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II. The second canonical set for orbitals and orbital energies
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A treatment of the validity of Koopmans’s theorem �KT� in the restricted open-shell Hartree–Fock
�ROHF� method can be separated into two essentially different cases. The first of them involves the
one-electron processes X→Xj

� in which the spin state of an ion Xj
� having a hole or an extra

electron in the closed, open or virtual orbital � j is correctly described by a one-determinant wave
function. This case was analyzed using different methods by Plakhutin et al. �J. Chem. Phys. 125,
204110 �2006�� and by Plakhutin and Davidson �J. Phys. Chem. A 113, 12386 �2009��. In the
present work we analyze more complex processes where the state of an ion cannot be described by
a single determinant. An example of such processes is the removal of an alpha electron from the
closed shell of a high-spin half-filled open-shell system X. For this case we give a slightly
generalized formulation of KT in both the “frozen” orbital approximation �i.e., within the canonical
ROHF method� and the limited configuration interaction approach for ionized systems. We also
show that a simultaneous treatment of KT for all one-electron ionization processes possible leads to
the necessity of introducing in the canonical ROHF method two different sets of orbitals and two
respective sets of orbital energies. The theory developed is compared with the previous formulations
of KT in the restricted �ROHF� and unrestricted Hartree-Fock methods, and in the unrestricted
density functional theory. The practical applicability of the theory is verified by comparing the KT
estimates of the vertical ionization potentials in molecules O2 and NO2 with the respective
experimental data. © 2010 American Institute of Physics. �doi:10.1063/1.3418615�

I. INTRODUCTION

The validity of Koopmans’s theorem1 �KT� in the re-
stricted open-shell Hartree–Fock �ROHF� method has been
proved using different methods in our previous papers2,3 for
the three one-electron ionization processes A1, B1, and C1
possible in a high-spin open-shell system X with one or more
half-filled orbitals:

A1: a removal of a beta electron from the kth closed-shell
orbital �X→Xk,�

+ �,

�k = − Ik
�, �1a�

B1: a removal of an alpha electron from the mth open-shell
orbital �X→Xm,�

+ �,

�m = − Im
� , �1b�

C1: an attachment of an alpha electron to the vth virtual
orbital �X→Xv,�

− �,

�v = − Av
�, �1c�

where �i are canonical ROHF orbital energies defined as
eigenvalues of the special �canonical� ROHF Hamiltonian,

R̂can,

R̂can��i� = �i��i� , �2�

derived by Plakhutin et al.2 for open-shell systems X under
study.

The Ij
� and Aj

� values ��=� or �� in Eqs. �1a�–�1c� are
Koopmans’s approximations to the jth vertical ionization po-
tential �IP� and electron affinity �EA�, respectively,

Ij
� = E�Xj,�

+ � − EROHF�X� �j = k or j = m� ,

�3�
Aj

� = EROHF�X� − E�Xj,�
− � �j = v� ,

where EROHF�X� is the ROHF energy of the initial �nonion-
ized� system X and E�Xj,�

+ � is the energy of an ion Xj,�
+ .

For the first time, the validity of Koopmans’s relation-
ships �1a�–�1c� has been proven in Ref. 2 for the case when
E�Xj,�

+ � is defined within the approximation of “frozen” or-
bitals,

E�Xj,�
� � = Efrozen�Xj,�

� � = �� j,�
� � Ĥ �� j,�

� � , �4�

where � j,�
� is a one-determinant wave function for an ion

Xj,�
� formed with the same �frozen� canonical ROHF orbitals

��i	 of Eq. �2� optimal for the parent system X.
The principally important aspect of the proof2 is that

both the energy differences 	Ej,�=Efrozen�Xj,�
� �−EROHF�X�

representing IPs or EAs �3� in the respective subspace
�j�closed shell, j�open shell, or j�virtual shell� and the
special �canonical� orbitals �� j	 of the same subspace are
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defined from the additional variational condition 
	Ej,�=0
providing a stationarity of 	Ej,� with respect to a variation of
the orbitals �� j	 within the respective subspace. This condi-
tion was introduced by Plakhutin et al. within the canonical
ROHF method2 in addition to the usual condition, 
EROHF

=0, which provides the stationarity of the total energy
EROHF�X� with respect to a variation in the orbitals �� j	
within the full orbital space ��i	= ��k	 � ��m	 � ��v	.

It is worth emphasizing here that the formulation2 of KT
in the ROHF method given by Eqs. �1a�–�1c� and �2�, where
Ij

� and Aj
� are defined in approximations �3� and �4� is in

complete accordance with the original formulation of KT
given by Koopmans1 within the closed-shell self-consistent
field �SCF�. We also note here that the one-determinant wave
functions � j,�

� in the cases �1a�–�1c� describe correctly the
spin states of ions Xj,�

� ,

S�Xk,�
+ � = S + 1/2, S�Xm,�

+ � = S − 1/2, S�Xv,�
− � = S + 1/2,

�5�

where S
S�X� is the total spin of a high-spin open-shell
system X with one or more half-filled orbitals.

An alternative proof of the validity of Koopmans’s rela-
tionships �1a�–�1c� has been given by Plakhutin and
Davidson3 using an elaboration of the method suggested by
Newton4 and Hillier and Saunders.5 This proof showed that
the energy of an ion E�Xj,�

� �=Efrozen�Xj,�
� � defined in Ref. 2 in

the frozen orbital approximation is actually equal to the en-
ergy defined in a limited configuration interaction �CI�,

E�Xj,�
� � = Efrozen�Xj,�

� � = ECI�Xj,�
� � , �6�

where ECI�Xj,�
� � is a jth eigenvalue of the CI matrix

��p,�
� � Ĥ ��q,�

� �. In this case, the one-determinant wave func-
tions �p,�

� and �q,�
� are formed with arbitrary �possibly non-

canonical� ROHF orbitals optimal for X, and the active CI
space involves all the orbitals and electrons of the respective
ionized shell �p ,q�closed shell, p ,q�open shell, or p ,q
�virtual shell�. Combining Eqs. �1a�–�1c�, �3�, �4�, and �6�,
we have derived a CI-based formulation of KT in a ROHF
method,3

Ij
� = ECI�Xj,�

+ � − EROHF�X�

= Efrozen�Xj,�
+ � − EROHF�X� = − � j , �7�

and a similar form for the EA Aj
�. The last two of relationship

�7� represent the usual �particular� formulation of KT �Eqs.
�1a�–�1c��, which is valid only within the canonical ROHF
method,2 while the first one represents a more general for-
mulation of KT valid in arbitrary �noncanonical� ROHF
treatments.3

The three one-electron ionization processes of Eqs.
�1a�–�1c� do not exhaust all possible cases in a ROHF
method. One can consider also three alternative processes,
which we call as A2, B2, and C2, i.e.

A2: a removal of an alpha electron from the kth closed-shell
orbital,

X → Xk,�
+ , �8a�

B2: an attachment of a beta electron to the mth open-shell
orbital,

X → Xm,�
− , �8b�

C2: an attachment of a beta electron to the vth virtual orbital,

X → Xv,�
− . �8c�

An analysis of the validity of KT in these three cases is of
interest in two respects. The first one is that the treatment of
these cases in parallel with a treatment of cases �1a�–�1c�
leads to the necessity of introducing in the canonical ROHF
method2 two different sets of orbitals and two respective sets
of orbital energies. For the first time such a duality of the
canonical ROHF method was discussed by Plakhutin and
Gorelik6 for the particular case of alternative processes B1
and B2. In the present work we present a general treatment
of cases �8a�–�8c� in comparison with the treatment2,3 for
cases �1a�–�1c� and the treatment6 for case �8b� and give a
detailed analysis of the duality of the canonical ROHF
method.

The second specific problem arising in the treatment of
KT for processes �8a�–�8c� is that the one-determinant wave
functions for ions �8a� and �8c�, �k,�

+ and �v,�
− , defined using

the frozen orbitals optimal for the parent system X, are not

eigenfunctions of the operator Ŝ2 and, hence, do not describe
properly the spin states of the respective ions. This essen-
tially complicates a treatment of the validity of KT. The same
problem arises within unrestricted Hartree-Fock �UHF� and
density functional theory �UDFT� methods in the limit case
of small spin polarization when the low-lying spin-up orbital
energies approximate to doubly occupied ROHF levels.

As shown by Gritsenko and Baerends,7,8 within unre-
stricted methods it is not possible to give a rigorous formu-
lation of KT for process A2 �Eq. �8a��. This conclusion is in
contrast to the well-known formal validity of KT within a
UHF method first proved by Stepanov et al.9 For two ioniza-
tion processes in the closed shell, A1 �Eq. �1a�� and A2 �Eq.
�8a��, taken here as an example, the KT relationships9 take
the form

Ik
� = − �k

�,

�9�
Ik

� = − �k
�,

where �k
� and �k

� are the lowest eigenvalues of the UHF Fock

operators F̂� and F̂� corresponding to ROHF closed-shell
orbital energies �k �k=1,2 , . . . ,Nc�. As an alternative to Eq.
�9�, Gritsenko and Baerends7,8 offered the following approxi-
mate analogs of KT for the same processes A1 and A2
within a UDFT approach,

Ik
� � − �k

�,

�10�
Ik

� � − ��2S + 1��k
� − �k

�	/�2S� ,

where S
S�X� is the total spin of the initial �nonionized�
system X, and in this case, Ik

� and Ik
� are the experimental

IPs,7 and the first of the relationships �10� takes the form
INc

� =�Nc

� �exact equality� for the highest occupied beta level.7

Below we shall discuss the approaches7–9 and compare the
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formulations of KT �9� and �10� with those developed in the
present work.

The analysis of this problem at a ROHF level performed
by Sauer et al.10,11 has led to the conclusion that KT is gen-
erally not valid in the ROHF method, since some of the IPs
and EAs defined by Eq. �3� cannot be equated to eigenvalues
of some special �canonical� ROHF Hamiltonian. The source
of this wrong conclusion10 was discussed in our previous
paper3 with respect to process B1. Below we shall discuss
how the approach of Sauer et al.10,11 to more complex cases
A2 and C2 differs from the approach developed in the
present paper.

In this work we give the formulation of KT in the ROHF
method for the ionization processes �8a�–�8c�. We derive the

new form for the canonical ROHF Hamiltonian Q̂can,

Q̂can ��i� = �i�Q̂can� ��i� , �11�

the eigenvalues �i�Q̂can� of which obey KT for processes
�8a�–�8c�,

A2: �k�Q̂can� = − Ik
�, �12a�

B2: �m�Q̂can� = − Am
� , �12b�

C2: �v�Q̂can� = − Av
�, �12c�

while the respective eigenvectors ��i	= ��k	 � ��m	 � ��v	 of

Q̂can represent the second canonical set of ROHF orbitals for
the parent system X.

By derivation, Koopmans’s relationships �12a�–�12c� are
based on the definition of IPs and EAs in frozen orbital ap-
proximation �4�, i.e., the wave functions for ions �8a�–�8c�
are defined on the same canonical orbitals ��i	 of Eq. �11�
optimal for X. The essential point of our treatment is that the
wave functions of all ions in Eqs. �8a�–�8c� are eigenfunc-

tions of the operator Ŝ2 and correctly describe the ion states,

S�Xk,�
+ � = S�Xm,�

− � = S�Xv,�
− � = S − 1/2. �13�

The wave functions for ions Xm,�
− �Eq. �8b�� are represented

by a single Slater determinant, while the wave functions for
ions Xk,�

+ �Eq. �8a�� and Xv,�
− �Eq. �8c�� appear in our treat-

ment as well-defined combinations of determinants with
fixed �nonvariational� coefficients determined by spin projec-
tion.

To complete this treatment we also give a general
�CI-based� formulation of KT for processes �8a�–�8c�, which
is based on the limited CI treatment for ions. We prove that
the energy of ions �8a�–�8c� defined in Eqs. �12a�–�12c� in
the frozen orbital approximation is actually equal to the en-
ergy defined in a limited CI. The new formulation of KT is
valid in an arbitrary ROHF treatment and reduces to the par-
ticular formulation, Eqs. �12a�–�12c�, within the canonical
ROHF method.

II. DUALITY OF THE CANONICAL ROHF METHOD

A. Brief review

In order to simplify the following treatment we here
present a brief summary of the basic definitions and formulas
used in the treatment2,3 of KT in the ROHF method. For a
high-spin half-filled open-shell system X, which is a parent
system in processes �1a�–�1c� and �8a�–�8c� and is character-
ized by Roothaan coupling coefficients12

f = 1/2, a = 1, b = 2, �14�

the widely used choices for the total one-electron ROHF

Hamiltonian R̂,

R̂��i� = �i�R̂� ��i� , �15�

can be presented in the common form of the symmetric �Her-

mitian� matrix ��i�R̂�� j� defined in the basis of non-self-
consistent molecular orbitals ��i	,

2

Closed-shell Open-shell Virtual

Closed-shell

Open-shell

Virtual�
R̂�cc� 2�F̂c − F̂o� F̂c

F̂� R̂�oo� 2F̂o

�F̂� + F̂��/2 F̂� R̂�vv�
� ,

�16�

where

F̂c = ĥ+ �2Ĵc − K̂c� + f�2Ĵo − K̂o� ,

�17�
F̂o = f�ĥ + �2Ĵc − K̂c� + f�2aĴo − bK̂o�� ,

are the ROHF Fock operators12,13 for the closed-shell and
open-shell orbitals, respectively. For comparison, the lower
triangle of the matrix �16� is expressed in terms of the Fock

operators F̂� and F̂� defined in the UHF method,14

F̂� = ĥ + �Ĵ� + Ĵ�� − K̂�,
�18�

F̂� = ĥ + �Ĵ� + Ĵ�� − K̂�.

For the open-shell systems under consideration, Eq. �14�, the
ROHF and UHF Fock operators defined on the same ROHF

orbitals are connected by the relationships F̂�=2F̂o and F̂�

=2�F̂c− F̂o�= ĥ+ �2Ĵc− K̂c�+ Ĵo so that the ROHF Hamiltonian
matrix, Eq. �16�, is symmetric.

In the self-consistent limit ��i = �i�, the off-diagonal
blocks in Eq. �16� vanish, and this provides a fulfillment of

the three variational conditions �F̂c�kv=0, �2F̂o�mv=0, and

2�F̂c− F̂o�km=0, which follow from both the usual variational
condition in the ROHF method, 
EROHF=0 �Ref. 12�, and
Brillouin’s theorem.15

For the systems �14� under study, various definitions for
ROHF Hamiltonians �15� and �16� differ between the diago-
nal blocks only.2 The self-consistent orbitals ��i	= ��k	
� ��m	 � ��v	 derived with different ROHF Hamiltonians
�15� and �16� differ from each other by an arbitrary unitary

184110-3 ROHF canonical orbitals J. Chem. Phys. 132, 184110 �2010�
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transformation within the closed ��k	, open ��m	, and virtual
��v	 sets. Below we shall refer to the orbitals ��i	 of Eq. �15�
as to arbitrary ROHF orbitals optimal for X.

The special �canonical� ROHF orbitals ��i	= ��k	 � ��m	
� ��v	 are obtained as eigenfunctions of the special ROHF

Hamiltonian R̂= R̂can of Eq. �2�, which corresponds to the
following choice for the diagonal blocks in Eq. �16�:2

A1: R̂can
�cc� = 2�F̂c − F̂o� = F̂�, �19a�

B1: R̂can
�oo� = 2F̂o = F̂�, �19b�

C1: R̂can
�vv� = 2F̂o = F̂�. �19c�

These three definitions have been derived by Plakhutin et al.2

from the condition that the three respective Koopmans’s re-
lationships �1a�–�1c� above are to be satisfied in the “frozen”
orbital approximation �4�. The details of the computational
procedure realizing the canonical ROHF method �Eqs.
�14�–�16� and �19a�–�19c�� are presented in Sec. VI.

In the treatment below we extend the approach2,3 to pro-
cesses �8a�–�8c�. At first we define the second canonical

form for the diagonal blocks R̂�ss� of Eq. �16�, where s=c, o,
and v for the closed, open, and virtual shell, respectively, in
order to satisfy the respective Koopmans’s relationships
�12a�–�12c�. Following the notations of Eqs. �11� and �19a�–
�19c�, we shall designate the new blocks as Q̂can

�cc�, Q̂can
�oo�, and

Q̂can
�vv�, respectively.

B. The second canonical set of orbitals and orbital
energies for the open shell

We start the treatment with case B2 of Eq. �8b� corre-
sponding to attachment of a beta electron to the high-spin
half-filled open shell, X→Xm,�

− . The one-determinant wave
function for anion Xm,�

− defined in the basis of noncanonical
ROHF orbitals ��i	= ��k	 � ��m	 of Eq. �15� optimal for the
initial �nonionized� system X takes the form

��m,�
− � = det��1�1 . . . �Nc

�Nc
�Nc+1�Nc+2 . . . �Nc+m−1�Nc+m

�Nc+m�Nc+m+1�Nc+m+2 . . . �Nc+No
� , �20�

where Nc and No are the numbers of closed-shell and open-
shell orbitals, respectively, in the initial system X. By defini-
tion, this wave function is an eigenfunction of the operator

Ŝ2, and hence as shown previously,6 a treatment of case B2 is
completely analogous to the treatment of cases A1, B1, and
C1 of Eqs. �1a�–�1c� within the canonical ROHF method.2

A starting point of the approach2,6 to process B2 is the
particular form of KT for this case given by Eq. �12b� above,

i.e., �m�Q̂can�=−Am
� , where Am

� is defined in the frozen orbital

approximation, Am
� =EROHF�X�− ��m,�

− � Ĥ ��m,�
− �, with the

use of the canonical ROHF orbitals ��i	 optimal for X. So, to
prove the validity of Eq. �12b�, we have to define the canoni-

cal ROHF Hamiltonian Q̂can �11�, the eigenvectors ��i	 of
which give the value of Am

� satisfying Eq. �12b�. Since both

��m,�
− �Ĥ��m,�

− � and EROHF�X� are independent of the choice
of closed-shell orbitals optimal for X, we actually have to

define the diagonal open-shell block Q̂can
�oo� only. The exact

choice of this block unambiguously defines canonical orbit-

als ��m	 and orbital energies �m�Q̂can� for the open shell. Fol-
lowing this approach one obtains the following definition of

Q̂can
�oo�:

B2: Q̂can
�oo� = 2�F̂c − F̂o�=F̂�, �21�

first derived by Plakhutin and Gorelik.6 It is easy to verify

that the open-shell eigenvalues �m�Q̂can� of the full ROHF

Hamiltonian ��i�R̂�� j�, Eq. �16�, in which R̂�oo�= Q̂can
�oo� and the

other diagonal blocks are arbitrary, do satisfy Koopmans’s
relationship �12b�, i.e.,

�m�Q̂can� = − Am
� .

The same eigenvalues �m�Q̂can� can be obtained by a diago-

nalization of the diagonal open-shell block ��m�Q̂can
�oo���n� of

matrix �16� defined in the basis of self-consistent noncanoni-
cal orbitals ��i	 of Eq. �15� optimal for X.

The eigenvectors ��m	 of ROHF Hamiltonian �16�, in

which R̂�oo�= Q̂can
�oo�, represent the second set of canonical

open-shell ROHF orbitals.6 The difference between two ca-
nonical sets of ROHF orbitals and orbital energies will be
discussed below.

C. Variational formulation of KT for process B2

Definition �21� enables us to give a more general �varia-
tional� formulation of KT �12b� similar to formulation �7� for
cases A1, B1, and C1. Following the approach used in
Ref. 3, we define the CI matrix Tmn

�oo� as

Tmn
�oo� = ��m,�

− � Ĥ ��n,�
− � , �22�

where m ,n=1,2 , . . . ,No and �m,�
− is defined by Eq. �20�.

Following the procedure3 we obtain the following relation-
ship between matrices �21� and �22�:

Tmn
�oo� = �− 1�n−m�Q̂can

�oo��mn + 
mnEROHF�X� , �23�

where both Tnm
�oo� and �Q̂can

�oo��mn matrices are defined in the
same noncanonical basis ��i	, Eq. �15�, optimal for X. It is
easy to show3 that although these matrices do not commute,
their eigenvalues obey the relationship

�z�T�oo�� = �z�Q̂can
�oo�� + EROHF�X� , �24�

where z=1,2 , . . . ,No. By definition, a zth eigenvalue of the
matrix T�oo� is equal to the CI energy of anion Xz,�

− ,

�z�T�oo�� 
 ECI�Xz,�
− � , �25�

while the eigenvalues of the matrix Q̂can
�oo� satisfy KT in the

particular form �12b�, i.e., �z�Q̂can
�oo��=−Az

�. Combining the
latter relationship with Eqs. �4�, �5�, and �25�, we obtain the
general formulation of KT in the ROHF method for process
B2,
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Az
� = EROHF�X� − ECI�Xz,�

− �

= EROHF�X� − Efrozen�Xz,�
− � = − �z�Q̂can

�oo�� . �26�

To complete this treatment, we note that the multidetermi-
nantal CI wave function �
z,�

− � corresponding to anion Xz,�
−

and derived as a zth eigenfunction of the matrix T�oo�,

�
z,�
− � = 


n

Un
�z� � �n,�

− � , �27�



n

Tmn
�oo�Un

�z� = Um
�z� �z�T�oo�� , �28�

where Un
�z� are the coefficients of the CI expansion over de-

terminants ��n,�
− � of Eq. �20� and all determinants �20� are

defined with noncanonical ROHF orbitals ��i	 optimal for X,
is reduced to a single Slater determinant defined in the basis
of canonical open-shell ROHF orbitals ��m	,

�
z,�
− � = det��1�1 . . . �Nc

�Nc
�1�2 . . . �z−1�z�z�z+1�z+2 . . . �No

� ,

�29�

where z=1,2 , . . . ,No. We do not present here the proof of
equivalency of Eqs. �27� and �29� since this proof is com-
pletely analogous to that given in Ref. 3 for case B1.

III. THE IONIZATION PROCESSES A2 and C2

A treatment of KT in a ROHF method for processes A2,
Eq. �8a�, and C2, Eq. �8c�, is more complex than that for
processes A1, B1, and C1 of Eqs. �1a�–�1c� and B2 of Eq.
�8b�. The main problem comes from the fact that the one-
determinant wave functions for the respective ions, Xk,�

+ and

Xv,�
− , are not eigenfunctions of the operator Ŝ2. This makes

the original Koopmans’s idea1 and previous approaches2,3,5

to a treatment of KT in a ROHF method inapplicable. In this
section we give a slightly generalized formulation of KT in a
ROHF method based on the symmetry-adapted �multideter-
minantal� form for the wave functions of ions Xk,�

+ and Xv,�
− .

A. The pure spin symmetry ROHF wave function for
ion Xk,�

+

We start the treatment with the case X→Xk,�
+ , Eq. �8a�,

corresponding to a removal of an alpha electron from the
closed shell of the parent system X. The one-determinant
wave function for ion Xk,�

+ formed with the frozen nonca-
nonical ROHF orbitals ��i	, Eq. �15�, optimal for X takes the
form

��k,�
+ � = det��1�1 . . . �k−1�k−1 �k�k+1�k+1 . . . �Nc

�Nc

�Nc+1�Nc+2 . . . �Nc+No
� , �30�

where the missing spin-orbital �k corresponds to a hole in
the closed shell. This wave function is not an eigenfunction

of the operator Ŝ2, but is characterized by the spin projection

M�Xk,�
+ �=M −1 /2, where M =No /2 is the �Ŝz� projection of

the total spin for the parent �nonionized� system X. To em-

phasize that �k,�
+ is an eigenfunction of the operator Ŝz, we

shall designate �k,�
+ also as �k,�

+ �M −1 /2�.

Determinant �30� can be decomposed into wave func-
tions of pure spin symmetry,

�k,�
+ �M − 1/2� = ��2S � 
k,�

+ �S − 1/2� + 
k,�
+ �S + 1/2�	/

�2S + 1, �31�

where S=No /2 is the total spin of the parent system X, and
all wave functions in Eq. �31� are characterized by the same
spin projection �M −1 /2� and are defined on the frozen non-
canonical orbitals ��i	 optimal for X. The wave functions in
the right-hand side of Eq. �31� are the well-defined combi-
nations of Slater determinants with fixed coefficients,


k,�
+ �S + 1/2� =

1
�2S + 1

��k,�
+ + 


m=1

No

��k,m̄�� , �32�


k,�
+ �S − 1/2� =

1
�2S�2S + 1��2S � �k,�

+ − 

m=1

No

��k,m̄�� ,

�33�

where ��k , m̄� are determinants of the form

��k,m̄� = det��1�1 . . . �k−1�k−1�k �k+1�k+1 . . . �Nc
�Nc

�Nc+1 . . . �Nc+m−1�Nc+m�Nc+m+1 . . . �Nc+No
� , �34�

which differs from that for �k,�
+ �30� in two spin-orbitals,

�k→�k and �Nc+m→�Nc+m �m=1,2 , . . . ,No�. Each of deter-
minants �30� and �34� corresponds to the same electronic
configuration

��1�2 . . . �Nc
�2Nc−1��Nc+1�1��Nc+2�1 . . . ��Nc+No

�1, �35�

i.e., each corresponds to a hole in the closed shell. Wave

function �32� is generated by the spin step-down operator Ŝ−

acting on the one-determinant wave function �k,�
+ for ion

Xk,�
+ , Eq. �1a�, which corresponds to S�Xk,�

+ �=M�Xk,�
+ �

=S+1 /2 �see also Eq. �5��. The proof that wave function

�33� is an eigenfunction of the operator Ŝ2 with �Ŝ2�
= �S−1 /2��S+1 /2� is straightforward.

B. Energy of cation Xk,�
+ with spin S„Xk,�

+
…=S„X…−1/2

Wave function �33� corresponding to S�Xk,�
+ �=M�Xk,�

+ �
=S−1 /2 is the desired approximation to the wave function
of cation Xk,�

+ formed by removing an alpha electron from the
closed shell of X. The average value of the total many-

electron Hamiltonian Ĥ with this wave function,

�
k,�
+ �S − 1/2,M − 1/2�� Ĥ �
k,�

+ �S − 1/2,M − 1/2�� , �36�

represents the expectation value of the energy of cation
�Xk,�

+ ,S−1 /2� in the approximation of frozen orbitals. How-
ever, since the closed-shell orbitals ��k	 used to form wave
function �33� are arbitrary transforms of the orbitals optimal
for X, the expectation value of the energy �36� is defined
ambiguously and does not represent the well-defined quan-
tity Efrozen�Xk,�

+ ,S−1 /2� appearing in the definition of the
vertical IP, Eqs. �3� and �4�. The value �36� is equal to
Efrozen�Xk,�

+ ,S−1 /2� if and only if the wave function 
k,�
+ �S
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−1 /2� is defined on canonical closed-shell ROHF
orbitals ��k	.

Our task is, first, to reveal the explicit dependence of
matrix element �36� on the choice of the closed-shell orbitals
��k	 and, second, to formulate the conditions to which the
canonical closed-shell orbitals ��k	 must satisfy. Matrix ele-
ment �36� is a diagonal element of the CI matrix,

Tkl
�cc� = �
k,�

+ �S − 1/2�� Ĥ �
l,�
+ �S − 1/2�� , �37�

where k , l=1,2 , . . . ,Nc. To work out matrix elements �37�,
we express them using Eq. �31� in terms of two similar ele-
ments in the basis of determinants �k,�

+ �M −1 /2� of Eq. �30�
and wave functions 
k,�

+ �S+1 /2� of Eq. �32�, respectively,

�
k,�
+ �S − 1/2�� Ĥ �
l,�

+ �S − 1/2��

= ��2S + 1� � ��k,�
+ � Ĥ ��l,�

+ �

− �
k,�
+ �S + 1/2�� Ĥ �
l,�

+ �S + 1/2��	/�2S� . �38�

Since Ĥ commutes with spin, the matrix elements formed
using the wave functions of Eq. �32� will be the same as
those using the one-determinant wave functions �k,�

+


�k,�
+ �S+1 /2,M +1 /2�. Therefore,

�
k,�
+ �S + 1/2,M − 1/2�� Ĥ �
l,�

+ �S + 1/2,M − 1/2��

= ��k,�
+ �S + 1/2,M + 1/2�� Ĥ ��l,�

+ �S + 1/2,M + 1/2��

= − 2��l��F̂c − F̂o���k� + 
klEROHF�X� , �39�

where the last of two relationships, Eq. �39��, is given ac-
cording to Ref. 3. Similarly,

��k,�
+ �M − 1/2�� Ĥ ��l,�

+ �M − 1/2��

= − 2��l�F̂o��k� + 
klEROHF�X� . �40�

A substitution of Eqs. �38�–�40� into Eq. �37� yields

Tkl
�cc� = − ��l � Ŵ � �k� + 
klEROHF�X� , �41�

where

Ŵ = �2�2S + 1�F̂o − 2�F̂c − F̂o��/�2S�

= ��2S + 1�F̂� − F̂��/�2S� . �42�

In Eq. �42�, S=No /2 is the total spin of the parent �nonion-
ized� system X, and both the ROHF and UHF Fock operators
defined by Eqs. �17� and �18� are defined in the basis of the
same noncanonical ROHF orbitals ��k	 � ��m	 of Eq. �15�
optimal for X.

From Eq. �41� it follows that matrix element �36� repre-
senting the expectation value of the energy of cation Xk,�

+ in
the frozen orbital approximation takes the desired form

�
k,�
+ �S − 1/2�� Ĥ �
k,�

+ �S − 1/2��

= − ��k�Ŵ��k� + EROHF�X� , �43�

in which the dependence of Eq. �36� on the choice of unitary
undefined closed-shell orbitals ��k	 is expressed explicitly.
�We note here that neither the energy EROHF�X� nor the op-

erator Ŵ itself defined in Eq. �42� depends on the choice of
orbitals �� j	= ��k	 � ��m	 optimal for X�.

To present Eq. �43� in the unique form independent of
the choice of ��k	, we define the new �canonical� closed-

shell orbitals ��k	 as eigenfunctions of the operator Ŵ,

��z� = 

l

Xl
�z���l� , �44�



l

��k � Ŵ � �l�Xl
�z� = Xk

�z��z�Ŵ� , �45�

where Xl
�z� are the coefficients of the expansion of the canoni-

cal orbital �z over initial orbitals ��k	, and k , l ,z
=1,2 , . . . ,Nc. The diagonal element in the right-hand side of

Eq. �43� becomes equal to the eigenvalue of the operator Ŵ,

i.e., ��z�Ŵ��z�=�z�Ŵ�, and hence, the expectation value of the
energy of cation Xz,�

+ with spin S�Xk,�
+ �=S−1 /2 in the frozen

orbital approximation takes the sought-for form

Efrozen�Xz,�
+ ,S − 1/2� = �
z,�

+ �S − 1/2�� Ĥ �
z,�
+ �S − 1/2��

= − �z�Ŵ� + EROHF�X� . �46�

It follows from Eq. �46� that the energy Efrozen�Xz,�
+ ,S−1 /2�

defined using the canonical choice �44� for the closed-shell
orbitals is a well-defined �variationally stationary� quantity.

C. KT for process A2

It is easy to see that the energy of cation Xz,�
+ with spin

S�Xk,�
+ �=S−1 /2 defined in Eq. �46� in the frozen orbital ap-

proximation is also equal to the energy defined in the limited
CI, �37�. By definition of the CI matrix Tkl

�cc�, Eq. �37�, its
eigenvalues are equal to the CI energy of the respective cat-
ions Xz,�

+

�z�T�cc�� = ECI�Xz,�
+ ,S − 1/2� . �47�

From Eq. �41� it follows that the matrices Tkl
�cc� and Ŵkl com-

mute, and hence,

�z�T�cc�� = − �z�Ŵ� + EROHF�X� . �48�

Summarizing Eqs. �46�–�48�, we obtain the important result

ECI�Xz,�
+ ,S − 1/2� = Efrozen�Xz,�

+ ,S − 1/2� . �49�

So, if we define the diagonal closed-shell block of ROHF
Hamiltonian �16� in the form

Q̂can
�cc� = Ŵ , �50�

where Ŵ is defined in Eq. �42�, we obtain the exact formu-
lation of KT in a ROHF method for case A2,

Iz
� = Efrozen�Xz,�

+ ,S − 1/2� − EROHF�X�

= ECI�Xz,�
+ ,S − 1/2� − EROHF�X�

= − �z�Q̂can� , �51�

where z=1,2 , . . . ,Nc and �z�Q̂can� is the eigenvalue of both

the diagonal block ��k�Q̂can
�cc���l� defined in the basis of self-

consistent closed-shell orbitals ��k	 optimal for X and full
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ROHF Hamiltonian �16� with R̂�cc�= Q̂can
�cc� defined in the basis

of arbitrary �non-self-consistent� orbitals ��i	= ��k	 � ��m	
� ��v	. A discussion of formulation �51� and a comparison of
Eq. �51� with the previously reported formulations7–11 of KT
in ROHF, UHF, and UDFT methods will be given below.

D. KT for process C2

A treatment of this case corresponding to attachment of a
beta electron to a virtual orbital with formation of anion Xv,�

−

with S�Xv,�
− �=S−1 /2 is completely analogous to the treat-

ment above of process A2. We here present just the defini-
tion of the second canonical form for the virtual diagonal

block R̂�vv�= Q̂can
�vv� of full ROHF Hamiltonian �16�,

Q̂can
�vv� = �− 2F̂o + 2�2S + 1��F̂c − F̂o��/�2S�

= �− F̂� + �2S + 1�F̂��/�2S� , �52�

and the exact formulation of KT for process C2,

Az
� = EROHF�X� − Efrozen�Xz,�

− ,S − 1/2�

= EROHF�X� − ECI�Xz,�
− ,S − 1/2�

= − �z�Q̂can� , �53�

where, in this case, z�virtual shell. These formulas are
based on the ROHF wave function for anion Xv,�

− possessing
the true spin and spatial symmetry


v,�
− �S − 1/2� =

1
�2S�2S + 1��2S � �v,�

− − 

m=1

No

��m̄,v�� ,

�54�

where �v,�
− is the one-determinant wave function for anion

Xv,�
− and

��m̄,v� = det��1�1 . . . �Nc
�Nc

�Nc+1�Nc+2 . . . �Nc+m−1

�Nc+m�Nc+m+1 . . . �Nc+No
�Nc+No+v� . �55�

The full set of ROHF wave functions, Eq. �54�, with v
=1,2 , . . . ,Nv also forms the basis of configuration state func-
tions �CSFs� in the CI procedure.

IV. ACTIVE CI SPACE IN KOOPMANS’ THEOREM

The CI-based formulation of KT in the ROHF method
given above for cases A2 �Eq. �51��, B2 �Eq. �26��, and C2
�Eq. �53�� needs a more detailed discussion in the part con-
cerning the choice of the active CI space. In case B2 �and
also in cases A1, B1, and C1 of Eqs. �1a�–�1c��, the one-
determinant wave function � j,�

� for the respective ion Xj,�
� is

an eigenfunction of Ŝ2. Because of this, the whole active CI
space in each of these cases involves all determinants � j,�

�

that can be formed within the respective ionized shell,

A1: ��k,�
+ 	 ,

B1: ��m,�
+ 	 ,

�56�
C1: ��v,�

− 	 ,

B2: ��m,�
− 	 .

Each of the CI spaces, Eq. �56�, corresponds to a full CI in
the restricted active space method3 and is invariant under
unitary transformation of the orbitals ��i	= ��k	 � ��m	
� ��v	 of Eq. �15� within the respective ionized shell. �We
recall that these orbitals are optimal for the initial �nonion-
ized� system X with S�X�=S.� The remaining orbitals and
electrons from nonionized shells are inactive in the CI pro-
cedure.

In case A2, the active CI space is given by the set of
CSFs of Eq. �33�,

A2: �
k,�
+ �S − 1/2�	 , �57�

formed from determinants �k,�
+ �30�, and ��k , m̄� of �34�.

The number of CSFs �57� is equal to Nc, while the total
number of determinants �30� and �34� is equal to Nc�No+1�.
Because of this, there arises the question of whether the re-
sults derived within the CI space �57� are invariant under
separate unitary transformation of molecular orbitals within
the closed or open shell.

At first we note that the whole CI space of dimension
Nc�No+1� for cation Xk,�

+ formed by determinants �k,�
+ , Eq.

�30�, and ��k , m̄�, Eq. �34�, is separated onto the three sub-
spaces

��k,�
+ 	 � ���k,m̄�	 = �
k,�

+ �S + 1/2�	 � �
k,�
+ �S − 1/2�	

� ��k
+�S − 1/2�	 , �58�

having the dimension Nc, Nc, and Nc�No−1�, respectively.
The first two subspaces are defined by Eqs. �32� and �33�,
while the third one also corresponding to the spin number
�S−1 /2� is formed by some combinations of determinants
�34� orthogonal both to each other and to CSFs �32� and
�33�. We call this third subspace ��k

+�S−1 /2�	. By construc-
tion, this subspace is nonvanishing for the case No = 2S
� 1 only. For the simplest nonvanishing case No=2, the
CSFs from the subspace ��k

+�S−1 /2�	 take the form

�k
+�S − 1/2� = ���k, 1̄� − ��k, 2̄��/�2, �59�

where the determinants ��k , m̄� are defined by Eq. �34� and
k=1,2 , . . . ,Nc.

A separation of the subspace �
k,�
+ �S+1 /2�	 from the

whole CI space �58� is dictated by the spin symmetry, while
the separation of the �S−1 /2� CSFs into

�
k,�
+ �S − 1/2�	 � ��k

+�S − 1/2�	 �60�

is just the desired separation which is required by Eq. �33�
defining the ROHF �monoconfigurational� wave function for
cation Xk,�

+ with S�Xk,�
+ �=S−1 /2. In general, the CSFs from

two subspaces �60� interact with each other, and because of
this, the CI wave functions derived in the active space �58�
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are divided in two �not three� sets corresponding to the spin
numbers �S+1 /2� and �S−1 /2�.

The important point is that both the whole �S−1 /2� CI
subspace �60� and its subspace ��k

+�S−1 /2�	 are not invari-
ant under arbitrary unitary transforms of either closed-shell
��k	 or open-shell ��m	 orbitals optimal for the parent
system X. As compared to this, the active CI subspace
�
k,�

+ �S−1 /2�	 for cation Xk,�
+ with S�Xk,�

+ �=M�Xk,�
+ �S−1 /2

defined by Eq. �57� is closed under unitary transforms within
the closed or open shell. A discussion of these points is pre-
sented in the next subsection.

A. Invariant CI subspaces

It is easy to understand that the source of a noninvari-
ance of the subspace ��k

+�S−1 /2�	 with respect to arbitrary
unitary transforms of closed-shell or open-shell orbitals is
that the active CI space �58� formed by determinants �30�
and �34� is not full. Since all these determinants correspond
to the same electronic configuration �35�,

��1�2 . . . �Nc
�2Nc−1��Nc+1�1��Nc+2�1 . . . ��Nc+No

�1,

the obvious way to provide the invariance of the �S−1 /2� CI
space is to consider a wider electronic configuration

��1�2 . . . �Nc
�2Nc−1��Nc+1�Nc+2 . . . �Nc+No

�No, �61�

also corresponding to a hole in the closed shell.
The full set of determinants with spin projection �S

−1 /2� corresponding to configuration �61� consists of the
same determinants �k,�

+ , Eq. �30�, and ��k , m̄�, Eq. �34�,
specific for configuration �35� and also involves new deter-
minants W�k , m̄ ,n�

W�k,m̄,n� = det��gk��Nc+1 . . . �Nc+m−1�Nc+m�Nc+m

�Nc+m+1 . . . �Nc+n−1 �Nc+n+1 . . . �Nc+No
� ,

�62�

which differ from determinants ��k , m̄� �34� in the one spin-
orbital, �Nc+n→�Nc+m, so that the open-shell orbital �Nc+m in
Eq. �62� is doubly occupied while the orbital �Nc+n is empty,
and �gk� designates a list of spin-orbitals from the ionized
closed shell

�gk� = �1�1 . . . �k−1�k−1�k �k+1�k+1 . . . �Nc
�Nc

,

which is as the same as in determinants ��k , m̄�, Eq. �34�.
The total number of determinants of Eq. �62� is equal to
NcNo�No−1�.

The set of determinants corresponding to configuration
�61�, i.e., ��k,�

+ 	 � ���k , m̄�	 � �W�k , m̄ ,n�	, can be separated
into three groups of CSFs

�
k,�
+ �S + 1/2�	 � �
k,�

+ �S − 1/2�	 � ��k
+�S − 1/2�	 , �63�

where the first two groups are as the same as in Eq. �58�,
while the third one involves both CSFs �k

+�S−1 /2� defined
by Eq. �59� and all determinants of Eq. �62�, i.e.,

��k
+�S − 1/2�	 = ��k

+�S − 1/2�	 � �W�k,m̄,n�	 . �64�

As compared to the previous CI space �58� corresponding to
configuration �35�, both the extended CI space �63� corre-
sponding to the configuration �61� and each of its three sub-
spaces are closed under arbitrary unitary transforms of the
orbitals within the closed or open shell. We do not present
here a proof of this statement since the proof itself is quite
simple but requires a presentation of many ponderous formu-
las. We here present, just as an illustration, the main point of
this proof for the simplest case where the subspace
��k

+�S−1 /2�	 is nonvanishing, i.e., for the case No=2.
For the particular case No=2, the ��k

+�S−1 /2�	 subspace
�64� involves 2�Nc determinants W�k , m̄ ,n�, Eq. �62�,

W�k, 1̄,2� = det��gk��Nc+1�Nc+1� ,

�65a�
W�k, 2̄,1� = det��gk��Nc+2�Nc+2� ,

and Nc configuration state functions �59� from the subspace
��k

+�S−1 /2�	,

�k
+�S − 1/2� = ���k, 1̄� − ��k, 2̄�	/�2

= �det��gk��Nc+1�Nc+2�

− det��gk��Nc+1�Nc+2��/�2, �65b�

where k=1,2 , . . . ,Nc. It is easy to see that for each value of
the index k, the set of CSFs �65� forming the subspace
��k

+�S−1 /2�	 is full in the sense that an
arbitrary unitary transform of open-shell orbitals ��m	

��Nc+1 ,�Nc+2	 is equivalent to a related unitary transforma-
tion among CSFs �65�. This means that the results of CI
calculations �i.e., eigenvalues of the CI matrix and natural CI
orbitals� performed in the basis of CSFs �65� are invariant
under arbitrary unitary transform of open-shell orbitals ��m	
optimal for the initial system X.

In the same manner one can show that each of the three
CSF groups in Eqs. �65a� and �65b�, consisting of Nc mem-
bers �CSFs� each, is full in the sense that an arbitrary unitary
transform of closed-shell orbitals ��k	 is equivalent to a re-
lated unitary transformation among CSFs of the same group
in Eqs. �65a� and �65b�.

With some complications, the same approach can be
used to prove the invariance of the subspace �
k,�

+ �S−1 /2�	
representing the active CI space for the ionization process
A2, Eq. �57�. At first we note that the set of CSFs

k,�

+ �S−1 /2� is full in the sense that an arbitrary unitary
transform of closed-shell orbitals ��k	 is equivalent to a re-
lated unitary transform among CSFs 
k,�

+ �S−1 /2�. To prove
the invariance of Eq. �57� with respect to transformation of
open-shell orbitals, we revert to decomposition �31�,

�k,�
+ = ��2S � 
k,�

+ �S − 1/2� + 
k,�
+ �S + 1/2�	/�2S + 1,

where the determinant �k,�
+ is defined in Eq. �30�. It imme-

diately follows from Eq. �30� that �k,�
+ , and hence, the right-

hand side of Eq. �31� are invariant under arbitrary unitary
transform of open-shell orbitals ��m	. The same is true for
determinants �k,�

+ representing ROHF wave functions for
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cations Xk,�
+ with S�Xk,�

+ �=M�Xk,�
+ �=S+1 /2. Since the wave

function 
k,�
+ �S+1 /2,M −1 /2� in Eq. �31� is obtained by

acting the spin-down operator Ŝ− on the determinant �k,�
+ ,

we conclude that the wave function 
k,�
+ �S+1 /2�, and hence,


k,�
+ �S−1 /2� are invariant under arbitrary unitary transform

of open-shell orbitals ��m	.
In conclusion, the space of functions �
k,�

+ �S−1 /2�	
considered in CI �57� is closed under all allowed transforms.

V. COMPARISON WITH PREVIOUS APPROACHES

On the basis of the exact formulation of KT in a ROHF
method given by Eqs. �1a�–�1c�, �7�, �26�, �51�, �53�, �56�,
and �57�, we can revert to a discussion of previous
formulations7–11 of KT within UHF, ROHF, and UDFT meth-
ods.

A. CI-based approach within the UHF method

A formal validity of KT in the UHF method for ioniza-
tion processes �1a�, �8a�, and �1b�,

A1: �k
� = − Ik

�, �66a�

A2: �k
� = − Ik

�, �66b�

B1: �m
� = − Im

� , �66c�

where, as above, k=1,2 , . . . ,Nc and m=Nc+1, . . . ,Nc+No

has been first proven by Stepanov et al.9 within the limited
CI. The active CI spaces9 were defined as

A1: ��k,�
+ 	 ,

�67�
A2 � B1: ��k,�

+ 	 � ��m,�
+ 	 ,

where, in this case, all determinants �67� are defined on the
UHF orbitals ��k

�	 � ��m
�	 and ��k

�	 optimal for the initial
system X.

A treatment of KT for two processes, A2 and B1, using
the united CI space �67� is natural within the UHF method
since the two subsets of occupied UHF-alpha orbitals, ��k

�	
and ��m

�	, actually belong to the same orbital set. Moreover,
as shown in Ref. 9, the CI matrices defined in the basis sets
��k,�

+ 	 and ��k,�
+ 	 � ��m,�

+ 	 commute with the matrices of

UHF Fock operators F̂� and F̂�, Eq. �18�, respectively. From
here, one immediately obtains the KT relationships
�66a�–�66c� in the form ECI�Xk,�

+ �=−�k
�+EUHF�X� and

ECI�Xj,�
+ �=−� j

�+EUHF�X�, respectively, where j=k or m.
However, it is easy to show that within the monoconfigu-

rational UHF method, the CI-based treatment �67� leads to
physically incorrect results in specific case A2. To illustrate
this, we consider the simple case of an open-shell system X
having the electronic configuration ��A1

�2 ��A2
�1, where the

subscripts A1 and A2 denote the spatial symmetry of orbitals.
In the UHF method, this configuration takes the form
��A1

� �1��A1

� �1��A2

� �1. The CI matrix for cations Xj,�
+

�j=A1 , A2� defined in the basis �67� takes a diagonal form
with diagonal elements equal to ECI�XA1,�

+ � and ECI�XA2,�
+ �.

The CI wave functions of cations are described by determi-
nants

�A1,�
+ = �k,�

+ = det��A1

� �A2

� � , �68�

�A2,�
+ = �m,�

+ = det��A1

� �A1

� � . �69�

In the limit case of small spin polarization, �A1

� ��A1

� , and so
determinant �69� approximates to the ROHF closed-shell de-
terminant with S�XA2,�

+ �=0, while determinant �68� corre-
sponding to ionization from the closed shell �case A2� is a
superposition of the ROHF wave functions with S�XA1,�

+ �=0
and S�XA1,�

+ �=1 with equal coefficients �see also Eq. �31��.
It follows herefrom that although the Eq. �66b�, which

states the validity of KT in the UHF method for process A2,
has been derived within a formally correct CI treatment �67�,
in reality relationship �66b� is ill-defined from the physical
viewpoint.

B. CI-based approach within a ROHF method

In order to overcome the above discussed drawback of
the CI approach �67� to analysis of process A2, Sauer and
Jung10 suggested to modify the united CI space �67� con-
structed on the ROHF orbitals by replacing the determinants
��k,�

+ 	 with the symmetry-adapted combinations of determi-
nants corresponding to S�Xk,�

+ �=0. Although an explicit form
of these combinations was not presented in Ref. 10, the ac-
tive CI spaces for processes �66a�–�66c� can be presented in
the form

A1: ��k,�
+ 	 ,

�70�
A2 � B1: �
k,�

+ �S − 1/2�	 � ��m,�
+ 	 ,

where �
k,�
+ �S−1 /2�	 are the CSFs defined above Eq. �57�

and, in this case, S
S�X�=1 /2 �only such open-shell sys-
tems were discussed in Ref. 10�.

The problem with Eq. �70� is that the CI matrix defined
in the united space of CSFs �
k,�

+ �S−1 /2�	 and ��m,�
+ 	 does

not commute with any ROHF Hamiltonian matrix �16�. This
means that the CI matrix so defined cannot be made diagonal
by any allowed unitary transforms among the ROHF orbitals
��k	 and ��m	, and hence, the eigenvalues of this CI matrix
have no relation to KT. Based on this finding, Sauer and
Jung10 concluded that KT relating the CI energy of an ion to
an orbital energy of a neutral did not hold in the ROHF
method.

Actually the allowed separate unitary transforms of the
open and closed-shell orbitals cannot mix CI wave functions
from the sets A2 and B1, so a CI considering them simulta-
neously goes beyond a treatment of KT in the ROHF
method.

C. Approximate analogs of KT in ROHF and UDFT
methods

As an alternative to a rigorous KT in a ROHF method,
Sauer et al.10,11 formulated the so-called “simplified KT”
�SKT�, according to which the IPs and EAs defined in the
frozen orbital approximation might be equated not to eigen-
values of some special �canonical� ROHF Hamiltonian but to
slightly modified diagonal elements of Roothaan’s Hamil-
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tonian. A similar approach was earlier discussed by Dodds
and McWeeny.16 For processes A1, A2, and B1, the SKT
relationships11 were derived in the form Ik

��−�̃k+ �1 /2�
���̃k�K̂o��̃k�, Ik

��−�̃k+ �1 /2���̃k�5K̂o��̃k�, and Im
� �−�̃m

+ �1 /2���̃m�K̂o��̃m�, respectively, where ��̃i	 and ��̃i	 are the
eigenvalues and eigenvectors of Roothaan’s ROHF
Hamiltonian12,13 for the initial system X with S�X�=S=1 /2.

For a better understanding of SKT relationships,11 we
here present them in a simpler �but equivalent� form in
which the right-hand sides of SKT relationships11 are ex-
pressed in terms of diagonal matrix elements of the UHF

Fock operators F̂� and F̂�, Eq. �18�,

A1: Ik
� � − ��̃k�F̂���̃k� , �71a�

A2: Ik
� � − ��̃k�2F̂� − F̂���̃k�, �S = 1/2� . �71b�

B1: Im
� � − ��̃m�F̂���̃m� , �71c�

where IPs Ij
� and operators F̂���=� ,�� are defined by Eqs.

�3� and �18� above using the same ROHF orbitals11 ��̃k	
� ��̃m	. �We also note here that operators F̂� themselves in
Eqs. �71a�–�71c� do not depend on the choice of ROHF or-
bitals ��̃i	 optimal for X.�

At first we notice that both the left- and right-hand sides
of SKT relationships �71a�–�71c� depend on the choice of
ROHF orbitals optimal for X. The specific choice of these
orbitals used in Ref. 11, ��̃i	= ��̃k	 � ��̃m	, does not provide
a variationally stationary value for the energy difference
	Ej,�=Efrozen�Xj,�

+ �−EROHF�X�, and hence, the latter cannot
be equated to Koopmans’s approximation for Ij

� given by
Eqs. �3� and �4� above. Without loss of generality, one can
consider the orbitals ��̃i	 in Eqs. �71a�–�71c� just as arbi-
trarily defined self-consistent ROHF orbitals, Eq. �15�, opti-
mal for X.

Taken in the form of Eqs. �71a�–�71c�, the SKT
relationships11 can be compared with the formulations of KT
in the UHF method, Eqs. �66a� and �66b�, and with the ap-
proximate analogs of KT for the same cases A1, A2, and B1
derived by Gritsenko and Baerends7,8 within a UDFT ap-
proach,

A1: Ik
� � − �k

�, �72a�

A2: Ik
� � − ��2S + 1��k

� − �k
�	/�2S� , �72b�

B1: Im
� � − �m

� . �72c�

where S
S�X� is the total spin of the initial �nonionized�
system X. The SKT relationships �71a�–�71c� become the
analogs of KT in a UDFT method, Eqs. �72a�–�72c�, in the
particular case S=1 /2 if we assume that the closed-shell
ROHF orbitals ��̃k	 in Eqs. �71a�–�71c�, where k
=1,2 , . . . ,Nc are the lowest eigenvectors of both operators

F̂� and F̂�, and the open-shell ROHF orbitals ��̃m	 where

m=Nc+1,Nc+2, . . . , �Nc+No� are the eigenvectors of F̂�.

�We note that in this case, the operators F̂� and F̂� do not

necessarily commute�. This assumption is close to that actu-
ally used in Ref. 7 when deriving Eq. �72b�.

For case A2, both the SKT relationship �71b� and the
analog of KT in a UDFT method �72b� are based �either
explicitly11 or implicitly7� on the symmetry-adapted �mul-
tideterminantal� ROHF wave function for cation Xk,�

+ with
S�Xk,�

+ �=S−1 /2 presented by Eq. �33� above. This key point
of KT relationships �71a�–�71c� and �72a�–�72c� overcomes
the main drawback of the previous formulation of KT in
UHF method �66b� discussed above; however, neither of the
KT formulations �71a�–�71c� and �72a�–�72c� corresponds to
Koopmans’s approximation1 for IP.

To complete this comparison, we note that although the
IP values derived within two different theoretical ap-
proaches, i.e., within the DFT method and within the wave
function �ROHF and UHF� approach, have different mean-
ings, an immediate comparison between the respective KT
relationships, i.e., between Eqs. �72a�–�72c� and those of
Eqs. �1a�–�1c�, �51�, �66a�–�66c�, and �71a�–�71c�, is pos-
sible. We note that within the Kohn–Sham DFT method, only
one KT relationship corresponding to a removal of an elec-
tron from the highest occupied molecular orbital �HOMO�
has a fundamental basis.17 For cases �72a�–�72c� under con-
sideration, the respective KT relationship takes the form17,18

B1: INc+No

� = − �Nc+No

� �73�

�exact equality�, where �Nc+No� is the index of the
�-HOMO and INc+No

� is the experimental IP, which is as-
sumed to correspond to formation of the first �S−1 /2� state
of an ion. We also note here that according to Gritsenko and
Baerends,7 relationship �72a� also takes the form of the exact
equality in the case of �-HOMO, i.e., for ionization to form
the lowest �S+1 /2� state of the ion,

A1: INc

� = − �Nc

� . �74�

All other KT relationships, Eqs. �72a�–�72c�, are only ap-
proximate and are not justified by any rigorous theorem. Our
treatment has shown that the analogs of KT in UDFT meth-
ods �72a�–�72c� are also analogs of simplified KT relation-
ships �71a�–�71c�.

VI. ILLUSTRATIVE CALCULATIONS

To illustrate the theory developed in the present work for
ionization processes A2 and C2 and in our previous
works2,3,6 for processes A1, B1, C1, and B2, we present
canonical ROHF orbital energies satisfying KT for molecules
O2 and NO2 and compare them with experimental vertical
IPs. Before presenting these results we briefly describe the
details of calculations and the procedure of a verification of
the generalized KT formulated above for processes A2 and
C2.

A. Computational details

All calculations by the canonical ROHF method2 were
performed with the program GAMESS �Refs. 19 and 20� using
the special ROHF algorithm designed by Montgomery20 for
the high-spin half-filled open-shell systems. The additional
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data required for performing calculations by the method2 are
the special �canonical� values of the coefficients A�ss� and
B�ss� that are used in the Montgomery’s algorithm20 as input
data to define the diagonal blocks of total ROHF Hamil-
tonian �16�,

R̂�ss� = 2�A�ss�F̂o + B�ss��F̂c − F̂o�	

= A�ss�F̂
� + B�ss�F̂

� �75�

�the respective off-diagonal blocks, which are the same in
different ROHF treatments, are defined in Eq. �16��. The ca-
nonical values of A�ss� and B�ss� for cases A1, B1, and C1
have been defined in Ref. 2 �these values are also presented
in the latest version of GAMESS manual20�. The respective
coefficients for alternative cases A2, B2, and C2 are ob-
tained from definitions �50�, �21�, and �52� of the respective
canonical diagonal blocks,

A2: A�cc� = �2S + 1�/�2S�, B�cc� = − 1/�2S� , �76a�

B2: A�oo� = 0, B�oo� = 1, �76b�

C2: A�vv� = − 1/�2S�, B�vv� = �2S + 1�/�2S� , �76c�

where, as above, S is the total spin of the initial �nonionized�
system X and the coefficients, Eq. �76b�, were first derived in
Ref. 6.

To obtain the two sets of canonical ROHF orbitals and
orbital energies corresponding to the two alternative cases,
�A1 ,B1 ,C1	 and �A2 ,B2 ,C2	, one should perform two in-
dependent ROHF calculations using two respective sets of
coefficients A�ss� and B�ss�. It is worth noting here that the
alternative processes in different electronic shells, i.e., �A1
and A2�, �B1 and B2�, and �C1 and C2�, can be combined
within the same ROHF computation in an arbitrary manner.
For example, the same two sets of canonical orbitals and
orbital energies can be derived from another pair of the
ROHF calculations, �A1 ,B2 ,C1	 and �A2 ,B1 ,C2	, as well
as from two other pairs, ��A1 ,B1 ,C2	 and �A2 ,B2 ,C1	�
and ��A1 ,B2 ,C2	 and �A2 ,B1 ,C1	�, by the respective
choice of the input coefficients A�ss� and B�ss�. In all these
computations, the output orbitals of the first computation can
be used as input data for the following computation, which,
in this case, will merely produce different unitary transforms
of the self-consistent canonical ROHF orbitals, �� j	↔ �� j	,
within the respective electronic shells �see also Eqs. �2� and
�11��. We also note here that because of the specific draw-
back in the Montgomery’s algorithm,20 which appears in the
case of open-shell systems violating the Aufbau principle
�for more details, see Ref. 3�, such a freedom in performing
canonical ROHF calculations presents a good opportunity for
verification of the results. The other details of the canonical
ROHF calculations including the use of the specific “orbital-
energy-scaling” technique were described in Refs. 2 and 3.

To perform a verification of generalized KT �51� for pro-
cess A2, we compared the closed-shell eigenvalues of ca-

nonical ROHF Hamiltonians �76a�–�76c�, �k�Q̂can�, for a test
system X �see below� and the respective energy differences
	Ek,�=ECI�Xk,�

+ ,S − 1 /2� − EROHF�X� for ions Xk,�
+ . The CI

calculations were performed in the active CI space
�
k,�

+ �S−1 /2�	 of Eq. �57�. To generate this specific space,
we exploited two different algorithms implemented in pro-
grams MELD �Ref. 21� and GAMESS.19,20 In the latter case, we
used the occupation restricted multiple active space–CI
�ORMAS-CI� algorithm developed by Ivanic22 with some
additional possibilities implemented in this algorithm by
Ivanic and Schmidt according to our request.

As found in testing calculations of the model open-shell

system HNO with S=2 �see Ref. 3�, the eigenvalues �k�Q̂can�
and the energy differences 	Ek,� representing the vertical IPs
Ik

� derived with two different methods are in complete agree-
ment with fundamental KT relationship �51�.

B. Molecule O2

In Table I we compare the two canonical sets of ROHF
orbital energies for molecule O2 with experimental vertical
IPs.23,24 All calculations were performed with using the basis
set aug-cc-pVTZ �19s6p3d2f�/�5s4p3d2f � of Ref. 25 imple-
mented in GAMESS and RO–O=1.207 52 Å �Ref. 23�. For
easier understanding of our data, the orbital energies in Table
I are arranged in the UHF-like form so that the first column
of orbital energies corresponds to attachment or to detach-
ment of an alpha electron, i.e., to ionization processes A2,
B1, and C1, while the second column corresponds to pro-
cesses A1, B2, and C2 with participation of a beta electron.

At first we note that the number of the peaks in the
experimental �e,2e� spectra24 of O2 is greater than the num-
ber of theoretical peaks corresponding to KT states. The lat-
ter states calculated using the canonical ROHF method �Eqs.
�19a�–�19c� and �76a�–�76c�� exactly correspond to the ac-
tive CI space �
k,�

+ �S−1 /2�	 of Eq. �57�, while the additional
�shake-up� peaks at 17.5 eV �A 2�u� and 40.9 eV �2�g

−� can
be associated with the states formed within the wider active
CI space �
k,�

+ �S−1 /2�	 � ��k
+�S−1 /2�	 � �W�k , m̄ ,n�	 of

Eqs. �63� and �64�.
In the present work we did not compare the experimental

shake-up peaks with the CI states from spaces �63� and �64�
since such a comparison needs a detailed analysis, which
goes beyond the scope of this work. In whole, as follows
from Table I, the agreement between observed IPs and their
estimates via KT is qualitative and, in general, appears to
possess the same accuracy level as in the closed-shell SCF.

C. Molecule NO2

In Table II we present the similar data for molecule NO2

where we have added for comparison the respective UHF
orbital energies and theoretical estimates of IPs via a 	SCF
method,

Im
��	SCF� = EROHF�Xm,�

+ ,S − 1/2� − EROHF�X� ,

�77�
Ik

��	SCF� = EROHF�Xk,�
+ ,S + 1/2� − EROHF�X� ,

where, in this case, X=NO2 and S=1 /2. All calculations
have been performed with the experimental geometry26 of
NO2 �RO–N=1.1934 Å, �O–N–O=134.1°� and the same
basis set aug-cc-pVTZ.25

At first we notice that neither the UHF nor the 	SCF
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methods correctly predict the nature of the first IP at 11.25
eV �see the values in Table II marked in bold�. Both UHF
and 	SCF methods predict that the first IP corresponds to a
removal of a beta electron from the closed-shell orbital 4b2

with formation of ion 3B2, while the experiment27 shows the
easiest ionization of an alpha electron from the open-shell
orbital 6a1 �1A1�. Similar incorrect estimates of the first IP by
both UHF and 	SCF methods have been found by the
present authors for some other systems such as CN �state
2�+� and ClO2 �state 2B1�. As in the previous case of O2, the
agreement between experimental IPs and their estimates via
KT �within the canonical ROHF method� is qualitative.

In contrast to this, the KT estimates of the EA for both
O2 and NO2, A1�g

� �O2�=−2.961 eV and A6a1

� �NO2�
=−0.942 eV, have nothing in common with the observed
values, A1�g

� �O2�=0.440 eV �Ref. 28� and A6a1

� �NO2�
=2.273 eV �Ref. 29�. Although an immediate comparison
between these two sets of EAs is not possible since the ex-
perimental values are adiabatic, i.e., they correspond to the
relaxed geometry of both O2

− �state 2�g, RO–O=1.35 Å�
�Ref. 23� and NO2

− �state 1A1, RO–N=1.25 Å, �O–N–O
=117.5°�,29 we should not expect that the respective vertical
EAs will differ essentially from the adiabatic ones.

This drawback of the theory in predicting EAs is not, of
course, unexpected. We just emphasize here that this draw-
back by no means is the consequence of KT itself, which is
a rigorous mathematical theorem. The problem comes from
the monoconfigurational approximation �Eqs. �3�, �4�, and
�6�� underlying the definition of IPs and EAs. As is known,
in the case of EA, the neglect of correlation and orbital re-
laxation inherent to the definition �Eqs. �3�, �4�, and �6��
leads to large errors even for closed-shell systems.

VII. CONCLUSION

We have shown that KT can be formulated in the ROHF
method for all six one-electron processes X→Xj,�

� �Eqs.
�1a�–�1c� and �8a�–�8c��, possible in a high-spin half-filled
open-shell system X under study.

For four of these processes in which the spin state of an
ion is correctly described by a one-determinant wave func-
tion �these cases are called above as A1, B1, C1 �Eqs.
�1a�–�1c�� and B2 �Eq. �8b��	, the formulation of KT given in
our previous works2,3,6 within two different approaches is
analogous to that given by Koopmans for closed-shell sys-
tems. For more complex cases, A2 and C2 �Eqs. �8a� and
�8c��, we have given a slightly generalized formulation of
KT based on the description of an ion by a multideterminan-
tal ROHF wave function of the true spin and spatial symme-
try �Eqs. �33� and �54��.

We have also shown that a simultaneous treatment of KT
for two alternative one-electron processes possible in each
electronic shell �e.g., for processes A1 and A2 in the closed
shell, B1 and B2 in the open shell, etc.� leads to the necessity
of introducing in the canonical ROHF method2 two different
sets of orbitals and orbital energies within each shell. The
details of the computational procedure for deriving both sets
of canonical ROHF orbitals and orbital energies with the
program GAMESS are described in Sec. VI.

A comparison between the present CI-based formulation
of KT in the ROHF method and the previous formulations of
KT in the ROHF and UHF methods9–11 has shown that the
source of the wrong conclusion10 according to which KT is
not valid in the ROHF method is that the respective active CI
spaces for the four processes �A2, B1, B2, and C2� com-

TABLE I. Canonical ROHF orbital energies � j and experimental vertical IPs �in eV� for molecule O2 �state 3�g
−�.

MO

Canonical ROHF Experiment

�v=−Av
� , �m=−Im

� , �k=−Ik
� �v=−Av

� , �m=−Am
� , �k=−Ik

� Reference 23 Reference 24

Virtual
2�g +5.426
2�u 2�u +4.109 +4.381
4�g 4�g +3.845 +4.041
3�u 3�u +2.689 +2.781

Open-shell
1�g +2.961

1�g �14.493 12.071 �1�g� 12.30 �2�g�

Closed-shell
1�u �16.055 16.092 �1�u� 16.7 �4�u�
3�g �19.097 18.159 �3�g� 18.2 �4�g

−�
3�g �21.810 20.3 �2�g

−�
1�u �25.541 17.5 �A 2�u�; 23.7 �2�u�3��

2�u �27.489 24.549 �2�u� 24.5 �c 4�u
−�

2�u �34.853 27.4 �C 2�u
−�

2�g �43.473 39.6 �2�g� 38.9 �4�g
−�

2�g �47.966 40.9 �2�g
−�; 48.4 �2�g

−�2��
1�u 1�u �565.310 �563.610 543.1 �1sO�
1�g 1�g �565.318 �563.645
Etotal �hartree� �149.654 711 �149.654 711
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bined in Ref. 10 into two pairs, A2 � B1 and B2 � C2, were
defined incorrectly �see Eq. �70��. Within the discussed CI-
based approach, each of these four processes must be treated
separately �Eqs. �56� and �57��. For the same reason, the
formally correct CI-based formulation of KT in the UHF
method9 for processes A2 � B1 �Eq. �67�� and B2 � C2 is
actually ill-defined from the physical viewpoint.

ACKNOWLEDGMENTS

We thank Professor J. Ivanic and Professor M. Schmidt
for implementation in the ORMAS-CI algorithm in
GAMESS some additional possibilities requested by us. We
also thank Dr. E. V. Gorelik for stimulating discussions and
help in performing calculations. The helpful comments of the
referees of this paper are also highly appreciated. This work
was partially supported by the Russian Foundation for Basic
Research �Grant No. 09-03-00113� and by the Chemistry and
Material Science Section of the Russian Academy of Sci-
ences �Grant No. 2009/5.1.9�.

1 T. A. Koopmans, Physica �Amsterdam� 1, 104 �1934�.
2 B. N. Plakhutin, E. V. Gorelik, and N. N. Breslavskaya, J. Chem. Phys.

125, 204110 �2006�.
3 B. N. Plakhutin and E. R. Davidson, J. Phys. Chem. A 113, 12386

�2009�.
4 M. D. Newton, J. Chem. Phys. 48, 2825 �1968�.
5 I. H. Hillier and V. R. Saunders, Int. J. Quantum Chem. 4, 503 �1970�.
6 B. N. Plakhutin and E. V. Gorelik, Book of Abstracts, XI European Work-
shop on Quantum Systems in Chemistry and Physics, St. Petersburg,
Russia, 2006, p. 20.

7 O. V. Gritsenko and E. J. Baerends, J. Chem. Phys. 117, 9154 �2002�.
8 O. V. Gritsenko and E. J. Baerends, J. Chem. Phys. 120, 8364 �2004�.
9 N. F. Stepanov, A. A. Ustenko, and A. I. Dementiev, Vestn. Mosk. Univ.,
Ser. 2: Khim. 14, 102 �1973�.

10 J. Sauer and Ch. Jung, Theor. Chim. Acta 40, 129 �1975�.
11 J. Sauer, Ch. Jung, H. H. Jaffe, and J. Singerman, J. Chem. Phys. 69, 495

�1978�.
12 C. C. J. Roothaan, Rev. Mod. Phys. 32, 179 �1960�.
13 To avoid confusion, we should note that the definition of ROHF operators
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