
NEW SMARANDACHE SEQUENCES: THE 

FAMILY OF METALLIC MEANS 

Vera W. de Spinade/ 
Centro de Matematica y Diseno MAyDI 

Facultad de Arquitectura, Diseiio y Urban ism 0 

Universidad de Buenos Aires 

Jose M. Paz 1131 - 1602 Florida - Buenos Aires - Argentina 
Tel/FAX: +541-795-3246 

E-mail: postmaster@caos.uba.ar 
Internet: vwinit@huiyin.jadu. uba.ar 



ABSTRACT 

The family of Metallic Means comprises every quadratic irrational number that is 
the positive solution of algebraic equations of the types 

r--nx-l =0 and r--x-n =0 , 

where n is a natural number. The most prominent member of this family is the Golden 
Mean, then it comes the Silver Mean, the Bronze Mean, the NIckel Mean, the Copper 
Mean, etc. All of them are closely related to quasi-periodic dynamics, being therefore 
important clues in the study of the onset to chaos. However, they also constitute the 
basis of musical and architectural proportions. Through the analysis of their common 
mathematical properties, it becomes evident that they interconnect different human fiels 
of knowledge, in the sense defined by Florentin Smarandache ("Paradoxist 
Mathematics''). 

, Kevwords: continued fractions, quadratic irrationals, Fibonacci sequences, Smarandache 
sequences, hyperbolic map. 

1. INTRODUCTION 

Let us introduce a new family of positive quadratic irrational numbers. The family 
is called the "Metallic Means Family" (MMF). Its members have, among other 
common characteristics, the one of carrying the name of a metal (see [lJ, [2]) . E.g., the 
most distinguished member is the well known "Golden Mean". Then, we have the Silver 
Mean, the Bronze Mean, the Copper Mean, the Nickel Mean and many others. 

The Golden Mean has been widely utilized by a great quantity of ancient cultures 
as basis of proportions to compose music, to make sculptures and paintings or construct 
temples and palaces (in Reference [3], see the first chapter dedicated to this subject). 
With respect to the many relatives of the Golden Mean, a great part of them have been 
used by physicists in different researchs, in trying to systematize the behavior of non 
linear dynamical systems that suffer the transition from periodicity to quasi-periodicity. 
Notwithstanding, there other instances .of using these relatives in quite different fields: 
Jay Kappraff [4] appealed to the Silver Mean to describe and explain the roman system 
of proportions, making use of a mathematical property of this Mean that is, as we are 
going to prove, common to all the members of this curious family. 
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Being irrational numbers the members of the ~, in the applications to 
different scientific disciplines, they have to be approximated by ratios of integer numbers 
and the analysis of the relation between the :MN.fF and the approximant ratios is one of 
the goals of this paper. A direct consequence of this study will be the possibility of 
interconnecting quite distinct (sometimes opposite) human fields of knowledge, in the 
sense defined by Florentin Smarandache ("Paradoxist Mathematics"). 

2. CONTINUED FRACTIONS EXPANSIONS 

Every real number x admits a continued fraction expansion, that is, an expression 
of the type 

1 
x =ao -I-+~--I:---

a1 ++--1-

a2 -t--:-:-

'that is written x = [ ao ,aJ ,a2 , ... ]. The first coefficient can be zero (in such a case the real 
number is between 0 and 1) but the rest of the coefficients are positive integers. This 
continued fraction expansion is finite if and only if x is a rational number (that is, a 
number of the form p/q with q different from zero and p, q natural numbers without 
common factors). For example, 

18 1 
-7 =2 -+-+--1- =[2,1,1,3]. 

1 + 1 
1~ 

.) 

Ifx is an irrational number, the .expansion is infinite and if we take a finite number 
of terms like 

1 

we get a sequence of "rational approrimants" to the number x such that they converge 
to x when k ~ 00. 

Some irrational numbers, like 1t and e have approximants that converge very 
quickly. In particular, the number 1t = [3,7, 15, 1, 292, ... J converges so quickly that the 

hi d . . 335 h' d' al t r ratIonal approXImant (]3 = 113 =3,1415929... as SIX exact ecIm s! 
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Amazingly, this result was already known by Tsu Chung Chi in China, 5th 
century!. Instead, the base of the napierian logarithms, the number e = [2, 1, 2, 1, 1, 4, 1, 
1: 6, 2, 2, 8, 1, ... ] converges more slowly at the beginning, due to the pressence of many 
'ones' in its expansion. Comparatively, the quadratic irrationals converge much slower. 

Similarly to the periodic decimal expansions, the ''periodic'' continued fractions 
are denoted with a line over the period and if the continued fraction expansion is of the 

form x = [ao,a l , ... ,a
ll

], we say that the continued fraction is ''purely periodic". In this 
context, the french mathematician Joseph Louis Lagrange (1736-1813) proved that a 
real number is a quadratic irrational if and only if its continued fraction expansion is 
periodic (not necessarily purely periodic). This result was improved by Evariste Galois 
(1811-1832) in the following form: The contimJedfraction of an irratiollalnumber x is 
purely periodic if and only if x > 1 and it is a root of a second degree equation with 
integer coefficients, the other root being between -1 and o. 

PROPERTY Nr. 1 OF THE METALLIC lVIEANS FAlVIIL Y 

They are aU positive quadratic irrationals. 

In fact, if we take the quadratic equation 

(2.1) ~-nx-l=O 

where n is a natural number and solve it, we find that the positive solutions of this 
equation are of the form 

x 
n +Jn2 +4 

2 
• 1~ 

For n = 1, the result is the well known Golden Mean cJ> = = 1.618 .... To find the 
2 

continued fraction expansions of this quadratic irrationals, simply we take equation (2.1) 
and divide it by x (different from zero): 

1 
x=n+-. 

x 

Then, we replace the x of the second member iteratively by 11 + l/x. In this way, we get, 
after N iterations: 
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1 
x =11~+---------1-----

11 ++------1---
n ~I------l--

1 
n+­

x 
If N -7 x, we have 

1 
X =17 -1-+---

1
- =[ 11 ] , 

n ++--­
n + ... 

a purely periodic continued fraction expansion. 

Obviously, the Golden Mean has the most simple continued fraction expansion 

<P = [1 ]. 

For n = 2, we have the Silver Mean (JA.g =1 +J2, which continued fraction 
. expansion is 

1 
(JAg =2 I 1 =[ 2 ]. 

2 I . 
2+·. 

For II = 3, the result is the Bronze Mean 

3 +J13 -
(JBr 2 =[ 3 ]. 

Summarizing, solving quadratic equations of the form 

with n natura~ we obtain as positive solutions, the members of the :M1vfF, which 
continued fraction expansion is purely periodic 

x =[n]. 

Instead, if we solve quadratic equations of the form 

(2.2) x2 
- x,. 11 = 0, 

with n natural, we obtain members of the .MMF which continued fraction expansion is 
periodic, not necessarily purely periodic, e.g. 



This last subset of Metallic Means has curious mathematical properties, with reference to 
the frequence of apparition of the natural numbers, as well as to the length of the period 
or the presence of "stable cycles" (see Reference [1] for more details). 

Obviously, of all these Metallic Means, the one that converges more slowly is the 
Golden Mean, since all the denominators are the smallest possible - ones. This fact 
allows us to state the following 

The Golden Mean ¢ is the most irrational of all irrational numbers. 

Note: In the restant posible cases of quadratic equations with integer coefficients, we 
find the following results, looking for positive solutions 

a) r- + n r - 1 = 0 . Same solutions as for equation (2.1), but only their decimal part. 
b) r- + 11 X + 1 = 0 . There are no positive solutions . 

. c) r- -n x + 1 = o. The positive solutions have periodic continued fraction expansions. 
. d) x2 + X - 11 = 0 . The positive solutions have periodic continued fraction expansions. 

e) r- + x + n = 0 . There are no positive solutions. 
£) x2 

- X + 11 = 0 . There are no positive solutions. 

3. FIBONACCI SEQUENCES 

The Fibonacci sequence is a sequence of natural numbers formed by taking each 
number equal to the sum of the two precedent terms. For this reason, this type of 
sequences is called a "secondcoy Fibonacci sequence", to distinguish them from the 
ternary Fibonacci sequences, in which each term is a linear combination of the three 
precedent terms. 

Beginning with F(O) = 1; F(1) = 1, we have the following secondary Fibonacci 
sequence 

(3.1) 1, 1,2,3,5,8, 13,21,34,55,89, 144, ... 

where 

(3.2) F(n -7- 1) = F(n) + F(n - 1). 

Secondary Fibonacci sequences can be generalized, originating what is known as 
"generalized secondary Fibonacci sequences" GSFS, like 

a, b, pb - qa, p (pb - qa) - qb, ... 
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that satisfy relations of the type 
--- - .-- -------

(3.3) G(n+ 1) = P G(n) - q G(n - 1) 

with p and q natural numbers . 

. From equation (3.3), we get 

G(n +1) G(n -1) q 
G(n) =p +q G(n) =P + G(n) 

G(n -1) 

T kin 1- . . b h b f hi . d . h I' G(n +1). d a g nruts In ot mem ers 0 t s equatIon an assummg t at 1m G() eXIsts an 
n-c» n 

is equal to a real number x -- fact that will be proved in next theorem-, we have 

x =p.;I-
x 

or x2 
- px - q = 0, which positive solution is 

This means that 

(3.4) 

x 
P +~p2 +4q 

2 

i , G(n +1) p +~p2 +4q 
I lzm ---'---'-
! n- 00 G(ll) 2 

Now, let us prove the existence of this limit: 

Theorem 

Given a generalized secondary Fibonacci sequence (GSFS) 

a, b, pb .... qa, p{pb + qa) -i- qb, _ .. 

such that 

G(n+l) = P G(ll) + q G(n-1) 

G(n +1) _ . 
with p. q natural numbers, then there exists lim and is a real posltlve number a. 

n- CD G(n) 

Proof: To find the nth term of the GSFS, let us put 
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and 

Then it is easy to prove that 

C(n+l) = p C(n) + qH(n) 

H(n+ 1) = C(n) 

- fG(n)] rp q] 
G(n) = tHen) ; A = II o· 

G(n +1) =A.C(n). 

Let us asswne that G(O) ~ G(J) ~ J for simplicity. If G(J) = ~ 1 then 

---
G(n +1) =An.G(l) and the problem is reduced to the finding of the nth power of the 
matrix A. We know that the eigenvalues of A are 

(J 

To diaganalize A so as to transfann it in Ad = io :,1, we shall use the change of base 

matrix P = ~ ~'} The nth power of A is calculated applying the similarity 

transfonnation 

=
,....--1_[ noR -a ,(noR) 

A" =P.A/.P- I 

(J -a' (J" -a'" 

(J(J '«(J,n -a n) 1 
(J(J'«(J,tn .... ) -an .... ) . 

and the nth tenn of the GSFS 

1,I,p+q,p(p+q)+q .... 

is given by the following expression 

G(n +1) 
(J n~ -a ,(n-€) 

(J -a' 

Replacing (J -(J' =~ p2 +4q ; (J' = J we have 
(J 
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n+l + [ q r+! 
. G(n +1) . (J -;; 

hm =hm =(J 

n- co G(n) n- co [ q r 
(In +_ 

(J 

and the proof is completed. 

Note: if instead of choosing G(O) = G(l) = 1 we begin the GSFS with two arbitrary 
values a and b, it is easy to prove that the result is the same. Indeed, given the GSFS 

a, b,pb + qa,p (pb + qa) + qb, ... 

we have to evaluate the quotient 

G(n +1) 

G(n) 

pbG(n) +qaG(n -1) 

pbG(n -1) +qaG(n -2) 

G(n) 
pb G(n -1) +qa 

-~co- (J. qa 
pb I G(n -1) 

G(n -2) 

Let us put G(O) = G(l) = 1 and consider different possibilities for the coefficients 
of(3.4).Then, ifp = q = 1, we have the Golden Mean 

1 +J5 -
x 2 =cP =[ 1 ]. 

Ifp = 2 and q = 1, the sequence has the form 

(3.5) 1, 1,3, 7, 17,41, 99, 140, ... 

where 

(3.6) G(n -"- 1) = 2 G(n) , G(n - 1), 

and from (3.4) we get the Silver Mean 

. G(n +1) - [-2 ] (] = lzm -. 
Ag n- .. G(n) 

Analogously, if p = 3 and q = 1, the sequence is 

(3.7) 1, 1,4, 13,43, 142,469, ... 

where 

89 



(3.8) G(n + 1) = 3 G(n) + G(n - I). 

and we get the Bronze Mean 

(J =lim G(n +1) = 3 +JJ.3 -
Br It- 00 G(n) 2 [3], 

If p = 1 and q = 2, the sequence is 

(3.9) 1, 1,3,5, 11,21,43,85, ... 

where 

G(n + 1) = G(n) +2 G(n - 1) 

and we get the Copper Mean 

-
(Jcu =2=[2,0]. 

If p = 1 and q = 3, the sequence is 

(3.10) 1, 1,4, 7, 19,40,97, ... 

where 

G(n + 1) = G(n) + 3 G(n - 1) 

and we get the Nickel Mean 

, G(n +1) 
(J Hi =ilm G() 

n- CD n 

Summarizing our results, we may affirm 

1+& -
2 =[2,3]. 

PROPERTY Nr. 2 OF THE METALLIC :MEANS FAMlLY 

All of them are obtained as limits of ratios of two consecutive terms of generalized 
secondary Fibonacci sequences. 
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4. ADDITIVE PROPERTIES 

Let us form now the sequence of ratios of consecutive terms of the sequence 
(3.1) 

(4.1) 
1 2 3 5 8 13 21 34 55 89 
l' 1 ' 2' 3' 5' 8 ' 13' 21 ' 34' 55' ... 

Obviously, this sequence converges directly to the Golden Mean 1>. This sequence is very 
useful as a good approximation: indeed the term u(ll) = 233/144 = 1.6180 with four 
exact decimals! 

If we take now a geometric progression of ratio 1> such as 

1 1 2 3 
... ,-., , -, 1, </>, 1> ,1> , ... 

1>- 1> 

we can easily verify that this geometric progression is also a GSFS. In fact 

1 1 1 +1> 
-,/..-2 +:z =--,,- =1. 
'f' 'f' q>-

The same happens for the Silver Mean a:4g , starting from the sequence 

(4.2) 
1 3 7 17 41 99 140 
l' 1 ' 3' 7 ' 17' 41' 99 , ... , 

that converges to crAg . The sequence 

1 1 . 2 3 
... --2 ,-,1, cr Ag' crAg ., crAg , ... 

crAg cr Ag 

is a geometric progression of ratio CT..4g that satisfies condition (3.6). Indeed 

Similarly, it is easy to prove that the sequence of ratios 

(4.3) 
1 4 13 43 142 469 ---------
l' 1 ' 4 ' 13 '. 43 ' 142 ' ... , 

3+113 -
converges to the Bronze Mean crs = = [3] and the sequence 

2 
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1 1 2 3 
"'-2,-,1,uB ,uB ,UB ,'" 

UB UB 

is a geometric progression of ratio UB that satisfies condition (3.6). This is due to the 
fact that 

Similarly for all GSFS. These numerical sequences (4.1), (4.2), (4.3), and so on, 
are new Smarandache sequences that have to be empirically used as approximations to 
the values of the members of the M:MF. Furthermore, the sequences formed by taking 
these members as ratios enjoy the following unique mathematical property: 

PROPERTY Nr. 3 OF THE METALLIC MEANS FAMILY 

They are the only positive quadratic irrational numbers that originate GSFS (with 
additive properties) which are, simultaneously, geometric progressions. 

This curious property of satisfying both arithmetic additive and geometric 
properties, bestow all the members of the M1v1F with interesting characteristics to 
become basis of different systems of geometric proportions in Design. 

5. PROPORTIONS SYSTEMS 

The golden Mean <p = 1 +J5, is indissolubly linked to pentagonal symmetry. 
. 2 . 

Indeed, ifwe take a regular pentagon of unitary edge, like the one depicted in Fig. 5.1, it 
is easy to prove that its diagonal is equal to <p. Considering the geometric similarity of the 
two isosceles triangles ADC and ABF we have 

AD DC 
DC AD-FD 

Being DC = FD = 1 and calling x = AD, we obtain the quadratic equation x (x - 1) = 1 or 
J? - x - 1 = 0, that is equation (2.1) with n = 1 and positive solution x = <p. It is not 
difficult to prove besides the following "golden relations ,. in the regular pentagon 
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1 
GB =¢ -1 =- =0,618 ... 

¢ 

1 
GI =FG =1-

¢ 

1 
FG - ¢2 =0,382 ... 

1 
JG = ¢3 =0,236 ... 

These "golden relations" determine, for example, the proportions of the ancient 
mask of Hermes (Medusa), shown in Fig. 5.2. It is a wonderful Roman marble after 
Greek origina~ 1 st century BC. , pertaining to the artistic collection of the Glyptothek, 
Munich, Germany. 

Innumerable are the references to the apparition of the Golden Mean ¢ in the 
proportion systems adopted by antique civilizations in their constructions, as well as its 
presence in the human body proportions and in Botany. Among the many authors that 
have dedicated their researchs to this subject, we have to mention Matila Ghyka [5], [6] 

. and [7], H. E. Huntley [8] and Theodore Andrea Cook, whose book [9], published in 
1979, is a reprint of the original published by Constable, London, England, as early as 
1914. 

Instead, the Silver Mean is linked to octogonal symmetry, as it is shown in Fig. 
5.3. "Silver relations" have been found in many examples, corning from quite different 
fields of human knowledge. In particular, the mathematician Jay Kappraff [4], at the 
conference Nexus '96: Relations between Architecture and Mathematics, that took place 
in Fucecchio (province of Florence) in June 1996, carried out a carefully analysis of the 
three architectonic proportion systems presented by P. H. Scholfield in his excellent book 
[10]. These three proportion systems are the following 

1) the system of musical proportions used during the Italian Renaissance, developed by 
Leon Battista Alberti [11]; 
2) the Modulor created by the twentieth-century architect Le Corbusier [12] and 
3) the Roman proportion system. 

The musical system was based on rational proportions inherent in the musical 
scale. Although it succeeded in creating harmonic relationships in which key proportions 
were repeated in a design, this system did not have the additive properties necessary for a 
successful proportion system. Notwithstanding, the very well known contemporary 
Modulor that is based on the Golden Mean 4> , and the ancient Roman proportion 
system, based on the Silver Mean, both conform to the relationships inherent in the 
system of musical proportions, with the great advantage of having additive properties. 

Unlike the Renaissance system, which used a static sequence of commensurable 
reatios to proportion the length, width and height of rooms, Le Corbusier's system 
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developed a scale of lengths based on the irrational number ¢, through a GSFS and 
geometric sequence: 

a a 2 3 
... , </>2' ¢' a,a¢, a¢ ,a¢ , ... 

for some convenient unit a, directly detennined by ergonomic reasons. In general, the 
ratios involved in this system are incommensurable and Le Corbusier, in his designs, 
used an integer GSFS approximation, that is a Smarandache sequence. More details 
about this proportion system may be consulted in References [l3] and [14]. 

Now, we are going to consider in detail the third proportion system. With this 
purpose, let us consider a couple of sequences 

(5.1) 

such that 

, (5.2) 

1 
1 2 

3 7 17 41 .... 
5 12 29 70 .... 

A(n + 2) = 2 A(n + 1) + A (n). 

These sequences satisfy three additive fundamental properties: in addition to relation 
(5.2) they obey the following numerical relations 

7 = 2.3 + 1; 17 = 2.7 + 3; .. . 
5 = 2.2 + 1; 12 = 5.2 + 1; .. . 

and 

2+5=7;5+12=17; 12+29=41; ... 
2 + 3 = 5; 5 + 7 = 12; 12 + 17 = 29; 29 + 41 = 70; ... 

Furthermore,the ratios of diagonally adjacent terms of the sequences (5.1) are 
aproximants to J2 

(5.3) 
1 3 7 17 ---- ... -F2 
1 ' 2 ' 5 ' 12' , ' 

But since the sum of any couple of numbers of the upper sequence, is not 
represented in this system, we may expand it adding a third sequence obtained by 
duplicating the terms of the lower sequence 

(5.4) 1 
1 

2 

2 

4 
7 

5 

94 

10 24 58 .... 
17 41 

12 29 70 .... 



Finally, the Roman architectonic system utilizes the following incommensurable 
schema based on the Silver Mean, which is equivalent to the commensurable system 
(5.4) 

2.J2 2.J2 cr:\g 2.J2 cr.>,g2 2.J2 cr ."B
3 

(5.5) 2 2crAg 2crAg2 2crAg3 

.J2 .J2 cr."B .J2cr 2 ."B .J2cr 3 ."B 
1 cr.~ crA/ crAg 3 

This system holds all the additive relations of sequences (5.4), as it is easy to 
prove. Donald and Carol Watts [15], a couple of american architects, have carefully 
studied the ruins of the Garden Houses at Ostia, the city-port of the Roman Empire and 
they found that all these houses have been designed using theoretically the proportion 
system (5.5) and practically, its integer approximation (5.4). These are not the only 
examples of the antiquity where the Silver Mean is present, since the italian-american 
architect Kim Williams has found similar results while surveying: 
1) the pavement of the baptistery of San Giovanni, Florence, Italy [16], 
2) Verrocchio's Tombslab for Cosimo de' Medici, patriarch of the wealthiest of 
Florentine families [17] and 
3) the famous Medici Chapel in Florence, Italy, built by Michaelangelo [18]. 

6. FRACTAL STRUCTURES OF ST. GEORGE 

Alan St. George is a British retired architect, living in Portugal and dedicated to 
the creation of mathematical sculptures. In december 1995 he presented at Lisboa his 
exposition "La forma del mlmero" [19]. His originals are fabricated with acrylic or 
metallic plates and they can be reproduced by computerized graphics. The generation of 
these original structures is based on the fractal principle of adding to each one of the five 
platonic solids - tetrahedra, cube or hexahedra, octahedra, dodecahedra, icosahedra -
reduced versions of the same solid. In :such a way, adding in each iteration auto-similar 
versions of the original structure, the result are fractal variations of regular solids. 

For example, to convert a cube in a fractal octahedra, we begin with a cube 
which faces are divided in nine equal squares, as indicated in Fig. 6.l. Then, we bild a 
cross with six smaller cubes, which faces are of the size of the above mentioned squares. 
Five of these cubes are located in form of a "greek cross" and the sixth is put over the 
central cube, forming a sort of stepping pyramid. The construction goes on sticking one 
of such units over each face of the original cube. Then, each of the faces of the resulting 
structure is subdivided in nine even smaller squares, over which we stick more reduced 
copies of the stepping pyramid. 

It is also possible to fractalize an octahedra and obtain a tetrahedra or a cube, like 
the mathematician Ian Stewart suggested in an interesting paper [20]. And why not? It 
would also be feasible to apply this fractalization process to semi-regular solids, a task 
that has not been focussed yet ... 
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Another variant of St. George consists in constructing three-dimensional spirals, 
starting also from the five platonic solids. In particular, let us consider the icosahedra of 
pentagonal symmetry (Fig. 6.2), which main characteristics we detail in what follows 

Faces: 20 Vertices: 12 Edges: 30 
Edge length: 1 

Distance from the polyhedra centre to the face centre: <p z 12..[3= 0,7558 .. . 
Distance from the polyhedra centre to the edge mid-point: <p /2 = 0,8090 .. . 

Distance from the polyhedra centre to a vertex: V5 .j;i 12 = 0,9511... 
V olumen: 5c1> 2 1 6 = 2,1817 ... 

Starting with an icosahedra, it is possible to construct the so called "icosahedrical 
spiral", following a path that passes through the twelve triangular edges of the 
icosahedra, visiting each vertex once and only once (Fig. 6.3). The construction is 
fulfilled by means of a sequence of "legs" ,which correspond to the twelve edges of the 
icosahedra Each leg is connected to the previous one and is parallel to an edge. But the 
successive legs have different lengths: each of them has <p I/IZ = 1,040916 ... times the 

. length of its antecessor. The answer to the question: why this strange figure?, is that 
after having added twelve edges to a given one, the last edge is parallel to the original, 

. having increased its length in (<p lI12 )12 = <p. 

Obviously, the choice of the Golden Mean <p in the construction of the 
icosahedrical spiral of St. George, obeys to mathematical as well as purely aesthetic 
reasons. In any case, it is impossible to deny the underlying mathematical reality inherent 
to a pentagonal symmetry so directly related to the Golden Mean ... 

7. INFLATIONARY SYSTEM 

We may consider that the temis of the different GSFS that define the Metallic 
Means family, can be ordered in generations in such a way that each generation 
"inherits" a property from his antecessor. This type of inheritance is completely normal 
in iterative processes and frequently, produces auto-similar structures that are the base of 
fractal configurations [20]. Let us denote such processes as "inflationary", usmg an 
usual noun in Economy. 

Let us consider two types of building blocks A and B that are distributed 
according to the inflation schema 

where m and n are integers; p ~ 2. SL m represents m adjacent repetitions of the stack SL . 

It is easily proved that the Golden Mean <p is generated by the recurrence relation 
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It is easily proved that the Golden Mean <p is generated by the recurrence relation 

that is, 

Sl ={A};S2 ={BA};S3 ={ABA};S.; ={BAABA}; ... 

in which each term is the "sum" of its two immediate antecessors. 

The Silver Mean, instead, is generated by the recurrence relation 

Sl ={A};S2 ={BA};S3 ={ABABA};S .. ={BAABABAABABA}; ... 

such that each term of the chain is formed by writing contiguously two replicas of the 
precedent term and adding its antecessor to the left of the replicas. 

In the case of the Bronze Mean, the relation is 

Sl ={A};S2 ={BA};S3 ={ABABABA};S .. ={BAABABABAABABABAABABABA}; ... 

F or the Copper Mean, we have the relation 

Sl ={B};S2 ={A};S3 ={BBA};S4 ={AABBA}; ... 

And for the Nickel Mean 

Sl ={B};S2 ={A};S3 ={BBBA};S4 ={AAABBBA}; ... 

Finally, we may assert 
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PROPERTY Nr. 4 OF THE IHETALLIC lVIEANS FAMILY 

All the members of this family are obtained through an '''inflationary schema" that 
produces a binary chain originated by two primitive blocks A and B that are distributed 

according to the inflation schema 

S p-+i =S P -; m S p n 

where m and n are integers and p ~ 2. 

8. THE HYPERBOLIC MAP 

In analyzing dynamical systems -- that is, physical systems which behavior 
'changes with time - it is crucial to detect periodic orbits. This periodic behavior, as well 

as the transition to quasi-periodic orbits, is mathematically studied considering irrational 
values of some characteristic parameter and, in such a case, as the important fact is the 
"irrationality" of such a value, the integer part is omitted and only the decimal part of 
the number is taken into account. More precisely, the main subject is restricted to the 
analysis of maps (transformations) of the unitary interval (0,1) in itself 

Returning to the continued fraction expansion, there is another possibility of 
expressing the continued fraction expansion of a positive real number a. < 1. Let us put 

1 
Xl =- and apply the iterative process described by the following relation 

a 

(8.1) 
·1 

where mam x means "mantissa of x'· and is the rest of the number X when it is taken 
modulo 1, that is, when one substracts as many times 1 as possible. 

E.g. mant r= 0,1416 ... ~ mant <J> = 0.618 ... 

Then we may state that the continued fraction expansion of the number a. is 

[bJ, bJ. ···1 
where k _ , the so called "floor function" by Manfred Schroeder [21], is the biggest 

integer not greater than x,. . 
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Notice that: 

or 

mant</> 

man! 4> = 1/4> 

1 
--1 - =[0,1,1, .. .] =[0,1]. 

1 I 1 
1 +-:-

1+'. 

The iterative process (8.1) is called the "hyperbolic map" [22]. This map is very 
simple to execute if the number x is given as a continued fraction expansion: 

In each iteration move all the terms of the expansion x = [ao , a p a2 , .• .] one place to 

the left and leave out the first coefficient of the expansion. 

In Fig. 8.1a we show the iteration of the hyperbolic map, starting from the 
number x = 7(' and in Fig. 8.1 b the ordered sequence of 200 points is depicted. The 
'same procedure have been applied to the hyperbolic map starting from the number e (see 
Figs. 8.2a y 8.2b) . It is highly interesting to compare in both cases the graphics 8.la and 
8.1b as well as 8.2a and 8.2b: notice how the 200 points of the hyperbolic map ordered 
themselves when in reality, they are following a completely chaotic 1 [24] trajectory! 

Obviously, being the continued fraction expansion of the Golden Mean a purely 
periodic expansion, it is a "Tued point" or an "equilibrium value" of the hyperbolic 
map, through all the iterations. That means that if the initial value is A (0) = a, thenA(k) = 
a is a constant solution to the iterated dynamical system, for all values of k. 

The same happens with all the members of the family that have a purely periodic 
continued fraction expansion. In the restant cases, where the continued fraction 
expansion is only periodic, we have also fixed points of the hyperbolic map, since leaving 
aside the first iteration, then the obtained value is invariant. 

In fact, we have depicted in Fig. 8.3 the hyperbolic map starting from the Golden 
Mean </> and in Fig. 8.4 the hyperbolic map starting from all the others Metallic Means 
we have already considered. As is easily seen, they appear as fixed points of the 
hyperbolic map. We have taken 50 digits and 1,000 iterations. 

In conclusion, we may assert 

I '·Chaotic'"is a process with respect to its dynamics, that is. when it is not possible to adventure any 
prognosis about its future evolution, since very similar initial conditions produce bclul,,;ors of the system 
that differ enormously among them. 
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PROPERTY NR 5 OF THE lVIETALLIC lVIEANS FAMILY 

Since the continued fraction expansions of the Golden, Silver and Bronze Means 

are of the form IT], 1.2], [3], respectively, these numbers are 04fIxed points" of the 

hyperbolic map. For the restant members of this family, that possess periodic 

continued fraction expansions ofthe form p ,;;:), being all the terms (with the 

exception of the fIrst) equal to n, we have also fIxed points of the hyperbolic map. 

NOTE: Of course, the number of members of the MMF that satisfies Properties 1,2,3, 
4 and 5, is infinite, since we could add to the above mentioned irrational numbers, all the 
irrational numbers which continued fraction expansion is purely periodic of period 1, 
such as for example 

5 +J29 7 +J53 F] =1 +24> ; f:5] 2 ; f.6] =3 +J1o ; 17] 2; ~] =4 +fl7; ... 

as well as all the possible combinations of continued fraction expansions of the form 
[n, p], with n natural and p an uneven number: 

1 +Ji3 1 +J29 1 +-153 
[2,3] 2; [3,5] 2 ; [4,7] 

2 

The rest of the members of the family are integer numbers with continued 
fraction expansions [n, 0] or else numbers with continued fraction expansions that 
include "stable cycles" obeying certain regularity rules that will be published elsewhere. 
Some of them are 

1 +J2j 1 +J33 1 +JTi ., 
2 =[2,13]; 2 =(3,2,1,2,5]; 2 =[4,1,3,2,1,1,2,.,,1,7]. 

9. QUASI-CRYSTALS: FORBIDDEN SYl\tlMETRIES 

Among the many problems in Physics, Chemistry, Biology and Ecology where 
the members of the M11F appear, one of the most striking is the structure of a quasi­
crystal. The most symmetric, regular and periodic of all real entities, are the "crystals". 
At the opposite end of the scale, we have the disordered or amorphous substances, like 
the "glasses ". 

100 



To distinguish between a crystal and a glass let us consider that a real crystal can 
be modellized putting an atom or a molecule at all the vertices of a regular triangular, 
cuadrangular or hexagonal lattice, lattices that have symmetries of order 3, 4 and 6 (Fig. 
9.1). In such a way, the problem of matter structure is reduced to one of pure geometry. 
This was the state of the art until 1984, when Schechtman et al. [25], [26], registering 
diffraction schema of electrons in an alloy of Aluminium and Manganese quickly cooled, 
found in cutting with planes forming detennined angles, pentagonal symmetries of order 
5, wholly impossible in a crystal since it is, obviously, impossible to tessellate the plane 
with regular pentagons. 

These configurations with pentagonal symmetry, that possess a quasi-periodic 
spatial structure, were called "quasi-crystals ". And they are really a new solid state of 
matter! 

What is extremely interesting is the fact that the projections were taken cutting 
with a plane which slope with respect to the ground was equal to the Golden Mean </>. 

Starting with this discovery, there appeared another quasi-crystals with other 
forbidden syrrunetries. E.g. the Silver Mean (JAg = 1 + ..fi = [ 2" ], generates a quasi­

. crystal with a forbidden symmetry of order 8 (see [27], [28]), while [ 4 ] = </>.3 appears 
in another forbidden symmetry, of order 12 (see [29]). Both symmetries, have been 
empirically detected. 

In particular, Gumbs, Ali et al., in various highly interesting papers [30], [31], 
[32], [33] and [34] studied electronic, optical, acoustic and super-conducting properties 
of quasi-periodic layered systems. For that purpose, they constructed geometric one­
dimensional models of a new type of quasi-crystals devised taking as basis GSFS. They 
were interested in these quasi-crystals because of their important physical applications, 
i.e. the problem of light transmission through a multi-layered medium. Among their most 
remarkable experimental results, they found fundamental differences in the behavior of 
Metallic Means which continued fraction expansion is purely periodic (the Golden Mean, 
the Silver Mean and the Bronze Me"an) and the Metallic Means with on'ly periodic 
continued fraction expansions (the Copper Mean and the Nickel Mean): 

1) In studying the electronic properties of a GSFS lattice, it was found that the trace 
maps of the Golden, Silver and Bronze Mean lattices are volume-preserving (non­
dissipative) while those of the Copper and Nickel Mean lattices are volume-non­
preserving ( dissipative). 

2) In investigating the magnetic excitation spectra of a Nickel-Molybdene GSFS lattice, 
it was found that only in the case of purely periodic continued fraction expansions, the 
whole spectrum is self-similar. In the case of periodic continued fraction expansions, only 
some parts of the whole spectrum are self-sii:nilar. 
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3) In considering quasi-periodic quantum Ising models in which the exchange interaction 
follows a GSFS, it was proved that in the case of dissipative maps (Copper and Nickel 
Mean lattices), the spectral properties are directly determined by the attract or of the 
map. And that the Copper and Nickel Mean lattices can be classified as between quasi­
periodic and random, with the Nickel Mean more random than the Copper Mean. 

10. CANTOR SPECTRA IN CRITICAL STATES 

In 1919, the brilliant mathematician Felix Hausdorff published a fundamental 
paper on the concept of "dimension" of a set. This paper opened the possibility of 
constructing sets with non integer topological dimension! The topological dimension 
corresponds to the common meaning of the word "dimension" and is an integer: it is 
zero for a point, one for a straight line, two for a certain portion of the plane and three 
for any body in space.' But evidently, the curves, surfaces and volumes may be so 
complex as to make it necessary to differentiate among them, taking into account how 
quickly the length, the surface or the volumen vary with respect to measure scales each 
time smaller. This notion established the base to define the "'fractal dimension", 
introduced by the polish mathematician Benoit B. Mandelbrot [35], [36]. 

Mandelbrot defined a "fractal" as a set with a Hausdorff dimension greater or 
equal to its topological dimension. It can be stated that the concept of dimension he used 
was a simplification of Hausdorff dimension. 

The notion of self-similarity is strictly related with the intuitive concept of 
dimension. A segment may be divided into N equal sub-segments, each of which is in a 
relation e = l/Nwith the original segment (Fig. 10.1). Analogously, in dividing a square 
into N equal sub-squares, obviously self-similar, we have a relation e = lIlfD. with the 
complete figure; this ratio is e = 1/1f13 in the case of a cube and e = 1/}f for a D­
dimensional object. Then 

Taking logarithms in both members, we get 

Din e=-InN, 

from where we get the fractal dimension D: 

(10.1) 
InN 

In(l/ e) 

We shall apply this fonnula to calculate the fractal dimension of the famous 
"Cantor ternary set", that is the most ancient known fractal. It was introduced by the 
gennan mathematician Georg Cantor (1845-1918), who is considered one of the 
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founders of set theory. To construct this set, let us begin with a given segment that is 
divided into three equal parts (Fig. 10.2) and leaving aside the middle third. Then the left 
and right thirds are again divided in three equal parts and the middle third is left aside. 
The process is repeated until after many iterations, we get discrete points that form the 
so called "Can/or powder ". If we take the initial length equal to unity, after three 
iterations, we shall have 23 = 8 segments, each of them of length }"3 = 1127. After 11 

iterations there will be 2n segments, each of length 3-D. The total length of the restant 
segments is equal to (2/3t, a quantity that tends evidently to zero when n tends to 
infinity. This implies that the fractal dimension of the Cantor ternary set is 

D 
InN 

In(l / e) 1 ( / 
-n =0,6309 ... 

n 1 3 ) 

This value is an irrational number, being nearer from one than from zero, and this is, in a 
certain sense, a measure of its irregularity. 

M. S. EI Naschie has carefully analyzed the relations existent among the 
Hausdorff dimension of Cantor sets of higher order and the Golden Mean and the Silver 
Mean [37], [38]. In particular, in Reference [39], he proved five important theorems, 

. three of them main theorems (Bijection Theorem, Theorem of the Golden Mean and 
Generalized Fibonacci Theorem) and two auxiliary theorems (Silver Mean Theorem and 
Arithmetic Mean Theorem). These theorems are related to the notion of K.AM 
instability2 and the global chaos in hamiltonian ( that conserve the energy) physical 
systems. 

Indeed, certain members of the MMF playa very important rol in relation to the 
stability of some orbits in the n-dimensional phase space. For example, it is a very well 
known fact that orbits with a "winding mlmber" equal to the Golden Mean are the most 
stable - the winding number measures the mean displacement of a certain angle at each 
iteration of a discrete dynamical system. Furthermore, the connection between the 
hyperbolic map and more general dynamical systems, is closely related to period 
duplication and the Golden Mean route to chaos. The empirical finding of period 
duplication in a certain physical phenomenon, as well as the existence of certain irrational 
ratios that produce the onset to chaos when this ratio is equal to the Golden Mean, are 
very well known in modern References (see References [3] and [21]). 

The forbidden symmetries we have already encountered in analyziung quasi­
crystals, like the symmetries of order eight and twelve, may also be generated by Cantor 
multiplicative sets of higher order, together with the Golden Mean [40]. 

~Kolmogorov (1954), Arnold (1963) and Moser (1967), proved what is today knO\\'l1 as KPuVf theorem. 
This theorem states that the motion in the phase space of Classical Mechanics is neither completely 
regular nor completely irregular. but that the sort path depends sensibly from the initial conditions .. 
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Comparing the terms of the secondary Fibonacci sequence (3.1), with the ternary 
Fibonacci sequence, defined by the relation 

(10.2) 

like it is indicated in the following table: 

11 1 2 
.., 

4 5 6 7 8 9 .J 

F" 1 1 2 
.., 

5 8 13 21 34 .J 

Bn 1 1 2 4 7 13 24 44 81 

it is easy to verify that for the first sequence, Fn and n are equal only when n = 5, while 
for the second one, Bn and n are equal only when n = 4. These type of states is normally 
used to modellize some forms of ergodic] behavior of physical systems and they can be 
considered as "ergodic-type states". The connections of this research with statistical 
mechanics, classic as well as quantum mechanics, as is proved by EI Naschie [41], 
determine the existence of two types of quasi-ergodic Cantor sets: 

- a) an even set of four dimensions, that describes the behavior of classical particles and 
bosons4 

; 

b) an odd set of five dimensions, related with fermio~ and with the pentagonal 
symmetry of quasi-crystals. 

11. TIME IRREVERSIBILITY 

ilia Prigogine is, without any doubt, one of the most important scientists of this 
century. He awarded the Nobel Prize in Chemistry and nowadays, he is the leader of a 
brilliant research group at the Free University in Brussel, Belgium. The fundamental 
question of time irreversibility and its consequences in science philosophy, has been one 
of his main preoccupations. 

The basic laws in Physics, from newtonian Mechanics to the generalized relativity 
theory of Einstein, as well as the present theories for the elementary particles, satisfy all 
the hypothesis of time reversibility. 

3 In Dynamics, it is a very important problem to be able to descnee the path of a particle in space. If the 
particle is limited La move inside a limited domain of space, it is essential to know if the path fills out 
all the space ",ith an uniform distribution in a sufficiently long time. Such paths are called "ergodic" 
and to postulate their existence is a fundamental problem in classic Dynamics as well as in Quantum 
Mechanics. 
4 Bosons are eiementary particles \\ith a "spin" or angular momentum that is an integer multiple of 
Planck's constant. Photons and mesons are bosons. 
~ Fermions are elementary particles ,\ith a ··spin·· trot is a half-integer multiple of Planck·s constant. 
Electrons. protons and neutrons are fennions. 
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As Einstein stated: "the distilIction among past, present and future, is only an 
illusion". However, time seems to flow in one sense. How is it possible to reconcile the 
fundamental statement with the empirical fact? 

In his recently appeared book [42], Prigogine considers this question and the 
finding of an answer obliges him to revise and restate all the Physics, starting from 
Epicur's dilemma for whom the problem of the intelligibility of nature is undetachable 
from men destiny. 

Together with Prigogine and other scientists, El Naschie proposes a solution 
valid for classical Mechanics as well as for Quantum Mechanics [43]. The solution 
consists in the introduction of the notion of a "cantorian" (from Cantor) space-time, in 
which time behaves statistically and is completely undistinguishable from the restant 
three space coordinates. What is really remarkable of this Cantorian space-time is that 
applying all the probabilistic necessary laws, the values of Hausdorff dimensions are 

intrinsically linked to the Golden Mean cf> and its successive powers, like cf>2 = [2, 1] and 

cf>s = (4] (see Reference [44])1 

Obviously, Hausdorff dimension, being an intermediate measure between volume 
'and dimension, plays in this new theory a preponderant rol as a linkage between 

dimension and information. We may as well conjecture a relation between the 
irrationality grade and the information content, since when the dimension is equal to the 
Golden Mean cf> - the most irrational of all irrational numbers -- the information 
content is the largest possible. 

12. CONCLUSIONS 

We have already verified how the 11MF is closely related to the transition from a 
periodic dynamics to a quasi-periodic dynamics, as well as to the onset from order to 
chaos and with time irreversibility. 

But simultaneously, since the beginning of humanity, there have been 
philosophical, natural and aesthetic considerations that have had primacy in the 
establishment of proportions based on some members of this family. They appeared more 
or less explicitly in the sacred art of Egypt, India, China and Islam and other ancient 
civilizations. They have dominated greek art and architecture, they persisted concealed in 
the monuments of the Gothic Middle Ages and re-emerged openly to be celebrated in the 
Renaissance. 

Summarizing, we can state that wherever there is an intensification of function or 
a particular beauty and harmony of form, there at least the two first members of the 
M1vfF, e.g. the Golden Mean and the Silver Mean, will be found. If the rest ant members 
of this family are also involucred in these considerations, future researchs will give the 
answer. 
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Such a wide range of applications where the members of the i\1N.tF are present, 

opens the road to new inter-disciplinary investigations that undoubtedly will clear up the 

existent relations between Art and Technique, building a bridge linking the rational 

scientific approach and the aesthetic emotion. And perhaps this new perspective could 

help us in giving Technology, from which we depend each time more and more for our 

survival, a more human character. 
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FIGURE CAPTIONS 

Fig. 5.1: Golden relations in a pentagon or unity side. 

Fig. 5.2: Golden divisions in an ancient mask of Hermes. 

Fig. 5.3: The Silver Mean in a regular octagon. 

Fig. 6.1: Fractalization of a cube. 

Fig. 6.2: Icosahedron. 

Fig. 6.3: Icosahedrical spiral. 

Fig. 8.1a: Hyperbolic map starting from 1t. 

Fig. 8.1b: Ordered sequence of200 points for the hyperbolic map of Fig. 8.Ia. 

Fig. 8 .. 2a: Hyperbolic map starting from e. 

Fig. 8.2b: Ordered sequence of200 points for the hyperbolic map of Fig. 8.2a. 

Fig. 8.3: Hyperbolic map starting from the Golden Mean. 

Fig. 8.4: Hyperbolic map starting from the other ~v1etallic Means. 

Fig. 9.1: Regular tilings for tessellating the plane. 

Fig. 9.2: Cantor "powder" set. 
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Fig. 5.1 

Fig. 5.2 
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Fig. 5.3 

Fig. 6.1 
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> x:=evalf{E); 
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Fig.8.2b 



> 
> Digits: = 50; 
> x: = e val f { {1 + s q rt ( 5) ) /2} ; 
> F1 : = array(l .. 1 ODD}; 
>H1:=proc(); 
> if i = 1 then F1 [i]: = frac(x) else F1 [iJ: = frac(l /frac(F1 [i-1.1)) 
> fj· , 
> end; 
> Rl : = [seq(Hl O,i = 1 .. 50}]; 
> R 3: = [ R 1 [2 .. 49] ] ; 
> with(plots): 
> RP: = plot{R1 ,0 .. 1 ,O .. 1,style = POINT): 
> RP3: = plot(R3,O .. 1 ,O .. l,style = POINT}: 
> display({RP,RP3}}; 
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