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Stress induces tRNA cleavage by angiogenin in mammalian cells
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a b s t r a c t

tRNAs play a central role in protein translation, acting as the carrier of amino acids. By cloning
microRNAs, we unexpectedly obtained some tRNA fragments generated by tRNA cleavage in the
anticodon loop. These tRNA fragments are present in many cell lines and different mouse tissues.
In addition, various stress conditions can induce this tRNA cleavage event in mammalian cells. More
importantly, angiogenin (ANG), a member of RNase A superfamily, appears to be the nuclease which
cleaves tRNAs into tRNA halves in vitro and in vivo. These results imply that angiogenin plays an
important physiological role in cell stress response, except for the known function of inducing
angiogenesis.
� 2008 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction be polyadenylated by Trf4 complex, subsequently degraded by
tRNAs play a key role in protein synthesis. They provide adaptors
for the process in which triplet codons are translated into amino
acids, and the vehicles which transport amino acids to ribosome
[1]. Past researches on tRNAs mainly focus on their structure, matu-
ration and the correlative function in protein synthesis, and little is
known about their degradation process. Actually, many factors may
lead to the degradation of tRNAs, including the mutation of itself, the
inactivation of tRNAs processing or modifying enzyme [2,3].

Many genes responsible for tRNA modifications in the antico-
don region play a major role in translation or growth [4]. By con-
trast, the numerous tRNA modifications outside of the anticodon
region have long been considered ancillary. However, Alexandrov
et al. [5], have reported that the mutation of any of the three en-
zymes which are among several non-necessary basi-modifying en-
zymes outside the anticodon loop of tRNAs results in Val-tRNAACC

lacking certain pairs of tRNA modifications, these tRNAs are
quickly degraded, and thus lead to temperature-sensitive growth.
This rapid tRNA degradation pathway acts on Val-tRNAAAC as fast
as for some mRNA species, which demonstrates a critical role of
non-essential modifications for tRNA stability and cell survival [5].

Base mutation can also affect the stability of tRNA molecules.
Keller et al. [6] have verified that DU13 mutant of Ala-tRNA can
chemical Societies. Published by E

itative real-time polymerase
exosome, whereas none activity was observed with native Ala-
tRNA. These results and additional experiments with other tRNA
substrates suggest that the Trf4 complex can discriminate between
native tRNAs and molecules that are incorrectly folded. There are
kinds of mechanisms to ensure the fidelity of macromolecular
duplication, transcription and translation in organismic gene
expression system, but mutants with mutated base still unavoid-
ably generate. The production of these RNA mutants with mutated
base represses translation and thereby severely effects cellular
normal metabolism [6]. The tRNA quality control mechanism of
tRNAs in cells can remove the tRNAs containing base mutation in
time, and so maintains cellular normal metabolism and growth.

All above are about the degradation mechanism of abnormal
tRNAs, but the degradation pathway of normal mature tRNAs re-
mains poorly elucidated. By cloning microRNAs from human fetus
hepatic tissue [7], we unexpectedly obtained some cleaved tRNA
sequences. In this work, we demonstrate that this tRNA cleavage
event in mammalian cells is induced by various stress conditions,
such as nutrition deficiency, hypoxia and hypothermia. More
importantly, we reveal that angiogenin (ANG), a ribonuclease in
the RNase A superfamily, appears to be the nuclease which cleaves
tRNAs into tRNA halves.
2. Materials and methods

2.1. Cell culture and exposure condition

HepG2, HeLa and other cell lines were grown in DMEM contain-
ing 10% FBS and penicillin/streptomycin. For nutrition starvation
lsevier B.V. All rights reserved.
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studies, cells were washed and medium were replaced with Dul-
becco’s PBS for the indicated times [8]. For serum starvation stud-
ies, cells were washed and medium were replaced with serum-free
DMEM for the indicated times [9]. For c-irradiation exposure
group, cells were exposed to a final dose of 8Gy or 10Gy (60Co)
[10]. For hypoxia treatment, cells were incubated with DMEM con-
taining 100 lM CoCl2 for 1 h or 12 h at 37 �C [11]. For hypothermia
treatment, cells were incubated at 16 �C for 40 min, and then incu-
bated at 37 �C for 30 min. For heat shock treatment, cells were
incubated at 42 �C for 40 min, and then incubated at 37 �C for
30 min [12].

2.2. Tissue starvation

Fresh tissues of mouse liver and heart were kept in PBS buffers
for 30 min, 1 h, 3 h, 5 h, 7 h and 12 h at room temperature, respec-
tively, and then total RNAs were extracted.

2.3. RNA extraction and cloning

Total RNA was extracted from the cultured cells by using Trizol
(Invitrogen, Carlsbad, CA) according to the manufacturer’s proto-
col. Small RNA (6200 nt) was extracted from cells and human fetal
liver tissue using mirVanaTM miRNA Isolation kit (Ambion, Austin,
TX) according to the manufacturer’s instructions. The concentra-
tion of RNA was measured by the UV absorbance at 260 nm. RNA
cloning was performed according to the method described previ-
ous [7].

2.4. RNA sequence Computational analyses

RNA sequences were subjected to BLAST analyses against the
human genome (http://www.ncbi.nlm.nih.gov/blast).

2.5. Expression vector construction and transfection

The angiogenin coding sequence was amplified by polymerase
chain reaction (PCR) from HepG2 cDNA with primers 50-GTCAA-
GCTTCTGTGTTGGAAGAGATGGTGA-30 and 50-CCACTCGAGCCGC-
TGGTTACGGACGACGGA-30. Then the PCR product was cleaved
with EcoRI and XhoI and ligated into EcoRI/XhoI-cut pcDNA3.0.
The resulting plasmid was named pcDNA-ANG. DNA transfection
was performed with Lipofectamine 2000 (Invitrogen) according
to the manufacturer’s protocol. Total RNAs and proteins were pre-
pared 48 h after transfection.

2.6. siRNAs and transfection

The siRNAs were synthesized by GeneChem (Shanghai, China).
The target sequences of angiogenin siRNA were: (1) ACGUUGUUG-
UUGCUUGUGA; (2) CCUAAGAAUAAGCAAGU CU; and (3) AGGCCA-
UCUGUGAAAACAA. The sequence of negative control was
UUAAGUAGCUUGGCCUUGA. siRNAs transfection in HepG2 cells
were performed with Lipofectamine 2000 (Invitrogen) according
to its protocol. In brief, cells were cultured in 6-well plate to 40%
confluence. For each well, 5 ll siRNA (20 lM) was added into
250 ll Opti-MEM medium, 5 ll of Lipofectamine 2000 into
250 ll Opti-MEM medium, and then mixed siRNA with Lipofect-
amine 2000. The mixture was added to cells and incubated for
6 h before replacing the medium. Total RNAs and proteins were
prepared 48 h after transfection.

2.7. Northern blot

Northern blot was performed according to the method de-
scribed previously [7]. The probes used for Northern blot were 50
end of Gly-tRNA: 50-GCAGGCGAGAATTCTACCACTGAACCACCAAT-
GC-30; 30 end of Gly-tRNA: 50-GCATTGGCCAGGAATCGAAGCCCGG-
30; 50 end of Val-tRNA: 50-GUUUCCGUAGUGUAGUGGUUAUCAC-
GUUCGCC-30;50 end of Met-tRNA: 50-AGCACGCTTCCGCTGCGC-
CACTCTGCT-30; 50 end of Arg-tRNA: 50-GGGCCAGTGGCGCAATGG-
ATAACGCGT-30; 50 end of Tyr-tRNA: 50-TCCGCTCTACCAGCTGAGC-
TATCGAAGG-30.

2.8. Quantitative real-time polymerase chain reaction (qRT-PCR)

qRT-PCR was used to confirm the siRNA-mediated knock-down
of angiogenin mRNA. Reverse transcription was performed accord-
ing to the protocol of Impro-II Reverse Transcriptase (Promega),
qPCR was performed as described in the method of SYBR premix
Ex Taq (TaKaRa, Dalian, China) with IQ5 (Bio-Rad) supplied with
analytical software. GAPDH mRNA levels were used for normaliza-
tion. Sequences of oligonucleotide primers for qRT-PCR were:
angiogenin, 50-CACACTTCCTGACCCAGCACTA-30 and 50-TTCTCTGT-
GAGGGTTTCCATTC-30; GAPDH, 50-TCAGTGGTGGACCTGACCTG-30

and 50-TGCTGTAGCCAAATTCGTTG-30.

2.9. RNA cleavage reaction in vitro

For RNA cleavage reaction, incubation mixtures contained 20 lg
of total RNA extracted from HepG2 cells, 1 lM angiogenin (90%,
Cancer Institute, Chinese Academy of Medical Science, Beijing,
China), 30 mM HEPES, pH 6.8, 30 mM NaCl, 0.001%BSA. Incubations
were carried out at 37 �C for 10 min, 30 min, 1 h or 2 h. Then the
cleaved products were recovered by phenol/chloroform extraction
followed by ethanol precipitation [13].

2.10. Western-blot analysis

Protein extracts were prepared by a modified RIPA buffer with
0.5% sodium dodecyl sulfate (SDS) in the presence of proteinase
inhibitor cocktail (Complete mini, Roche). Polyacrylamide gel elec-
trophoresis, tank-based transfer to Immobilon Hybond-C mem-
branes (Amersham Biosciences), and immunodetection were
performed with standard techniques. Antibodies against ANG (sc-
1408, Santa Cruz), and b-actin (sc-1616-R, Santa Cruz) were used
in Western-blot analysis in accordance with the manufacturer’s
instruction. Signals were visualized with SuperSignal� West Pico
chemoluminescent substrate (Pierce) by exposure to films.
3. Results and discussion

3.1. Identification of cleaved mammalian tRNA fragments

When we tried to clone microRNAs from human fetus hepatic
tissue, we unexpectedly have obtained a distinct population of
31–38nt cleaved tRNA fragments [7]. These tRNA fragments corre-
spond to five different kinds of tRNAs (Table 1). Intriguingly, they
do not appear to result from the random degradation of tRNAs,
but instead correspond to ‘halves’ of tRNAs located either 50 or 30

of the anticodon sequence. None of these tRNA fragments contains
50 leader or 30 trailer sequences of pre-tRNA, moreover, the precur-
sors of these tRNAs have no intervening sequences, which suggest
that these tRNA fragments are generated from fully mature tRNAs
rather than from nascent tRNA transcripts. In other words, the ob-
served tRNA halves were derived from cleavage within the antico-
don loop of mature tRNAs by specific endonuclease.

To determine whether these tRNA fragments were products of
specific cleavage or random degradation, we analyzed individual
tRNA by Northern blot. Small RNAs (6200nt) were extracted from
fetal liver, HepG2, BEL-7402, HeLa, A549, HEK-293 and Cos7 cell

http://www.ncbi.nlm.nih.gov/blast


Table 1
Summary of cleaved tRNA fragments.

Name Sequence No. of clonesa Size (nt) 50 or 30b

Gly-tRNAGCC
GCATTGGTGGTTCAGTGGTAGAATTCTCGCCTGCC 19 32–35 5

Gly-tRNACCC
GCGCCGCTGGTGTAGTGGTATCATGCAAGAT 4 31 5

Val-tRNAAAC
GTTTCCGTAGTGTAGTGGTTATCACGTTCGCCT 11 32–33 5

Glu-tRNACTC
TCCCTGGTGGTCTAGTGGTTAGGATTCGGCGCT 7 33–35 5

Arg-tRNACCG
GGATCAGAAGATTGAGGGTTCGGGTCCCTTCGTGGTCG 2 38 3

Sequences listed represent the longest sequence of each kind of tRNA halves identified in this study.
a Number of clones.
b tRNA fragments are 50 or 30 ends of intact tRNA.
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lines, respectively. We detected the tRNA fragments with probes
complementary to the 50 end and 30 end of Gly-tRNAGCC, respec-
tively. As shown in Fig. 1, not only intact tRNAs, but also both 50

end and 30 end of Gly-tRNAGCC were detected in all tissue and cell
lines. The tRNA halves detected in fetal liver were much more than
those of other cell lines. This revealed that the tRNA fragments we
cloned were products of specific cleavage of intact tRNAs. Although
we have not cloned 30 end sequence of Gly-tRNAGCC, it was de-
tected by Northern blot suggesting that the kinds of tRNA halves
were more than those of we cloned.

3.2. Stress conditions induce the production of tRNA halves

Given that fetus hepatic tissue had been kept outside the body
for a few hours before RNA was extracted, we selected mouse liver
and heart tissues to analyze the cause of tRNA halves generation.
First, we extracted total RNAs from liver and heart as soon as the
mouse was killed, and the remaining parts of liver and heart were
kept in PBS buffer at room temperature. Then total RNAs were ex-
tracted from these tissues at different time point, such as 30 min,
Fig. 1. Detection of the 50 and 30 halves of Gly-tRNA by Northern blot. (a) tRNA
halves were detected by the probe complementary to the 50 sequence of Gly-
tRNAGCC and (b) tRNA halves were detected by the probe complementary to the 30

sequence of Gly-tRNAGCC. Total RNAs were extracted from fetal liver tissue and
diverse cell lines, and analyzed by Northern blot.
1 h, 3 h, 5 h, 7 h and 12 h, respectively. These total RNAs were ana-
lyzed with the probe complementary to the 50 end of Val-tRNA.
Northern blot analysis indicated that the levels of tRNA halves in
normal liver tissue and heart tissue were low, but they increased
when these tissues were kept in PBS, and the levels of tRNA halves
reached to maximum at 3 h (Fig. 2). These results suggest that the
generation of tRNA halves may be induced by nutrition deficiency.

To investigate whether this is the same case for cells cultured in
vitro, total RNAs were extracted from HepG2 cells cultured in PBS
or DMEM without serum. The tRNA halves derived from Gly-tRNA,
Val-tRNA, Met-tRNA, Arg-tRNA and Tyr-RNA were analyzed by
Northern blot. The result revealed that nutrition deficiency could
induce the production of multiple tRNA halves in cells cultured
in vitro indeed (Fig. 3). 50 half fragment of Met-tRNA has not been
cloned by our strategy, but it was detected by Northern blot
(Fig. 3c), which suggested that more kinds of tRNAs than those
we cloned could be cleaved into tRNA halves under certain condi-
tions. Lee et al. found that tRNA halves generated in tetrahymena
thermophila cells lacking essential amino acids, and that the addi-
tion of these essential amino acids could inhibit the production
of tRNA halves [14]. However, tRNA halves could generate in
human tumor cells either cultured in PBS or DMEM (rich of essential
amino acids) without serum (Fig. 3). That is to say, only essential
Fig. 2. tRNA halves investigated by Northern blot in starvation tissues. (a) tRNA
halves were detected by the probe complementary to the 50 sequence of Val-
tRNAAAC in liver tissue and (b) tRNA halves were detected by the probe comple-
mentary to the 50 sequence of Val-tRNAAAC in heart tissue. Total RNAs were
extracted from mouse liver and heart tissue at different time point, and analyzed
with 50 specific probe of Val-tRNAAAC. As a loading control, 5.8S RNAs were stained
with ethidium bromide (EtBr).



Fig. 3. Analysis of different tRNA halves in starvation HepG2 Cells by Northern blot. (a) tRNA halves were detected by the probe complementary to the 50 sequence of Gly-
tRNAGCC; (b) tRNA halves were detected by the probe complementary to the 50 sequence of Val-tRNAAAC; (c) tRNA halves were detected by the probe complementary to the 50

sequence of Met-tRNACAT; (d) tRNA halves were detected by the probe complementary to the 50 sequence of Arg-tRNAACG; and (e) tRNA halves were detected by the probe
complementary to the 50 sequence of Tyr-tRNAGTA. (a) and (c) were from the same membrane, as were (b) and (d). Total RNAs extracted from HepG2 cells cultured in PBS or
DMEM without serum were analyzed by Northern blot with probes against diverse tRNAs. As a loading control, 5.8S RNAs were stained with ethidium bromide (EtBr).

Fig. 4. Stress conditions induce tRNA cleavage. The probe complementary to the 50

sequence of Val-tRNAAAC was used to detect the tRNA halves. Multiple stress
conditions, such as nutrition deficiency, heat shock, hypothermia and hypoxia, can
trigger tRNA cleavage and lead to the generation of tRNA halves in mammalian
cells. As a loading control, 5.8S RNAs were stained with ethidium bromide (EtBr).
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amino acids can not inhibit the production of tRNA halves in mam-
malian cells.

As shown in Fig. 3e, not all types of tRNAs were cleaved into
tRNA halves under the condition of nutrition deficiency. We could
detect intact Tyr-tRNAGTA but not its cleaved fragments from cells
treated with both PBS starvation and non-serum starvation
(Fig. 3e). That means the production of its tRNA halves could not
be induced by nutrition deficiency. However, the level of Tyr-
tRNAGTA decreased significantly when cells were cultured in PBS
for 7 h. The length of Tyr-tRNAGTA is �90nt, but the lengths of other
tRNAs such as Gly-tRNA, Val-tRNA and Met-tRNA, are �70nt. That
suggests the structure of Tyr-tRNAGTA may be different from other
tRNAs, and it might be cleaved at other sites instead of anticodon
loop.

To further analyze the reasons of tRNA halves generation,
HepG2 cells were treated with several stress conditions such
as heat shock, hypothermia, hypoxia or irradiation. Northern blot
analysis showed the levels of cleaved Val-tRNA fragment in-
creased in cells treated with PBS starvation for 30 min, heat
shock at 42 �C, hypothermia treatment at 16 �C, hypoxia by CoCl2

for 1 h or hypoxia by CoCl2 for 12 h (Fig. 4). And hypothermia
treatment had the most significant effects on the production of
tRNA halves. However, irradiation had no distinct effects on
the production of tRNA halves. These results reveal that not only
nutrition deficiency but also multiple stress conditions can trig-
ger tRNA cleavage and lead to the generation of tRNA halves in
mammalian cells.
3.3. Angiogenin can cleave tRNAs in the anticodon loop in vitro

The tRNAs can be cleaved in the anticodon loop and processed
into tRNA halves under the conditions of nutrition deficiency or
stress. This cleavage may be catalyzed by a site-specific nuclease
that recognizes specific tRNA structure. Anticodon loop cleavage
of tRNAs has been observed in prokaryotes, the prokaryotic plas-



Fig. 5. tRNAs can be cleaved by angiogenin in the anticodon loop in vitro. Total
RNAs of HepG2 were isolated and cleaved by purified angiogenin in vitro for
different time. And the processed RNAs were used to probe Val-tRNAAAC halves by
Northern blot.

H. Fu et al. / FEBS Letters 583 (2009) 437–442 441
mid-encoded Colicins and the anticodon nuclease PrrC target
tRNAs for cleavage in the anticodon loop in response to stress-in-
duced signals and T4 phage infection, respectively [15,16]. Unlike
the global tRNA cleavage that we have observed here, these mole-
cules can only act on several specific tRNAs. In addition, BLAST
searches suggest that there are no similar proteins in human cells
(data not shown). Thus, other RNases should be responsible for
cleavage of tRNAs induced by stress condition.

Saxena et al. have reported that angiogenin (ANG), a member of
RNase A superfamily, can degrade tRNAs and inhibit protein syn-
thesis when injected into Xenopus oocytes [17]. To verify whether
tRNAs can be cleaved into tRNA halves by angiogenin, 20 lg total
RNAs were incubated with 1lM recombinant angiogenin in vitro
at 37 �C for 10 min, 30 min, 1 h and 2 h, respectively. Northern blot
results showed that most of the intact Val-tRNA was cleaved into
short tRNA halves after 10 min (Fig. 5). And the longer total RNAs
were incubated, the more intact tRNAs were cleaved. When total
RNAs were incubated with angiogenin for 2 h, almost all intact
Fig. 6. Identification of tRNA halves in angiogenin over-expression HeLa cells by
Northern blot. (a) Western-blot analysis of angiogenin protein in HeLa cells
transfected with pcDNA3.0 or pcDNA-ANG. Antibody against b-actin was used as a
loading control. (b) Total RNAs were extracted from HeLa cells transfected with
pcDNA3.0 and pcDNA-ANG respectively, and the probes targeting 50 sequence of
different tRNA were used to detect the tRNA halves in HeLa cells. As a loading
control, 5.8S RNAs were stained with ethidium bromide (EtBr).
tRNAs and cleaved tRNA halves were degraded. These results sug-
gest that the production of tRNA halves initiates a complete degra-
dation pathway for targeted tRNAs.

3.4. Angiogenin cleaves tRNAs into tRNA halves in vivo

To test whether angiogenin could cleave tRNAs in cultured
mammalian cells, HeLa cells were transiently transfected with
the plasmid expressing angiogenin. Cellular total RNAs were ex-
tracted 48 h after transfection and analyzed by Northern blot using
probes targeted to 50 ends of Met-tRNA, Tyr-tRNA and Val-tRNA,
respectively. As shown in Fig. 6, 50 ends tRNA halves of Met-tRNA
and Val-tRNA were detected in angiogenin over-expressing cells
but not in negative control samples. However, we detected no half
fragment of Tyr-tRNA in angiogenin over-expressing cells, which
coincided with our previous results that its tRNA halves were not
detected in starving cells. These results suggest that angiogenin
is probably the endonuclease for producing tRNA halves in vivo.

In order to analyze the role of endogenous angiogenin in
production of tRNA halves, HepG2 cells were transfected with
chemically synthesized siRNAs against angiogenin. And their
knock-down efficiency was analyzed by qRT-PCR. All three siRNAs
can reduce the mRNA levels of angiogenin, and siANG-1 has signif-
icant inhibition effect on the expression of angiogenin (Fig. 7a and
b), so it was used in the following experiment. HepG2 cells were
transfected with siANG-1 and control siRNA, respectively, 48 h
after transfection, the medium was replaced with PBS for 30 min.
Then the total RNAs were extracted and analyzed for the produc-
Fig. 7. Decrease of angiogenin inhibiting the generation of tRNA halves in HepG2
cells. (a) Analysis of mRNA level by qRT-CR for angiogenin after treatment of HepG2
cells with siRNA against angiogenin, with negative siRNA (left) as negative control.
The error bars are derived from triplicate qRT-PCR using the same source of cDNA.
(b) The effectiveness of siRNA against ANG protein was analyzed by Western blot.
Antibody against b-actin was used as a loading control. (c) tRNA halves were
detected by Northern blot when angiogenin was inhibited by siRNA. The probe
complementary to 50 sequence of Val-tRNAAAC was used to detect Val-tRNA halves.
As a loading control, 5.8S RNAs were stained with ethidium bromide (EtBr).
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tion of Val-tRNA halves. Depletion of angiogenin in cells cultured
with normal DMEM medium had no significant effects on the pro-
duction of tRNA halves (Fig. 7c). But comparing with negative siR-
NA control, siANG-1 inhibited the production of tRNA halves in
cells treated with PBS (nutrition deficiency), which suggests that
angiogenin is essential for the production of tRNAs halves in
starved mammalian cells. Angiogenin is a member of the RNase
superfamily, and plays an important role in eliciting new blood
vessel growth, angiogenesis [18]. By regulating angiogenesis,
angiogenin is closely related to tumor growth and progression,
and even its aggressiveness [19]. Site-directed mutagenesis studies
have shown the intact RNase active site is crucial for angiogenesis
[20]. However, its intracellular natural substrate is not clear. Here
we have found that tRNAs can be cleaved into tRNA halves by
angiogenin in vitro and in vivo (Figs. 5 and 6), suggesting tRNAs
may be natural substrates of angiogenin in mammalian cells. These
tRNA halves have accumulated under various stress conditions
(Fig. 4), however, no significant angiogenin protein levels alter-
ation was detected (Fig. S1). That might because tRNA cleavage
by angiogenin occurs preferentially for deacylated tRNAs lacking
30CCA. A fraction of deacylated tRNA may lose 30terminal CCA
nucleotides under stress conditions, and these truncated tRNAs
accumulate transiently [14]. Therefore, tRNA halves cleaved by
angiogenin accumulate without angiogenin protein levels
alteration.

Although tRNA halves have been identified in various species
such as Streptomyces coelicolor [21], Tetrahymena thermophila
[14], Caenorhabditis elegans [22] and mammalian cells, the biolog-
ical function of tRNA cleavage is still unclear. It is conceivable that
the tRNA cleavage could serve as a mechanism to eliminate redun-
dant tRNA molecules, especially those uncharged and/or 30-trun-
cated tRNAs. Targeting redundant tRNAs for degradation may
save more essential nutritive material to maintain longer term sur-
vival under nutrient-poor conditions. Another possibility is that
cleaved tRNA halves might act as signaling molecules to regulate
genes. For example, mRNAs of influenza virus and HIV-1 can be
cleaved by the RNases (RNase P and RNase Z) with external guide
sequence (EGS), which is an RNA similar to tRNA halves form and
plays its role as a guide to specify its target RNAs [23,24]. These
RNases may use the cleaved product of tRNA identified here as a
guide to regulate the expression of target genes. The ribonucleoly-
tic activity of angiogenin is crucial for its angiogenic activity [20],
here we demonstrate that tRNAs are natural substrates of angioge-
nin in mammalian cells. Then it is also possible that tRNA cleavage
by angiogenin plays a role in the angiogenesis process. All of the
above hypotheses, based on our novel data, await future experi-
mental validation.

In summary, our data show that tRNA halves are commonly
found in diverse mammalian cells, and this tRNA cleavage event
can be induced by multiple stress conditions. In addition, angioge-
nin, a member of RNase A superfamily, appears to be the nuclease
which cleaves tRNAs into tRNA halves in vitro and in vivo. That is
to say, tRNAs are natural substrates of the ribonucleolytic activity
of angiogenin, although the biological function of these tRNA
halves remains to be elucidated.
Acknowledgements

This project was supported partially by Chinese Natural Science
Foundation Project (30670440), Chinese State Key Project for Basic
Research (2006CB910407 and 2007CB914601), and National 863
plans projects (2006AA02Z127).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.febslet.2008.12.043.

References

[1] Ibba, M. and Soll, D. (2004) Aminoacyl-tRNAs: setting the limits of the genetic
code. Genes Dev. 18, 731–738.

[2] Eisenberg, S.P. and Yarus, M. (1980) The structure and aminoacylation of a
temperature-sensitive tRNATrp (Escherichia coli). J. Biol. Chem. 255, 1128–
1137.

[3] Colby, D., Leboy, P.S. and Guthrie, C. (1981) Yeast tRNA precursor mutated at a
splice junction is correctly processed in vivo. Proc. Natl. Acad. Sci. USA 78,
415–419.

[4] Hopper, A.K. and Phizicky, E.M. (2003) tRNA transfers to the limelight. Genes
Dev. 17, 162–180.

[5] Alexandrov, A., Chernyakov, I., Gu, W., Hiley, S.L., Hughes, T.R., Grayhack, E.J.
and Phizicky, E.M. (2006) Rapid tRNA decay can result from lack of
nonessential modifications. Mol. Cell 21, 87–96.

[6] Vanacova, S. et al. (2005) A new yeast poly(A) polymerase complex involved in
RNA quality control. PLoS Biol. 3, e189.

[7] Fu, H. et al. (2005) Identification of human fetal liver miRNAs by a novel
method. FEBS Lett. 579, 3849–3854.

[8] Johannessen, C.M., Reczek, E.E., James, M.F., Brems, H., Legius, E. and
Cichowski, K. (2005) The NF1 tumor suppressor critically regulates TSC2 and
mTOR. Proc. Natl. Acad. Sci. USA 102, 8573–8578.

[9] Sood, R., Porter, A.C., Olsen, D.A., Cavener, D.R. and Wek, R.C. (2000) A
mammalian homologue of GCN2 protein kinase important for translational
control by phosphorylation of eukaryotic initiation factor-2alpha. Genetics
154, 787–801.

[10] Zhao, Y., Su, L., Liu, F. and Kong, X. (1999) Radiation effect and adaptive
response by low-dose irradiation on RNA and protein synthesis in human
lymphocytes. Acta Acad. Med. Suzhou 19, 1250–1252.

[11] Wilson, J.L., Burchell, J. and Grimshaw, M.J. (2006) Endothelins induce CCR7
expression by breast tumor cells via endothelin receptor A and hypoxia-
inducible factor-1. Cancer Res. 66, 11802–11807.

[12] Wang, T.Y., Wu, N.H. and Shen, Y.F. (2001) Gene expression changes after heat
shock by cDNA array analysis. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 23, 361–
364.

[13] Lee, F.S. and Vallee, B.L. (1989) Characterization of ribonucleolytic activity of
angiogenin towards tRNA. Biochem. Biophys. Res. Commun. 161, 121–126.

[14] Lee, S.R. and Collins, K. (2005) Starvation-induced cleavage of the tRNA
anticodon loop in Tetrahymena thermophila. J. Biol. Chem. 280, 42744–42749.

[15] Masaki, H. and Ogawa, T. (2002) The modes of action of colicins E5 and D, and
related cytotoxic tRNases. Biochimie 84, 433–438.

[16] Kaufmann, G. (2000) Anticodon nucleases. Trends Biochem. Sci. 25, 70–74.
[17] Saxena, S.K., Rybak, S.M., Davey Jr., R.T., Youle, R.J. and Ackerman, E.J. (1992)

Angiogenin is a cytotoxic, tRNA-specific ribonuclease in the RNase A
superfamily. J. Biol. Chem. 267, 21982–21986.

[18] Tsuji, T., Sun, Y., Kishimoto, K., Olson, K.A., Liu, S., Hirukawa, S. and Hu, G.F.
(2005) Angiogenin is translocated to the nucleus of HeLa cells and is involved
in ribosomal RNA transcription and cell proliferation. Cancer Res. 65, 1352–
1360.

[19] Tello-Montoliu, A., Patel, J.V. and Lip, G.Y. (2006) Angiogenin: a review of the
pathophysiology and potential clinical applications. J. Thromb. Haemost. 4,
1864–1874.

[20] Shapiro, R. and Vallee, BL. (1989) Site-directed mutagenesis of histidine-13
and histidine-114 of human angiogenin. Alanine derivatives inhibit
angiogenin-induced angiogenesis. Biochemistry 28, 7401–7408.

[21] Haiser, H.J., Karginov, F.V., Hannon, G.J. and Elliot, M.A. (2008)
Developmentally regulated cleavage of tRNAs in the bacterium Streptomyces
coelicolor. Nucleic Acids Res. 36, 732–741.

[22] Lau, N.C., Lim, L.P., Weinstein, E.G. and Bartel, D.P. (2001) An abundant class of
tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science
294, 858–862.

[23] Habu, Y., Miyano-Kurosaki, N., Kitano, M., Endo, Y., Yukita, M., Ohira, S.,
Takaku, H. and Nashimoto, M. (2005) Inhibition of HIV-1 gene expression by
retroviral vector-mediated small-guide RNAs that direct specific RNA cleavage
by tRNase ZL. Nucleic Acids Res. 33, 235–243.

[24] Plehn-Dujowich, D. and Altman, S. (1998) Effective inhibition of influenza
virus production in cultured cells by external guide sequences and
ribonuclease P. Proc. Natl. Acad. Sci. USA 95, 7327–7332.

http://dx.doi.org/10.1016/j.febslet.2008.12.043

	Stress induces tRNA cleavage by angiogenin in mammalian cells
	Introduction
	Materials and methods
	Cell culture and exposure condition
	Tissue starvation
	RNA extraction and cloning
	RNA sequence Computational analyses
	Expression vector construction and transfection
	siRNAs and transfection
	Northern blot
	Quantitative real-time polymerase chain reaction (qRT-PCR)
	RNA cleavage reaction in?vitro
	Western-blot analysis

	Results and discussion
	Identification of cleaved mammalian tRNA fragments
	Stress conditions induce the production of tRNA halves
	Angiogenin can cleave tRNAs in the anticodon loo
	Angiogenin cleaves tRNAs into tRNA halves in?viv

	Acknowledgements
	Supplementary data
	References


