)

e2

+
(

−
(

x3
)−2

x3
zx

3
z̄ +

(

x3
)−1

x3
zz̄

)

e3. (4.19)

Hence, using (4.7) we obtain (4.11)-(4.13). This completes the proof of the Theorem. �

The exterior derivative d is decomposed as

d = ∂ + ∂̄, ∂ =
∂

∂z
dz, ∂̄ =

∂

∂z̄
dz̄, (4.20)

with respect to the conformal structure of D. Let

℘1 =
(

x3
)−1

x1
zdz, ℘2 =

(

x3
)−1

x2
zdz, ℘

3 =
(

x3
)−1

x3
zdz. (4.21)

Theorem 4.4 The triplet {℘1, ℘2, ℘3} of (1, 0)-forms satisfies the following differential system:

∂̄℘1 = −x3
(

℘1 ∧ ℘3 + ℘3 ∧ ℘1
)

, (4.22)

∂̄℘2 = −x3
(

℘2 ∧ ℘3 + ℘3 ∧ ℘2
)

, (4.23)

∂̄℘3 = 2x3
(

℘1 ∧ ℘1 + ℘2 ∧ ℘2
)

. (4.24)

Proof From (4.11)-(4.13), we have (4.22)-(4.24). Thus proof is complete. �

Theorem 4.5 Let {℘1, ℘2, ℘3} be a solution to (4.22)-(4.24) on a simply connected coordinate

region D. Then

ϕ (z, z̄) = 2Re

∫ z

z0

(

x3℘1, x3℘2, x3℘3
)

(4.25)

is a harmonic map into K.

Conversely, any harmonic map of D into K can be represented in this form.

Proof By theorem 4.3, we see that ϕ (z, z̄) is a harmonic curve if and only if ϕ (z, z̄) satisfy

(4.11)-(4.13). From (4.21), we have
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x1 (z, z̄) = 2Re

∫ z

z0

x3℘1, x2 (z, z̄) = 2Re

∫ z

z0

x3℘2,

x3 (z, z̄) = 2Re

∫ z

z0

x3℘3,

which proves the theorem. �
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Abstract: A cycle basis B of G is called a Smarandachely (k, d)-fold for integers , d, k, d−

k ≥ 0 if each edge of G occurs in at least k and at most d of the cycles in B. Particularly,

a Smarandachely (0, d)-fold basis is abbreviated to a d-fold basis. The basis number of a

graph G is defined to be the least integer d such that G has a d-fold basis for its cycle space.

In this work, the basis number for the wreath product of wheels with stars is investigated.
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§1. Introduction

For a given graph G, we denote the vertex set of G by V (G) and the edge set by E(G). The set

E of all subsets of E(G) forms an |E(G)|-dimensional vector space over Z2 with vector addition

X ⊕ Y = (X\Y ) ∪ (Y \X) and scalar multiplication 1 ·X = X and 0 ·X = ∅ for all X,Y ∈ E .

The cycle space, C(G), of a graph G is the vector subspace of (E ,⊕, ·) spanned by the cycles of

G. Note that the non-zero elements of C(G) are cycles and edge disjoint union of cycles. It is

known that for a connected graph G the dimension of the cycle space is the cyclomatic number

or the first Betti number, dim C(G) = |E(G)| − |V (G)| + 1.

A basis B for C(G) is called a cycle basis ofG. A cycle basis B ofG is called a Smarandachely

(k, d)-fold for integers , d, k, d − k ≥ 0 if each edge of G occurs in at least k and at most d of

the cycles in B. Particularly, a Smarandachely (0, d)-fold basis is abbreviated to a d-fold basis.

The basis number, b(G), of G is the least non-negative integer d such that C(G) has a d-fold

basis. The first important use of the basis number goes bask to 1937 when MacLane proved

the following result (see [17]):

Theorem 1.1 (MacLane) The graph G is planar if and only if b(G) ≤ 2.

Later on, Schmeichel [17] proved the existence of graphs that have arbitrary large basis

number. In fact he proved that for any integer r there exists a graph with basis greater than

1Received September 8, 2010. Accepted December 20, 2010.



On the Basis Number of the Wreath Product of Wheels with Stars 71

or equal to r. Also, he proved that for n ≥ 5, b(Kn) = 3 where Kn is the complete graph of n

vertices. There after, Banks and Schmeichel [8] proved that b(Qn) = 4 where Qn is the n-cube.

For the completeness, it should be mentioned that a basis B of the cycle space C(G) of a graph

G is Smarandachely if each edge of G occurs in at least 2 of the cycles in B. The following

result will be used frequently in the sequel [15]:

Lemma 1.2 (Jaradat, et al.) Let A,B be sets of cycles of a graph G, and suppose that both

A and B are linearly independent, and that E(A) ∩ E(B) induces a forest in G (we allow the

possibility that E(A) ∩ E(B) = ∅). Then A ∪B is linearly independent.

From 1982 more attention has given to address the problem of finding the basis number

in graph products. In the literature there are a lot of graph products. In fact, there are

more than 256 different kind of products, we mention out of these product the most common

ones, The Cartesian, the direct, the strong the lexicographic, semi-composite and the wreath

product. The first four of the above products were extensively studied by many authors, we

refer the reader to the following articles and references cited there in: [2], [4], [5], [6], [7], [9],

[10], [11], [13], [14], [15] and [16]. In contrast to the first four products, a very little is known

about the basis number of the wreath products, ρ, of graphs. Schmeichel [18] proved that

b(P2ρNm) ≤ 4. Ali [1] proved that b(KnρNm) ≤ 9. Al-Qeyyam and Jaradat [3] proved that

b(SnρPm), b(SnρSm) ≤ 4. In this paper, we investigate the basis number of the wreath product

of wheel graphs with stars.

For completeness we give the definition of the following products: Let G = (V (G), E(G))

and H = (V (H), E(H)) be two graphs. (1) The Cartesian product G�H has the vertex set

V (G�H) = V (G)×V (H) and the edge set E(G�H) = {(u1, v1)(u2, v2)|u1u2 ∈ E(G) and v1 =

v2, or v1v2 ∈ E(H) and u1 = u2}. (2) The Lexicographic product G1[G2] is the graph with

vertex set V (G[H ]) = V (G) × V (H) and the edge set E(G[H ]) = {(u1, u2)(v1, v2)|u1 =

v1 and u2v2 ∈ E(H) or u1v1 ∈ E(G)}. (3) The wreath product GρH has the vertex set

V (GρH) = V (G) × V (H) and the edge set E(GρH) = {(u1, v1)(u2, v2)|u1 = u2 and v1v2 ∈
H, or u1u2 ∈ G and there is α ∈Aut(H) such that α(v1) = v2}.

In the rest of this paper, we let {u1, u2, . . . , un} be the vertex set of the wheel Wn(the

star Sn), with dWn
(u1) = n − 1 (dSn

(u1) = n − 1) and {v1, v2, . . . , vm} be the vertex set Sm

with dSm
(v1) = m− 1. Also, Cn−1 = u2u3 . . . unu2 and Nm−1 is the null graph with vertex set

{v2, v3, . . . , vm}. Wherever they appear a, b, c, d and l stand for vertices. Also, fB(e) stands for

the number of elements of B containing the edge e, and E(B) = ∪C∈BE(C) where B ⊆ C(G).

§2. The Basis Number of WnρSm

Throughout this work, we set the following sets of cycles:

Hab = {(a, vj)(b, vi)(a, vj+1)(b, vi+1)(a, vj) | 2 ≤ i, j ≤ m− 1} ,

Ecab =
{

E(j)
cab = (c, v2)(a, vj)(b, vm)(a, vj+1)(c, v2) | 2 ≤ j ≤ m− 1

}

,
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Gab =
{

G(j)
ab = (a, v1)(a, vj)(b, v2)(a, vj+1)(a, v1) | 2 ≤ j ≤ m− 1

}

,

Wcab = {(c, v1)(c, v2)(a, v2)(b, vm)(b, v1)(a, v1)(c, v1)} ,

and

Sab = {(a, v1)(a, v2)(b, v2)(b, v1)(a, v1)} .

Note that Hab is the Schemeichel’s 4-fold basis of C(abρNm−1) (see Theorem 2.4 in [18]).

Moreover, (1) if e = (a, v2)(b, vm) or e = (a, vm)(b, v2) or e = (a, v2)(b, v2) or e = (a, vm)(b, vm),

then fHab
(e) = 1; (2) if e = (a, v2)(b, vi) or (a, vj)(b, v2) or (a, vm)(b, vi) or (a, vj)(b, vm), then

fHab
(e) ≤ 2; and (3) if e ∈ E(abρNm−1) and it is not of the above forms, then fHab

(e) ≤ 4.

Lemma 2.1 Every linear combination of cycles of Ecab contains at least one edge of the form

(b, vi)(a, vm) where 2 ≤ i ≤ m and at least one edge of the form (c, v2)(b, vi) where 2 ≤ i ≤ m.

Proof Note that E(Ecab) ⊆ {(b, vm)(a, vj), (c, v2)(a, vj)|j = 2, 3, . . . ,m}. Since each of

{(b, vm)(a, vj)|j = 2, 3, . . . ,m} and {(c, v2)(a, vj)|j = 2, 3, . . . ,m} forms an edge set of a star

and since any linear combination of cycles is a cycle or an edge disjoint union of cycles, any linear

combination of cycles of Ecab must contains at least one edge of {(b, vm)(a, vj)|j = 2, 3, . . . ,m}
and at least one edge of {(c, v2)(a, vj)|j = 2, 3, . . . ,m}. �

Using the same argument as in Lemma 2.1, we get the following result.

Lemma 2.2 Every linear combination of cycles of Gab contains at least one edge of the form

(a, v1)(a, vi) where 2 ≤ i ≤ m and at least one of the form (b, v2)(a, vi) where 2 ≤ i ≤ m. �

We now set the following cycles:

U (j)
lab = (l, vj)(a, vj)(b, vj)(l, vj), j = 1, 2, . . . ,m

Uab = (a, v1)(a, v2)(b, vm)(b, v1)(a, v1).

Let

Olabc = Hbc ∪ Gcb ∪ {U (1)
lbc ,Ubc} ∪ Ecba

Lemma 2.3 Olabc is linearly independent.

Proof Note that Hbc is isomorphic to the Schemeichel’s 4-fold basis of bcρNm−1. Thus,

Hbc is a linearly independent set. By Lemma 3.2.3 of [3], each of Gcb, and Ecba is linearly

independent. The cycle Ubc contains the edge (b, v2)(c, vm) which does not occur in U (1)
lbc , thus

{U (1)
lbc ,Ubc} is linearly independent. It is easy to see that any linear combination of cycles of

{U (1)
lbc ,Ubc} contains either (b, v1)(c, v1) or (l, v1)(b, v1) and non of them occurs in any cycle of

Hbc, thus {U (1)
l,bc,Ubc} ∪ Hbc is linearly independent. By Lemma 2.1, any linear combination of

cycles of Ecba contains an edge of the form (b, vi)(a, vm) for 2 ≤ i ≤ m which does not occur in

any cycle of {U (1)
l,bc,Ubc}∪Hbc. Thus {U (1)

l,bc,Ubc}∪Hbc ∪Ecba is linearly independent. Finally, by

Lemma 2.2, any linear combination of cycles of Gcb contains an edge of the form (c, v1)(c, vi)
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for 2 ≤ i < m which appears in no cycle of {U (1)
lbc ,Ubc} ∪ Hbc ∪ Ecba. Thus Olabc is linearly

independent. �

The coming result follows from being that

E(Olabc) − {(b, vi)(c, vj)|2 ≤ i, j ≤ m} ∪ {(b, v1)(c, v1)}

forms and edge set of a tree and the fact that any linear combination of an independent set of

cycles is a cycle or an edge disjoint union of cycles.

Lemma 2.4 Any linear combination of cycles of Olabc must contain an edge of {(b, vi)(c, vj)|

2 ≤ i, j ≤ m} ∪ {(b, v1)(c, v1)}. �

Now, we let

O∗
lbc = Hbc ∪ Gcb ∪ {U (1)

lbc ,Ubc} and O⊛

labcd = Olabc ∪ Edcb.
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Figure 1: A represents the cycles of O∗
lbc, B represents the cycles of Olabc and C represents the

cycles of O⊛

labcd for m = 6.

Remark 2.5 Let e ∈ E(O⊛

labcd). From the definitions of O∗
lab,Olabc and O⊛

labcd and by the aid

of Figure 1 below, one can easily see the following:

(1) If e = (l, v1)(b, v1) or (l, v1)(c, v1)or (b, v1)(b, v2) or (c, v1)(c, v2) or (c, v1)(c, v2), then

fO∗
lab

(e) = fOlabc
(e) = fO⊛

labcd
(e) = 1. (2) If e = (c, v1)(c, vj) such that 3 ≤ j ≤ m or

e = (b, v1)(c, v1), then fO∗
lab

(e) = fOlabc
(e) = fO⊛

labcd
(e) = 2. (3) If e = (a, vm)(b, vj) such that

3 ≤ j ≤ m− 1 , then fO∗
lab

(e) = 0 and fOlabc
(e) = fO⊛

labcd
(e) = 2. (4) If e = (c, vj)(d, v2) such

that 3 ≤ j ≤ m− 1, then fO∗
lab

(e) = fOlabc
(e) = 0 and fO⊛

labcd
(e) = 2. (5) If e = (a, vm)(b, vm)

or (a, vm)(b, v2) or (c, vm)(d, v2), then fO∗
lab

(e) = 0and fOlabc
(e) = fO⊛

labcd
(e) = 1. (6) If

e = (b, v2)(c, v2), then fO∗
lab

(e) = 2 and fOlabc
(e) = fO⊛

labcd
(e) = 3. (7) If e = (b, vm)(c, v2),

then fO∗
lab

(e) = 1,fOlabc
(e) = 2 and fO⊛

labcd
(e) = 2. (8) If e = (b, vj)(c, v2) such that 3 ≤ j ≤

m − 1, then fO∗
lab

(e) = 2and fOlabc
(e) = fO⊛

labcd
(e) = 4. (9) If e = (b, vm)(c, vj) such that

3 ≤ j ≤ m− 1, then fO∗
lab

(e) = fOlabc
(e) = 2 and fO⊛

labcd
(e) = 4. (10) If e = (b, v2)(c, vm), then

fO∗
lab

(e) = fOlabc
(e) = fO⊛

labcd
(e) = 3. (10) If e = (b, vj)(c, vk) such that 2 ≤ j, k ≤ m and e is

not as in (1)-(10), then fO∗
lab

(e) = fOlabc
(e) = fO⊛

labcd
(e) ≤ 4.
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The automorphism group of Sm is isomorphic to the symmetric group on the set {v2, v3, . . . ,
vm} with α(v1) = v1 for any α ∈ Aut(G). Therefore, for any two vertices vi, vj (2 ≤ i, j ≤ m),

there is α ∈ Aut(G) such that α(vi) = vj . Hence, WnρSm is decomposable into SnρSm ∪
Cn−1[Nm−1] ∪ {(uj, v1)(uj+1, v1)|2 ≤ j < n} ∪ {(un, v1)(u2, v1)}. Thus

|E(WnρSm)| = |E(SnρSm)|+ (n− 1)(m− 1)2 + (n− 1) = |E(SnρSm)|+ (n− 1)(m2 − 2m+ 2).

Hence,

dim C(WnρSm) = dim C(SnρSm) + (n− 1)(m2 − 2m+ 2).

By Theorem 3.2.5 of [3], we have

dim C(SnρSm) = (n− 1)(m2 − 2m+ 1). (1)

Therefore,

dim C(WnρSm) = (n− 1)(2m2 − 4m+ 3). (2)

Lemma 2.6 The set O = O∗
u1u2u3

∪(∪n−1
i=3 Ou1ui−1uiui+1) ∪ O⊛

u1un−1unu2u3
is linearly indepen-

dent subset of C(WnρSm).

Proof By Lemmas 2.3, O∗
u1u2u3

is linearly independent. Note that, O⊛
u1un−1unu2u3

=

Ou1,un−1unu2 ∪ Eu1,u3u2un
. By Lemma 2.1, any linear combination of cycles of Eu3u2un

con-

tains an edge of {(u3, v2)(u2, vj)|2 ≤ j ≤ m} which is not in any cycle of Ou1un−1unu2 . Thus,

O⊛
u1un−1unu2u3

is linearly independent. We now use mathematical induction on n to show that

∪n−1
i=3 Ou1ui−1uiui+1 is linearly independent. If n = 4, then ∪n−1

i=3 Ou1ui−1uiui+1 = Ou1u2u3u4 .

And so, the result is followed from Lemma 2.3. Assume that n is greater than 3 and it

is true for less than n. Note that ∪n−1
i=3 Ou1ui−1uiui+1 = ∪n−2

i=3 Ou1ui−1uiui+1 ∪ Ou1un−2un−1un
.

By Lemma 2.3 and the inductive step, each of ∪n−2
i=3 Ou1ui−1uiui+1 and Ou1un−2un−1un

is lin-

early independent. Since any linear combination of cycles of Ou1un−2un−1un
contains an edge

of {(un, vi)(un−1, vj)|2 ≤ i, j ≤ m} ∪ {(un, v1)(un−1, v1)} (Lemma 2.4) which does not oc-

cur in any cycle of ∪n−2
i=3 Ou1ui−1uiui+1 , ∪n−1

i=3 Ou1ui−1uiui+1 is linearly independent. Also, since

E(O∗
u1u2u3

)∩E(∪n−1
i=3 Ou1ui−1uiui+1) = {(u3, v1)(u1, v1), (u3, v1)(u3, v2)}∪{(u2, vm)(u3, vi) | 2 ≤

i ≤ m} which is an edge set of a tree, O∗
u1u2u3

∪ (∪n−1
i=3 Ou1ui−1uiui+1) is linearly independent by

Lemma 1.2. Similarly, E(O∗
u1u2u3

∪(∪n−1
i=3 Ou1ui−1uiui+1))∩E(O⊛

u1un−1unu2u3
) = {(u1, v1)(u2, v1),

(u2, v1)(u2, v2), (u1, v1)(un, v1), (un, v1)(un, v2)} ∪ {(un−1, vm)(un, vi), (u3, v2)(u2, vi) | 2 ≤ i ≤
m} which is an edge set of a tree. Thus, O is linearly independent by Lemma 1.2. �

Now, let

Lab = Hab ∪ Gab ∪ Gba ∪ Sab and Ycab = Ecab ∪Hca ∪ Gca ∪Wcab.

Theorem 2.7 For any wheel Wn of order n ≥ 4 and star Sm of order m ≥ 3,

3 ≤ b(WnρSm) ≤ 4.

Proof To prove the first inequality, we assume that WnρSm has a 2-fold basis for n ≥ 4

and m ≥ 3, say B. Since the girth of WnρSm is 3, we have 4|B| ≤ 3|E(WnρSm)| . Hence,
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3(n−1)(2m2−4m+3) ≤ 2[(n−1)(2m2−4m+3)+nm], which implies that n(2m2−6m+3)−
2m2 + 4m− 3 ≤ 0. But n ≥ 3, thus, 4(2m2 − 6m+ 3)− 2m2 + 4m− 3 ≤ 0, that is m ≤ 20

6 − 9
m

.

Therefore, m < 4.

To prove the second inequality, it is enough to exhibit a 4-fold basis. Define B(WnρSm) =

B(SnρSm) ∪O where B(SnρSm) = (∪n−1
i=2 Yui+1u1ui

) ∪ Lu1u2 is the cycle basis of SnρSm (The-

orem 3.2.5 of [3]). By Lemma 2.6 O is linearly independent. Since

E(B(SnρSm)) ∩ E(O) = E((Nn−1�Sm) ∪ (Sn�v1)) (3)

which is an edge set of a tree, B(WnρSm) is linearly independent by Lemma 1.2. Note that,

|Hab| = (m− 2)2 and |Gba| = |Ecba| = (m− 2). (4)

Thus by (4),

|O∗
u1u2u3

| = |O∗
lab| = |Hab| + |Gba| + 2

= (m− 2)2 + (m− 2) + 2

= m2 − 3m+ 4, (5)

and so

|Ou1ui−1uiui+1 | = |Olabc| = |O∗
lab| + |Ecba|

= m2 − 3m+ 4 + (m− 2)

= m2 − 2m+ 2, (6)

|O⊛

un−1unu2u3
| = |O⊛

labcd| = |Olabc| + |Edcb|
= m2 − 2m+ 2 + (m− 2)

= m2 −m. (7)

Hence (5), (6) and (7), imply

|O| = |O∗
u1u2u3

| +
n−1
∑

i=3

|Oui−1uiui+1 | + |O⊛

un−1unu2u3
|

= m2 − 3m+ 4 + (n− 3)(m2 − 2m+ 2) +m2 −m

= (n− 1)(m2 − 2m+ 2). (8)

Thus (1), (2) and (8), give

|B(WnρSm)| = |B(SnρSm)| + |O|
= (n− 1)(m2 − 2m+ 1) + (n− 1)(m2 − 2m+ 2).

= (n− 1)(2m2 − 4m+ 3)

= dim C(WnρSm)

Therefore, B(WnρSm) forms a basis for C(WnρSm). To this end, we show that fB(WnρSm)(e) ≤ 4

for each edge e ∈ E(WnρSm). To do that we count the number of cycles of B(WnρSm) that

contain the edge e. To this end, and according to (3) we split our work into two cases.
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Case 1. e ∈ E(WnρSm) − E((Nn−1�Sm) ∪ (Sn�v1)).

Then we have the following:

Subcase 1.1. e ∈ E(u2u3ρSm) − (E(SnρSm) ∪ E(Cn−1�v1)). Then e occurs only in cycles

of O⊛
u1un−1unu2u3

∪ O∗
u1u2u3

∪ Ou1u2u3u4 . By the help of Remark 2.5, we have the follow-

ing: (1) If e = (u3, v2)(u2, vj) such that 2 ≤ j ≤ m − 1, then fB(WnρSm)(e) = fO∗
u1u2u3

(e)+

fO⊛
u1un−1unu2u3

(e) ≤ 2 + 2. (2) If e = (u3, v2)(u2, vm), then fB(WnρSm)(e) = fO∗
u1u2u3

(e) +

fOu1u2u3u4
(e)+ fO⊛

u1un−1unu2u3
(e) ≤ 1 + 1 + 2. (3) If e = (u2, vm)(u3, vj) such that 3 ≤ j ≤ m,

then fB(WnρSm)(e) = fO∗
u1u2u3

(e) + fOu1u2u3u4
(e) ≤ 1 + 1 + 2. (4) If e = (u2, vj)(u3, vk) such

that 2 ≤ j, k ≤ m and e is not as in in (1) or (2) or (3), then fB(WnρSm)(e) = fO∗
u1u2u3

(e) ≤ 4.

Subcase 1.2. e ∈ E(uiujρSm) − (E(SnρSm) ∪ E(Cn−1�v1)) such that 3 ≤ j ≤ n − 2.

Then e occurs only in cycles of Ou1ui−1uiui+1 ∪ Ou1uiui+1ui+2 . By the help of Remark 3.5, we

have the following: (1) If e = (ui, vm)(ui+1, vj) such that 2 ≤ j ≤ m, then fB(WnρSm)(e) =

fOu1ui−1uiui+1
(e)+ fOu1uiui+1ui+2

(e) ≤ 2+2. (2) If e = (ui, vj)(ui+1, vk) such that 2 ≤ j, k ≤ m

and e is not as in (1), then fB(WnρSm)(e) = fOu1ui−1uiui+1
(e) ≤ 4.

Subcase 1.3. e ∈ E(un−1unρSm)− (E(SnρSm) ∪ E(Cn−1�v1)). Then e occurs only in cycles

of Ou1un−2un−1un
∪ O⊛

u1un−1unu2u3
. By the help of Remark 3.5, we have the following: (1)

If e = (un−1, vm)(un, vj) such that 2 ≤ j ≤ m, then fB(WnρSm)(e) = fOu1ui−1uiui+1
(e) +

fO⊛
u1un−1unu2u3

(e) ≤ 2 + 2. (2) If e = (ui, vj)(ui+1, vk) such that 2 ≤ j, k ≤ m and e is not as in

(1), then fB(WnρSm)(e) = fOu1ui−1uiui+1
(e) ≤ 4.

Subcase 1.4. e ∈ E(unu2ρSm) − (E(SnρSm) ∪ E(Cn−1�v1)). Then e occur only in cycles of

O⊛
u1un−1unu2u3

. By Remark 2.5, fB(WnρSm)(e) = fO⊛
u1un−1unu2u3

(e) ≤ 4.

Subcase 1.5. e ∈ Cn−1�v1. By Remark 2.5, we have the following: (1) If e = (u2, v1)(u3, v1),

then fB(WnρSm)(e) = fO∗
u1u2u3

(e) = 2. (2) If e = (ui, v1)(ui+1, v1) such that 3 ≤ i ≤ n − 1,

then fB(WnρSm)(e) = fOu1ui−1uiui+1
(e) = 2. (3) If e = (u2, v1)(un, v1), then fB(WnρSm)(e) =

fO⊛
u1un−1unu2u3

(e) = 2.

Subcase 1.6. e ∈ (SnρSm)−E((N|V (Sn−{u1})|�Sm)∪ (Sn�v1)). Then e occurs only in cycles

of B(SnρSm). Thus by Theorem 3.2.5 of [3], fB(WnρSm)(e) ≤ fB(SnρSm) ≤ 4.

Case 2. e ∈ E((N|V (Sn−{u1})|�Sm) ∪ (Sn�v1)).

Then by the aid of Remark 2.5 and Theorem 3.2.5 of [3] we have the following.

Subcase 2.1. e ∈ ∪n
i=4(ui�Sm).

Then e occurs only in cycles of Ou1ui−1uiui+1∪B(SnρSm). Thus, fB(WnρSm)(e) = fOu1ui−1uiui+1
(e)+

fB(SnρSm) ≤ 2 + 2.

Subcase 2.2. e ∈ (u3�Sm). Then e occurs only in cycles of O∗
u1u2u3

∪ B(SnρSm). Thus,

fB(WnρSm)(e) = fO∗
u1u2u3

(e) + fB(SnρSm) ≤ 2 + 2.

Subcase 2.3. e ∈ (u2�Sm). Then e occurs only in cycles of O⊛
u1un−1unu2u3

∪B(SnρSm). Thus,

fB(WnρSm)(e) = fO⊛
u1un−1unu2u3

(e) + fB(SnρSm) ≤ 2 + 2.

Subcase 2.4. e ∈ Sn�v1. Then we have the following: (1) If e = (u1, v1)(u2, v1), then
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fB(WnρSm)(e) = fO∗
u1u2u3

(e)+fOu1u2u3u4
+fB(SnρSm). (2) If e = (u1, v1)(u3, v1), then fO∗

u1u2u3
(e)+

fO⊛
u1un−1unu2u3

(e) + fB(SnρSm) ≤ 1 + 1 + 2. (3) If e = (u1, v1)(ui, v1) such that 3 ≤ i ≤ n− 1,

then fB(WnρSm)(e) = fOu1ui−1uiui+1
(e) + fOu1uiui+1ui+2

(e) + fB(SnρSm) ≤ 1 + 1 + 2. (4) If

e = (u1, v1)(un, v1), then fB(WnρSm)(e) = fOu1un−2un−1un
(e) + fO⊛

u1un−1unu2u3
(e) + fB(SnρSm) ≤

1 + 1 + 1. �
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§1. Introduction

The graphs considered here are finite, nontrivial, undirected, connected, without loops or mul-

tiple edges. The vertices and edges of a graph G are called the elements of G. In a graph G if

deg(v) = 1, then v is called a pendant vertex of G. A dominating set X of a graph G is called

an entire dominating set of G, if every element not in X is either adjacent or incident to at

least one element in X . The entire domination number ε(G) of G is the minimum cardinality

of an entire dominating set of G. For an early survey on entire domination number,refer[5].For

undefined terms or notations in this paper may be found in Harary [3].

Let D be a minimum dominating set in G = (V,E). If V −D contains a dominating set

D′ of G then D′ is called an inverse dominating set with respect to D. The inverse domination

number γ−1(G) of G is the cardinality of a smallest inverse dominating set of G.

Let S be the set of elements of a graph G and X be the minimum entire dominating set of

G. If S−X contains an entire dominating set say X ′ then X ′ is called inverse entire dominating

set of G with respect to X . The inverse entire domination number ε−1(G) of G is the minimum

number of elements in an inverse entire dominating set of G.

A dominating setD of a graphG, is a split dominating set, if the induced subgraph 〈V −D〉
1Supported by the University Grants Commission, New Delhi,India-No.F.4-3/2006(BSR)/7-101/2007(BSR),

dated: September 2009 and No.F.FIP/11th Plan/KAKA047TF02, dated: October 8, 2009.
2Received August 18, 2010. Accepted December 22, 2010.
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is disconnected. The split domination number γs(G) of G is the minimum cardinality of a split

dominating set [6].

A dominating set D of a graph G, is a nonsplit dominating set, if the induced subgraph

〈V −D〉 is connected. The nonsplit domination number γns(G) of G is the minimum cardinality

of a nonsplit dominating set [7].

A dominating set D of a graph G, is a connected dominating set, if the induced subgraph

〈D〉 is connected. The connected domination number γc(G) of G, is the minimum cardinality

of a connected dominating set [10].

A set D of vertices of a graph G is a maximal dominating set of G, if D is a dominating

set and V −D is not a dominating set. The maximal domination number γm(G) of G, is the

minimum cardinality of a maximal dominating set [8].

Let G = (V,E) be a graph and W = W1 ∪W2 with W1 ⊂ V and W2 ⊂ E. The Smarandachely

total graph TW1,W2(G) is defined to be a graph G∗ = (V ∗, E∗), where V ∗ = V ∪ E and two

vertices are adjacent in G∗ if and only if they are adjacent in or incident W in W . Particularly,

if W1 = V and W2 = E, such a Smarandachely total graph TV,E(G) is called the semitotal-point

graph, denoted by T2(G).

For any graph G = (V,E), the semitotal-point graph T2(G) is the graph whose vertex set

is the union of vertices and edges in which two vertices are adjacent if and only if they are

adjacent vertices of G or one is a vertex and other is an edge of G incident with it [9].

An entire dominating set X of a graph T2(G) is an entire semitotal-point(ESP) dominating

set if every element not in X is either adjacent or incident to at least one element in X . An

ESP domination number εtp(G) of G is the minimum cardinality of an ESP dominating set of

G.

In this paper, we have initiated a study on an entire domination on semitotal-point graphs

and expressed the results in terms of elements of G and other different domination parameters

of G.

The following figure shows the formation of ε(G) and εtp(G).
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In Figure 1, V (G) = p = 4 and E(G) = q = 4. In T2(G), V (T2(G)) = p+q and E(T2(G)) =

3q. X = {2, c} or {4, a} etc. X ′ = {2, e12, 4, 3} etc. ε(G) = |X | = 2 , εtp(G) = |X ′| = 4 = p.
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§2. Preliminary Results

We need the following theorems for our further results.

Theorem A([5]) For any connected graph G of order p, ε(G) ≤ ⌈p
2
⌉ and the equality is holds

for G = Kp.

Theorem B([4]) For any connected graph G of order p, γ(G) ≥ ⌈ p

∆(G) + 1
⌉, where ∆(G) is

the maximum degree of G.

Theorem C([2]) For any tree T , γtp(T ) ≥ γ(T ).

Theorem D([6]) For any graph G with an pendant vertex, γ(G) = γs(G).

Theorem E([10]) If T is a tree with p ≥ 3 vertices, then γc(T ) = p− e, where e is the number

of pendant vertices in a tree.

Theorem F([1]) Let G be a (p, q) graph with edge domination number γ′(G). Then γ′(G) ≤
⌊p
2
⌋.

Proposition 1 For any graph G, γ(G) ≤ ε(G).

Proposition 2 If G = Kp; p ≥ 2 vertices. then εtp(Kp) = p.

Observation. In this paper, γ(T2(G)) and γtp(G) both denote the domination number of the

semitotal-point graph T2(G).

§3. Main Results

Theorem 3.1 For any graph G of order p, εtp(G) = p.

Proof Let G be a (p, q) graph. We consider the following cases.

Case 1 When q ≤ p. Let X = {v1, v2. · · · , vk} be the set of vertices in T2(G) and by definition,

V (T2(G)) = p+ q. By Theorem A,

εtp(G) ≤ ⌈p+ q

2
⌉ ≤ p.

Let F = {v1, v2, · · · , vm} be the maximum independent set of T2(G). Since every maximum

independent set is a minimal dominating set, therefore γ(T2(G)) ≤ p+q
2 . Let {e1, e2, · · · , eq}

be the set of edge vertices in T2(G). Let F ′ = {e′1, e′2, · · · , e′n} be the edge subset of E(T2(G))

such that no edge in F ′ is incident with a vertex in F . By Theorem F, |F ′| = ⌊p+q
2 ⌋. Clearly

F ∪ F ′ is an entire dominating set of T2(G).

Therefore, εtp(G) ≤ |F ∪ F ′| = p+q
2 + ⌊p+q

2 ⌋ ≥ p.

Thus from the above two results we get εtp(G) = p.

Case 2 When q > p, then G must be either Kp or Kp − xi, where xi; i ≥ 1 denotes the edges

of Kp. Suppose G = Kp, then by Proposition 2, the result follows. If G 6= Kp and q > p, then

by Case 1, εtp(G) = p. Hence the result. �
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Theorem 3.2 For any graph G, ε(G) < εtp(G).

Proof Let D and D′ be minimal entire dominating sets of G and T2(G) respectively. By

Theorem 3.1, εtp(G) = p and by Theorem A, we have ε(G) ≤ ⌈p
2
⌉. Hence from these two results

we get the required result. �

Theorem 3.3 For any (p, q) graph G with maximum degree ∆,

p+ q

2∆(G) + 1
≤ εtp(G).

Proof By Theorem B, we have γ(G) ≥ ⌈ p

∆(G) + 1
⌉. Therefore, γtp(G) ≥ ⌈ p+ q

2∆(G) + 1
⌉.

Since γtp(G) ≤ εtp(G), therefore εtp(G) ≥ ⌈ p+ q

2∆(G) + 1
⌉. �

Corollary 3.3.1 For any (p, q) graph G,

p

∆(G) + 1
< εtp(G).

In the following theorem we obtain the relation between εtp(G) and γs(G).

Theorem 3.4 For any graph G with a pendant vertex, γs(G) ≤ εtp(G) and the equality holds

for G = Kp with p ≥ 2 vertices.

Proof For any graph G, we have γ(G) ≤ ε(G) and also by Theorem 3.2, γ(G) ≤ ε(G) <

εtp(G). Therefore by from Theorem D, we get γs(G) < εtp(G).

Since γs(Kp) = p, therefore by Theorem 3.1, the equality follows. �

The next result relates εtp(G) with β0(G).

Theorem 3.5 For any graph G 6= Kp and tree T with p ≥ 3 vertices, 2β0 ≤ εtp(G), where β0

is the vertex independence number of G.

Proof Let B be the independent set of G which is also a dominating set of G. Then

γ(G) ≤ |B| ≤ p
2 . Now 2β0(G) = 2|B| ≤ 2 p

2 = p. Also by using Theorem 3.1, we get the

required result. �

Theorem 3.6 For any graph G with ∆(G) < p− 1,

γ(G) + β0(G)

2
< εtp(G) ≤ γ(G) + β0(G) + 1.

Proof By Theorem 3.1, we have εtp(G) = p. Also for any graph G without isolated vertices

we have γ(G) ≤ p
2 and β0(G) ≤ p

2 . Therefore from these the lower bound is attained. The

upper bound is obvious. �

In the following result we establish the relation between εtp(G) and diameter of G.
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Theorem 3.7 For any graph G,

diam(G) + 1

3
< εtp(G),

where diam(G) is the diameter of G.

Proof In [4], we have ⌈diam(G)+1
3 ⌉ ≤ γ(G) and by Proposition 1 and Theorem 3.2, the

result follows. �

Next we obtain the relation between εtp(G), α0(G) and β0(G).

Theorem 3.8 For any graph G, εtp(G) = α0(G) + β0(G).

Proof The result follows from Theorem 3.1, also by the fact that α0(G) + β0(G) = p. �

The immediate consequence of the above theorem is the following result.

Theorem 3.9 For any graph G, εtp(G) = α1(G) + β1(G), where α1 and β1 denote the edge

covering number and edge independence number of G.

Theorem 3.10 If a graph G and its complement G are connected, then, εtp(G) = p.

Proof Let G with its complement G be connected. Then the proof follows by that of

Theorem 3.1. �

The next result gives the relation between γc(T ) and εtp(T ).

Theorem 3.11 For any non trivial tree T , εtp(T ) = γc(T )+e, where e is the number of pendant

vertices in T .

Proof Let G be any non trivial tree T . Then by Theorem E, γc(T ) = p− e. Substituting

for γc(T ) in the required result, the result follows. �

The next result gives the relation between γm(G) and εtp(G).

Theorem 3.12 For any connected graph G of order ≥ 2, γm(G) ≤ εtp(G). Furthermore, the

equality holds for G = Kp.

Proof Let G be a (p, q) graph G which is not Kp. Let D be a maximal dominating set

of G. Then V −D contains at least one vertex vi which does not form a dominating set of G.

Hence |V −D| < |V (G)|. Thus by Theorem 3.1, γm(G) < εtp(G).

For the equality, suppose G = Kp, then γm(Kp) = p. Hence by Theorem 3.1, we get

γm(G) = εtp(G). �

Theorem 3.13 For any graph G, ε−1(G) < εtp(G).

Proof Since every inverse entire dominating set is an entire dominating set, therefore

ε(G) ≤ ε−1(G). By Proposition 1 and Theorem 3.2, we have ε−1(G) < εtp(G). �

In the next theorem we establish the relation between γns(G) and εtp(G).

Theorem 3.14 Let D be a γns- set of a connected graph G. If no two vertices in V −D are
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adjacent to a common vertex in D, then γns(G) + ξ(T ) ≤ εtp(G), where ξ(T ) is the maximum

number of pendant vertices in any spanning tree T of G.

Proof Let G be a graph such that no two vertices in V − D are adjacent to a common

vertex in D. By Theorem 3.1, we have εtp(G) = p.

Let D be a γns-set of G. Since for any two vertices u, v ∈ V −D, there exist no vertices

u1, v1 ∈ D such that u1 is adjacent to u but not v and v1 is adjacent to v but not to u1. This

implies that there exist a spanning tree T of 〈V −D〉 in which each vertex of V −D is adjacent

to a vertex of D. This shows that ξ(T ) ≥ |V −D|.
Thus from above two results we get that γns(G) + ξ(T ) ≤ εtp(G) . �

The next theorem gives the relation between εtp(G) and γ−1(G).

Theorem 3.15 Let T be a tree with every nonpendant vertex adjacent to at least one pendant

vertex. Then γ(T ) + γ−1(T ) = εtp(T ).

Proof Let T be a tree with every nonpendant vertex is adjacent to at least one pendant

vertex. If every nonpendant vertex is adjacent to at least two pendant vertices, then the set

of all nonpendant vertices is a minimum dominating set and the set of all pendant vertices is

a minimum inverse dominating dominating set. Suppose there are nonpendant vertices which

are adjacent to exactly one pendant vertex. Let D and D′ denote the minimum dominating

and inverse dominating sets respectively. Let u be a nonpendant vertex adjacent to exactly one

pendant vertex v. If u ∈ D then v ∈ D′ and if u ∈ D′ then v ∈ D. Therefore |D| + |D′| = p.

Also by Theorem 3.1, εtp(T ) = p. Thus γ(T ) + γ−1(T ) = εtp(T ). �

Next, we establish Nordhaus-Gaddum type results.

Theorem 3.16 For any (p, q) graph G,

(i) εtp(G) + εtp(G) ≤ 2p;

(ii) εtp(G)εtp(G) ≤ p2.

Furthermore, the equality holds for G = C5 or P4.

Proof From Theorems 3.1 and 3.10, this result follows. �
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In this paper we consider only finite undirected simple graphs. For graph theoretic terminology

we rely on [5]. Throughout this article, let G be a graph with vertex set V and edge set E.

One of the dominant areas in graph theory is the study of domination and related notions

such as independence, irredundance, covering and matching. (In this connection see [9-10].)

Let v ∈ V. The open neighbourhood of v denoted by N(v) and the closed neighbourhood

of v denoted by N [v] are defined by N(v) = {u ∈ V : uv ∈ E} and N [v] = N(v) ∪ {v}. A

subset S of V is said to be an independent set if no two vertices in S are adjacent. A subset S

of V is called a dominating set of G if every vertex in V − S is adjacent to at least one vertex

in S. The cardinality of a minimum dominating set is called the domination number and it is

denoted by γ(G).

There are many variations of domination in graphs. In the book by Haynes et al. [9] it is

proposed that a type of domination is “fundamental” if every connected nontrivial graph has

a dominating set of this type and this type of dominating set S is defined in terms of some

“natural” property of the subgraph induced by S. Examples include total domination, inde-

pendent domination, connected domination and paired domination. In this paper we introduce

1Received September 21, 2010. Accepted December 24, 2010.
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the concept of k-equivalence domination, which is a fundamental concept in the above sense.

An equivalence graph is a vertex disjoint union of complete graphs. An equivalence covering

of a G is a family of equivalence subgraphs of G such that every edge of G is an edge of at

least one member of the family. The equivalence covering number of G is the cardinality of

a minimum equivalence covering of G. The equivalence covering number was first studied in

[6]. Interesting bounds for the equivalence covering number in terms of maximal degree of the

complement were obtained in [2]. The computation of the equivalence covering number of split

graphs was considered in [4].

An important concept which uses equivalence graph is subcoloring studied in [1,8,11]. A

subcoloring of G is a partition of its vertex set into subsets X1, X2, . . . , Xk, where for each i ≤ k

the induced subgraph 〈Xi〉 is an equivalence graph. The order of a minimum subcoloring is

called the subchromatic number of G. The notion of subchromatic number is a natural gener-

alization of the well studied chromatic number since for any independent set S, the induced

subgraph 〈S〉 is trivially an equivalence graph.

The concept of equivalence graph also arises naturally in the study of domination in claw-

free graphs, as shown by the following theorem proved in [7].

Theorem 1([7]) Any minimal dominating set of a K1,3-free graph is a collection of disjoint

complete subgraphs.

Motivated by these observations, we have introduced the concept of equivalence set and

equivalence domination number in [3].

Definition 2 A subset S of V is called an equivalence set if every component of the induced

subgraph 〈S〉 is complete. A dominating set of G which is also an equivalence set is called an

equivalence dominating set of G. The equivalence domination number γe(G) is defined to be

the cardinality of a minimum equivalence dominating set of G. An equivalence set S is called a

Smarandachely equivalence set if at least one component of 〈V − S〉 is not complete.

In this paper we introduce the concept of k-equivalence set and several parameters using

this concept and investigate their relation with the six basic parameters of the domination

chain. (For details see [9, §3.5].)

Definition 3 Let k be any nonnegative integer. A subset S of V is called a k-equivalence set

if every component of the induced subgraph 〈S〉 is complete—i.e., if S is an equivalence set of

G—and ∆(〈S〉) ≤ k.

The concept of k-equivalence set is a natural generalization of the concept of independence,

since every independent set is obviously 0-equivalence set. Also every (k− 1)-equivalence set is

a k-equivalence set and k-equivalence is a hereditary property. Hence a k-equivalence set S is

a maximal k-equivalence set if and only if S ∪ {v} is not a k-equivalence set for all v ∈ V − S.

Thus a k-equivalence set S ⊆ V is maximal if and only if for every v ∈ V − S, there exists a

clique C in 〈S〉 such that v is adjacent to a vertex in C and v is not adjacent to a vertex in

C or there exist two cliques C1 and C2 in 〈S〉 such that v is adjacent to a vertex in C1 and to
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a vertex in C2 or there exists a clique C in 〈S〉 such that |C| = k + 1 and v is adjacent to all

vertices in C.

Definition 4 The k-equivalence number βk
e (G) and the lower k-equivalence number ike(G) are

defined as follows.

βk
e (G) = max{|S| : S is a maximal k-equivalence set of G} and

ike(G) = min{|S| : S is a maximal k-equivalence set of G}.

Clearly ike(G) ≤ βk
e (G) and β0(G) ≤ βk

e (G).

Definition 5 A dominating set S of V which is also a k-equivalence set is called a k-equivalence

dominating set of G. The k-equivalence domination number γk
e (G) and the upper k-equivalence

domination number Γk
e(G) are defined by

γk
e (G) = min{|S| : S is a minimal k-equivalence dominating set of G} and

Γk
e(G) = max{|S| : S is a minimal k-equivalence dominating set of G}.

Since every maximal k-equivalence set is a dominating set of G and every maximal inde-

pendent set is a minimal k-equivalence dominating set, the parameters γk
e (G) and Γk

e(G) fit

into the domination chain, thus leading to the following extended domination chain: ir(G) ≤
γ(G) ≤ γk

e (G) ≤ i(G) ≤ β0(G) ≤ Γk
e(G) ≤ Γ(G) ≤ IR(G).

Definition 6 An irredundant set which is also a k-equivalence set is called a k-equivalence

irredundant set. The k-equivalence irredundance number irk
e (G) and the upper k-equivalence

irredundance number IRk
e (G) are defined by

irk
e (G) = min{|I| : I is a maximal k-equivalence irredundant set of G} and

IRk
e (G) = max{|I| : I is a maximal k-equivalence irredundant set of G}.

Remark 7 Let S be a minimal k-equivalence dominating set of G. Since S is a minimal

dominating set, it is a maximal irredundant set. Thus S is a maximal k-equivalence irredundant

set of G. Thus we have the following: Any minimal k-equivalence dominating set is a maximal

k-equivalence irredundant set.

For any G, we have irk
e (G) ≤ γk

e (G) ≤ Γk
e(G) ≤ IRk

e(G) and irk
e (G) ≤ γk

e (G) ≤ ike(G) ≤
βk

e (G).

Lemma 8 If D is a minimal k-equivalence dominating set of G, then D is both a minimal

dominating set and a minimal (k + 1)-equivalence dominating set of G.

Proof Assume that D is a minimal k-equivalence dominating set of G, and let x ∈ D. Then

D − {x} is not a k-equivalence dominating set and ∆(〈D − {x}〉) ≤ ∆(〈D〉) ≤ k. Therefore D

is a minimal dominating set of G and D is a (k + 1)-equivalence set. �

Corollary 9 For every nonnegative integer k, γk+1
e (G) ≤ γk

e (G) and Γk
e(G) ≤ Γk+1

e (G).
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The proof of the next result is similar to that of Theorem 3.2 in [3].

Theorem 10 For any graph G, γ(G) ≤ 2irk
e (G).

Proof Let I = {x1, x2, . . . , xk} be an irk
e -set of G. Let yi be a private neighbor of xi with

respect to I and let A = I ∪ {y1, y2, . . . , yk}. If there exists a vertex x in V − A such that

N(x) ∩ (V −A) = ∅, then B = I ∪ {x} is an k-equivalence set of G and x is an isolated vertex

in 〈B〉. Further for each i, yi is a private neighbor of xi with respect to B; therefore B is a

k-equivalence irredundant set— a contradiction. Whence A is a dominating set of G; therefore

γ(G) ≤ 2irk
e (G). �

Let k be any integer ≥ 2. Consider the graphs H1, H2 displayed in Figure 1 and Figure 2

respectively. Obviously irk
e (H1) = 4 and γ(H1) = 5. Since {a, b, c} is a maximal equivalence

irredundant set in H2, ir
k
e (H2) = 3. Since {a, e, f, g} is a maximal irredundant set in H2,

ir(H2) = 4. Now for the graph H3 = P3 ◦2K1, we have ir(H3) = 3, irk
e (H3) ≥ 4 and γ(H3) = 3.

From these information, it is clear that the parameters ir and irk
e and the parameters γ and irk

e

are not comparable. It is not difficult to show that the just mentioned statement holds when

k ≤ 1.

H1

a
H2

d

b

Figure 1 Figure 2

g ec

f

For the complete bipartite graph H4 = K2,r, r ≥ 3, we have ike(H4) = 2 and β0(H4) =

Γk
e(H4) = Γ(H4) = IRk

e (H4) = βk
e (H4) = r. Also ike(Kn) = βk

e (Kn) = k + 1 ≤ n whereas

i(Kn) = β0(Kn) = Γk
e(Kn) = Γ(Kn) = IRk

e (Kn) = IR(Kn) = 1. Further i(Kn ◦ 2K1) = 2n− 1

and ike(Kn◦2K1) = 2n−(k+1). Hence ie is not comparable with any of IR, IRk
e ,Γ,Γ

k
e , i(G) and

β0. For the graphH5 obtained fromK4,4,4◦K1, by adding edges in such a way that the subgraph

induced by the set of all pendant vertices of the latter is a cycle, we have Γ(H5) = IR(H5) = 12

and βk
e (H5) < 12. Thus βk

e is not comparable with IR and Γ.

Let H6 be the graph obtained from the path P6 := (a1, a2, a3, a4, a5, a6) and the complete

graphK6 with V (K6) = {b1, b2, b3, b4, b5, b6} by adding the edges a1b1, a2b2, a4b4, a5b5 and a6b6.

At least one vertex of V (K6) belongs to every dominating set of H6 whence Γ(H6) = 4. Since

{b1, b2, b4, b5, b6} is an equivalence irredundant set of H6, IR
k
e (H6) > Γ(H6), when k ≥ 4. It is

not difficult to show that the just mentioned statement holds when k ≤ 3. Also for the graph

H7 = C5�K2, we have Γ(H7) = 5 and IRk
e (H7) = 4. Thus Γ and IRk

e are not comparable.

The following Hasse diagram summarizes the relationship between the various parameters

for the graph G.
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ir(G)

γ(G)

γk
e (G)

i(G)

β0(G)

Γk
e (G)

Γ(G)

IRk
e (G)

ike (G)

irk
e (G)

βk
e (G)

IR(G)

Figure 3. Relationship between parameters

Remark 11 It is easy to show that γk
e (G) ≤ i(G) ≤ |V (G)| − ∆(G).

Proposition 12 If G is connected, then

γk
e (G) ≤ n−

⌊

2(diam(G) + 1)

3

⌋

.

Proof Consider an arbitrary induced path P of length diam(G) in a connected graph G.

Every interior vertex in diametrical path dominates at least 3 vertices in G and also there exists

maximal k-equivalence set in 〈V − P 〉 . Therefore

γk
e (G) ≤ n− (diam(G) + 1) +

⌊

diam(G) + 1

3

⌋

= n−
⌊

2

3
(diam(G) + 1)

⌋

.

Also this bound is sharp when G ∼= Pn, where n ≡ 2 (mod 3). �

Theorem 13 If ∆(G) ≥ 3 and k is an integer such that 0 ≤ k ≤ ∆ − 3, then γk
e (G) ≤

(∆ − k − 1)γe(G) − (k + 1)(∆ − k − 2).

Proof Let D be a γe-set of G. If D is k-equivalence set, then γk
e (G) = γe(G). Assume

∆(〈D〉) ≥ k + 1. Let x ∈ D such that deg〈D〉(x) ≥ k + 1 and let Q = N(x) ∩ (V −D). Let P

be the set of all private neighbors of x with respect to D. Clearly P 6= ∅. Let R be a minimum

k-equivalence dominating set of 〈P 〉 and let D′ = (D−{x})∪R. Now |R| ≤ |Q| ≤ ∆− (k+ 1).

It follows that the set D′ is an equivalence dominating set of G and 〈D′〉 has fewer vertices of

degree at least k + 1 than 〈D〉 . Let E be a minimal equivalence dominating set of G such that

E ⊆ D′. Then

|E| ≤ |D′| = |D| − 1 + |R| = γe(G) − 1 + |R| ≤ γe(G) + ∆ − k − 2.

Continue to repeat the above process until no more vertices of degree larger than k exist
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in the resultant set. (Note that the number of such repetitions is at most |D| − (k+ 1).) Hence

γk
e (G) ≤ |D| ≤ γe(G) + (|D| − (k + 1))(∆ − k − 2)

= (∆ − k − 1)γe(G) − (k + 1)(∆ − k − 2).

The above bound is attained when G = K3 ◦ 2K1. Here γe(G) = γ2
e (G) = 3, γ1

e(G) = 4. �

Theorem 14 If k is an integer such that 0 ≤ k ≤ ω − 3, then γk
e (G) ≤

(

ω−k
2

)

γk+1
e (G).

Proof Let D be a γk+1
e -set of G. If D is k-equivalence set, then γk

e (G) = γk+1
e (G). Let k

be any nonnegative integer not more than ω − 3. Suppose D is not a k-equivalence set. Let X

be a subset of D such that for all x, deg〈D〉(x) = k + 1 and let Y be a minimum independent

set of 〈X〉. Since every vertex of X − Y has at least one of its (k + 1) neighbors in Y , D − Y

is a k-equivalence set. Note that there are |Y |(k + 1) edges between Y and D − Y. Since D is

(k + 1)-equivalence set, |Y |(k + 1) ≤ |D − Y |(k + 1). Thus |Y | ≤ 1
2 |D|.

Let P be the set of all private neighbors of Y with respect to D and R be a minimum

k-equivalence dominating set of 〈P 〉. Then R dominates P and D − Y dominates V − P .

Therefore R∪ (D−Y ) is a k-equivalence dominating set and there are no edges between D−Y
and R. Since |R| ≤ |P | ≤ |Y |(ω − k − 1), we obtain

γk
e (G) ≤ |D| − |Y | + |R| ≤ |D| − |Y | + |Y |(ω − k − 1) = |D| + |Y |(ω − k − 2)

≤ |D| + |D|
2

(ω − k − 2) =

(

ω − k

2

)

γk+1
e (G).

�

Theorem 15 If γk
e (G) ≥ 2, then m ≤

⌊

1
2 (n− γk

e (G))(n − γk
e (G) + 2)

⌋

, where n and m are

respectively, the order and the size of the graph G.

Proof We prove this result by induction on number of vertices. We can assume that n > 2

for otherwise the proof is obvious; we can also assume that the result holds for any graph whose

order is less than n. If γk
e (G) = 2, then also the conclusion holds. So assume that γk

e (G) ≥ 3.

Let v ∈ V (G) with deg(v) = ∆(G). Then by Remark 11, |N(v)| = ∆(G) ≤ n − γk
e (G); i.e.,

∆(G) = n− γk
e (G)− r where 0 ≤ r ≤ n− γk

e (G). Let S = V −N [v]. Then |S| = γk
e (G) + r− 1.

If u ∈ N(v), then (S − N(u)) ∪ {u, v} is a dominating set of G and γk
e (G) ≤ |S − N(u)| + 2.

Thus γk
e (G) ≤ γk

e (G)+ r− 1− |S ∩N(u)|+2 and so |S ∩N(u)| ≤ r+1 for all u ∈ N(v). Hence

the number of edges between N(v) and S, say ℓ1, is at most ∆(G)(r + 1).

Further, if D is a γk
e -set of 〈S〉 , then D∪{v} is a k-equivalence dominating set of G. Hence

γk
e (G) ≤ |D ∪ {v}|, implying that γk

e (〈S〉) ≥ γk
e (G) − 1 ≥ 2. Let ℓ2 be the size of 〈S〉. By the

inductive hypothesis,

ℓ2 ≤
⌊

1

2
(|S| − γk

e (〈S〉))(|S| − γk
e (〈S〉) + 2)

⌋

≤
⌊

1

2
(γk

e (G) + r − 1 − γk
e (G) + 1)(γk

e (G) + r − 1 − γk
e (G) + 1 + 2)

⌋

=
1

2
r(r + 2).



92 S. Arumugam and M. Sundarakannan

Let ℓ3 = |E 〈N [v]〉 |. Note that for each u in N(v) there are at most r + 1 vertices in S

which are adjacent to u. Therefore,

|E| = ℓ1 + ℓ2 + ℓ3

≤ ∆(G) · (r + 1) +
1

2
r · (r + 2) + ∆(G) +

1

2
∆(G)(∆(G) − r − 2)

=
1

2
(n− γk

e (G))(n − γk
e (G) + 2) − 1

2
∆(G)(n − γk

e (G) − ∆(G))

≤ 1

2
(n− γk

e (G))(n − γk
e (G) + 2).

�

Concluding Remarks

We have proved that the decision problem corresponding to the parameters γe and Γe are NP-

complete in [3]. Therefore the computations of γk
e and Γk

e are also NP-complete. The problem

of designing efficient algorithms for computing the parameters in connection with a notion of

k-equivalence for special classes of graphs is an interesting direction for further research. In

particular one can attempt the design of such algorithms for families of graphs with bounded

tree-width.
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Abstract: Let G = (V, E) be a graph with p vertices and q edges and let f : V (G) →

{0, 1, 2, . . . , q − 1, q + 1} be an injection. The graph G is said to have a near mean labeling

if for each edge, there exist an induced injective map f∗ : E(G) → {1, 2, . . . , q} defined by

f∗(uv) =











f(u) + f(v)

2
if f(u) + f(v) is even,

f(u) + f(v) + 1

2
if f(u) + f(v) is odd.

We extend this notion to Smarandachely near m-mean labeling (as in [9]) if for each edge

e = uv and an integer m ≥ 2, the induced Smarandachely m-labeling f∗ is defined by

f∗(e) =

⌈

f(u) + f(v)

m

⌉

.

A graph that admits a Smarandachely near mean m-labeling is called Smarandachely near

m-mean graph. The graph that admits a near mean labeling is called a near mean graph

(NMG). In this paper, we proved that the graphs Pn, Cn, K2,n are near mean graphs and

Kn(n > 4) and K1,n(n > 4) are not near mean graphs.

Key Words: Labeling, near mean labeling, near mean graph, Smarandachely near m-

labeling, Smarandachely near m-mean graph.

AMS(2010): 05C78

§1. Introduction

By a graph, we mean a finite simple and undirected graph. The vertex set and edge set of a

graph G denoted are by V (G) and E(G) respectively. Let f : V (G) → {0, 1, 2, . . . , q− 1, q+ 1}
be an injection. The graph G is said to have a near mean labeling if for each edge, there exist

an induced injective map f∗ : E(G) → {1, 2, . . . , q} defined by

f∗(uv) =











f(u) + f(v)

2
if f(u) + f(v) is even,

f(u) + f(v) + 1

2
if f(u) + f(v) is odd.

We extend this notion to Smarandachely near m-mean labeling (as in [9]) if for each edge e = uv

1Received August 2, 2010. Accepted December 25, 2010.
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and an integer m ≥ 2, the induced Smarandachely m-labeling f∗ is defined by

f∗(e) =

⌈

f(u) + f(v)

m

⌉

.

A graph that admits a Smarandachely near mean m-labeling is called Smarandachely near m-

mean graph. A path Pn is a graph of length n − 1 ·Kn and Cn are complete graph and cycle

with n vertices respectively. Terms and notations not used here are as in [2].

§2. Preliminaries

The mean labeling was introduced in [3]. Let G be a (p, q) graph. In [4], we proved that

the graphs Book Bn, Ladder Ln, Grid Pn × Pn, Prism Pm × C3 and Ln ⊙K1 are near mean

graphs. In [5], we proved that Join of graphs, K2 +mK1,K
1
n + 2K2, Sm +K1Pn + 2K1 and

double fan are near mean graphs. In [6], we proved Family of trees, Bi-star, Sub-division Bi-star

Pm ⊖ 2K1, Pm ⊖ 3K1, Pm ⊖ K1,4 and Pm ⊖ K1,3 are near mean graphs. In [7], special class

of graphs triangular snake, quadrilateral snake, C+
n , Sm,3, Sm,4, and parachutes are proved as

near mean graphs. In [8], we proved the graphs armed and double armed crown of C3 and C4

are near mean graphs. In this paper we proved that the graphs Pn, Cn,K2,n are near mean

graphs and Kn(n > 4) and K1,n(n > 4) are not near mean graphs.

§3 Near Mean Graphs

Theorem 3.1 The path Pn is a near mean graph.

Proof Let Pn be a path of n vertices with V (Pn) = {u1, u2, . . . , un} and E(Pn) =

{(uiui+1)/i = 1, 2, . . . , n− 1}. Define f : V (Pn) → {0, 1, 2, . . . , n− 1, n+ 1} by

f(ui) = i− 1, 1 ≤ i ≤ n

f(un) = n+ 1.

Clearly, f is injective. It can be verified that the induced edge labeling given by f∗(uiui+1) =

i(1 ≤ i ≤ n) are distinct. Hence, Pn is a near mean graph. �

Example 3.2 A near mean labeling of P4 is shown in Figure 1.

0 1 2 4

u1 1 u2 2
u3 3 u4

P4 :

Figure 1: P4

Theorem 3.3 Kn, (n > 4) is not a near mean graph.

Proof Let f : V (G) → {0, 1, 2, . . . , q−1, q+1}. To get the edge label 1 we must have either

0 and 1 as vertex labels or 0 and 2 as vertex labels.
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In either case 0 must be label of some vertex. In the same way to get edge label q, we

must have either q − 1 and q + 1 as vertex labels or q − 2 and q + 1 as vertex labels. Let u be

a vertex whose veretx label 0.

Case i To get the edge label q. Assign vertex labels q − 1 and q + 1 to the vertices w and x

and respectively.

Subcase a. Let v be a vertex whose vertex label be 2, then the edges vw and ux get the same

label.

Subcase b. Let v be a vertex whose vertex label be 1.

Then the edges vw and ux get the same label when q is odd. Similarly, when q is even,

the edges uw and vw get the same label as well the edges ux and vx get the same label.

Case ii. To get the edge label q assign the vertex label q− 2 and q+1 to the vertices w and

x respectively.

Subcase a. Let v be the vertex whose vertex label be 1.

As n > 4, to get edge label 2, there should be a vertex whose vertex label is either 3 or 4.

Let it be z (say). When vertex label of z is 3, the edges ux and wz have the same label also

the edges uz and vz get the same edge label. When the vertex label of z is 4, the edges vx and

wz have the same label.

Subcase b. Let v be a vertex whose vertex label 2.

As n > 4, to get edge label 2, there should be a vertex, say z whose vertex label is either 3

or 4. When vertex label of z is 3, the edges ux and wz get the same label. Suppose the vertex

label of z is 4.

If q is even then the edges ux and wz have the same label. If q is odd then the edges vw

and ux have the same label. Hence Kn(n ≥ 5) is not a near mean graph. �

Remark 3.4 K2,K3 and K4 are near mean graphs.

0 2 0 1 2 0 1 2

K2 K3 K4

u1 1
u2

2

u3

4

3

u1

2

4
u3

6

4 u4

7
5

3

u2
u1 u2

Figure 2: K2,K3,K4

Theorem 3.5 A cycle Cn is a near mean graph for any integer n ≥ 1.
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Proof Let V (Cn) = (u1, u2, u3, . . . , un, u1} and E(Cn) = {[(uiui+1) : 1 ≤ i ≤ n − 1] ∪
(u1un)}.

Case i Let n be even, say n = 2m.

Define f : V (Cn) → {0, 1, 2, . . . , 2m, 2m+ 2} by

f(ui) = i− 1, 1 ≤ i ≤ m.

f(um+j) = m+ j, 1 ≤ i < m.

f(un) = 2m+ 1.

Clearly f is injective. The set of edge labels of Cn is {1, 2, . . . , q}.

Case ii. Let n be odd, say n = 2m+ 1.

Define f : V (Cn) → {0, 1, 2, . . . , 2m− 1, 2m+ 1} by

f(ui) = i− 1, 1 ≤ i ≤ m

f(um+j) = m+ j, 1 ≤ j ≤ m.

f(u2m+1) = 2m+ 2.

Clearly f is injective. The set of edge labels of Cn is {1, 2, . . . , q}. �

Example 3.6 A near mean labeling of C6 and C7 is shown in Figure 3.

u1 1 u2 2 u3

0 1 2

7 5 4

3

u6 u5 u4

4u1

u2 u3
u4

u5
u6u7

8 7 6 6 5

5

1 2 2 3 4

1

4

6 5

0

C7-odd C6-even

Figure 3: C6, C7

Theorem 3.7 K1,n(n > 4) is not a near mean graph.

Proof Let V (K1,n) = {u, vi : 1 ≤ i ≤ n} and E(K1,n) = {(uvi) : 1 ≤ i ≤ n}. To get the

edge label 1, either 0 and 1 (or) 0 and 2 are assigned to u and vi for some i. In either case 0

must be label of some vertex.

Suppose if f(u) = 0, then we can not find an edge label q. Suppose if f(v1) = 0, then either

f(u) = 1 or f(u) = 2.

Case i. Let f(u) = 1.

To get edge label q, we need the following possibilities either q − 1 and q + 1 or q − 2 and

q + 1. If f(u) = 1, it is possible only when q is either 2 or 3. But q > 4, so it is not possible to

get edge value q.
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Case ii. Let f(u) = 2.

As in Case i, if f(u) = 2 and if one of the edge value is q, then the value of q is either 3 or

4. From both the cases it is not possible to get the edge value q, when q > 4.

Hence, K1,n(n > 5) is not a near mean graph. �

Remark 3.8 K1,n, n ≤ 4 is a near mean graph. For example, one such a near mean labeling

is shown in Figure 4.

0 2

u 1 v1

K1,1
K1,2

1 3
v2v1

1 2

u
0

v1 v2 v3

u

0 1 4

1 2
3

2

v1 v2 v3 v4

u
2

1
2 3

4

0 1 3 5

K1,3
K1,4

Figure 4: K1,n, n ≤ 4

Theorem 3.9 K2,n admits near mean graph.

Proof Let (V1, V2) be the bipartition of V (K2,n) with V1 = {u1u2} and V2 = {v1, v2, . . . , vn}.
E(K2,n) = {(u1vi), (u2vi) : 1 ≤ i ≤ n}.

Define an injective map f : V (K2,n) → {0, 1, 2, . . . , 2n− 1, 2n+ 1} by

f(u1) = 1

f(u2) = 2n+ 1

f(vi) = 2(i− 1), 1 ≤ i ≤ n.

Then, it can be verified f∗(u1vi) = i, 1 ≤ i ≤ n, f∗(u2vi) = n+ i, 1 ≤ i ≤ n and the edge values

are distinct. Hence, K2,n is a near mean graph. �
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Example 3.10 A near mean labeling of K2,4 is shown in Figure 5.

0 2 4 6

8
76

54

321

u1 u2
9

1

v1 v2 v3 v4

Figure 5: K2,4
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Abstract: Let G be a graph and E1 ⊂ E(G). A Smarandachely E1-lict graph nE1(G)

of a graph G is the graph whose point set is the union of the set of lines in E1 and the

set of cutpoints of G in which two points are adjacent if and only if the corresponding

lines of G are adjacent or the corresponding members of G are incident.Here the lines and

cutpoints of G are member of G. Particularly, if E1 = E(G), a Smarandachely E(G)-lict

graph nE(G)(G) is abbreviated to lict graph of G and denoted by n(G). In this paper, the

concept of pathos lict sub-division graph Pn[S(T )] is introduced. Its study is concentrated

only on trees. We present a characterization of those graphs, whose lict sub-division graph is

planar, outerplanar, maximal outerplanar and minimally nonouterplanar. Further, we also

establish the characterization for Pn[S(T )] to be eulerian and hamiltonian.

Key Words: pathos, path number, Smarandachely lict graph, lict graph, pathos lict sub-

division graphs, Smarandache path k-cover, pathos point.

AMS(2010): 05C10, 05C99

§1. Introduction

The concept of pathos of a graph G was introduced by Harary [1] as a collection of minimum

number of line disjoint open paths whose union is G. The path number of a graph G is the

number of paths in a pathos. Stanton [7] and Harary [3] have calculated the path number

for certain classes of graphs like trees and complete graphs. The subdivision of a graph G is

obtained by inserting a point of degree 2 in each line of G and is denoted by S(G). The path

number of a subdivision of a tree S(T ) is equal to K, where 2K is the number of odd degree

point of S(T ). Also, the end points of each path of any pathos of S(T ) are odd points. The

lict graph n(G) of a graph G is the graph whose point set is the union of the set of lines and

the set of cutpoints of G in which two points are adjacent if and only if the corresponding lines

of G are adjacent or the corresponding members of G are incident.Here the lines and cutpoints

of G are member of G.

For any integer k ≥ 1, a Smarandache path k-cover of a graph G is a collection ψ of paths

in G such that each edge of G is in at least one path of ψ and two paths of ψ have at most

1Received July 18, 2010. Accepted December 25, 2010.
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k vertices in common. Thus if k = 1 and every edge of G is in exactly one path in ψ, then a

Smarandache path k-cover of G is a simple path cover of G. See [8].

By a graph we mean a finite, undirected graph without loops or multiple lines. We refer

to the terminology of [1]. The pathos lict subdivision of a tree T is denoted as Pn[S(T )] and

is defined as the graph, whose point set is the union of set of lines, set of paths of pathos and

set of cutpoints of S(T ) in which two points are adjacent if and only if the corresponding lines

of S(T ) are adjacent and the line lies on the corresponding path Pi of pathos and the lines

are incident to the cutpoints. Since the system of path of pathos for a S(T ) is not unique,

the corresponding pathos lict subdivision graph is also not unique. The pathos lict subdivision

graph is defined for a tree having at least one cutpoint.

In Figure 1, a tree T and its subdivision graph S(T ), and their pathos lict subdivision

graphs Pn[S(T )] are shown.

e1

e2

e3
e4

e5

c1 c2
P1

P2

P3 P1

P2

P3

e1

e2

e3
e4

e5

c1 c2

P2

P1

P2

P3
P1 P2

e1

e2

e3
e4

e5

c1 c2

P2

P3
P1 P2

P1

P2

T S(T ) Pn[S(T )]

Figure 1

The line degree of a line uv in S(T ) is the sum of the degrees of u and v. The pathos length

is the number of lines which lies on a particular path Pi of pathos of S(T ). A pendant pathos is

a path Pi of pathos having unit length which corresponds to a pendant line in S(T ). A pathos

point is a point in Pn[S(T )] corresponding to a path of pathos of S(T ). If G is planar graph,the

innerpoint number i(G) of a graph G is the minimum number of vertices not belonging to the

boundary of the exterior region in any embedding of the plane. A graph is said to be minimally

nonouterplanar if i(G) = 1 was given by [4].
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We need the following for immediate use.

Remark 1.1 For any tree T , n[S(T )] is a subgraph of Pn[S(T )].

Remark 1.2 For any tree T , T ⊆ S(T ).

Remark 1.3 If the line degree of a nonpendant line in S(T ) is odd(even), the correspondig

point in Pn[S(T )] is of even(odd) degree.

Remark 1.4 The pendant line in S(T ) is always odd degree and the corresponding point in

Pn[S(T )] is of odd degree.

Remark 1.5 For any tree T with C cutpoints, the number of cutpoints in n[S(T )] is equal to

sum of the lines incident to C in T .

Remark 1.6 For any tree T , the number of blocks in n[S(T )] is equal to the sum of the cutpoints

and lines of T .

Remark 1.7 n[S(T )] is connected if and only if T is connected.

Theorem 1.1([5]) If G is a non trivial connected (p, q) graph whose points have degree di and

li be the number of lines to which cutpoint Ci belongs in G, then lict graph n(G) has q +
∑

Ci

points and −q +
∑

[
d2

i

2 + li] lines.

Theorem 1.2([5]) The lict graph n(G) of a graph G is planar if and only if G is planar and

the degree of each point is atmost 3.

Theorem 1.3([2]) Every maximal outerplanar graph G with p points has 2p− 3 lines.

Theorem 1.4([6]) A graph is a nonempty path if and only if it is a connected graph with p ≥ 2

points and
∑

d2
i − 4p+ 6 = 0.

Theorem 1.5([2]) A graph G is eulerian if and only if every point of G is of even degree.

§2. Pathos Lict Subdivision Graph

In the following Theorem we obtain the number of points and lines of Pn[S(T )].

Theorem 2.1 For any (p, q) graph T , whose points have degree di and cutpoints C have degree

Cj, then the pathos lict sub-division graph Pn[S(T )] has (3q+C+Pi) points and 1
2

∑

d2
i +4q+

∑

Cj lines.

Proof By Theorem 1.1, n(T ) has q +
∑

c points by subdivision of T n(S(T ))contains

2q+ q+
∑

c points and by Remark 1.1, PnS(T ) will contain 3q+
∑

c+ Pi points, where Pi is

the path number. By the definition of n(T ), it follows that L(T ) is a subgraph of n(T ). Also,

subgraphs of L(T ) are line-disjoint subgraphs of n[S(T )] whose union is L(T ) and the cutpoints

c of T having degree Cj are also the members of n[s(T )]. Hence this implies that n[s(T )]

contains −q + 1
2

∑

d2
i +

∑

cj lines. Apart from these lines every subdivision of T generates
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a line and a cutpoint c of degree 2. This creates q + 2q lines in n[s(T )]. Thus n[S(T )] has
1
2

∑

d2
i +

∑

cj + 2q lines. Further, the pathos contribute 2q lines to PnS(T ). Hence Pn[S(T )]

contains 1
2

∑

d2
i +

∑

cj + 4qlines. �

Corollary 2.1 For any (p, q) graph T , the number of regions in Pn[S(T )] is 2(p+ q) − 3.

§3. Planar Pathos Lict Sub-division Graph

In this section we obtain the condition for planarity of pathos.

Theorem 3.1 Pn[S(T )] of a tree T is planar if and only if ∆(T ) ≤ 3.

Proof Suppose Pn[S(T )] is planar. Assume ∆(T ) ≤ 4. Let v be a point of degree 4 in T .

By Remark 1.1, n(S(T )) is a subgraph of Pn[S(T )] and by Theorem 1.2, Pn[S(T )] is non-planar.

Clearly, Pn[S(T )] is non-planar, a contradiction.

Conversely, suppose ∆(T ) ≤ 3. By Theorem 1.2, n[S(T )] is planar. Further each block of

n[S(T )] is either K3 or K4. The pathos point is adjacent to atmost two vertices of each block

of n[S(T )]. This gives a planar Pn[S(T )]. �

We next give a characterization of trees whose pathos lict subdivision of trees are outer-

planar and maximal outerplanar.

Theorem 3.2 The pathos lict sub-division graph Pn[S(T )] of a tree T is outerplanar if and

only if ∆(T ) ≤ 2.

Proof Suppose Pn[S(T )] is outerplanar. Assume T has a point v of degree 3. The lines

incident to v and the cut-point v form 〈K4〉 as a subgraph in n[S(T )]. Hence Pn[S(T )] is

non-outerplanar, a contradiction.

Conversely, suppose T is a path Pm of length m ≥ 1, by definition each block of n[S(T )] is

K3 and n[S(T )] has 2m− 1 blocks. Also, S(T ) has exactly one path of pathos and the pathos

point is adjacent to atmost two points of each block of n[S(T )]. The pathos point together

with each block form 2m − 1 number of 〈K4 − x〉 subgraphs in Pn[S(T )]. Hence Pn[S(T )] is

outerplanar. �

Theorem 3.3 The pathos lict sub-division graph Pn[S(T )] of a tree T is maximal outerplanar

if and only if.

Proof Suppose Pn[S(T )] is maximal outerplanar. Then Pn[S(T )] is connected. Hence by

Remark 1.7, T is connected. Suppose Pn[S(T )] is K4 − x, then clearly, T is K2. Let T be any

connected tree with p > 2 points, q lines and having path number k and C cut-points. Then

clearly, Pn[S(T )] has 3q+k+C points and 1
2

∑

d2
i +4q+

∑

Cj lines. Since Pn[S(T )] is maximal
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outerplanar, by Theorem 1.3, it has [2(3q + k + C) − 3] lines. Hence

1

2

∑

d2
i + 4q +

∑

Cj = [2(3q + k + C) − 3]

= [2(3(p− 1) + k + C) − 3]

= 6p− 6 + 2k + 2C − 3

= 6p+ 2k + 2C − 9.

But for k = 1,
∑

d2
i + 8q + 2

∑

Cj = 12p+ 4C − 18 + 4,
∑

d2
i + 2

∑

Cj = 4p+ 4C − 6,
∑

d2
i + 2

∑

Cj − 4p− 4C + 6 = 0.

Since every cut-point is of degree two in a path, we have,
∑

Cj = 2C.

Therefore
∑

d2
i + 6 − 4p = 4C − 2x2C = 0.

Hence
∑

d2
i + 6 − 4p = 0. By Theorem 1.4, it follows that T is a non-empty path.

Conversely, Suppose T is a non-empty path. We now prove that Pn[S(T )] is maximal outer-

planar by induction on the number of points (≥ 2). Suppose T is K2. Then Pn[S(T )] = K4−x.
Hence it is maximal outerplanar. As the inductive hypothesis, let the pathos lict subdivision

of a non-empty path P with n points be maximal outerplanar. We now show that Pn[S(T )]

of a path P with n + 1 points is maximal outerplanar. First we prove that it is outerpla-

nar. Let the point and line sequence of the path P ′ be v1, e1, v2, e2, v3, e3, . . . , vn, en, vn+1.

P ′, S(P ′) and Pn[S(P ′)] are shown in Figure 2. Without loss of generality, P ′ − vn+1 = P .

By inductive hypothesis Pn[S(P )] is maximal outerplanar. Now the point vn+1 is one point

more in Pn[S(P ′)] than in Pn[S(P )]. Also there are only eight lines (e′n−1, en), (e′n−1, en−1),

(en−1, en), (en, R), (en, e
′
n), (en, C

′
n), (C′

n, e
′
n), (e′n, R) more in Pn[S(P ′)]. Clearly, the induced

subgraph on the points e′n−1, Cn−1, en, e′n, C′
n, R is not K4. Hence Pn[S(P ′)] is outerplanar.

We now prove Pn[S(P ′)] is maximal outerplanar. Since Pn[S(P )] is maximal outerplanar, it

has 2(3q + C + 1) − 3 lines. The outerplanar graph Pn[S(P ′)] has 2(3q + C + 1) − 3 + 8 lines

= 2[3(q + 1) + (C+) + 1] − 3 lines. By Theorem 1.3, Pn[S(P ′)] is maximal outerplanar. �

Theorem 3.4 For any tree T , Pn[S(T )] is minimally nonouterplanar if and only if ∆(T ) ≤ 3

and T has a unique point of degree 3.

Proof Suppose Pn[S(T )] is minimally non-outerplanar. Assume ∆(T ) > 3. By Theorem

3.1, Pn[S(T )] is nonplanar, a contradiction. Hence ∆(T ) ≤ 3.

Assume ∆(T ) < 3. By Theorem 3.2, Pn[S(T )] is outerplanar, a contradiction. Thus

∆(T ) = 3.

Assume there exist two points of degree 3 in T . Then n[S(T )] has at least two blocks as

K4. Any pathos point of S(T ) is adjacent to atmost two points of each block in n[S(T )] which

gives i(Pn[S(T )]) > 1, a contradiction. Hence T has exactly one point point of degree 3.
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Conversely, suppose every point of T has degree ≤ 3 and has a unique point of degree 3,

then n[S(T )] has exactly one block as K4 and remaining blocks are K3’s. Each pathos point is

adjacent to atmost two points of each block. Hence i(Pn[S(T )]) = 1. �

P ′ :
v1 v2 v3 vn−1 vn vn+1

e1 e2
en−1 en

v3v1 v′1 v2 v′2 vn−1 v′n−1
vn v′n vn+1

e1c
′
1 e′1 e2 e′2

c2c1 c′2
cn−1cn−2

en−1 e′n−1
en e′n

c′n−1 c′n

S(P ′) :

Pn[S(P ′)] :
e1 e′1 e2 e′2

c′1
c1 c′2

e′n
ene′n−1en−1

R

c′n−1 cn−1 c′n

Figure 2

§4. Traversability in Pathos Lict Subdivision of a Tree

In this section, we characterize the trees whose Pn[S(T )] is eulerian and hamiltonian.

Theorem 4.1 For any non-trivial tree T , the pathos lict subdivision of a tree is non-eulerian.

Proof Let T be a non-trivial tree. Remark 1.4 implies Pn[S(T )] always contains a point

of odd degree. Hence by Theorem 1.5, the result follows. �

Theorem 4.2 The pathos lict subdivision Pn[S(T )] of a tree T is hamiltonian if and only if

every cut-point of T is even of degree.
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Proof If T = P2, then Pn[S(T )] is K4 − x. If T is a tree with p ≥ 3 points. Suppose

Pn[S(T )] is hamiltonian. Assume that T has at least one cut-point v of odd degree m. Then

G = K1,m is a subgraph of T . Clearly, n(S(K1,m)) = Km+1, together with each point of Km

incident to a line of K3. In number of path of pathos of S(T ) there exist at least one path

of pathos Pi such that it begins with the cut-point v of S(T ). In Pn[S(T )] each pathos point

is adjacent to exactly two points of Km. Further the pathos beginning with the cut-point v

of S(T ) is adjacent to exactly one point of Km in n(S(T )). Hence this creates a cut-point in

Pn[S(T )], a contradiction.

Conversely, suppose every cut-point of T is even. Then every path of pathos starts and

ends at pendant points of T .

We consider the following cases.

Case 1 If T has only cut-points of degree two. Clearly, T is a path. Further S(T ) is also a

path with p+ q points and has exactly one path of pathos. Let T = Pl, v1, v2, · · · , vl is a path.

Now S(T ):v1, v
′
1, v2, v

′
2, · · · , v′l−1, vl for all vi ∈ V [S(Pl)] such that viv

′
i = ei, v

′
ivi+1 = e′i are

consecutive lines and for all ei, e
′
i ∈ E[S(Pn)]. Further V [n(S(T ))]={e1, e′1, e2, e′2, · · · , ei, e

′
i} ∪

{C′
1, C1, C

′
2, C2, · · · , C′

i} where,(C′
1, C1, C

′
2, C2, · · · , C′

i) are cut-points of S(T ). Since each block

is a triangle in n(S(T )) and each block consist of points as B1 = (e1C
′
1e

′
1), B2 = (e2C

′
2e

′
2), · · · ,

Bm = (eiC
′
ie

′
i). In Pn[S(T )], the pathos point w is adjacent to e1, e

′
1, e2, e

′
2, · · · , ei, e

′
i. Hence,

Pn[S(T )]= e1, e
′
1, e2, e

′
2, · · · , ei, e

′
i∪(C′

1, C1, C
′
2, C2, · · · , C′

i)∪w form a cycle as we1C
′
1e

′
1C1e2C

′
2e

′
2

· · · e′iw containing all the points of Pn[S(T )].Hence Pn[S(T )] is hamiltonian.

Case 2 If T has all cut-points of even degree and is not a path.

we consider the following subcases of this case.

Subcase 2.1. If T has exactly one cut-point v of even degree m, v = ∆(T ) and is K1,m.

Clearly, S(K1,m) = F , such that E(F )={e1, e′1, e2, e′2, · · · , eq, e
′
q}. Now n(F ) contains point set

as {e1, e′1, e2, e′2, · · · , eq, e
′
q}∪{v, C′

1, C
′
2, C

′
3, · · · , C′

q}. For S[K1,m], it has m
2 paths of pathos with

pathos point as P1, P2, · · · , Pm
2
. By definition of Pn[S(T )], each pathos point is adjacent to ex-

actly two points of n(S(T )). Also, V [Pn[S(T )]]={e1, e′1, e2, e′2, · · · , eq, e
′
q}∪{v, C′

1, C
′
2, C

′
3, · · · , C′

q}
∪{P1, P2, · · · , Pm

2
}. Then there exist a cycle containing all the points of Pn[S(T )] as P1, e

′
1, C

′
1, e1,

v, e2, C
′
2, e

′
2, P2, · · · , Pm

2
, e′q−1, C

′
q−1, eq−1, eq, C

′
q, e

′
q, P1 .

Subcase 2.2. Assume T has more than one cut-point of even degree. Then in n(S(T )) each

block is complete and every cut-point lies on exactly two blocks of n(S(T )). Let V [n(S(T ))]={e1,
e′1, e2, e

′
2, · · · , eq, e

′
q}∪{C1, C2, · · · , Ci}∪{C′

1, C
′
2, C

′
3, · · · , C′

q}∪{P1, P2, · · · , Pj}. But each Pj is

adjacent to exactly two point of the block Bj except {C1, C2, · · · , Ci}∪ {C′
1, C

′
2, C

′
3, · · · , C′

q} and

all these points together form a hamiltonian cycle of the type, {P1, e
′
1, C

′
1, e1, v, e2, C

′
2, e

′
2, P2,

· · · , Pr, e
′
k, C

′
k, ek, ek+1, C

′
k+1, e

′
k+1, Pr+1, · · · , Pj , e

′
q−1, C

′
q−1, eq−1, eq, C

′
q, e

′
q, P1}.

Hence Pn[S(T )] is hamiltonian. �
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