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The promise and potential pitfalls of chimeric antigen receptors
Michel Sadelain, Renier Brentjens and Isabelle Rivière
One important purpose of T cell engineering is to generate

tumor-targeted T cells through the genetic transfer of antigen-

specific receptors, which consist of either physiological,

MHC-restricted T cell receptors (TCRs) or non MHC-restricted

chimeric antigen receptors (CARs). CARs combine antigen-

specificity and T cell activating properties in a single fusion

molecule. First generation CARs, which included as their

signaling domain the cytoplasmic region of the CD3z or Fc

receptor g chain, effectively redirected T cell cytotoxicity but

failed to enable T cell proliferation and survival upon repeated

antigen exposure. Receptors encompassing both CD28 and

CD3z are the prototypes for second generation CARs, which

are now rapidly expanding to a diverse array of receptors with

different functional properties. First generation CARs have

been tested in phase I clinical studies in patients with ovarian

cancer, renal cancer, lymphoma, and neuroblastoma, where

they have induced modest responses. Second generation

CARs, which are just now entering the clinical arena in the B cell

malignancies and other cancers, will provide a more significant

test for this approach. If the immunogenicity of CARs can be

averted, the versatility of their design and HLA-independent

antigen recognition will make CARs tools of choice for T cell

engineering for the development of targeted cancer

immunotherapies.
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Introduction
The advent of effective methods for gene transfer in

T cells provides a new means for rapidly generating

tumor-specific T cells. T cell engineering also offers a

unique means to overcome or circumvent the tolerance

mechanisms and immune escape stratagems used by

tumors to derail or elude immune responses [1–3].

In principle, genetic reprogramming can be used to

enforce tumor antigen recognition, to improve T cell

survival, augment T cell expansion, generate memory
www.sciencedirect.com
lymphocytes and offset T cell death, anergy, and

immune suppression. Furthermore, the genetic modifi-

cation of T cells can be employed to enable the tracking

of T cell migration in vivo and introduce into T cells a

safety or recall mechanism to curb T cell responses if

needed. The first objective – to afford tumor antigen

recognition – is achieved by expressing antigen receptors,

which consist of either physiological, MHC-restricted

T cell receptors (TCRs) or non-MHC-restricted chimeric

antigen receptors (CARs). The latter are the focus of this

review.

The first T cell activating receptors can be traced back to

the CD3z chain fusions that were generated to elucidate

the role of the z chain [4,5]. These studies showed that

cross-linking these fusion receptors was sufficient to

provide calcium influx and T cell activation signaling

including the initiation of cytotoxicity. Eshhar et al.
directed such fusion receptors toward haptens by incor-

porating an immunoglobulin-derived scFv in the extra-

cellular domain of the chimeric receptors, thus enabling

the T cells expressing these ‘T bodies’ to lyse hapten-

coated cells [6]. Several groups subsequently confirmed

the ability to redirect T cell cytotoxicity using receptors

encompassing different scFv’s fused to the CD3z or Fc

receptor g (FcRg) cytoplasmic signaling domains. How-

ever, as reviewed below, it was not until costimulatory

properties were incorporated into the next generation of

CARs that a greater strength and quality of antigen-

induced signaling could be provided to T cells, which

then enabled T cell proliferation and survival upon

repeated exposure to antigen. Following this turning

point, an impressive array of rapidly developing second

generation CARs has been developed and is under

intense investigation. Only first generation vectors have

been tested in phase I clinical trials, showing so far

modest effects. Second generation CARs have just

entered the clinical arena.

CARs: the rules of engagement
Most CARs utilize an antibody-derived antigen-binding

motif to recognize antigen (Table 1). Others utilize re-

ceptor or ligand domains as their targeting moiety, such as

heregulin [7] or IL13 [8], that bind to their cognate ligand

or receptor counterpart (Table 1). In all of these instances,

CARs recognize native cell-surface antigens indepen-

dently of antigen processing or MHC-restricted presen-

tation. Importantly, CARs therefore do not have to be

matched to the patient HLA and can recognize tumors

that have downregulated HLA expression [9,10]. The

expanding range of CAR specificities is illustrated in

Table 1. The cell-surface antigens targeted by CARs
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Table 1

Tumor antigens and CAR investigated in vitro and in vivo in T lymphocytes.

Target antigen Associated malignancy Receptor type (other specificity) In vivo studies Reference

a-Folate receptor Ovarian cancer ScFv-FceRIg Phase I [41]

CAIX Renal cell carcinoma ScFv-FceRIg � [45–47]

ScFv-CD4-FceRIg Phase I [42�,48]

CD19 B cell malignancies ScFv-CD3z (EBV) � [32]

B cell malignancies ScFv-CD3z + [31�,49]

B cell malignancies ScFv-CD28-CD3z + [25,28,44]

Refractory Follicular Lymphoma ScFv-CD3z Phase I [50]

CLL ScFv-CD28-CD3z Phase I [51]

B cell malignancies ScFv-CD28-CD3z + [27,52]

ALL ScFv-41BB-CD3z � [53]

ALL ScFv-41BB-CD3z + [54]

B cell malignancies ScFv-CD3z (Influenza MP-1) + [55]

B cell malignancies ScFv-CD3z (VZV) � [56]

CD20 Lymphomas ScFv-CD28-CD3z � [57]

B cell malignancies ScFv-CD4-CD3z � [58]

B cell lymphomas ScFv-CD3z � [59,60]

Mantle cell lymphoma,

indolent B cell lymphomas

ScFv-CD3z Phase I [43]

ScFv-CD28-CD3z � [23]

ScFv-CD28-41BB-CD3z � [23]

CD22 B cell malignancies ScFV-CD4-CD3z � [58]

CD30 Lymphomas ScFv-FceRIg � [61]

Hodgkin lymphoma ScFv-CD3z (EBV) + [62]

CD33 AML ScFv-CD28-CD3z � [63]

ScFv-41BB-CD3z

CD44v7/8 Cervical carcinoma ScFv-CD8-CD3z + [64]

CEA Colorectal cancer ScFv-CD3z + [65–67], [68]

ScFv-FceRIg + [68,69]

ScFv-CD3e � [70]

ScFv-CD28-CD3z � [71]

ScFv-CD28-CD3z + [72,73]

EGP-2 Multiple malignancies scFv-CD3z � [74]

scFv-FceRIg � [74,75]

EGP-40 Colorectal cancer scFv-FceRIg � [76]

erb-B2 Breast and others ScFv-CD28-CD3z + [19,77]

ScFv-CD28-CD3z (Influenza) + [78]

ScFv-CD28mut.-CD3z + [29]

Prostate cancer ScFv-FceRIg + [79]

erb-B 2,3,4 Breast and others Heregulin-CD3z � [80], [7]

ScFv-CD3z + [81]

FBP Ovarian cancer ScFv-FceRIg + [35,82,83]

ScFv-FceRIg (alloantigen) + [84]

Fetal acethylcholine receptor Rhabdomyosarcoma ScFv-CD3z � [85]

GD2 Neuroblastoma ScFv-CD28 � [86]

ScFv-CD3z � [32]

ScFv-CD3z Phase I [37�]

ScFv-CD28-OX40-CD3z � [22]

ScFv-CD3z (VZV) � [56]

GD3 Melanoma ScFv-CD3z � [87]

ScFv-CD3e � [87]

Her-2 Medulloblastoma ScFv-CD3z + [88]

IL-13R-a2 Glioma IL-13-CD28-4-1BB-CD3z + [89]

Glioblastoma IL-13-CD3z + [8,90]

Medulloblastoma IL-13-CD3z + [91]

KDR Tumor neovasculature ScFv-FceRIg � [92]

k-light chain B cell malignancies

(B-NHL, CLL)

ScFv-CD3z + [30]

ScFv-CD28-CD3z + [30]

LeY Carcinomas ScFv-FceRIg � [93]

Epithelial derived tumors ScFv-CD28-CD3z + [94]
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Table 1 (Continued )

Target antigen Associated malignancy Receptor type (other specificity) In vivo studies Reference

L1 cell adhesion molecule Neuroblastoma ScFv-CD3z Phase I [95,96]

MAGE-A1 Melanoma ScFV-CD4-FceRIg � [97]

ScFV-CD28-FceRIg

Murine CMV infected cells Murine CMV Ly49H-CD3z + [98]

MUC1 Breast, Ovary ScFV-CD28-OX40-CD3z + [16]

NKG2D ligands Various tumors NKG2D-CD3z + [99–101]

Oncofetal antigen (h5T4) Various tumors ScFV-CD3z (vaccination) + [102]

PSCA Prostate carcinoma ScFv-b2c-CD3z � [103]

PSMA Prostate/tumor vasculature ScFv-CD3z + [18,104,39]

ScFv-CD28-CD3z � [21]

ScFv-CD3z + [105]

TAA targeted by mAb IgE Various tumors FceRI-CD28-CD3z (+ a-TAA IgE mAb) + [106]

TAG-72 Adenocarcinomas scFv-CD3z + [107,108]

VEGF-R2 Tumor neovasculature scFv-CD3z � [109]

(�) In vitro studies; (+) in vivo animal studies; (Phase I) Phase I clinical trial.
include proteins, carbohydrates, and glycolipids. Most

current CARs incorporate an scFv derived from a murine

monoclonal antibody. The scFv’s are typically cloned

from hybridoma RNA, but may also be selected from

phage display libraries.

The rules for identifying the best target molecules and

corresponding scFv are not yet fully elucidated. Tumor-

restricted targets are preferred, but rare. Most well-

defined targets are differentiation antigens or cancer/

testis antigens, the selection of which depends on the

level and frequency of expression on malignant tissues –
including cancer stem cells – and their normal counter-

parts. One may reasonably assume that highly expressed

tumor antigens will make better targets, especially if

expression is greater on the tumor cells than on normal

cells. The threshold antigen density required for optimal

CAR-mediated tumor eradication is currently not known.

The optimal range of a CAR’s affinity for its target antigen

has not been defined either. Whereas the physiological

TCRs have affinities in the micromolar range, monoclonal

antibodies and scFv’s operate in the nanomolar range.

Heterodimeric TCRs, however, are coupled to the CD3

complex, a multichain complex optimized to bolster T

cell activation following TCR engagement. CARs typi-

cally do not associate with the CD3 complex, and it is

therefore conceivable that their higher affinity relative to

TCRs is important to compensate, partly, for this dis-

advantage. It is noteworthy that too high an affinity can be

detrimental to TCR-mediated antigen recognition [11],

which highlights the importance of achieving optimal

antigen receptor affinity [12]. One study on CAR affinity

reveals the complex relationship been CAR density,

antigen density, and CAR affinity [13]. CAR expression

levels furthermore impact on T cell effector function [14].

Finally, another emerging factor in choosing an optimal

scFv for making a CAR is the position of the epitope on

the target molecule. The distance of the epitope to the
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cell surface appears to matter, as do the length and

flexibility of the CAR extracellular hinge region

[15,16]. These studies suggest that the CAR-antigen

interaction must follow at least some of the structural

requirements that apply to TCR-based immune

synapses. Optimal interactions may further depend on

the transmembrane and cytoplasmic components of the

CAR, as well as its monomeric or dimeric structure.

Achieving meaningful signaling with second
generation CARs
The first CARs were reported as receptors capable of

redirecting the cytotoxic activity of CTL clones and

hybridomas [17]. Noticing the lack of data on CAR-

induced T cell proliferation, we set out to investigate

the proliferative response of zeta chain based CARs in

primary T cells. Having expressed a receptor specific for

human prostate-specific membrane antigen (PSMA) in

mitogen-activated peripheral blood T cells, we found that

coculture with PSMA-positive LnCAP cells did allow for

initiation of proliferation (typically 2–3 cell divisions), but

this was soon followed by T cell death [18]. T cell death

could be prevented when a costimulatory signal was

coincidentally delivered, which could be achieved by

expressing the CD28-ligand B7.1/CD80 on the tumor

cells. CAR-transduced T cells activated in this manner

were successfully reactivated by a second exposure to

antigen, resulting in an absolute increase in T cell number

[18]. However, most tumor cells, especially tumor cells in
vivo, will not express activating costimulatory ligands

such as CD80. Furthermore, it is to be expected that

CAR-redirected T cells will not engage cross-presented

antigen and thus will not have the benefit of dendritic

cell-provided costimulation. CARs therefore had to be

designed to provide a costimulatory ersatz to address their

costimulatory dependence.

The emergence of CARs enabling T cells to survive

repeated antigenic stimulation came with the develop-

ment of CD28-CD3z dual-signaling receptors [19–21].
Current Opinion in Immunology 2009, 21:215–223
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Table 2

CAR cytoplasmic signaling domains investigated in T cells.

Cytoplasmic

signaling domain(s)

Selected references

First generation

(single signaling

domain)

CD3 z [49,58,87,89,31�,18,32]

FceRIg [69,75,76,82,92,61,35]

CD3e [70,87]

Second generation

(dual signaling

domains)

CD28-CD3z [24,73,106,72,19,

110,21,111,25]

CD134-CD3 z [25,112,22]

CD137-CD3z [25,112,53]

ICOS-CD3z [112]

DAP10-CD3z [25]

Third generation

(three signaling

domains)

CD28-CD3z-Lck [113,114]

CD28-CD134-CD3z [16,114]

CD28-CD137-CD3z [23]
These receptors increased IL-2 secretion in response to

antigen and permitted absolute expansion of retargeted T

cells in response to antigen in the absence of exogenous

costimulation [21]. A number of CD28-CD3z fusion

receptors have been reported (Table 2), but it is note-

worthy that not all of them increase IL-2 secretion [22].

This is possibly due to the different construction designs,

which utilize different domains and fusion points. Fusion

to different scFv’s may also account for different signaling

patterns. A side-by-side comparison of different receptors

expressed at similar level in the same cells type would be

needed to adequately compare different fusion receptors.

Significant functional differences between CARs are

likely to be found.

In recent years, additional fusion receptors have been

reported. Several costimulatory signaling domains, in-

cluding 4-1BB, OX40, DAP10, and ICOS, have been

studied (Table 2). The rationale for each one will not be

reviewed here, but the general goal has been to extend the

strength of signal afforded by the CAR, augment T cell

effector function or extend T cell survival. Many of these

newer fusions have not been investigated as extensively as

the CD28-CD3z receptors and it is fair to say that the jury is

not out yet on the relative merits of these different fusions.

More recently, triple-fusion receptors that encompass

CD3z, CD28, and 4-1BB or OX40 signaling motifs have

been reported. These receptors appear to enhance in vitro
effector functions relative to the dual-fusion receptors

[16,22,23], as well as the strength of PI3kinase/Akt acti-

vation initiated by contact with antigen (XS Zhong and M

Sadelain, unpublished data). These are promising recep-

tors but more studies are needed, including in vivo
studies, to assess their therapeutic potential. What is clear

is that second generation CARs have considerably

superior signaling properties compared with their CD3z

and FCgR forbearers, which opens up real perspectives

for the therapeutic use of CARs.
Current Opinion in Immunology 2009, 21:215–223
The rising in vivo prowess of CARs
A subset of all described CARs has been evaluated in in
vivo tumor models, investigating either murine or human

T cells in xenogeneic tumor models. First and second

generation CARs targeting a variety of antigens have

been shown to at least delay tumor progression in some

animal models (ranging from intraperitoneal cytotoxicity

assays to the more convincing systemic models) or in

some instances to induce durable remissions in mice

bearing established systemic tumors (Table 1). Whereas

some first generation CARs have been shown to induce

significant responses after intravenous infusion in tumor-

bearing mice, it is noteworthy that in every instance

where first and second generation CARs were compared,

the latter outperformed the former [19,24–30]. Triple

fusion receptors are active in vivo [16], but comparisons

to second generation CARs have not yet been reported.

In xenogeneic models, we showed that human T cells

targeted against human CD19 could eradicate systemic

Raji tumors (a CD19+ Burkitt lymphoma) in SCID mice

[31�]. Importantly, tumor eradication was obtained fol-

lowing a single intravenous infusion of human T cells in

the absence of post-infusion cytokine administration to

support T cell function. This study also demonstrated

that the in vivo activity of CAR-transduced T cells

depended on the T cell expansion conditions. Thus, T

cells activated in the presence of antigen and CD28-

mediated costimulation were more effective than T cells

expanded by OKT3 antibody and IL-2 (the latter only

survived a few days in vivo). Furthermore, T cells acti-

vated by artificial antigen-presenting cells expressing the

CD19 antigen and CD80 were more effective after

expansion in the presence of IL-15 and IL-2 than with

IL-2 alone [31�]. The crucial impact of in vitro T cell

activation on the outcome of adoptive T cell therapy

should be borne in mind when comparing studies.

CARs should thus be compared side-by-side under

the same expansion conditions to permit valid receptor

comparisons.

Other factors affect CAR function and CAR comparisons.

The tumor obviously makes a difference. Thus, eradica-

tion of CD19+ Raji tumor cells is easier to achieve than

eradication of CD19+ pre-B acute lymphoblastic leuke-

mia cells [25,31�]. This is partly due to the different

costimulatory profile of the two tumors [25,31�], but

additional factors probably come into play as well, in-

cluding tissue tropism and intrinsic susceptibility to lysis.

Finally, the mouse model also makes a difference. Tumor

eradication requires fewer infused T cells in NOD/SCID-

gc�/�mice than in SCID-beige mice (J Markley and M

Sadelain, unpublished data). The impact of these three

parameters – T cell expansion conditions, tumor charac-

teristics, and mouse model – should be taken into account

when comparing results obtained with different receptors

in murine models.
www.sciencedirect.com
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Table 3

CAR expression in effectors of the innate immune system.

Cell type Cytoplasmic signaling

domain(s)

References

NK cells CD3z [115–119]

CD28-CD3z [120,121]

DAP10 [116]

CD137-CD3z [116]

Fc-g-receptor [119]

Cytokine-induced

killer cells (CIK)

CD3z [122,123]

DAP10 [123]

CD137-CD3z [123]

CD28-CD3z [123]

Monocytes CD64 (Fc-g-receptor) [124]

Neutrophils Fc-g-receptor [119]

CD3z [119]
Another important question is what cells are better suited

for delivering CAR therapy. CARs have been investigated

in bulk mouse spleen cells or bulk human peripheral

blood T cells, as well as in EBV-specific T cells [32],

lymphoid progenitor cells [33,34], unfractionated or Lin–
Sca1+ bone marrow cells [14,35]. An important debate in

adoptive cell therapies, which applies to CAR therapies

like other adoptive cell therapies, is to better define the

advantages and disadvantages of naı̈ve, memory, and

virus-specific T cells types [36–38]. This is addressed

in another article in this issue. It is clear for CAR therapy,

as it is for other adoptive T cell therapies, that T cell

persistence is an important factor for successful tumor

eradication [27,31�,39,40] and that the choice of T cell

subset to utilize is one of the important aspects of this

therapy.

Finally, it should be noted that other immune cell types

than T cells are being investigated using CARs (Table 3).

Clinical studies utilizing first generation CARs
Completed clinical studies are limited to phase I studies

evaluating first generation CARs targeting the folate re-

ceptor in ovarian cancer [41], carbonic anhydrase in renal

cancer [42�], CD20 in lymphoma, [43]) and GD2 in

neuroblastoma [37�]. The clinical responses have overall

been very modest, with the exception of one partial

response in the neuroblastoma study. Immunogenicity

of CARs was observed in the first two studies, but not the

latter two. The renal carcinoma study had to be halted

after three patients developed unanticipated cholestasis,

an on-target effect due to the high expression of the

targeted antigen, carbonic anhydrase, in biliary epi-

thelium. This study has now resumed with the added

use of G250 antibody to partially mask the biliary antigen

before T cell infusion (C Lamers, unpublished data). It is

noteworthy that CAR-directed T cells were active against

target antigen-positive T cells that are not typically

picked up in imaging studies utilizing the parental mono-
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clonal antibody, lending support to the merits of T cell

based therapy.

These studies utilized first generation CARs and subopti-

mal T cell expansion procedures such as OKT3-mediated

T cell expansion [31�,37�]. The field is thus keenly await-

ing studies that utilize second generation CARs and

improved T cell expansion procedures that provide appro-

priate costimulation and cytokine stimulation before T cell

infusion. Several efforts are under way to address this issue

[38,44]. Studies targeting CD19 are especially awaited as

these hold the promise of activity in several B cell malig-

nancies. At least seven trials targeting CD19 with second

generation CARs are programmed in the US and Europe,

with one having already started in chronic lymphocytic

leukemia, utilizing a CD19-CD28z CAR [51].

Conclusion
In comparison to TCRs, CARs have two major advan-

tages: HLA-independent recognition of antigen, which

makes them broadly applicable irrespective of the

patient’s HLA and enables the recognition of tumor cells

that have downregulated HLA expression, and no risk of

mispairing with the endogenous TCR. Their signaling

capacity was once a concern, but second generation

receptors go far beyond what the original zeta chain

fusions could achieve, that is, redirect cytotoxicity with-

out permitting T cell expansion and survival upon repeat

antigen exposure. CARs are therefore not just an alterna-

tive to TCRs but may prove to be superior as therapeutic

entities.

Their use is, however, threatened by their potential

immunogenicity. Anti-CAR antibody responses have

been seen with some CARs, but not universally, which

suggests that CAR immunogenicity may be neither uni-

versal nor intractable. CARs encompassing humanized

scFvs or scFvs derived from human monoclonal anti-

bodies will probably reduce this concern.

The choice of a target antigen is very crucial, as for any

immunotherapy. This choice will become even more

crucial as potent immunotherapies such as those utilizing

second and third generation CARs enter the clinic. The

G250 study illustrates the ability of CAR-targeted T cells

to seek out normal tissues that express high levels of the

targeted antigen [42�]. The targeting of CD19, a cell-

surface molecule found on the majority of leukemias and

lymphomas, will be an interesting case to follow as CD19

is expressed on normal proB, preB, and B cells but no

other hematopoietic progenitor cell types. The several

upcoming trials targeting CD19 will provide interesting

variations on this one theme, as they utilize slightly

different CARs, different scFvs, different vector systems,

different T cell expansion methodologies, and different

starting T cell subsets to treat different CD19-positive

malignancies. The field of CARs is coming of age.
Current Opinion in Immunology 2009, 21:215–223
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