THE PRIMES p WITH $\lg(p) = 1$

Maohua Le

Department of Mathematics, Zhanjiang Normal College Zhanjiang, Guangdong, P.R.China.

Abstract. In this paper we prove that if $p = a_k ... a_1 a_0$ is a prime satisfying p>10 and lg(p)=1, then $a_k = ... = a_1 = a_0 = 1$ and k+1 is a prime.

Let $n = \overline{a_k \dots a_1 a_0}$ be a decimal integer. Then the number of distinct digits of n is called the length of Smarandache generalized period of n and denoted by lg(n) (see [1, Notion 114]). In this paper we prove the following result.

Theorem. If $p = \overline{a_k \dots a_1 a_0}$ is a prime satisfying p > 10 and lg(p)=1, then we have $a_k = \dots = a_1 = a_0 = 1$ and k+1 is a prime.

Proof. Since $\lg(p)=1$, we have $a_k=...=a_1=a_0$. Let $a_0=a$, where a is an integer with $0 \le a \le 9$. Then we have $a \mid p$. Since p is a prime and $p \ge 10$, we get a=1 and

(1)
$$p=1...11=10^{k}+...+10+1=....$$

where k is a positive integer. Since k+1>1, if k+1 is not a prime, then k+1 has a prime factor q such that (k+1)/q>1.

Hence, we see from (1) that

$$p = \frac{10^{k+1} - 1}{10-1} \frac{10^{q} - 1}{10-1} \frac{10^{k+1} - 1}{10^{q} - 1} = \frac{q-1}{(10 + ... + 10 + 1)(10} + ... + 10 + 1).$$

It implies that p is not a prime, a contradiction. Thus, if p is a prime, then k+1 must be a prime. The theorem is proved.

Reference

1. Dumitrescu and Seleacu, Some Notions and Questions In Number Theory, Erhus Univ. Press, Glendale, 1994