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Abstract We study the Smarandache inversion sequence which is a new concept, related

sequences, conjectures, properties, and problems. This study was conducted by using (Maple

8)–a computer Algebra System.

Keywords Smarandache inversion, Smarandache reverse sequence.

Introduction

In [1], C.Ashbacher, studied the Smarandache reverse sequence:

1, 21, 321, 4321, 54321, 654321, 7654321, 87654321, 987654321, 10987654321, 1110987654321, (1)

and he checked the first 35 elements and no prime were found. I will study sequence (1), from

different point of view than C. Ashbacher. The importance of this sequence is to consider

the place value of digits for example the number 1110987654321, to be considered with its

digits like this : 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, and so on. (This consideration is the soul

of this study because our aim is to study all relations like this (without loss of generality):

11 > 10 > 9 > 8 > 7 > 6 > 5 > 4 > 3 > 2 > 1 ).

Definition. The value of the Smarandache Inversions (SI) of a positive integers, is the

number of the relations i > j ( i and j are the digits of the positive integer that we concern with

it), where i always in the left of j as the case of all numbers in (1). I will study the following

cases of above equation.

Examples. The number 1234 has no inversions ((SI) = 0, or zero inversion), also

the number 1, while the number 4321 has 6 inversions, because 4 > 3 > 2 > 1, 3 > 2 > 1,

and 2 > 1. The number 1110987654321 has 55 inversions, and 1342 has two inversions. So

our interest will be of the numbers in Smarandache reverse sequence i.e. (1), because it has

mathematical patterns and interesting properties.

Theorem. The values of SI of (1), is given by the following formula:

SI(n) =
n(n − 1)

2
, (2)

n is the number of inversions.
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Proof. For n = 1, SI(1) =
1(1 − 1)

2
= 0, this is clearly true.

Now suppose that SI(k) =
k(k − 1)

2
is true, then SI(k + 1) =

k + 1(k + 1 − 1)

2
=

k(k + 1)

2
,

thus the assertion is true for n = k + 1, if it is true for n = k.

Figure 1: Plot of function SI(n) =
n(n − 1)

2

From the above figure, we can see although n is small, SI(n) =
n(n − 1)

2
it has big values.

For example, if n = 1000, then SI(1000) = 499500.

Using Maple 8 programming language [2], verifying the first 100 terms of SI(n):

SI(1) = 0, SI(2) = 1, SI(3) = 3, SI(4) = 6,

SI(5) = 10, SI(6) = 15, SI(7) = 21, SI(8) = 28,

SI(7) = 21, SI(8) = 28, SI(9) = 36, SI(10) = 45,

SI(11) = 55, SI(12) = 66, SI(13) = 78, SI(14) = 91,

SI(15) = 105, SI(16) = 120, SI(17) = 136,

SI(18) = 153, SI(19) = 171, SI(20) = 190,

SI(21) = 210, SI(22) = 231, SI(23) = 253,
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SI(24) = 276, SI(25) = 300, SI(26) = 325,

SI(27) = 351, SI(28) = 378, SI(29) = 406,

SI(30) = 435, SI(31) = 465, SI(32) = 496,

SI(33) = 528, SI(34) = 561, SI(35) = 595,

SI(36) = 630, SI(37) = 666, SI(38) = 703,

SI(39) = 741, SI(40) = 780, SI(41) = 820,

SI(42) = 861, SI(43) = 903, SI(44) = 946,

SI(45) = 990, SI(46) = 1035, SI(47) = 1081,

SI(48) = 1128, SI(49) = 1176, SI(50) = 1225,

SI(51) = 1275, SI(52) = 1326, SI(53) = 1378,

SI(54) = 1431, SI(55) = 1485, SI(56) = 1540,

SI(57) = 1596, SI(58) = 1653, SI(59) = 1711,

SI(60) = 1770, SI(61) = 1830, SI(62) = 1891,

SI(63) = 1953, SI(64) = 2016, SI(65) = 2080,

SI(66) = 2145, SI(67) = 2211, SI(68) = 2278,

SI(69) = 2346, SI(70) = 2415, SI(71) = 2485,

SI(72) = 2556, SI(73) = 2628, SI(74) = 2701,

SI(75) = 2775, SI(76) = 2850, SI(77) = 2926,

SI(78) = 3003, SI(79) = 3081, SI(80) = 3160,

SI(81) = 3240, SI(82) = 3321, SI(83) = 3403,

SI(84) = 3486, SI(85) = 3570, SI(86) = 3655,

SI(87) = 3741, SI(88) = 3828, SI(89) = 3916,

SI(90) = 4005, SI(91) = 4095, SI(92) = 4186,

SI(93) = 4278, SI(94) = 4371, SI(95) = 4465,

SI(96) = 4560, SI(97) = 4656, SI(98) = 4753,

SI(99) = 4851, SI(100) = 4950.

Summation of SI(n) =
n(n − 1)

2
, we have

n
∑

i=1

i(i − 1)

2
=

n(n2
− 1)

6
. (3)
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Figure 2: Plot of summation of
n

∑

i=1

i(i − 1)

2
=

n(n2
− 1)

6

Proof. For n = 1, the assertion of (3) is that

n
∑

i=1

i(i − 1)

2
= 0 =

1(12
− 1)

6
,

and this is clearly true.

Now suppose that
k

∑

i=1

i(i − 1)

2
=

k(k2
− 1)

6
,

then adding
k(k − 1)

2
to both sides of this equation, we obtain

k+1
∑

i=1

i(i − 1)

2
=

k(k2
− 1)

6
+

k(k − 1)

2
=

k3 + 3k2 + 2k

6
=

k(k + 1)(k + 2)

6
.

Thus the assertion is true for n = k + 1 if it is true for n = k.

Using Maple 8 programming language, verifying the first 73 terms of

n
∑

i=1

i(i − 1)

2
=

n(n2
− 1)

6
:

∑

SI(1) = 0,
∑

SI(2) = 1,
∑

SI(3) = 4,
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∑

SI(4) = 10,
∑

SI(5) = 20,
∑

SI(6) = 35,

∑

SI(7) = 56,
∑

SI(8) = 84,
∑

SI(9) = 120,

∑

SI(10) = 165,
∑

SI(11) = 220,
∑

SI(12) = 286,

∑

SI(13) = 364,
∑

SI(14) = 455,
∑

SI(15) = 560,

∑

SI(16) = 680,
∑

SI(17) = 816,
∑

SI(18) = 969,

∑

SI(19) = 1140,
∑

SI(20) = 1330,
∑

SI(21) = 1540,

∑

SI(22) = 1771,
∑

SI(23) = 2024,
∑

SI(24) = 2300,

∑

SI(25) = 2600,
∑

SI(26) = 2925,
∑

SI(27) = 3276,

∑

SI(28) = 3654,
∑

SI(29) = 4060,
∑

SI(30) = 4495,

∑

SI(31) = 4960,
∑

SI(32) = 5456,
∑

SI(33) = 5984,

∑

SI(34) = 6545,
∑

SI(35) = 7140,
∑

SI(36) = 7770,

∑

SI(37) = 8436,
∑

SI(38) = 9139,
∑

SI(39) = 9880,

∑

SI(40) = 10660,
∑

SI(41) = 11480,

∑

SI(42) = 12341,
∑

SI(43) = 13244,

∑

SI(44) = 14190,
∑

SI(45) = 15180,

∑

SI(46) = 16215,
∑

SI(47) = 17296,

∑

SI(48) = 18424,
∑

SI(49) = 19600,

∑

SI(50) = 20825,
∑

SI(51) = 22100,

∑

SI(52) = 23426,
∑

SI(53) = 24804,

∑

SI(54) = 26235,
∑

SI(55) = 27720,

∑

SI(56) = 29260,
∑

SI(57) = 30856,

∑

SI(58) = 32509,
∑

SI(59) = 34220,

∑

SI(60) = 35990,
∑

SI(61) = 37820,

∑

SI(62) = 39711,
∑

SI(63) = 41664,

∑

SI(64) = 43680,
∑

SI(65) = 45760,

∑

SI(66) = 47905,
∑

SI(67) = 50116,

∑

SI(68) = 52394,
∑

SI(69) = 54740,
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∑

SI(70) = 57155,
∑

SI(71) = 59640,

∑

SI(72) = 62196,
∑

SI(73) = 64824.

Properties of SI(n) =
n(n − 1)

2
:

1).

SI(n) + SI(n − 1) = (n − 1)2. (4)

Fig 3: Plot of function SI(n) + SI(n − 1) = (n − 1)2

Proof.

SI(n) + SI(n − 1) =
n(n − 1)

2
+

(n − 1)(n − 1 − 1)

2

=
n(n − 1) + (n − 1)(n − 2)

2

=
(n − 1)(2n − 2)

2

= (n − 1)2.

Using Maple 8 programming language, verifying the first 40 terms of SI(n) + SI(n− 1) =

(n − 1)2:

SI(1) + SI(0) = [SI(0)]2, SI(2) + SI(1) = [SI(1)]2,

SI(3) + SI(2) = [SI(2)]2, SI(4) + SI(3) = [SI(3)]2,

SI(5) + SI(4) = [SI(4)]2, SI(6) + SI(5) = [SI(5)]2,
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SI(7) + SI(6) = [SI(0)]2, SI(8) + SI(7) = [SI(7)]2,

SI(9) + SI(8) = [SI(0)]2, SI(10) + SI(9) = [SI(9)]2,

SI(11) + SI(10) = [SI(10)]2, SI(12) + SI(11) = [SI(11)]2,

SI(13) + SI(12) = [SI(12)]2, SI(14) + SI(13) = [SI(13)]2,

SI(15) + SI(14) = [SI(14)]2, SI(16) + SI(15) = [SI(15)]2,

SI(17) + SI(16) = [SI(16)]2, SI(18) + SI(17) = [SI(17)]2,

SI(19) + SI(18) = [SI(18)]2, SI(20) + SI(19) = [SI(19)]2,

SI(21) + SI(20) = [SI(20)]2, SI(22) + SI(19) = [SI(21)]2,

SI(23) + SI(22) = [SI(22)]2, SI(24) + SI(23) = [SI(23)]2,

SI(25) + SI(24) = [SI(24)]2, SI(26) + SI(25) = [SI(25)]2,

SI(27) + SI(26) = [SI(26)]2, SI(28) + SI(27) = [SI(27)]2,

SI(29) + SI(28) = [SI(28)]2, SI(30) + SI(29) = [SI(29)]2,

SI(31) + SI(30) = [SI(30)]2, SI(32) + SI(31) = [SI(31)]2,

SI(33) + SI(32) = [SI(32)]2, SI(34) + SI(33) = [SI(33)]2,

SI(35) + SI(34) = [SI(34)]2, SI(36) + SI(35) = [SI(35)]2,

SI(37) + SI(36) = [SI(36)]2, SI(38) + SI(37) = [SI(37)]2,

SI(39) + SI(38) = [SI(38)]2, SI(40) + SI(39) = [SI(39)]2.

From the above values we can notes the following important conjecture.

Conjecture. There are other values on n such that

SI2(4) + SI2(5) = SI(6), (three consecutive positive number)

SI2(7) + SI2(9) = SI(11), (three odd consecutive positive number)

SI2(6) + SI2(13) = SI(14), · · · etc.

2).

SI(n)2 − SI(n − 1)2 = (n − 1)3. (5)

Proof.

SI(n)2 − SI(n − 1)2 =

[

n(n − 1)

2

]2

−

[

(n − 1)(n − 1 − 1)

2

]2

=

[

n(n − 1)

2

]2

−

[

(n − 1)(n − 2)

2

]2

=
(n − 1)2(4n − 4)

4

= (n − 1)3.
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Fig 4: Plot of function SI(n)2 − SI(n − 1)2 = (n − 1)3

Using Maple 8 programming language, verifying the first 28 terms of SI(n)2−SI(n−1)2 =

SI(n − 1)3:

SI(1)2 − SI(0)2 = [SI(0)]3, SI(2)2 − SI(1)2 = [SI(1)]3,

SI(3)2 − SI(2)2 = [SI(2)]3, SI(4)2 − SI(3)2 = [SI(3)]3,

SI(5)2 − SI(4)2 = [SI(4)]3, SI(6)2 − SI(5)2 = [SI(5)]3,

SI(7)2 − SI(6)2 = [SI(0)]3, SI(8)2 − SI(7)2 = [SI(7)]3,

SI(9)2 − SI(8)2 = [SI(0)]3, SI(10)2 − SI(9)2 = [SI(9)]3,

SI(11)2 − SI(10)2 = [SI(10)]3, SI(12)2 − SI(11)2 = [SI(11)]3,

SI(15)2 − SI(14)2 = [SI(14)]3, SI(16)2 − SI(15)2 = [SI(15)]3,

SI(17)2 − SI(16)2 = [SI(16)]3, SI(18)2 − SI(17)2 = [SI(17)]3,

SI(19)2 − SI(18)2 = [SI(18)]3, SI(20)2 − SI(19)2 = [SI(19)]3,

SI(21)2 − SI(20)2 = [SI(20)]3, SI(22)2 − SI(19)2 = [SI(21)]3,

SI(23)2 − SI(22)2 = [SI(22)]3, SI(24)2 − SI(23)2 = [SI(23)]3,

SI(25)2 − SI(24)2 = [SI(24)]3, SI(26)2 − SI(25)2 = [SI(25)]3,

SI(27)2 − SI(26)2 = [SI(26)]3, SI(28)2 − SI(27)2 = [SI(27)]3.
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Adding (4) and (5) , and only with slight modifications , we could have:

3).

(n2
− 1)2 + (n2

− 1)3 = [n(n − 1)(n + 1)]2. (6)

Fig 5: Plot of function (n2
− 1)2 + (n2

− 1)3 = [n(n − 1)(n + 1)]2

By direct factorizations and calculations we can easily prove (6).

Using Maple 8 programming language, verifying the first 1680 terms of (6):

[0]2 + [0]3 = [0]2, [3]2 + [3]3 = [6]2,

[8]2 + [8]3 = [24]2, [15]2 + [15]3 = [60]2,

[24]2 + [24]3 = [120]2, [35]2 + [35]3 = [210]2,

[48]2 + [48]3 = [336]2, [63]2 + [63]3 = [504]2,

[80]2 + [80]3 = [720]2, [99]2 + [99]3 = [990]2,

[120]2 + [120]3 = [1320]2, [143]2 + [143]3 = [1716]2,

[168]2 + [168]3 = [2184]2, [195]2 + [195]3 = [2730]2,

[224]2 + [224]3 = [3360]2, [255]2 + [255]3 = [4080]2,

[288]2 + [288]3 = [4896]2, [323]2 + [323]3 = [5814]2,

[360]2 + [360]3 = [6840]2, [399]2 + [399]3 = [7980]2,
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[440]2 + [440]3 = [9240]2, [483]2 + [483]3 = [10626]2,

[528]2 + [528]3 = [12144]2, [575]2 + [575]3 = [13800]2,

[624]2 + [624]3 = [15600]2, [675]2 + [675]3 = [17550]2,

[728]2 + [728]3 = [19656]2, [783]2 + [783]3 = [21924]2,

[840]2 + [840]3 = [24360]2, [899]2 + [899]3 = [26970]2,

[960]2 + [960]3 = [29760]2, [1023]2 + [1023]3 = [32736]2,

[1088]2 + [1088]3 = [35904]2, [1155]2 + [1155]3 = [39270]2,

[1224]2 + [1224]3 = [42840]2, [1295]2 + [1295]3 = [46620]2,

[1368]2 + [1368]3 = [50616]2, [1443]2 + [1443]3 = [54834]2,

[1520]2 + [1520]3 = [59280]2, [1599]2 + [1599]3 = [63960]2,

[1680]2 + [1680]3 = [68880]2.

4). Subtracting (4) from (5), and only with slight modifications, we could have:

(n2 + 1)3 − (n2 + 1)2 = n2(n2 + 1)2. (7)

Fig 6: Plot of function (n2 + 1)3 − (n2 + 1)2 = n2(n2 + 1)2

By direct factorizations and calculations we can easily prove (7).
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Using Maple 8 programming language, verifying the first 2026 terms of (7):

[82]3 − [82]2 = [738]2, [101]3 − [101]2 = [1010]2,

[122]3 − [122]2 = [1342]2, [145]3 − [145]2 = [1740]2,

[170]3 − [170]2 = [2210]2, [197]3 − [197]2 = [2758]2,

[226]3 − [226]2 = [3390]2, [257]3 − [257]2 = [4112]2,

[290]3 − [290]2 = [4930]2, [325]3 − [325]2 = [5850]2,

[362]3 − [362]2 = [6878]2, [401]3 − [401]2 = [8020]2,

[442]3 − [442]2 = [9282]2, [485]3 − [485]2 = [10670]2,

[530]3 − [530]2 = [12190]2, [577]3 − [577]2 = [13848]2,

[626]3 − [626]2 = [15650]2, [677]3 − [677]2 = [17602]2,

[730]3 − [730]2 = [19710]2, [785]3 − [785]2 = [21980]2,

[842]3 − [842]2 = [24418]2, [901]3 − [901]2 = [27030]2,

[962]3 − [962]2 = [29822]2, [1025]3 − [1025]2 = [32800]2,

[1090]3 − [1090]2 = [35970]2, [1157]3 − [1157]2 = [39338]2,

[1226]3 − [1226]2 = [42910]2, [1297]3 − [1297]2 = [46692]2,

[1370]3 − [1370]2 = [50690]2, [1445]3 − [1445]2 = [54910]2,

[1522]3 − [1522]2 = [59358]2, [1601]3 − [1601]2 = [64040]2,

[1682]3 − [1682]2 = [68962]2, [1765]3 − [1765]2 = [74130]2,

[1850]3 − [1850]2 = [79550]2, [1937]3 − [1937]2 = [85228]2,

[2026]3 − [2026]2 = [91170]2.

5).

SI(n) − SI(n − 1) = n − 1. (8)
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Fig 7: Plot of function SI(n) − SI(n − 1) = n − 1

Proof.

SI(n) − SI(n − 1) =
n(n − 1)

2
−

(n − 1)(n − 1 − 1)

2

=
n(n − 1) − (n − 1)(n − 2)

2

=
2n − 2

2
= n − 1.

Using Maple 8 programming language, verifying the first 80 terms of SI(n)−SI(n− 1) =

n − 1:

SI(1) − SI(0) = 0, SI(2) − SI(1) = 1,

SI(3) − SI(2) = 2, SI(4) − SI(3) = 3,

SI(5) − SI(4) = 4, SI(6) − SI(5) = 5,

SI(7) − SI(6) = 6, SI(8) − SI(7) = 7,

SI(9) − SI(8) = 8, SI(10) − SI(9) = 9,

SI(11) − SI(10) = 10, SI(12) − SI(11) = 11,

SI(13) − SI(12) = 12, SI(14) − SI(13) = 13,
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SI(15) − SI(14) = 14, SI(16) − SI(15) = 15,

SI(17) − SI(16) = 16, SI(18) − SI(17) = 17,

SI(19) − SI(18) = 18, SI(20) − SI(19) = 19,

SI(21) − SI(20) = 20, SI(22) − SI(21) = 21,

SI(23) − SI(22) = 22, SI(24) − SI(23) = 23,

SI(25) − SI(24) = 24, SI(26) − SI(25) = 25,

SI(27) − SI(26) = 26, SI(28) − SI(27) = 27,

SI(29) − SI(28) = 28, SI(30) − SI(29) = 29,

SI(31) − SI(30) = 30, SI(32) − SI(31) = 31,

SI(33) − SI(32) = 32, SI(34) − SI(33) = 33,

SI(35) − SI(34) = 34, SI(36) − SI(35) = 35,

SI(37) − SI(36) = 36, SI(38) − SI(37) = 37,

SI(39) − SI(38) = 38, SI(40) − SI(39) = 39,

SI(41) − SI(40) = 40, SI(42) − SI(41) = 41,

SI(43) − SI(42) = 42, SI(44) − SI(43) = 43,

SI(45) − SI(44) = 44, SI(46) − SI(45) = 45,

SI(47) − SI(46) = 46, SI(48) − SI(47) = 47,

SI(49) − SI(48) = 48, SI(50) − SI(49) = 49,

SI(51) − SI(50) = 50, SI(52) − SI(51) = 51,

SI(53) − SI(52) = 52, SI(54) − SI(53) = 53,

SI(55) − SI(54) = 54, SI(56) − SI(55) = 55,

SI(57) − SI(56) = 56, SI(58) − SI(57) = 57,

SI(59) − SI(58) = 58, SI(60) − SI(59) = 59,

SI(61) − SI(60) = 60, SI(62) − SI(61) = 61,

SI(63) − SI(62) = 62, SI(64) − SI(63) = 63,

SI(65) − SI(64) = 64, SI(66) − SI(65) = 65,

SI(67) − SI(66) = 68, SI(68) − SI(67) = 67,

SI(69) − SI(68) = 68, SI(70) − SI(69) = 69,

SI(71) − SI(70) = 70, SI(72) − SI(71) = 71,

SI(73) − SI(72) = 72, SI(74) − SI(73) = 73,

SI(75) − SI(74) = 74, SI(76) − SI(75) = 75,
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SI(77) − SI(76) = 76, SI(78) − SI(77) = 77,

SI(79) − SI(78) = 78, SI(80) − SI(79) = 79.

6).

SI(n + 1)SI(n − 1) + SI(n) = SI(n)2.

Proof.

SI(n + 1)SI(n − 1) + SI(n) =
n(n + 1)

2
·

(n − 2)(n − 1)

2
+

n(n − 1)

2

=

[

n(n − 1)

2

]2

.

7).

SI(n)2 + SI(n − 1)2 = k2. (9)

In this case I find the following two solutions:

i) SI(8)2 + SI(7)2 = (35)2, i.e. (28)2 + (21)2 = (35)2,

ii) SI(42)2 + SI(41)2 = (1189)2, i.e.(861)2 + (820)2 = (1189)2.

8). General SI identities given by numbers:

SI(0) + SI(1) + SI(2) = 1,

SI(1) + SI(2) + SI(3) = 22,

SI(6) + SI(7) + SI(8) = 26,

SI(15) + SI(16) + SI(17) = 192,

SI(64) + SI(65) + SI(66) = 792,

SI(153) + SI(154) + SI(155) = 24
· 472,

SI(0) + SI(1) + SI(2) + SI(3) = 22,

SI(6) + SI(7) + SI(8) + SI(9) = 22
· 52,

SI(40) + SI(41) + SI(42) + SI(43) = 22
· 292,

SI(238) + SI(239) + SI(240) + SI(241) = 22
· 132,

SI(19) + SI(20) + SI(21) + SI(22) + SI(23) + SI(24) = 113,

SI(4) + SI(5) + SI(6) + SI(7) + SI(8) + SI(9) + SI(10) + SI(11) = 23
· 33,

SI(1) − SI(0) + SI(2) = 1,

SI(7) − SI(6) + SI(8) = 23
· 53,

SI(1) + SI(0) + SI(2) = 1,

SI(5) + SI(4) + SI(6) = 192.
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Abstract In this paper we investigate the boundedness, the periodic character and the

global attractivity of the recursive sequence

xn+1 =
a + bxn−1

A− xn
, n = 0, 1, · · · ,

where a ≥ 0, A, b > 0 are real numbers, and the initial conditions x−1, x0 are arbitrary real

numbers. We show that the positive equilibrium of the equation is a global attractor with a

basin that depends on certain conditions posed on the coefficients.
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§1. Introduction

Our goal in this paper is to investigate the boundedness, periodic character and global
attractivity of all positive solutions of the rational recursive sequence

xn+1 =
a + bxn−1

A− xn
, n = 0, 1, · · · , (1)

where a ≥ 0, A, b > 0 are real numbers, and the initial conditions x−1, x0 are arbitrary real
numbers.

In [1], C. H. Gibbons et.al. investigated the global behavior of the rational recursive
sequence

xn+1 =
a + bxn−1

A + xn
, n = 0, 1, · · · ,

where a,A, b > 0, and the initial conditions x−1, x0 are arbitrary positive real numbers. In [2],
He, Li and Yan investigated the global behavior of the rational recursive sequence

xn+1 =
a− bxn−1

A + xn
, n = 0, 1, · · · ,

where a ≥ 0, A, b > 0 are real numbers, and the initial conditions x−1, x0 are arbitrary positive
real numbers. For the global behavior of solutions of some related equations, see [3–6]. Other
related results reffer to [7–14].

Here, we recall some results which will be useful in the sequel.
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Let I be some interval of real numbers and let f ∈ C1[I×I, I]. Let x ∈ I be an equilibrium
point of the difference equation

xn+1 = f(xn,xn−1), n = 0, 1, · · · , (2)

that is x = f(x, x). Let

s =
∂f

∂u
(x, x) and t =

∂f

∂v
(x, x),

denote the partial derivatives of f(u, v) evaluated at an equilibrium x of Eq.(2). Then the
equation

yn+1 = syn + tyn−1, n = 0, 1, · · · , (3)

is called the linearized equation associated with Eq.(2) about the equilibrium point x.

An interval J ∈ I is called an invariant interval of Eq.(2), if

x−1, x0 ∈ J ⇒ xn ∈ J, for all n ≥ 1.

That is, every solution of Eq.(2) with initial conditions in J remains in J .
Definition 1.1. [9] The difference equation (2) is said to be permanent, if there exist

numbers P and Q with 0 < P 6 Q < ∞ such that for any initial conditions x−1, x0 there exists
a positive integer N which depends on the initial conditions such that

P 6 xn 6 Q for n ≥ N.

Theorem A. [5] Linearized stability.
(a) If both roots of the quadratic equation

λ2 − sλ− t = 0 (4)

lie in the open unit disk | λ |< 1, then the equilibrium x of Eq.(2) is locally asymptotically
stable.

(b) If at least one of the roots of Eq.(4) has absolute value greater than one, then the
equilibrium x of Eq.(2) is unstable.

(c) A necessary and sufficient condition for both roots of Eq.(4) to lie in the open unit disk
| λ |< 1, is

|s| < 1− t < 2.

In this case the locally asymptotically stable equilibrium x is also called a sink.
(d) A necessary and sufficient condition for both roots of Eq.(4) to have absolute value

greater than one is
|t| > 1 and |s| < |1− t| .

In this case x is called a repeller.
(e) A necessary and sufficient condition for both roots of Eq.(4) to have absolute value

greater than one and for the other to have less than one is

s2 + 4t > 0 and |s| > |1− t| .

In this case the unstable equilibrium x is called a saddle point.
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Theorem B. [9] Consider the difference equation

xn+1 = g(xn, · · · , xn−k), n = 0, 1, · · · , (5)

where k ∈ {1, 2, · · · }, g ∈ C[(0,∞)k+1, (0,∞)] is increasing in each of its arguments and the
initial conditions x−k, · · · , x0 are positive. Assume that Eq.(5) has a unique positive equilibrium
x and that the function h defined by

h(x) = g(x, · · · , x), x ∈ (0,∞)

satisfies
(h(x)− x)(x− x) < 0 for x 6= x.

Then x is a global attractor of all positive solutions of Eq.(5).

§2. Period Two Solutions and Linearized Stability

Consider the difference equation (1) with

a ≥ 0 and A, b > 0, (6)

we have the following result for its period two solutions.
Theorem 2.1. The Eq.(1) has a prime period two solution if and only if A = b.

Proof. Let
· · · , φ, ψ, φ, ψ, · · · ,

be a prime period two solution of the Eq.(1). Then we have

φ =
a + bφ

A− ψ
and ψ =

a + bψ

A− φ
.

Hence
(φ− ψ)(A− b) = 0,

and from which it follows that A = b. On the other hand, if A = b, then the period two solutions
of Eq.(1) must be of the form:

· · · , u, −a

u
, u, −a

u
, · · · ,

where u ∈ R\{0} is arbitrary real number. The proof is complete.
The equilibria of Eq.(1) are the solutions of the quadratic equation

x2 − (A− b)x + a = 0, (7)

From Eq.(7) we see that under condition (6), if a = (A−b)2/4, then Eq.(1) has a unique positive
equilibrium x1 = (A− b)/2; if

0 < a < (A− b)2/4 and A > b > 0, (8)
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then Eq.(1) has two positive equilibria

x2 =
A− b +

√
(A− b)2 − 4a

2
and x3 =

A− b−
√

(A− b)2 − 4a

2
.

The linearized equation of Eq.(1) about xi(i = 1, 2, 3) is

yn+1 − xi

A− xi
yn − b

A− xi
yn−1 = 0, i = 1, 2, 3, n = 0, 1, · · · .

The following results are consequence of Theorem A by straight forword computations.

Lemma 2.1. Assume that (8) holds, and let f(u, v) =
a + bv

A− u
. Then the following state-

ments are true:
(a) The positive equilibrium x3 of Eq.(1) is locally asymptotic stable (in the sequel, we will

denote x3 as x) .
(b) The positive equilibrium x2 of Eq.(1) is a saddle point.
(c) 0 < x < x2 < A.

(d) f(x, x) is a strictly increasing function in (−∞,+∞).
(e) Let u, v ∈ (−∞, A)× [−a/b,+∞), then f(u, v) is a strictly increasing function in u and

in v.

§3. The Case a > 0

In this section, we will study the global attractivity of all positive solutions of Eq.(1). We
show that the positive equilibrium x of Eq.(1) is a global attractor with a basin that depends
on certain conditions posed on the coefficients.

The following theorem shows that Eq.(1) is permanent under certain conditions.
Theorem 3.1. Assume that (8) holds. Let {xn} be a solution of Eq.(1), if

(x−1, x0) ∈ [−a/b, x2]2,

then
0 <

a

A
6 xn 6 x2 for n ≥ 3.

Proof. By part (e) of Lemma 2.1, we have

0 = f(x0,−a

b
) 6 x1 = f(x0, x−1) 6 f(x2, x2) = x2,

and
0 = f(x1,−a

b
) 6 x2 = f(x1, x0) 6 f(x2, x2) = x2.

Furthermore, we have

0 <
a

A
= f(0, 0) 6 x3 = f(x2, x1) 6 f(x2, x2) = x2,

and
0 <

a

A
= f(0, 0) 6 x4 = f(x3, x2) 6 f(x2, x2) = x2.

Hence, the result follows by induction. The proof is complete.
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By Theorem 3.1 and definition of the invariant interval, we know that the interval [0, x2]
is an invariant interval of Eq.(1).

Theorem 3.2. Assume that (8) holds. Then the positive equilibrium x of Eq.(1) is a
global attractor with a basin

S = (0, x2)2.

Proof. By part (e) of Lemma 2.1, for any u, v ∈ (0, x2), we have

0 < f(u, v) =
a + bv

A− u
<

a + bx2

A− x2
= x2.

Hence, f ∈ C[(0, x2)2, (0, x2)]. Let the function g be defined as

g(x) = f(x, x), x ∈ (0, x2).

Then we have

(g(x)− x)(x− x)

=
(

a + bx

A− x
− x

)
(x− x) =

1
A− x

(
x2 − (A− b)x + a

)
(x− x)

=
(x− x)
A− x

(
x− (A− b) +

√
(A− b)2 − 4a

2

)(
x− (A− b)−

√
(A− b)2 − 4a

2

)

=
1

A− x
(x− x2)(x− x)2 < 0, for x 6= x.

By Theorem B, x is a global attractor of all positive solutions of Eq.(1) with the initial conditions
(x−1, x0) ∈ S. That is, let {xn} be a solution of Eq.(1) with initial conditions (x−1, x0) ∈ S,

then we have
lim

n→∞
xn = x.

The proof is complete.
Theorem 3.3. Assume that (8) holds. Then the positive equilibrium x of Eq.(1) is a

global attractor with a basin

S =
[
−a

b
, x2

]2

\{(x2, x2)}.
Proof. Let {xn} be a solution of Eq.(1) with initial conditions (x−1, x0) ∈ S. Then, by

Theorem 3.2, we have xn ∈ (0, x2), for n ≥ 1. Hence, Theorem 3.2 implies that

lim
n→∞

xn = x.

The proof is complete.

§4. The Case a = 0

In this section, we study the asymptotic stability for the difference equation

xn+1 =
bxn−1

A− xn
, n = 0, 1, · · · , (9)



20 Wansheng He and Dewang Cui, Zhu Zhao and Xingxue Yan No. 4

where b, A ∈ (0,∞), and the initial conditons x−1, x0 are arbitrary real numbers.
By putting xn = byn, Eq.(9) yields

yn+1 =
yn−1

C − yn
, n = 0, 1, · · · , (10)

where C = A/b > 0, Eq.(10) has two equilibria y1 = 0, y2 = C − 1. The linearized equation of
the Eq.(10) about the equilibria yi, i = 1, 2, is

zn+1 − yi

C − yi

zn − 1
C − yi

zn−1 = 0, i = 1, 2, n = 0, 1, · · · ,

For y2 = C − 1, by Theorem A we can see that it is a saddle point.
For y1 = 0, we have

zn+1 − 1
C

zn−1 = 0, n = 0, 1, · · · , (11)

the characteristic equation of Eq.(11) is

λ2 − 1
C

= 0.

Hence, by Theorem A, we have
(i) If A > b, then y1 is locally asymptotically stable.
(ii) If A < b, then y1 is a repeller.
(iii) If A = b, then linearized stability analysis fails.
In the sequel, we discuss the global attractivity of the zero equilibrium of Eq.(10). So we

assume that A > b, namely, C > 1.
Lemma 4.1. Assume that (y−1, y0) ∈ [−C +1, C−1]2. Then any solution {yn} of Eq.(10)

satisfies yn ∈ [−C + 1, C − 1] for n ≥ 1.

Proof. Since (y−1, y0) ∈ [−C + 1, C − 1]2, then we have

−C + 1 6 −C + 1
C − (−C + 1)

6 y1 =
y−1

C − y0
6 C − 1

C − (C − 1)
= C − 1

and
−C + 1 6 −C + 1

C − (−C + 1)
6 y2 =

y0

C − y1
6 C − 1

C − (C − 1)
= C − 1.

The result follows by induction, and the proof is complete.
By Lemma 4.1 and the definition of the invariant interval, we know that the interval

[−C + 1, C − 1] is an invariant interval of Eq.(10). Also Lemma 4.1 implies that the following
result is true.

Theorem 4.1 The equilibrium y1 = 0 of Eq.(10) is a global attractor with a basin

S = (−C + 1, C − 1)2.
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In Charles Ashbacher’s paper,
�

On Numbers that are Pseudo-Smarandache and Smaran-

dache Perfect
�

[1] he discussess the operation of summing the divisors of a number after a

function has been applied to those divisors. In this note we consider the process of applying

the reverse function to the divisors of a number and then summing them.

Let srd(n) be the Smarandache sum of reversed divisors of n. This function produces the

following sequence:

n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, · · · ,

srd(n) = 1, 3, 4, 7, 6, 12, 8, 15, 13, 9, 12, 37, 32, 51, · · · .

For example, srd(14) = 51, because the divisors of 14 are 1, 2, 7, 14, then reversing and

summing gives 1 + 2 + 7 + 41 = 51.

Here is a graph of the first 300 values:
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Joseph L. Pe investigated some aspects of this function in his paper,
�

The Picture-Perfect

Numbers
�

[2]. The purpose of this note is to provide some results on a new srd(n) problem.

Background

Pythagoras and his followers were the first to notice they could not find integers equal to one

more than the sum of their divisors [3]. That is, they could not find solutions to σ(n) = 2n+1.

And they referred to these numbers–still hoping at least one might exist–as
�

slightly excessive

numbers.
�

To this day a solution has not been found, and the problem remains open, even

though a couple of things are known about
�

slightly excessives
�

– if one exists it is larger than

1035; and it has more than 7 distinct prime factors [4].

We shall alter this
�

slightly excessive
�

problem in two ways and search for solutions. Our

modification will consist of (1) summing all the divisors of n, not just the proper divisors; (2)

reversing the divisors before summing them–i.e., we’ll use the srd(n) function.

Solutions to srd(n) = n + 1

It is easy to see that palprimes will always be solutions: The only divisors of a prime are

1and itself, and because a palindrome’s largest nonproper divisor is already the same as its

reversal, the sum of a palprime’s divisors will always be equal to n + 1.

Interestingly, a computer search reveals that there are also non-palprime solutions to

srd(n) = n + 1. Namely: 965, 8150, 12966911 satisfy the equation, with no more found up to

2 ∗ 107. Example: The divisors of 965 are 1, 5, 193, 965; and reversing and summing produces

1 + 5 + 391 + 569 = 966. Also note that there are no obvious patterns in the factorizations of

these solutions:

965 = 5 ∗ 193,

8150 = 2 ∗ 5 ∗ 5 ∗ 163,

12966911 = 19 ∗ 251 ∗ 2719.

Open questions. Are there any more non-palprime solutions to srd(n) = n + 1? If so,

do the solutions have any properties in common? Are there infinitely many solutions?
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Abstract A superR∗-unipotent semigroup is a super abundant semigroup S in which every

R∗-class of S contains a unique idempotent and whose idempotents form a subsemigroup of

S. This kinds of semigroups have been investigated in [1], [3] and [5]. The aim of this paper

is to introduce the concept of the generalized left ∆-product of semigroups and to establish

a new construction of super R∗-unipotent semigroups, namely the generalized left ∆-product

structure of a super R∗-unipotent semigroup.
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§1. Introduction

On a semigroup S the relation L∗ is defined by the rule that aL∗b if and only if the
elements a and b of S are L-related on some over semigroup of S. Dually the relation R∗ can
be defined. The relation H∗ is the intersection of the relations L∗ and R∗. It was noted in [2]
that L ⊆ L∗ on any semigroup S. In particular, L = L∗ on a regular semigroup S. It is easy to
see that the relation L∗ is a generalization of the usual Green’s relation L on a semigroup S.
A semigroup S is called abundant if every L∗-class and R∗-class of S contains an idempotent.
A semigroup S is called super abundant if every H∗-class of S contains an idempotent (see
[2]). According to [1], a super R∗-unipotent semigroup is a super abundant semigroup S if the
set of all idempotents of S forms a subsemigroup and every R∗-class of S contains a unique
idempotent. Clearly, a super R∗-unipotent semigroup is indeed a generalization of a left C–
semigroup in the class of abundant semigroups. This class of abundant semigroups was first
introduced by El-Qallali in [1]. Later, Guo, Guo and Shum studied this kinds of semigroups
from another view point and they called such semigroups the left C–a semigroups in [5]. It was
shown in [5] that such a semigroup can be constructed by a semi-spined product of semigroups.
In this paper, we will introduce the concept of generalized left ∆-product of semigroups and
establish a new construction of a super R∗-unipotent semigroup by using the generalized left
∆-product of semigroups.

Terminologies and notations not mentioned in this paper should be referred to [1],[3] and
[7].
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The SF of education department of Shaanxi province (05JK240), P.R.China.
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§2. Preliminaries and generalized left ∆-products

We first recall some basic results known which are useful for our construction of a super
R∗-unipotent semigroup.

Lemma 2.1. [2] Let S be a semigroup and let a, b ∈ S. Then the following statements
hold:

(1) aL∗b if and only if for all x, y ∈ S1, ax = ay ⇔ bx = by.

(2) for any idempotent e ∈ S, eL∗a if and only if ae = a and for all x, y ∈ S1, ax = ay ⇒
ex = ey.

It is easy to see that on any semigroup S, L ⊆ L∗ holds and for any regular elements a, b ∈ S,

we have (a, b) ∈ L∗ if and only if (a, b) ∈ L. The dual results for R∗ also hold.
The following characterizations of super R∗-unipotent semigroups are crucial in the study-

ing of a super R∗-unipotent semigroup.
Lemma 2.2. [3] The following conditions on a semigroup S are equivalent:

(i) S is a super R∗-unipotent semigroup;

(ii) S is an abundant semigroup in which R∗ = H∗;

(iii) S is a super abundant semigroup and eS ⊆ Se for any e ∈ S ∩ E ;

(iv) S is a semilattice Y of the direct product Sα of a left zero band Iα and a cancellative
monoid Mα and H∗

a(S) = H∗
a(Sα) for a ∈ Sα and α ∈ Y .

We now introduce the concept of generalized left ∆-product of semigroups which is a
modification of left ∆-product of semigroups given in [6].

Let Y be a semilattice and M = [Y ;Mα, θα,β ] be a strong semilattice of monoids Mα

with structure homomorphism θα,β , and let I =
⋃

α∈Y Iα be a semilattice decomposition of
left regular band I into left zero band Iα. For every α ∈ Y we use Sα to denote the direct
product Iα ×Mα of a left zero band Iα and a monoid Mα, and use J ∗(Iα) to denote the left
transformation semigroup on Iα.

Now for any α, β ∈ Y with α > β and a ∈ Sα, define a mapping

Φα,β : Sα → J ∗(Iβ)

a 7→ ϕa
α,β

satisfying the following conditions:

(C1) If (i, g) ∈ Sα, j ∈ Iα, then ϕ(i,g)
α,α j = i ;

(C2) For any α, β ∈ Y and any (i, g) ∈ Sα, (j, f) ∈ Sβ ,

(i) ϕ
(i,g)
α,αβϕ

(j,f)
β,αβ is a constant mapping on Iαβ , denote the constant value by 〈ϕ(i,g)

α,αβϕ
(j,f)
β,αβ〉;

(ii) if α, β, δ ∈ Y with αβ > δ and 〈ϕ(i,g)
α,αβϕ

(j,f)
β,αβ〉 = k, then ϕ

(k,gf)
αβ,δ = ϕ

(i,g)
α,δ ϕ

(j,f)
β,δ ;
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(iii) for any γ ∈ Y and any (k, u) ∈ Sβ , (l, v) ∈ Sγ ,

ϕ
(i,g)
α,αβϕ

(k,u)
β,αβ = ϕ

(i,g)
α,αβϕ(l,v)

γ,αγ implies ϕ
(i,1α)
α,αβ ϕ

(k,u)
β,αβ = ϕ

(i,1α)
α,αβ ϕ(l,v)

γ,αγ ,

and also

ϕ
(k,u)
β,αβϕ

(i,g)
α,αβ = ϕ(l,v)

γ,αγϕ
(i,g)
α,αβ implies ϕ

(k,u)
β,αβϕ

(i,1α)
α,αβ = ϕ(l,v)

γ,αγϕ
(i,1α)
α,αβ ,

where 1α is the identity of a monoid Mα.

Now form the set S =
⋃

α∈Y Sα and for any (i, g) ∈ Sα, (j, f) ∈ Sβ , define a multiplication
“ ◦ ” on S by the rule that

(i, g) ◦ (j, f) = (〈ϕ(i,g)
α,αβϕ

(j,f)
β,αβ〉, gf). (1)

It can be easily verified that the multiplication“◦ ” on S is associative and hence (S, ◦) be-
comes a semigroup. We refer to this semigroup as the generalized left ∆-product of semigroups
I and M with respect to structure mapping Φα,β , denote it by S = I∆Y,ΦM .

§3. Structure of super R∗-unipotent semigroups

The aim of this section is to establish another construction of a super R∗-unipotent semi-
group S. We have the following result

Theorem 3.1. Let M = [Y ;Mα, θα,β ] be a strong semilattice of cancellative monoids
Mα with structure homomorphism θα,β . Let I =

⋃
α∈Y Iα be a semilattice decomposition of

left regular band I into left zero band Iα. Then the generalized left ∆-product I∆Y,ΦM of I

and M is a super R∗-unipotent semigroup.
Conversely, every super R∗-unipotent semigroup can be constructed in this way.
Proof. To prove the direct part of Theorem 3.1, we suppose that a semigroup S is a

generalized left ∆-product I∆Y,ΦM of a left regular band I and a strong semilattice M of
cancellative monoids Mα. We will show that S is a super R∗-unipotent semigroup by the
following steps.

(1) We first show that E(S) =
⋃

α∈Y {(i, 1α) ∈ Iα ×Mα|i ∈ Iα}, where 1α is the identity
element of Mα. By using the multiplication given in (1) and the condition (C1), we immediately
have

(i, 1α) ◦ (i, 1α) = (〈ϕ(i,1α)
α,α ϕ

(i,1α)
α,α 〉, 1α) = (i, 1α).

On the other hand, if (i, g)◦(i, g) = (i, g), then we can see that g is the identity of the cancellative
monoid Mα. Thus, the set E(S) is the set of all idempotent in S.

(2) If (i, g), (j, f) ∈ Sα, then we have

(i, g) ◦ (j, f) = (〈ϕ(i,g)
α,α ϕ(j,f)

α,α 〉, gf) = (i, gf).

This shows that the restriction of the multiplication on S to Sα coincides with the previous
multiplication on Sα. Also, it is easy to see that S itself is a semilattice Y of semigroups Sα.

To prove that S is a super R∗-unipotent semigroup, by using Lemma 2.2 (iv), we only
need to show that H∗

a(S) = H∗
a(Sα) for any α ∈ Y and any a ∈ Sα. Suppose that aL∗(Sα)b
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for any a, b ∈ Sα. Then taking a = (i, g) ∈ Sα and e = (i, 1α) ∈ Sα, by the definition of
multiplication on S, we have ae = (i, g)(i, 1α) = (〈ϕ(i,g)

α,α ϕ
(i,1α)
α,α 〉, g) = (i, g) = a. If ax = ay for

any x = (k, u) ∈ Sβ , y = (l, v) ∈ Sγ , then by the condition (C2)(iii), we have that ex = ey and
so aL∗(S)e by Lemma 2.1. If b = (j, h) ∈ Sα, then there exists idempotent f = (j, 1α) ∈ Sα

such that bL∗(S)f . Clearly, eLf . This leads to aL∗eLfL∗b and aL∗(S)b. This shows that
L∗a(Sα) ⊆ L∗a(S). Clearly, L∗a(S) ⊆ L∗a(Sα) and hence L∗a(S) = L∗a(Sα). Similarly, we have
R∗a(S) = R∗a(Sα). Thus, we have that H∗

a(S) = H∗
a(Sα). By Lemma 2.2 (iv), we have shown

that S = I∆Y,ΦM is a super R∗-unipotent semigroup.
Next we proceed to prove the converse part of Theorem 3.1. Suppose that S is any super

R∗-unipotent semigroup. In fact, by Lemma 2.2(iv), there exists a semilattice Y of semigroup
Sα = Iα×Mα, where each Iα is a left zero band and each Mα is a cancellative monoid. Since Mα

is a cancellative monoid, it is easy to check that E(S) = {(i, 1α) ∈ Iα ×Mα|i ∈ Iα & α ∈ Y }.
By Lemma 2.2(iii), we can deduce that E(S) is a left regular band. Now we form the set
I =

⋃
α∈Y Iα and M =

⋃
α∈Y Mα.

In order to show that S is isomorphic to a generalized left ∆-product I∆Y,ΦM , we have
to do by the following steps:

(1) We will point out that I forms a left regular band. For this purpose, it suffices to show
that I is isomorphic to E(S) which is the set of all idempotent of S. Hence, we consider the
mapping η : E(S) → I by (i, 1α) 7→ i for any i ∈ Iα.

It is easy to see that η is a bijection. If a multiplication on I given by ji = k for i ∈ Iα, j ∈ Iβ

if and only if
(j, 1β)(i, 1α) = (k, 1βα), (2)

then the set I =
⋃

α∈Y Iα under the above multiplication forms a semigroup isomorphic to
E(S), that is, I is a left regular band.

(2) We can also claim that M is a strong semilattice of cancellative monoid Mα. To see
this, we suppose that (i, g) ∈ Sα, (j, 1β) ∈ Sβ

⋂
E(S) for any α, β ∈ Y with α > β. Let

(j, 1β)(i, g) = (k, f) ∈ Sβ . Since (j, 1β)(i, g) = (j, 1β)[(j, 1β)(i, g)] = (j, 1β)(k, f) ∈ Sβ , it
follows that

(j, 1β)(i, g) = (j, f) ∈ Sβ .

Moreover, since E is a left regular band, we know that for any l ∈ Iα

(j, 1β)(l, g) = (j, 1β)(l, 1α)(i, g)

= (j, 1β)[(l, 1α)(j, 1β)](i, g) = (j, 1β)(i, g).

This implies that the choice of f is independent of i. Consequently, define θα,β : Mα → Mβ by
g 7→ gθα,β if and only if

(j, 1β)(i, g) = (j, gθα,β). (3)

Clearly, the mapping θα,β is well defined and θα,α is the identity mapping on Mα. For any
(i, g), (l, f) ∈ Sα, we have

(j, 1β)[(i, g)(l, f)] = (j, 1β)(i, gf) = (j, (gf)θα,β).
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and

[(j, 1β)(i, g)](l, f)

= (j, gθα,β)[(k, 1β)(l, f)]

= (j, gθα,β)(k, fθα,β)

= (j, gθα,βfθα,β).

Hence, (gf)θα,β = gθα,βfθα,β . This shows that θα,β is a homomorphism of semigroup.

If α, β, γ ∈ Y with α > β > γ and (i, g) ∈ Sα, then using (3), we have that

(k, 1γ)[(j, 1β)(i, g)] = (k, 1γ)(j, gθα,β) = (k, gθα,βθβ,γ)

and

[(k, 1γ)(j, 1β)](i, g) = (k, 1γ)(i, g) = (k, gθα,γ).

This implies that θα,βθβ,γ = θα,γ . Thus M = [Y ;Mα, θα,β ] is a strong semilattice of Mα.

(3) We now consider how to obtain the mapping Φα,β defined as in a generalized left ∆-
product I∆Y,ΦM of semigroups I and M . For this purpose, suppose that α, β ∈ Y with α > β.
Then for any (i, g) ∈ Sα = Iα ×Mα, (j, 1β) ∈ Sβ

⋂
E(S), let (i, g)(j, 1β) = (k, h) ∈ Sβ for some

k ∈ Iβ , h ∈ Mβ . By applying (2), we deduce that

(i, g)(j, 1β) = (k, 1β)(i, g)(j, 1β)

= (k, 1β)(j, 1β)(i, g)(j, 1β)

= (k, 1β)(k, gθα,β)(j, 1β)

= (k, gθα,β) ∈ Sβ .

Consequently, we have

(i, g)(j, 1β) = (k, gθα,β) ∈ Sβ . (4)

From this, we can define a mapping Φα,β : Sα −→ J ∗(Iβ) given by (i, g) 7→ ϕ
(i,g)
α,β such

that

(i, g)(j, 1β) = (ϕ(i,g)
α,β j, gθα,β). (5)

We will see that the conditions (C1) and (C2) in the generalized left ∆-product I∆Y,ΦM

of semigroups I and M are satisfied by the mapping Φα,β .

(i) It is a routine matter to verify that Φα,β satisfies the condition (C1).

(ii) To show that Φα,β satisfies the condition (C2)(i), we let (i, g) ∈ Sα, (j, f) ∈ Sβ for any
α, β ∈ Y . Clearly, there exists (k̄, ḡ) ∈ Sαβ such that (i, g)(j, f) = (k̄, ḡ). Hence, by applying
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(5), for any (k, 1αβ) ∈ Sαβ

⋂
E(S), we have

(i, g)(j, f)

= (i, g)(j, f)(k, 1αβ)

= (i, g)[(j, f)(k, 1αβ)]

= (i, g)(ϕ(j,f)
β,αβk, fθβ,αβ)

= (i, g)(ϕ(j,f)
β,αβk, 1αβ)(ϕ(j,f)

β,αβk, fθβ,αβ)

= (ϕ(i,g)
α,αβϕ

(j,f)
β,αβk, gθα,αβ)(ϕ(j,f)

β,αβk, fθβ,αβ)

= (ϕ(i,g)
α,αβϕ

(j,f)
β,αβk, gθα,αβfθβ,αβ).

Hence, k̄ = ϕ
(i,g)
α,αβϕ

(j,f)
β,αβk. This implies that ϕ

(i,g)
α,αβϕ

(j,f)
β,αβ is a constant value mapping on Iαβ .

Consequently, condition (C2) (i) is satisfied.
By using (5) and by the associativity of semigroup, we may show that Φα,β satisfies con-

dition (C2) (ii).
To see that Φα,β satisfies condition (C2) (iii), notice that S is a super abundant semigroup.

Thus, for any a ∈ S there exist a unique idempotent e such that aL∗e and aR∗e. By applying
Lemma 2.1 (2), we can easily check that Φα,β satisfies the condition (C2) (iii).

(4) It remains to show that the super R∗-unipotent semigroup S is isomorphic to I∆Y,ΦM .
To do this, it suffices to show that the multiplication on S is the same as the multiplication on
I∆Y,ΦM .

Suppose that (i, g) ∈ Sα, (j, f) ∈ Sβ and α, β ∈ Y . It is easy to see that (i, g)(j, f) ∈ Sαβ .

Hence, for any (k, 1αβ) ∈ Sαβ

⋂
E(S), by using (5), we have

(i, g)(j, f)

= (i, g)(j, f)(k, 1αβ)

= (i, g)[(j, f)(k, 1αβ)]

= (i, g)(ϕ(j,f)
β,αβk, fθβ,αβ)

= (i, g)(ϕ(j,f)
β,αβk, 1αβ)(ϕ(j,f)

β,αβk, fθβ,αβ)

= (ϕ(i,g)
α,αβϕ

(j,f)
β,αβk, gθα,αβ)(ϕ(j,f)

β,αβk, fθβ,αβ)

= (ϕ(i,g)
α,αβϕ

(j,f)
β,αβk, gθα,αβfθβ,αβ)

= (〈ϕ(i,g)
α,αβϕ

(j,f)
β,αβ〉, gf)

= (i, g) ◦ (j, f).

This shows that the multiplication on S coincides with the multiplication on the generalized
left ∆-product I∆Y,ΦM . Hence, S ' I∆Y,ΦM . The proof is completed.
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§1. Introduction and Results

For any positive integer n, the famous Smarandache ceil function Sk(n) is defined by

Sk(n) = min{m ∈ N : n | mk}.

For example, if k = 3, we have the sequence {S3(n)} (n = 1, 2, 3, · · · ) as following: S3(1) =
1, S3(2) = 2, S3(3) = 3, S3(4) = 2, S3(5) = 5, S3(6) = 6, S3(7) = 7, S3(8) = 2, · · · . This
arithmetic function is a multiplicative function, and has many interesting properties, so it had
been studied by many people. For example, Li Jie [1] studied the asymptotic properties of this
function, and obtained an interesting asymptotic formula. That is, for any positive integer k,
then:

Ω(Sk(n!)) =
n

k
(ln lnn + C) + O

( n

lnn

)
,

where C is a computable constant.
Similarly, many scholars studied another Smarandache-type function Cm(n), which is de-

fined as:
Cm(n) = max{x ∈ N : xm | n}.

About this function, Liu Huaning [2] proved that for any integer m ≥ 3 and real number
x ≥ 1, we have ∑

n≤x

Cm(n) =
ζ(m− 1)

ζ(m)
x + O(x

1
2+ε).

Guo Jinbao [3] also studied the properties of Cm(n), and proved the following conclusion:
let d(n) denotes the divisor function, then for any real number x ≥ 1 and any fixed positive
integer m ≥ 2, we have ∑

n≤x

d(Cm(n)) = ζ(m)x + O(x
1
2+ε).
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In this paper, we introduce another Smarandache-type function Dm(n), which denotes the
m-th power free part of n. That is, for any positive integer n and m ≥ 2, we define

Dm(n) = min{n/dm : dm|n, d ∈ N}.

For example, D3(8) = 1, D3(24) = 3, D2(12) = 3, · · · .

If n = pα1
1 pα2

2 · · · pαs
s denotes the prime powers decomposition of n, then we have:

Dm(n) = pα1
1 pα2

2 · · · pαs
s , αi ≤ m− 1, i = 1, 2, · · · , s.

The properties of this function has been studied by many authors, for example, Liu Yanni
[4] obtained an interesting asymptotic formula for it. That is, let p be a prime, k be any fixed
positive integer. Then for any real number x ≥ 1, we have the asymptotic formula

∑

n≤x

ep(Dm(n)) =
(

pm − p

(pm − 1)(p− 1)
− m− 1

pm − 1

)
x + O(x

1
2+ε),

where ε denotes any fixed positive number.
In reference [5], Li Zhanhu has also studied the asymptotic properties of Dm(n), and proved

the following conclusion:

∑

n≤x
n∈Ak

Dm(n) =
1

ζ(k)
m

m + 1
x

m+1
m + O(x),

where x ≥ 1 is a real number, ζ(k) is the Riemann zeta-function, and Ak denotes the set of all
k-power free numbers.

On the other hand, Le Maohua [6] studied the solutions of an equation involving the
Smarandache-type multiplicative function SSC(n), where SSC(n) denotes the Smarandache
square complementary function of n. And he obtained all solutions of the equation

SSC(n)r + SSC(n)r−1 + · · ·+ SSC(n) = n, r > 1

as follows:
(i) (n, r) = (363, 5);
(ii) (n, r) = (ab2, 2), where a and b are co-prime positive integers satisfying a > 1, b >

1, a = b2 − 1 and a is a square free number.
The main purpose of this paper is using the elementary methods to determine the solutions

of an equation involving the Smarandache-type function Dm(n), and give its all positive integer
solutions. That is, we shall prove the following:

Theorem. For any fixed positive integer m ≥ 2 and nonnegative integer t, the equation

Dt+r
m (n) + Dt+r−1

m (n) + · · ·+ Dt+1
m (n) = n, r > 1 (1)

has positive integer solutions (n, r), and all its positive integer solutions (n, r) are given by the
following three cases:

(i) (n, r) = (bm, bm), where b is any positive integer;
(ii) (n, r) = (7t+1 · 400, 4), (3t+1 · 121, 5), (18t+1 · 343, 3), where t ≡ 0( mod m);
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(iii) (n, 2) = (at+1(a + 1), 2), where a is a m-power free number, and t ≡ 0( mod m).
Especially, if we take t = 0 on the above, then we can get the following:
Corollary. For any fixed positive integer m ≥ 2, the equation

Dr
m(n) + Dr−1

m (n) + · · ·+ Dm(n) = n, r > 1 (2)

has following positive integer solutions:
(i) (n, r) = (bm, bm), where b is any positive integer;
(ii) (n, r) = (2800, 4), (363, 5), (6174, 3);
(iii) (n, 2) = (a(a + 1), 2), where a is a m-power free number.

§2. Proof of the theorem

The proof of our Theorem depends on the following Lemma.
Lemma. The equation

xr − 1
x− 1

= yq, x > 1, y > 1, r > 2, q > 1

has only the following three positive integer solutions (x, y, r, q) = (7, 20, 4, 2), (3, 11, 5, 2), (18, 7, 3, 3).(See
[7])

Now we use this Lemma to complete the proof of our Theorem. Let n = umv, where v is a
m-power free number. According to the definition of Dm(n), we have Dm(n) = v. Then from
the equation (1) we have

vt+r + vt+r−1 + · · ·+ vt+1 = umv

or

vt(vr−1 + vr−2 + · · ·+ 1) = um, r > 1. (3)

If v = 1, we have r = um, let b = u, then (n, r) = (bm, bm).
If v 6= 1, when t = 0, the equation (3) becomes

vr − 1
v − 1

= um, r > 1. (4)

By Lemma, if r > 2, we can immediately get (v, u, r,m) = (7, 20, 4, 2), (3, 11, 5, 2),
(18, 7, 3, 3).

So (n, r) = (2800, 4), (363, 5), (6174, 3).
If r = 2, from (4) we have v + 1 = um. Let a = v, we can get (n, 2) = (a(a + 1), 2), where

a is a m-power free number.
Therefore the corollary is proved.
When t > 0, we may let u = u1u2, where u1, u2 are positive integers.
In the equation (3), because (v, vr+1 + · · ·+ 1) = 1, so we can obtain

vt = um
1 , (5)
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vr−1 + · · ·+ 1 = um
2 . (6)

In expression (6), by Lemma, if r > 2, we have (v, u2, r,m) = (7, 20, 4, 2), (3, 11, 5, 2),
(18, 7, 3, 3).

So (n, r) = (7t+1 · 400, 4), (3t+1 · 121, 5), (18t+1 · 343, 3).
If r = 2, we have

vt = um
1 , v + 1 = um

2 .

Let a = v, we can get (n, 2) = (at+1(a + 1), 2), where a is a m-power free number.
In expression (5), because u1 is an integer, and v is a m-power free number. Therefore,

t ≡ 0( mod m).
This completes the proof of Theorem.
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§1. Introduction and Results

Let k be a fixed positive integer, for any positive integer n, we define the arithmetical
function δk(n) as following:

δk(n) = max{d : d | n, (d, k) = 1}.

For example, δ2(1) = 1, δ2(2) = 1, δ2(3) = 1, δ2(4) = 1, δ3(6) = 2, · · · . About the
elementary properties of this function, many scholars have studied it, and got some useful
results. For example, Xu Zhefeng [1] studied the divisibility of δk(n) by ϕ(n), and proved that
ϕ(n) | δk(n) if and only if n = 2α3β , where α > 0, β ≥ 0, α, β ∈ N . In [2], Liu Yanni and Gao
Peng studied the mean value properties of δk(bm(n)), and obtained an interesting mean value
formula for it. That is, they obtained the following conclusion:

Let k and m are two fixed positive integers. Then for any real number x ≥ 1, we have the
asymptotic formula

∑

n≤x

δk(bm(n)) =
x2

2
ζ(2m)
ζ(m)

∏

p|k

pm + 1
pm−1(p + 1)

+ O(x
3
2+ε),

where ε denotes any fixed positive number, ζ(s) is the Riemann zeta-function, and
∏

p|k
denotes

the product over all different prime divisors of k.
In this paper, we will use the elementary methods to study the existence of the solutions

of the equation
n∑

i=1

δk(i) = δk

(
n(n + 1)

2

)
,

and get some interesting results. It is clearly that n = 1 is a solution of this equation. But
except n = 1, are there any other solutions? In this paper, we solved this problem, and obtained
all its positive solutions. That is, we shall prove the following:

Theorem 1. If k = 2α (α = 1, 2, 3, · · · ), then the equation has only one solution n = 1.
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Theorem 2. If k = pα (p is an odd prime, α = 1, 2, 3, · · · ), then the equation has p− 2
positive integer solutions, they are n = 1, 2, 3, · · · , p− 2.

§2. Some useful lemmas

To complete the proofs of the theorems, we need the following lemmas.
Lemma 1. If n = 4m or n = 4m + 3 (m = 1, 2, · · · ), then we have

n∑

i=1

δ2(i) > δ2

(
n(n + 1)

2

)
.

Proof. From the definition of the arithmetic function δk(n), we have the following:
(1) If n = 4m, then

4m∑

i=1

δ2(i) ≥
∑

l≤4m

2-l

l +
∑

l≤4m

2|l

1 =
2m((4m− 1) + 1)

2
+ 2m = 4m2 + 2m,

but

δ2

(
4m(4m + 1)

2

)
≤ m(4m + 1) = 4m2 + m < 4m2 + 2m,

therefore
4m∑

i=1

δ2(i) > δ2

(
4m(4m + 1)

2

)
.

(2) If n = 4m + 3, then

4m+3∑

i=1

δ2(i) ≥
∑

l≤4m+3

2-l

l +
∑

l≤4m+3

2|l

1 =
(2m + 1)((4m + 3) + 1)

2
+ 2m + 1 = 4m2 + 8m + 3,

but

δ2

(
(4m + 3)(4m + 3 + 1)

2

)
≤ (4m + 3)(m + 1) = 4m2 + 7m + 3 < 4m2 + 8m + 3,

therefore
4m+3∑

i=1

δ2(i) > δ2

(
(4m + 3)(4m + 3 + 1)

2

)
.

Combining (1) and (2), the proof of Lemma 1 is completed.
Lemma 2. For k = p (an odd prime), we have

n∑

i=1

δk(i) > δk

(
n(n + 1)

2

)
,

if n = tp or n = tp− 1 (t = 1, 2, · · · ).
Proof. (3) If n = tp, then we have

tp∑

i=1

δk(i) >
∑

l≤tp

(l,p)=1

l =
∑

l≤tp

l −
∑

l≤tp

p|l

l =
tp(tp + 1)

2
− tp(t + 1)

2
=

t2p2 − t2p

2
,
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but

δk

(
tp(tp + 1)

2

)
≤ t(tp + 1)

2
<

t2p2 − t2p

2
.

(4) If n = tp− 1, then we have

tp−1∑

i=1

δk(i) >
∑

l≤tp−1

(l,p)=1

l =
∑

l≤tp−1

l −
∑

l≤tp−1

p|l

l =
tp(tp− 1)

2
− tp(t− 1)

2
=

t2p2 − t2p

2
,

but

δk

(
tp(tp− 1)

2

)
≤ t(tp− 1)

2
<

t2p2 − t2p

2
.

Therefore, Lemma 2 follows from (3) and (4).

§3. Proof of the theorems

In this section, we will use the elementary methods to complete the proof of the theorems.
Note that for any prime p and positive integer n, we have (n, p) = (n, pα)(α = 1, 2, · · · ), then
δp(n) = δpα(n), so the equation

n∑

i=1

δpα(i) = δpα

(
n(n + 1)

2

)

is equivalent to
n∑

i=1

δp(i) = δp

(
n(n + 1)

2

)
.

Therefore, we just need to prove the case k = p. Now we prove Theorem 1. First, we separate
all positive integers into two cases:

(i) If n ≤ 3, then from the definition of the function δk(n) we have

δ2(1) = 1, δ2(2) = 1, δ2(3) = 1.

It is clear that n = 1 is a solution of this equation.
(ii) If n > 3, then for any positive integer m (m = 1, 2, · · · ), we have the following:

(a) If n = 4m + 1 or n = 4m + 2, it is obviously true that

δ2

(
n(n + 1)

2

)
=

n(n + 1)
2

.

Note that in the sum
n∑

i=1

δ2(i), there are at least one term such that δ2(i) < i ( for example:

δ2(4m) ≤ m < 4m). Therefore, we have

n∑

i=1

δ2(i) <
n∑

i=1

i =
n(n + 1)

2
.
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That is,
n∑

i=1

δ2(i) < δ2

(
n(n + 1)

2

)
.

(b) If n = 4m or n = 4m + 3, then from Lemma 1 we have
n∑

i=1

δ2(i) > δ2

(
n(n + 1)

2

)
.

That is to say, the equation has no solution in this case.
From the former discussing we know that the equation has only one positive solution n = 1.

This completes the proof of Theorem 1.
Now we come to prove Theorem 2. Using the same methods of proving Theorem 1 we have

the following:
(iii) If n ≤ p− 2, then for 1 ≤ i ≤ n ≤ p− 2, we have (i, p) = 1, δk(i) = i. Therefore,

n∑

i=1

δk(i) = 1 + 2 + · · ·+ n =
n(n + 1)

2
.

Next we prove that δk

(
n(n + 1)

2

)
=

n(n + 1)
2

.

In fact, because (n, n + 1) = 1 and n ≤ p − 2, so (n, p) = 1. When n ≤ p − 2, we have

n + 1 ≤ p− 1. If n + 1 = p− 1, then (
n + 1

2
, p) = 1; If n + 1 < p− 1, then (n + 1, p) = 1. So, if

n ≤ p− 2, then we have (
n(n + 1)

2
, p) = 1, δk

(
n(n + 1)

2

)
=

n(n + 1)
2

.

Therefore, for every positive integer n ≤ p− 2, we have
n∑

i=1

δk(i) = δk

(
n(n + 1)

2

)
.

That is, n = 1, 2, · · · , p− 2 are the positive integer solutions of the equation.
(iv) If n > p− 2, then for any positive integer t(t = 1, 2, · · · ), we have the following:

(c) If n = tp + r (1 ≤ r ≤ p− 2 is a positive integer), then we have

δk

(
n(n + 1)

2

)
=

n(n + 1)
2

.

Note that in the sum
n∑

i=1

δk(i), there are at least one term satisfying δk(i) < i ( for example:

δk(tp) ≤ t < tp), so we have
n∑

i=1

δk(i) <
n∑

i=1

i =
n(n + 1)

2
.

Therefore,
n∑

i=1

δk(i) < δk

(
n(n + 1)

2

)
.

(d) If n = tp or n = tp− 1, then by Lemma 2 we have
n∑

i=1

δk(i) > δk

(
n(n + 1)

2

)
.
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Combining (c) and (d) we know that the equation has no solution if n > p− 2.
Now, by (iii) and (iv), we know that the equation has p− 2 positive integer solutions, they

are n = 1, 2, · · · , p− 2. This completes the proof of Theorem 2.
Open Problem. If k = pα1

1 pα2
2 pα3

3 · · · pαs
s (αi = 1, 2, 3, · · · , i = 1, 2, · · · , s), let

p = min{p1, p2, · · · , ps}, then it is obviously true that n = 1, 2, 3, · · · , p− 2 are the positive
integer solutions of the equation, if p is an odd prime; It has one positive integer solution n = 1,
if p = 2. Whether there exists any other solutions for the equation is an open problem.
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1. Introduction

Generally, in any human field, a Smarandache structure on a set A means a weak struc-
ture W on A such that there exists a proper subset B of A which is embedded with a strong
structure S. In [5], W.B.Vasantha Kandasamy studied the concept of Smarandache groupoids,
sub-groupoids, ideal of groupoids, semi-normal subgroupoids, Smarandache Bol groupoids and
strong Bol groupoids and obtained many interesting results about them. Smarandache semi-
groups are very important for the study of congruences, and it was studied by R.Padilla [4].
It will be very interesting to study the Smarandache structure in BCK/BCI-algebras. In [1],
Y.B.Jun discussed the Smarandache structure in BCI-algebras. He introduced the notion of
Smarandache (positive implicative, commutative, implicative) BCI-algebras, Smarandache sub-
algebras and Smarandache ideals, and investigated some related properties. Also, he stud-
ied Smarandache ideal structures in Smarandache BCI-algebras. He introduced the notion of
Smarandache fresh ideals and Smarandache clean ideals in Smarandache BCI-algebras, and
investigated its useful properties. He gave relations between Q-Smarandache fresh ideals and
Q-Smarandache clean ideals, and established extension properties for Q-Smarandache fresh
ideals and Q-Smarandache clean ideals (see [2]). In this paper, we introduce the notion of
Q-Smarandache fantastic ideals, and investigate its properties. We give relations among Q-
Smarandache fresh ideals, Q-Smarandache clean ideals and Q-Smarandache fantastic ideals.
We also provide a characterization of a Q-Smarandache fantastic ideal. We finally establish the
extension property for Q-Smarandache fantastic ideals.
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2. Preliminaries

An algebra (X; ∗, 0) of type (2, 0) is called a BCI-algebra if it satisfies the following condi-
tions:

(a1) (∀x, y, z ∈ X) (((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0),

(a2) (∀x, y ∈ X) ((x ∗ (x ∗ y)) ∗ y = 0),

(a3) (∀x ∈ X) (x ∗ x = 0),

(a4) (∀x, y ∈ X) (x ∗ y = 0, y ∗ x = 0 ⇒ x = y).

If a BCI-algebra X satisfies the following identity:

(a5) (∀x ∈ X) (0 ∗ x = 0),

then X is called a BCK-algebra. We can define a partial order ≤ on X by x ≤ y ⇐⇒ x∗y = 0.

Every BCI-algebra X has the following properties:

(b1) (∀x ∈ X) (x ∗ 0 = x).

(b2) (∀x, y, z ∈ X) ((x ∗ y) ∗ z = (x ∗ z) ∗ y).

(b3) (∀x, y, z ∈ X) (x ≤ y ⇒ x ∗ z ≤ y ∗ z, z ∗ y ≤ z ∗ x).

(b4) (∀x, y ∈ X) (x ∗ (x ∗ (x ∗ y)) = x ∗ y).

A Smrandache BCI-algebra [1] is defined to be a BCI-algebra X in which there exists a
proper subset Q of X such that

(s1) 0 ∈ Q and |Q| ≥ 2,

(s2) Q is a BCK-algebra under the operation of X.

3. Smarandache Fantastic Ideals

In what follows, let X and Q denote a Smarandache BCI-algebra and a BCK-algebra which
is properly contained in X, respectively.

Definition 3.1. [1] A nonempty subset I of X is called a Smarandache ideal of X related
to Q (or briefly, Q-Smarandache ideal of X) if it satisfies:

(c1) 0 ∈ I,

(c2) (∀x ∈ Q) (∀y ∈ I) (x ∗ y ∈ I ⇒ x ∈ I).

If I is a ideal of X related to every BCK-algebra contained in X, we simply say that I is a
Smarandache ideal of X.

Definition 3.2. [2] A nonempty subset I of X is called a Smarandache fresh ideal of X

related to Q (or briefly, Q-Smarandache fresh ideal of X) if it satisfies the condition (c1) and
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(c3) (∀x, y, z ∈ Q) ((x ∗ y) ∗ z ∈ I, y ∗ z ∈ I ⇒ x ∗ z ∈ I).

Lemma 3.3. [2] If I is a Q-Smarandache fresh ideal of X, then

(i) (∀x, y ∈ Q) ((x ∗ y) ∗ y ∈ I ⇒ x ∗ y ∈ I).

(ii) (∀x, y, z ∈ Q) ((x ∗ y) ∗ z ∈ I ⇒ (x ∗ z) ∗ (y ∗ z) ∈ I).

Definition 3.4. [2] A nonempty subset I of X is called a Smarandache clean ideal of X

related to Q (or briefly, Q-Smarandache clean ideal of X) if it satisfies the condition (c1) and

(c4) (∀x, y ∈ Q) (∀z ∈ I) ((x ∗ (y ∗ x)) ∗ z ∈ I ⇒ x ∈ I).

Lemma 3.5. [2] Every Q-Smarandache clean ideal is a Q-Smarandache fresh ideal.
Lemma 3.6. Let I be a Q-Smarandache ideal of X. Then I is a Q-Smarandache clean

ideal of X ⇐⇒ I satisfies the following condition:

(∀x, y ∈ Q) (x ∗ (y ∗ x) ∈ I ⇒ x ∈ I). (1)

Proof. Suppose that I satisfies the condition (1) and suppose that (x ∗ (y ∗ x)) ∗ z ∈ I for
all x, y ∈ Q and z ∈ I. Then x ∗ (y ∗ x) ∈ I by (c2), and so x ∈ I by (1). Conversely assume
that I is a Q-Smarandache clean ideal of X and let x, y ∈ Q be such that x ∗ (y ∗ x) ∈ I. Since
0 ∈ I, it follows from (b1) that (x ∗ (y ∗ x)) ∗ 0 = x ∗ (y ∗ x) ∈ I so from (c4) that x ∈ I. This
completes the proof.

Definition 3.7. A nonempty subset I of X is called a Smarandache fantastic ideal of X

related to Q (or briefly, Q-Smarandache fantastic ideal of X) if it satisfies the condition (c1)
and

(c5) (∀x, y ∈ Q) (∀z ∈ I) ((x ∗ y) ∗ z ∈ I ⇒ x ∗ (y ∗ (y ∗ x)) ∈ I).

Example 3.8. Let X = {0, 1, 2, 3, 4, 5} be a set with the following Cayley table:

∗ 0 1 2 3 4 5

0 0 0 0 0 0 5

1 1 0 1 0 1 5

2 2 2 0 2 0 5

3 3 1 3 0 3 5

4 4 4 4 4 0 5

5 5 5 5 5 5 0

Table 3.1

Then (X; ∗, 0) is a Smarandache BCI-algebra. Note that Q = {0, 1, 2, 3, 4} is a BCK-algebra
which is properly contained in X. It is easily checked that subsets I1 = {0, 2} and I2 = {0, 2, 4}
are Q-Smarandache fantastic ideals of X, but not Q-Smarandache fresh ideals. A subset I3 =
{0, 1, 3} is a Q-Smarandache fresh ideal, but not a Q-Smarandache fantastic ideal since (2∗4)∗
3 = 0 ∈ I3 and 2 ∗ (4 ∗ (4 ∗ 2)) = 2 /∈ I3.
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The example above suggests that a Q-Smarandache fantastic ideal need not be a Q-
Smarandache fresh ideal, and a Q-Smarandache fresh ideal may not be a Q-Smarandache
fantastic ideal.

Theorem 3.9. Let Q1 and Q2 be BCK-algebras which are properly contained in X such
that Q1 ⊂ Q2. Then every Q2-Smarandache fantastic ideal is a Q1-Smarandache fantastic ideal
of X.

Proof. Straightforward.
The converse of Theorem 3.9 is not true in general as seen in the following example.
Example 3.10. Consider the Smarandache BCI-algebra X described in Example 3.8. Note

that Q1 := {0, 2, 4} and Q2 := {0, 1, 2, 3, 4} are BCK-algebras which are properly contained
in X and Q1 ⊂ Q2. Then I := {0, 1, 3} is a Q1-Smarandache fantastic ideal, but not a Q2-
Smarandache fantastic ideal of X.

Theorem 3.11. Every Q-Smarandache fantastic ideal is a Q-Smarandache ideal.
Proof. Let I be a Q-Smarandache fantastic ideal of X and assume that x ∗ z ∈ I for all

x ∈ Q and z ∈ I. Using (b1), we get (x∗0)∗z = x∗z ∈ I. Since x ∈ Q and Q is a BCK-algebra,
it follows from (a5), (b1) and (c5) that x = x ∗ (0 ∗ (0 ∗ x)) ∈ I so that I is a Q-Smarandache
ideal of X.

As seen in Example 3.8, the converse of Theorem 3.11 is not true in general.
Theorem 3.12. Let I be a Q-Smarandache ideal of X. Then I is a Q-Smarandache

fantastic ideal of X ⇐⇒ it satisfies the following implication:

(∀x, y ∈ Q) (x ∗ y ∈ I ⇒ x ∗ (y ∗ (y ∗ x)) ∈ I). (2)

Proof. Assume that I is a Q-Smarandache fantastic ideal of X and let x, y ∈ Q be such
that x ∗ y ∈ I. Using (b1), we have (x ∗ y) ∗ 0 = x ∗ y ∈ I and 0 ∈ I. It follows from (c5)
that x ∗ (y ∗ (y ∗ x)) ∈ I. Conversely suppose that I satisfies the condition (2). Assume that
(x ∗ y) ∗ z ∈ I for all x, y ∈ Q and z ∈ I. Then x ∗ y ∈ I by (c2), and hence x ∗ (y ∗ (y ∗ x)) ∈ I

by (2). This completes the proof.
Theorem 3.13. Let I be a nonempty subset of X. Then I is a Q-Smarandache clean ideal

of X ⇐⇒ I is both a Q-Smarandache fresh ideal and a Q-Smarandache fantastic ideal of X.
Proof. Assume that I is a Q-Smarandache clean ideal of X. Then I is a Q-Smarandache

fresh ideal of X (see Lemma 3.5). Suppose that x ∗ y ∈ I for all x, y ∈ Q. Since Q is a
BCK-algebra, we have

(x ∗ (y ∗ (y ∗ x))) ∗ x = (x ∗ x) ∗ (y ∗ (y ∗ x)) = 0 ∗ (y ∗ (y ∗ x)) = 0,

and so (y ∗ x) ∗ (y ∗ (x ∗ (y ∗ (y ∗ x)))) = 0, that is, y ∗ x ≤ y ∗ (x ∗ (y ∗ (y ∗ x))). It follows from
(b3), (b2) and (a1) that

(x ∗ (y ∗ (y ∗ x))) ∗ (y ∗ (x ∗ (y ∗ (y ∗ x))))

≤ (x ∗ (y ∗ (y ∗ x))) ∗ (y ∗ x)

= (x ∗ (y ∗ x)) ∗ (y ∗ (y ∗ x)) ≤ x ∗ y,

that is, ((x∗ (y ∗ (y ∗x)))∗ (y ∗ (x∗ (y ∗ (y ∗x)))))∗ (x∗y) = 0 ∈ I. Since x∗y ∈ I, it follows from
(c2) that (x∗(y ∗(y ∗x)))∗(y ∗(x∗(y ∗(y ∗x)))) ∈ I, so from Lemma 3.6 that x∗(y ∗(y ∗x)) ∈ I.
Using Theorem 3.12, we know that I is a Q-Smarandache fantastic ideal of X.
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Conversely, suppose that I is both a Q-Smarandache fresh ideal and a Q-Smarandache
fantastic ideal of X. Let x, y ∈ Q be such that x ∗ (y ∗ x) ∈ I. Since

((y ∗ (y ∗ x)) ∗ (y ∗ x)) ∗ (x ∗ (y ∗ x)) = 0 ∈ I,

we get (y ∗ (y ∗ x)) ∗ (y ∗ x) ∈ I by (c2). Since I is a Q-Smarandache fresh ideal, it follows from
Lemma 3.3(i) that y ∗ (y ∗ x) ∈ I so from (c2) that x ∗ y ∈ I since (x ∗ y) ∗ (y ∗ (y ∗ x)) = 0 ∈ I.
Since I is a Q-Smarandache fantastic ideal, we obtain x ∗ (y ∗ (y ∗ x)) ∈ I by (2), and so x ∈ I

by (c2). Therefore I is a Q-Smarandache clean ideal of X by Lemma 3.6.
Theorem 3.14. (Extension Property) Let I and J be Q-Smarandache ideals of X and

I ⊂ J ⊂ Q. If I is a Q-Smarandache fantastic ideal of X, then so is J .
Proof. Assume that x ∗ y ∈ J for all x, y ∈ Q. Since

(x ∗ (x ∗ y)) ∗ y = (x ∗ y) ∗ (x ∗ y) = 0 ∈ I,

it follows from (b2) and (2) that

(x ∗ (y ∗ (y ∗ (x ∗ (x ∗ y))))) ∗ (x ∗ y) = (x ∗ (x ∗ y)) ∗ (y ∗ (y ∗ (x ∗ (x ∗ y)))) ∈ I ⊂ J,

so from (c2) that x ∗ (y ∗ (y ∗ (x ∗ (x ∗ y)))) ∈ J . Since x, y ∈ Q and Q is a BCK-algebra, we
get (x ∗ (y ∗ (y ∗ x))) ∗ (x ∗ (y ∗ (y ∗ (x ∗ (x ∗ y))))) = 0 ∈ J, by using (a1) repeatedly. Since J

is a Q-Smarandache ideal, we conclude that x ∗ (y ∗ (y ∗ x)) ∈ J . Hence J is a Q-Smarandache
fantastic ideal of X by Theorem 3.12.
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Abstract A Smarandache quasigroup(loop) is shown to be universal if all its f, g-principal iso-

topes are Smarandache f, g-principal isotopes. Also, weak Smarandache loops of Bol-Moufang

type such as Smarandache: left(right) Bol, Moufang and extra loops are shown to be univer-

sal if all their f, g-principal isotopes are Smarandache f, g-principal isotopes. Conversely, it

is shown that if these weak Smarandache loops of Bol-Moufang type are universal, then some

autotopisms are true in the weak Smarandache sub-loops of the weak Smarandache loops

of Bol-Moufang type relative to some Smarandache elements. Futhermore, a Smarandache

left(right) inverse property loop in which all its f, g-principal isotopes are Smarandache f, g-

principal isotopes is shown to be universal if and only if it is a Smarandache left(right) Bol

loop in which all its f, g-principal isotopes are Smarandache f, g-principal isotopes. Also, it is

established that a Smarandache inverse property loop in which all its f, g-principal isotopes

are Smarandache f, g-principal isotopes is universal if and only if it is a Smarandache Moufang

loop in which all its f, g-principal isotopes are Smarandache f, g-principal isotopes. Hence,

some of the autotopisms earlier mentioned are found to be true in the Smarandache sub-loops

of universal Smarandache: left(right) inverse property loops and inverse property loops.

Keywords Smarandache quasigroups, Smarandache loops, universality, f, g-principal

isotopes

1. Introduction

W. B. Vasantha Kandasamy initiated the study of Smarandache loops (S-loop) in 2002.
In her book [27], she defined a Smarandache loop (S-loop) as a loop with at least a subloop
which forms a subgroup under the binary operation of the loop called a Smarandache subloop
(S-subloop). In [11], the present author defined a Smarandache quasigroup (S-quasigroup) to
be a quasigroup with at least a non-trivial associative subquasigroup called a Smarandache
subquasigroup (S-subquasigroup). Examples of Smarandache quasigroups are given in Muk-
tibodh [21]. For more on quasigroups, loops and their properties, readers should check [24],
[2],[4], [5], [8] and [27]. In her (W.B. Vasantha Kandasamy) first paper [28], she introduced
Smarandache : left(right) alternative loops, Bol loops, Moufang loops, and Bruck loops. But
in [10], the present author introduced Smarandache : inverse property loops (IPL), weak in-
verse property loops (WIPL), G-loops, conjugacy closed loops (CC-loop), central loops, extra

1On Doctorate Programme at the University of Abeokuta, Abeokuta, Nigeria.
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loops, A-loops, K-loops, Bruck loops, Kikkawa loops, Burn loops and homogeneous loops. The
isotopic invariance of types and varieties of quasigroups and loops described by one or more
equivalent identities, especially those that fall in the class of Bol-Moufang type loops as first
named by Fenyves [7] and [6] in the 1960s and later on in this 21st century by Phillips and
Vojtěchovský [25], [26] and [18] have been of interest to researchers in loop theory in the recent
past. For example, loops such as Bol loops, Moufang loops, central loops and extra loops are
the most popular loops of Bol-Moufang type whose isotopic invariance have been considered.
Their identities relative to quasigroups and loops have also been investigated by Kunen [20]
and [19]. A loop is said to be universal relative to a property P if it is isotopic invariant
relative to P, hence such a loop is called a universal P loop. This language is well used in
[22]. The universality of most loops of Bol-Moufang types have been studied as summarised in
[24]. Left(Right) Bol loops, Moufang loops, and extra loops have all been found to be isotopic
invariant. But some types of central loops were shown to be universal in Jáıyéo. lá [13] and [12]
under some conditions. Some other types of loops such as A-loops, weak inverse property loops
and cross inverse property loops (CIPL) have been found be universal under some neccessary
and sufficient conditions in [3], [23] and [1] respectively. Recently, Michael Kinyon et. al. [16],
[14], [15] solved the Belousov problem concerning the universality of F-quasigroups which has
been open since 1967 by showing that all the isotopes of F-quasigroups are Moufang loops.

In this work, the universality of the Smarandache concept in loops is investigated. That is,
will all isotopes of an S-loop be an S-loop? The answer to this could be ‘yes’ since every isotope
of a group is a group (groups are G-loops). Also, the universality of weak Smarandache loops,
such as Smarandache Bol loops (SBL), Smarandache Moufang loops (SML) and Smarandache
extra loops (SEL) will also be investigated despite the fact that it could be expected to be true
since Bol loops, Moufang loops and extra loops are universal. The universality of a Smarandache
inverse property loop (SIPL) will also be considered.

2. Preliminaries

Definition 2.1. A loop is called a Smarandache left inverse property loop (SLIPL) if it
has at least a non-trivial subloop with the LIP.

A loop is called a Smarandache right inverse property loop (SRIPL) if it has at least a
non-trivial subloop with the RIP.

A loop is called a Smarandache inverse property loop (SIPL) if it has at least a non-trivial
subloop with the IP.

A loop is called a Smarandache right Bol-loop (SRBL) if it has at least a non-trivial subloop
that is a right Bol(RB)-loop.

A loop is called a Smarandache left Bol-loop (SLBL) if it has at least a non-trivial subloop
that is a left Bol(LB)-loop.

A loop is called a Smarandache central-loop (SCL) if it has at least a non-trivial subloop
that is a central-loop.

A loop is called a Smarandache extra-loop (SEL) if it has at least a non-trivial subloop
that is a extra-loop.
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A loop is called a Smarandache A-loop (SAL) if it has at least a non-trivial subloop that
is a A-loop.

A loop is called a Smarandache Moufang-loop (SML) if it has at least a non-trivial subloop
that is a Moufang-loop.

Definition 2.2. Let (G,⊕) and (H,⊗) be two distinct quasigroups. The triple (A,B, C)
such that A,B, C : (G,⊕) → (H,⊗) are bijections is said to be an isotopism if and only if

xA⊗ yB = (x⊕ y)C ∀ x, y ∈ G.

Thus, H is called an isotope of G and they are said to be isotopic. If C = I, then the triple
is called a principal isotopism and (H,⊗) = (G,⊗) is called a principal isotope of (G,⊕). If in
addition, A = Rg, B = Lf , then the triple is called an f, g-principal isotopism, thus (G,⊗) is
reffered to as the f, g-principal isotope of (G,⊕).

A subloop(subquasigroup) (S,⊗) of a loop(quasigroup) (G,⊗) is called a Smarandache
f, g-principal isotope of the subloop(subquasigroup) (S,⊕) of a loop(quasigroup) (G,⊕) if for
some f, g ∈ S,

xRg ⊗ yLf = (x⊕ y) ∀ x, y ∈ S.

On the other hand (G,⊗) is called a Smarandache f, g-principal isotope of (G,⊕) if for some
f, g ∈ S,

xRg ⊗ yLf = (x⊕ y) ∀ x, y ∈ G,

where (S,⊕) is a S-subquasigroup(S-subloop) of (G,⊕). In these cases, f and g are called
Smarandache elements(S-elements).

Theorem 2.1. [2] Let (G,⊕) and (H,⊗) be two distinct isotopic loops(quasigroups).
There exists an f, g-principal isotope (G, ◦) of (G,⊕) such that (H,⊗) ∼= (G, ◦).

Corollary 2.1. Let P be an isomorphic invariant property in loops(quasigroups). If
(G,⊕) is a loop(quasigroup) with the property P, then (G,⊕) is a universal loop(quasigroup)
relative to the property P if and only if every f, g-principal isotope (G, ◦) of (G,⊕) has the
property P.

Proof. If (G,⊕) is a universal loop relative to the property P then every distinct loop
isotope (H,⊗) of (G,⊕) has the property P. By Theorem 2.1, there exists a f, g-principal
isotope (G, ◦) of (G,⊕) such that (H,⊗) ∼= (G, ◦). Hence, since P is an isomorphic invariant
property, every (G, ◦) has it.

Conversely, if every f, g-principal isotope (G, ◦) of (G,⊕) has the property P and since
by Theorem 2.1, for each distinct isotope (H,⊗) there exists a f, g-principal isotope (G, ◦) of
(G,⊕) such that (H,⊗) ∼= (G, ◦), then all (H,⊗) has the property. Thus, (G,⊕) is a universal
loop relative to the property P.

Lemma 2.1. Let (G,⊕) be a loop(quasigroup) with a subloop(subquasigroup) (S,⊕).
If (G, ◦) is an arbitrary f, g-principal isotope of (G,⊕), then (S, ◦) is a subloop(subquasigroup)
of (G, ◦) if (S, ◦) is a Smarandache f, g-principal isotope of (S,⊕).

Proof. If (S, ◦) is a Smarandache f, g-principal isotope of (S,⊕), then for some f, g ∈ S,

xRg ◦ yLf = (x⊕ y) ∀ x, y ∈ S ⇒ x ◦ y = xR−1
g ⊕ yL−1

f ∈ S ∀ x, y ∈ S
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since f, g ∈ S. So, (S, ◦) is a subgroupoid of (G, ◦). (S, ◦) is a subquasigroup follows from the
fact that (S,⊕) is a subquasigroup. f ⊕ g is a two sided identity element in (S, ◦). Thus, (S, ◦)
is a subloop of (G, ◦).

3. Main Results

Universality of Smarandache Loops

Theorem 3.1. A Smarandache quasigroup is universal if all its f, g-principal isotopes
are Smarandache f, g-principal isotopes.

Proof. Let (G,⊕) be a Smarandache quasigroup with a S-subquasigroup (S,⊕). If (G, ◦)
is an arbitrary f, g-principal isotope of (G,⊕), then by Lemma 2.1, (S, ◦) is a subquasigroup of
(G, ◦) if (S, ◦) is a Smarandache f, g-principal isotope of (S,⊕). Let us choose all (S, ◦) in this
manner. So,

x ◦ y = xR−1
g ⊕ yL−1

f ∀ x, y ∈ S.

It shall now be shown that

(x ◦ y) ◦ z = x ◦ (y ◦ z) ∀ x, y, z ∈ S.

But in the quasigroup (G,⊕), xy will have preference over x⊕ y ∀ x, y ∈ G.

(x ◦ y) ◦ z = (xR−1
g ⊕ yL−1

f ) ◦ z = (xg−1 ⊕ f−1y) ◦ z = (xg−1 ⊕ f−1y)R−1
g ⊕ zL−1

f

= (xg−1 ⊕ f−1y)g−1 ⊕ f−1z = xg−1 ⊕ f−1yg−1 ⊕ f−1z.

x ◦ (y ◦ z) = x ◦ (yR−1
g ⊕ zL−1

f ) = x ◦ (yg−1 ⊕ f−1z) = xR−1
g ⊕ (yg−1 ⊕ f−1z)L−1

f

= xg−1 ⊕ f−1(yg−1 ⊕ f−1z) = xg−1 ⊕ f−1yg−1 ⊕ f−1z.

Thus, (S, ◦) is a S-subquasigroup of (G, ◦), (G, ◦) is a S-quasigroup. By Theorem 2.1,
for any isotope (H,⊗) of (G,⊕), there exists a (G, ◦) such that (H,⊗) ∼= (G, ◦). So we can
now choose the isomorphic image of (S, ◦) which will now be a S-subquasigroup in (H,⊗). So,
(H,⊗) is a S-quasigroup. This conclusion can also be drawn straight from Corollary 2.1.

Theorem 3.2. A Smarandache loop is universal if all its f, g-principal isotopes are
Smarandache f, g-principal isotopes. Conversely, if a Smarandache loop is universal then

(I, LfR−1
g RfρL−1

f , R−1
g Rfρ)

is an autotopism of a S-subloop of the S-loop such that f and g are S-elements.
Proof. Every loop is a quasigroup. Hence, the first claim follows from Theorem 3.1. The

proof of the converse is as follows. If a Smarandache loop (G,⊕) is universal then every isotope
(H,⊗) is a S-loop i.e. there exists a S-subloop (S,⊗) in (H,⊗). Let (G, ◦) be the f, g-principal
isotope of (G,⊕), then by Corollary 2.1, (G, ◦) is a S-loop with say a S-subloop (S, ◦). So,

(x ◦ y) ◦ z = x ◦ (y ◦ z) ∀ x, y, z ∈ S
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where
x ◦ y = xR−1

g ⊕ yL−1
f ∀ x, y ∈ S.

(xR−1
g ⊕ yL−1

f )R−1
g ⊕ zL−1

f = xR−1
g ⊕ (yR−1

g ⊕ zL−1
f )L−1

f .

Replacing xR−1
g by x′, yL−1

f by y′ and taking z = e in (S,⊕) we have:

(x′ ⊕ y′)R−1
g Rfρ = x′ ⊕ y′LfR−1

g RfρL−1
f ⇒ (I, LfR−1

g RfρL−1
f , R−1

g Rfρ)

is an autotopism of a S-subloop (S,⊕) of the S-loop (G,⊕) such that f and g are S-elements.

Universality of Smarandache Bol, Moufang and Extra Loops

Theorem 3.3. A Smarandache right(left)Bol loop is universal if all its f, g-principal
isotopes are Smarandache f, g-principal isotopes. Conversely, if a Smarandache right(left)Bol
loop is universal then

T1 = (RgR
−1
fρ , LgλR−1

g RfρL−1
f , R−1

g Rfρ)
(
T2 = (RfρL−1

f LgλR−1
g , LfL−1

gλ , L−1
f Lgλ)

)

is an autotopism of an SRB(SLB)-subloop of the SRBL(SLBL) such that f and g are S-elements.
Proof. Let (G,⊕) be a SRBL(SLBL) with a S-RB(LB)-subloop (S,⊕). If (G, ◦) is an

arbitrary f, g-principal isotope of (G,⊕), then by Lemma 2.1, (S, ◦) is a subloop of (G, ◦) if
(S, ◦) is a Smarandache f, g-principal isotope of (S,⊕). Let us choose all (S, ◦) in this manner.
So,

x ◦ y = xR−1
g ⊕ yL−1

f ∀ x, y ∈ S.

It is already known from [24] that RB(LB) loops are universal, hence (S, ◦) is a RB(LB) loop
thus a S-RB(LB)-subloop of (G, ◦). By Theorem 2.1, for any isotope (H,⊗) of (G,⊕), there
exists a (G, ◦) such that (H,⊗) ∼= (G, ◦). So we can now choose the isomorphic image of (S, ◦)
which will now be a S-RB(LB)-subloop in (H,⊗). So, (H,⊗) is a SRBL(SLBL). This conclusion
can also be drawn straight from Corollary 2.1.

The proof of the converse is as follows. If a SRBL(SLBL) (G,⊕) is universal then every
isotope (H,⊗) is a SRBL(SLBL) i.e there exists a S-RB(LB)-subloop (S,⊗) in (H,⊗). Let
(G, ◦) be the f, g-principal isotope of (G,⊕), then by Corollary 2.1, (G, ◦) is a SRBL(SLBL)
with say a SRB(SLB)-subloop (S, ◦). So for a SRB-subloop (S, ◦),

[(y ◦ x) ◦ z] ◦ x = y ◦ [(x ◦ z) ◦ x] ∀ x, y, z ∈ S

where
x ◦ y = xR−1

g ⊕ yL−1
f ∀ x, y ∈ S.

Thus,

[(yR−1
g ⊕ xL−1

f )R−1
g ⊕ zL−1

f ]R−1
g ⊕ xL−1

f = yR−1
g ⊕ [(xR−1

g ⊕ zL−1
f )R−1

g ⊕ xL−1
f ]L−1

f .

Replacing yR−1
g by y′, zL−1

f by z′ and taking x = e in (S,⊕) we have

(y′RfρR−1
g ⊕ z′)R−1

g Rfρ = y′ ⊕ z′LgλR−1
g RfρL−1

f .
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Again, replace y′RfρR−1
g by y′′ so that

(y′′ ⊕ z′)R−1
g Rfρ = y′′RgR

−1
fρ ⊕ z′LgλR−1

g RfρL−1
f ⇒ (RgR

−1
fρ , LgλR−1

g RfρL−1
f , R−1

g Rfρ)

is an autotopism of a SRB-subloop (S,⊕) of the S-loop (G,⊕) such that f and g are S-elements.
On the other hand, for a SLB-subloop (S, ◦),

[x ◦ (y ◦ x)] ◦ z = x ◦ [y ◦ (x ◦ z)] ∀ x, y, z ∈ S,

where
x ◦ y = xR−1

g ⊕ yL−1
f ∀ x, y ∈ S.

Thus,

[xR−1
g ⊕ (yR−1

g ⊕ xL−1
f )L−1

f ]R−1
g ⊕ zL−1

f = xR−1
g ⊕ [yR−1

g ⊕ (xR−1
g ⊕ zL−1

f )L−1
f ]L−1

f .

Replacing yR−1
g by y′, zL−1

f by z′ and taking x = e in (S,⊕) we have

y′RfρL−1
f LgλR−1

g ⊕ z′ = (y′ ⊕ z′LgλL−1
f )L−1

f Lgλ .

Again, replace z′LgλL−1
f by z′′ so that

y′RfρL−1
f LgλR−1

g ⊕ z′′LfL−1
gλ = (y′ ⊕ z′′)L−1

f Lgλ ⇒ (RfρL−1
f LgλR−1

g , LfL−1
gλ , L−1

f Lgλ)

is an autotopism of a SLB-subloop (S,⊕) of the S-loop (G,⊕) such that f and g are S-elements.
Theorem 3.4. A Smarandache Moufang loop is universal if all its f, g-principal iso-

topes are Smarandache f, g-principal isotopes. Conversely, if a Smarandache Moufang loop is
universal then

(RgL
−1
f LgλR−1

g , LfR−1
g RfρL−1

f , L−1
f LgλR−1

g Rfρ),

(RgL
−1
f LgλR−1

g , LfR−1
g RfρL−1

f , R−1
g RfρL−1

f Lgλ),

(RgL
−1
f LgλR−1

g RfρR−1
g , LfL−1

gλ , L−1
f Lgλ),

(RgR
−1
fρ , LfR−1

g RfρL−1
f LgλL−1

f , R−1
g Rfρ),

(RgL
−1
f LgλR−1

g , LgλR−1
g RfρL−1

gλ , R−1
g RfρL−1

f Lgλ),

(RfρL−1
f LgλR−1

fρ , LfR−1
g RfρL−1

f , L−1
f LgλR−1

g Rfρ),

are autotopisms of a SM-subloop of the SML such that f and g are S-elements.
Proof. Let (G,⊕) be a SML with a SM-subloop (S,⊕). If (G, ◦) is an arbitrary f, g-

principal isotope of (G,⊕), then by Lemma 2.1, (S, ◦) is a subloop of (G, ◦) if (S, ◦) is a
Smarandache f, g-principal isotope of (S,⊕). Let us choose all (S, ◦) in this manner. So,

x ◦ y = xR−1
g ⊕ yL−1

f ∀ x, y ∈ S.

It is already known from [24] that Moufang loops are universal, hence (S, ◦) is a Moufang loop
thus a SM-subloop of (G, ◦). By Theorem 2.1, for any isotope (H,⊗) of (G,⊕), there exists a
(G, ◦) such that (H,⊗) ∼= (G, ◦). So we can now choose the isomorphic image of (S, ◦) which
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will now be a SM-subloop in (H,⊗). So, (H,⊗) is a SML. This conclusion can also be drawn
straight from Corollary 2.1.

The proof of the converse is as follows. If a SML (G,⊕) is universal then every isotope
(H,⊗) is a SML i.e there exists a SM-subloop (S,⊗) in (H,⊗). Let (G, ◦) be the f, g-principal
isotope of (G,⊕), then by Corollary 2.1, (G, ◦) is a SML with say a SM-subloop (S, ◦). For a
SM-subloop (S, ◦),

(x ◦ y) ◦ (z ◦ x) = [x ◦ (y ◦ z)] ◦ x ∀ x, y, z ∈ S,

where
x ◦ y = xR−1

g ⊕ yL−1
f ∀ x, y ∈ S.

Thus,

(xR−1
g ⊕ yL−1

f )R−1
g ⊕ (zR−1

g ⊕ xL−1
f )L−1

f = [xR−1
g ⊕ (yR−1

g ⊕ zL−1
f )L−1

f ]R−1
g ⊕ xL−1

f .

Replacing yR−1
g by y′, zL−1

f by z′ and taking x = e in (S,⊕) we have

y′RgL
−1
f LgλR−1

g ⊕ z′LfR−1
g RfρL−1

f = (y′ ⊕ z′)L−1
f LgλR−1

g Rfρ ⇒

(RgL
−1
f LgλR−1

g , LfR−1
g RfρL−1

f , L−1
f LgλR−1

g Rfρ)

is an autotopism of a SM-subloop (S,⊕) of the S-loop (G,⊕) such that f and g are S-elements.
Again, for a SM-subloop (S, ◦),

(x ◦ y) ◦ (z ◦ x) = x ◦ [(y ◦ z) ◦ x] ∀ x, y, z ∈ S,

where
x ◦ y = xR−1

g ⊕ yL−1
f ∀ x, y ∈ S.

Thus,

(xR−1
g ⊕ yL−1

f )R−1
g ⊕ (zR−1

g ⊕ xL−1
f )L−1

f = xR−1
g ⊕ [(yR−1

g ⊕ zL−1
f )R−1

g ⊕ xL−1
f ]L−1

f .

Replacing yR−1
g by y′, zL−1

f by z′ and taking x = e in (S,⊕) we have

y′RgL
−1
f LgλR−1

g ⊕ z′LfR−1
g RfρL−1

f = (y′ ⊕ z′)R−1
g RfρL−1

f Lgλ ⇒

(RgL
−1
f LgλR−1

g , LfR−1
g RfρL−1

f , R−1
g RfρL−1

f Lgλ)

is an autotopism of a SM-subloop (S,⊕) of the S-loop (G,⊕) such that f and g are S-elements.
Also, if (S, ◦) is a SM-subloop then,

[(x ◦ y) ◦ x] ◦ z = x ◦ [y ◦ (x ◦ z)] ∀ x, y, z ∈ S,

where
x ◦ y = xR−1

g ⊕ yL−1
f ∀ x, y ∈ S.

Thus,

[(xR−1
g ⊕ yL−1

f )R−1
g ⊕ xL−1

f ]R−1
g ⊕ zL−1

f = xR−1
g ⊕ [yR−1

g ⊕ (xR−1
g ⊕ zL−1

f )L−1
f ]L−1

f .
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Replacing yR−1
g by y′, zL−1

f by z′ and taking x = e in (S,⊕) we have

y′RgL
−1
f LgλR−1

g RfρR−1
g ⊕ z′ = (y′ ⊕ z′LgλL−1

f )L−1
f Lgλ .

Again, replace z′LgλL−1
f by z′′ so that

y′RgL
−1
f LgλR−1

g RfρR−1
g ⊕ z′′LfL−1

gλ = (y′ ⊕ z′′)L−1
f Lgλ

⇒ (RgL
−1
f LgλR−1

g RfρR−1
g , LfL−1

gλ , L−1
f Lgλ)

is an autotopism of a SM-subloop (S,⊕) of the S-loop (G,⊕) such that f and g are S-elements.
Furthermore, if (S, ◦) is a SM-subloop then,

[(y ◦ x) ◦ z] ◦ x = y ◦ [x ◦ (z ◦ x)] ∀ x, y, z ∈ S,

where
x ◦ y = xR−1

g ⊕ yL−1
f ∀ x, y ∈ S.

Thus,

[(yR−1
g ⊕ xL−1

f )R−1
g ⊕ zL−1

f ]R−1
g ⊕ xL−1

f = yR−1
g ⊕ [xR−1

g ⊕ (zR−1
g ⊕ xL−1

f )L−1
f ]L−1

f .

Replacing yR−1
g by y′, zL−1

f by z′ and taking x = e in (S,⊕) we have

(y′RfρR−1
g ⊕ z′)R−1

g Rfρ = y′ ⊕ z′LfR−1
g RfρL−1

f LgλL−1
f .

Again, replace y′RfρR−1
g by y′′ so that

(y′′ ⊕ z′)R−1
g Rfρ = y′′RgR

−1
fρ ⊕ z′LfR−1

g RfρL−1
f LgλL−1

f

⇒ (RgR
−1
fρ , LfR−1

g RfρL−1
f LgλL−1

f , R−1
g Rfρ)

is an autotopism of a SM-subloop (S,⊕) of the S-loop (G,⊕) such that f and g are S-elements.
Lastly, (S,⊕) is a SM-subloop if and only if (S, ◦) is a SRB-subloop and a SLB-subloop.

So by Theorem 3.3, T1 and T2 are autotopisms in (S,⊕), hence T1T2 and T2T1 are autotopisms
in (S,⊕).

Theorem 3.5. A Smarandache extra loop is universal if all its f, g-principal isotopes are
Smarandache f, g-principal isotopes. Conversely, if a Smarandache extra loop is universal then

(RgL
−1
f LgλR−1

g , LfR−1
fρ RgL

−1
f , L−1

f LgλR−1
fρ Rg),

(RgR
−1
fρ RgL

−1
f LgλR−1

g , LgλL−1
f , L−1

f Lgλ),

(RfρR−1
g , LfL−1

gλ LfR−1
g RfρL−1

f , R−1
g Rfρ),

(RgL
−1
f LgλR−1

g , LfR−1
g RfρL−1

f , L−1
f LgλR−1

g Rfρ),

(RgL
−1
f LgλR−1

g , LfR−1
g RfρL−1

f , R−1
g RfρL−1

f Lgλ),

(RgL
−1
f LgλR−1

g RfρR−1
g , LfL−1

gλ , L−1
f Lgλ),

(RgR
−1
fρ , LfR−1

g RfρL−1
f LgλL−1

f , R−1
g Rfρ),
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(RgL
−1
f LgλR−1

g , LgλR−1
g RfρL−1

gλ , R−1
g RfρL−1

f Lgλ),

(RfρL−1
f LgλR−1

fρ , LfR−1
g RfρL−1

f , L−1
f LgλR−1

g Rfρ),

are autotopisms of a SE-subloop of the SEL such that f and g are S-elements.
Proof. Let (G,⊕) be a SEL with a SE-subloop (S,⊕). If (G, ◦) is an arbitrary f, g-

principal isotope of (G,⊕), then by Lemma 2.1, (S, ◦) is a subloop of (G, ◦) if (S, ◦) is a
Smarandache f, g-principal isotope of (S,⊕). Let us choose all (S, ◦) in this manner. So,

x ◦ y = xR−1
g ⊕ yL−1

f ∀ x, y ∈ S.

In [9] and [17] respectively, it was shown and stated that a loop is an extra loop if and only if it
is a Moufang loop and a CC-loop. But since CC-loops are G-loops(they are isomorphic to all
loop isotopes) then extra loops are universal, hence (S, ◦) is an extra loop thus a SE-subloop
of (G, ◦). By Theorem 2.1, for any isotope (H,⊗) of (G,⊕), there exists a (G, ◦) such that
(H,⊗) ∼= (G, ◦). So we can now choose the isomorphic image of (S, ◦) which will now be a
SE-subloop in (H,⊗). So, (H,⊗) is a SEL. This conclusion can also be drawn straight from
Corollary 2.1.

The proof of the converse is as follows. If a SEL (G,⊕) is universal then every isotope
(H,⊗) is a SEL i.e there exists a SE-subloop (S,⊗) in (H,⊗). Let (G, ◦) be the f, g-principal
isotope of (G,⊕), then by Corollary 2.1, (G, ◦) is a SEL with say a SE-subloop (S, ◦). For a
SE-subloop (S, ◦),

[(x ◦ y) ◦ z] ◦ x = x ◦ [y ◦ (z ◦ x)] ∀ x, y, z ∈ S,

where
x ◦ y = xR−1

g ⊕ yL−1
f ∀ x, y ∈ S.

Thus,

[(xR−1
g ⊕ yL−1

f )R−1
g ⊕ zL−1

f ]R−1
g ⊕ xL−1

f = xR−1
g ⊕ [yR−1

g ⊕ (zR−1
g ⊕ xL−1

f )L−1
f ]L−1

f .

Replacing yR−1
g by y′, zL−1

f by z′ and taking x = e in (S,⊕) we have

(y′RgL
−1
f LgλR−1

g ⊕ z′)R−1
g Rfρ = (y′ ⊕ z′LfR−1

g RfρL−1
f )L−1

f Lgλ .

Again, replace z′LfR−1
g RfρL−1

f by z′′ so that

y′RgL
−1
f LgλR−1

g ⊕ z′′LfR−1
fρ RgL

−1
f = (y′ ⊕ z′′)L−1

f LgλR−1
fρ Rg ⇒

(RgL
−1
f LgλR−1

g , LfR−1
fρ RgL

−1
f , L−1

f LgλR−1
fρ Rg)

is an autotopism of a SE-subloop (S,⊕) of the S-loop (G,⊕) such that f and g are S-elements.
Again, for a SE-subloop (S, ◦),

(x ◦ y) ◦ (x ◦ z) = x ◦ [(y ◦ x) ◦ z] ∀ x, y, z ∈ S,

where
x ◦ y = xR−1

g ⊕ yL−1
f ∀ x, y ∈ S.
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Thus,

(xR−1
g ⊕ yL−1

f )R−1
g ⊕ (xR−1

g ⊕ zL−1
f )L−1

f = xR−1
g ⊕ [(yR−1

g ⊕ xL−1
f )R−1

g ⊕ zL−1
f ]L−1

f .

Replacing yR−1
g by y′, zL−1

f by z′ and taking x = e in (S,⊕) we have

y′RgL
−1
f LgλR−1

g ⊕ z′LgλL−1
f = (y′RfρR−1

g ⊕ z′)L−1
f Lgλ .

Again, replace y′RfρR−1
g by y′′ so that

y′′RgR
−1
fρ RgL

−1
f LgλR−1

g ⊕ z′LgλL−1
f = (y′′ ⊕ z′)L−1

f Lgλ

⇒ (RgR
−1
fρ RgL

−1
f LgλR−1

g , LgλL−1
f , L−1

f Lgλ),

is an autotopism of a SE-subloop (S,⊕) of the S-loop (G,⊕) such that f and g are S-elements.
Also, if (S, ◦) is a SE-subloop then,

(y ◦ x) ◦ (z ◦ x) = [y ◦ (x ◦ z)] ◦ x ∀ x, y, z ∈ S

where
x ◦ y = xR−1

g ⊕ yL−1
f ∀ x, y ∈ S.

Thus,

(yR−1
g ⊕ xL−1

f )R−1
g ⊕ (zR−1

g ⊕ xL−1
f )L−1

f = [(yR−1
g ⊕ (xR−1

g ⊕ zL−1
f )L−1

f ]R−1
g ⊕ xL−1

f .

Replacing yR−1
g by y′, zL−1

f by z′ and taking x = e in (S,⊕) we have

y′RfρR−1
g ⊕ z′LfR−1

g RfρL−1
f = (y′ ⊕ z′LgλL−1

f )R−1
g Rfρ .

Again, replace z′LgλL−1
f by z′′ so that

y′RfρR−1
g ⊕ z′′LfL−1

gλ LfR−1
g RfρL−1

f = (y′ ⊕ z′)R−1
g Rfρ

⇒ (RfρR−1
g , LfL−1

gλ LfR−1
g RfρL−1

f , R−1
g Rfρ)

is an autotopism of a SE-subloop (S,⊕) of the S-loop (G,⊕) such that f and g are S-elements.
Lastly, (S,⊕) is a SE-subloop if and only if (S, ◦) is a SM-subloop and a SCC-subloop. So

by Theorem 3.4, the six remaining triples are autotopisms in (S,⊕).

Universality of Smarandache Inverse Property Loops

Theorem 3.6. A Smarandache left(right) inverse property loop in which all its f, g-
principal isotopes are Smarandache f, g-principal isotopes is universal if and only if it is a
Smarandache left(right) Bol loop in which all its f, g-principal isotopes are Smarandache f, g-
principal isotopes.

Proof. Let (G,⊕) be a SLIPL with a SLIP-subloop (S,⊕). If (G, ◦) is an arbitrary
f, g-principal isotope of (G,⊕), then by Lemma 2.1, (S, ◦) is a subloop of (G, ◦) if (S, ◦) is a
Smarandache f, g-principal isotope of (S,⊕). Let us choose all (S, ◦) in this manner. So,

x ◦ y = xR−1
g ⊕ yL−1

f ∀ x, y ∈ S.
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(G,⊕) is a universal SLIPL if and only if every isotope (H,⊗) is a SLIPL. (H,⊗) is a SLIPL
if and only if it has at least a SLIP-subloop (S,⊗). By Theorem 2.1, for any isotope (H,⊗) of
(G,⊕), there exists a (G, ◦) such that (H,⊗) ∼= (G, ◦). So we can now choose the isomorphic
image of (S, ◦) to be (S,⊗) which is already a SLIP-subloop in (H,⊗). So, (S, ◦) is also a
SLIP-subloop in (G, ◦). As shown in [24], (S,⊕) and its f, g-isotope(Smarandache f, g-isotope)
(S, ◦) are SLIP-subloops if and only if (S,⊕) is a left Bol subloop(i.e a SLB-subloop). So, (G,⊕)
is SLBL.

Conversely, if (G,⊕) is SLBL, then there exists a SLB-subloop (S,⊕) in (G,⊕). If (G, ◦) is
an arbitrary f, g-principal isotope of (G,⊕), then by Lemma 2.1, (S, ◦) is a subloop of (G, ◦) if
(S, ◦) is a Smarandache f, g-principal isotope of (S,⊕). Let us choose all (S, ◦) in this manner.
So,

x ◦ y = xR−1
g ⊕ yL−1

f ∀ x, y ∈ S.

By Theorem 2.1, for any isotope (H,⊗) of (G,⊕), there exists a (G, ◦) such that (H,⊗) ∼= (G, ◦).
So we can now choose the isomorphic image of (S, ◦) to be (S,⊗) which is a SLB-subloop in
(H,⊗) using the same reasoning in Theorem 3.3. So, (S, ◦) is a SLB-subloop in (G, ◦). Left Bol
loops have the left inverse property(LIP), hence, (S,⊕) and (S, ◦) are SLIP-subloops in (G,⊕)
and (G, ◦) respectively. Thence, (G,⊕) and (G, ◦) are SLBLs. Therefore, (G,⊕) is a universal
SLIPL.

The proof for a Smarandache right inverse property loop is similar and is as follows. Let
(G,⊕) be a SRIPL with a SRIP-subloop (S,⊕). If (G, ◦) is an arbitrary f, g-principal isotope of
(G,⊕), then by Lemma 2.1, (S, ◦) is a subloop of (G, ◦) if (S, ◦) is a Smarandache f, g-principal
isotope of (S,⊕). Let us choose all (S, ◦) in this manner. So,

x ◦ y = xR−1
g ⊕ yL−1

f ∀ x, y ∈ S.

(G,⊕) is a universal SRIPL if and only if every isotope (H,⊗) is a SRIPL. (H,⊗) is a SRIPL
if and only if it has at least a SRIP-subloop (S,⊗). By Theorem 2.1, for any isotope (H,⊗) of
(G,⊕), there exists a (G, ◦) such that (H,⊗) ∼= (G, ◦). So we can now choose the isomorphic
image of (S, ◦) to be (S,⊗) which is already a SRIP-subloop in (H,⊗). So, (S, ◦) is also a
SRIP-subloop in (G, ◦). As shown in [24], (S,⊕) and its f, g-isotope(Smarandache f, g-isotope)
(S, ◦) are SRIP-subloops if and only if (S,⊕) is a right Bol subloop(i.e a SRB-subloop). So,
(G,⊕) is SRBL.

Conversely, if (G,⊕) is SRBL, then there exists a SRB-subloop (S,⊕) in (G,⊕). If (G, ◦) is
an arbitrary f, g-principal isotope of (G,⊕), then by Lemma 2.1, (S, ◦) is a subloop of (G, ◦) if
(S, ◦) is a Smarandache f, g-principal isotope of (S,⊕). Let us choose all (S, ◦) in this manner.
So,

x ◦ y = xR−1
g ⊕ yL−1

f ∀ x, y ∈ S.

By Theorem 2.1, for any isotope (H,⊗) of (G,⊕), there exists a (G, ◦) such that (H,⊗) ∼= (G, ◦).
So we can now choose the isomorphic image of (S, ◦) to be (S,⊗) which is a SRB-subloop in
(H,⊗) using the same reasoning in Theorem 3.3. So, (S, ◦) is a SRB-subloop in (G, ◦). Right
Bol loops have the right inverse property(RIP), hence, (S,⊕) and (S, ◦) are SRIP-subloops in
(G,⊕) and (G, ◦) respectively. Thence, (G,⊕) and (G, ◦) are SRBLs. Therefore, (G,⊕) is a
universal SRIPL.
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Theorem 3.7. A Smarandache inverse property loop in which all its f, g-principal
isotopes are Smarandache f, g-principal isotopes is universal if and only if it is a Smarandache
Moufang loop in which all its f, g-principal isotopes are Smarandache f, g-principal isotopes.

Proof. Let (G,⊕) be a SIPL with a SIP-subloop (S,⊕). If (G, ◦) is an arbitrary f, g-
principal isotope of (G,⊕), then by Lemma 2.1, (S, ◦) is a subloop of (G, ◦) if (S, ◦) is a
Smarandache f, g-principal isotope of (S,⊕). Let us choose all (S, ◦) in this manner. So,

x ◦ y = xR−1
g ⊕ yL−1

f ∀ x, y ∈ S.

(G,⊕) is a universal SIPL if and only if every isotope (H,⊗) is a SIPL. (H,⊗) is a SIPL if and
only if it has at least a SIP-subloop (S,⊗). By Theorem 2.1, for any isotope (H,⊗) of (G,⊕),
there exists a (G, ◦) such that (H,⊗) ∼= (G, ◦). So we can now choose the isomorphic image of
(S, ◦) to be (S,⊗) which is already a SIP-subloop in (H,⊗). So, (S, ◦) is also a SIP-subloop
in (G, ◦). As shown in [24], (S,⊕) and its f, g-isotope(Smarandache f, g-isotope) (S, ◦) are
SIP-subloops if and only if (S,⊕) is a Moufang subloop(i.e a SM-subloop). So, (G,⊕) is SML.

Conversely, if (G,⊕) is SML, then there exists a SM-subloop (S,⊕) in (G,⊕). If (G, ◦) is
an arbitrary f, g-principal isotope of (G,⊕), then by Lemma 2.1, (S, ◦) is a subloop of (G, ◦) if
(S, ◦) is a Smarandache f, g-principal isotope of (S,⊕). Let us choose all (S, ◦) in this manner.
So,

x ◦ y = xR−1
g ⊕ yL−1

f ∀ x, y ∈ S.

By Theorem 2.1, for any isotope (H,⊗) of (G,⊕), there exists a (G, ◦) such that (H,⊗) ∼= (G, ◦).
So we can now choose the isomorphic image of (S, ◦) to be (S,⊗) which is a SM-subloop in
(H,⊗) using the same reasoning in Theorem 3.3. So, (S, ◦) is a SM-subloop in (G, ◦). Moufang
loops have the inverse property(IP), hence, (S,⊕) and (S, ◦) are SIP-subloops in (G,⊕) and
(G, ◦) respectively. Thence, (G,⊕) and (G, ◦) are SMLs. Therefore, (G,⊕) is a universal SIPL.

Corollary 3.1. If a Smarandache left(right) inverse property loop is universal then

(RgR
−1
fρ , LgλR−1

g RfρL−1
f , R−1

g Rfρ)
(

(RfρL−1
f LgλR−1

g , LfL−1
gλ , L−1

f Lgλ)
)

is an autotopism of a SLIP(SRIP)-subloop of the SLIPL(SRIPL) such that f and g are S-
elements.

Proof. This follows by Theorem 3.6 and Theorem 3.1.
Corollary 3.2. If a Smarandache inverse property loop is universal then

(RgL
−1
f LgλR−1

g , LfR−1
g RfρL−1

f , L−1
f LgλR−1

g Rfρ),

(RgL
−1
f LgλR−1

g , LfR−1
g RfρL−1

f , R−1
g RfρL−1

f Lgλ),

(RgL
−1
f LgλR−1

g RfρR−1
g , LfL−1

gλ , L−1
f Lgλ),

(RgR
−1
fρ , LfR−1

g RfρL−1
f LgλL−1

f , R−1
g Rfρ),

(RgL
−1
f LgλR−1

g , LgλR−1
g RfρL−1

gλ , R−1
g RfρL−1

f Lgλ),

(RfρL−1
f LgλR−1

fρ , LfR−1
g RfρL−1

f , L−1
f LgλR−1

g Rfρ),

are autotopisms of a SIP-subloop of the SIPL such that f and g are S-elements.
Proof. This follows from Theorem 3.7 and Theorem 3.4.
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[11] T. G. Jáıyéo. lá, Parastrophic invariance of Smarandache quasigroups, Scientia Magna,

2(2006), No. 3, 48-53.
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Here we for the first time define Smarandache representation of finite S-bisemigroup. We
know every S-bisemigroup, S = S1 ∪ S2 contains a bigroup G = G1 ∪ G2. The Smarandache
representation S-bisemigroups depends on the S-bigroup G which we choose. Thus this method
widens the Smarandache representations. We first define the notion of Smarandache pseudo
neutrosophic bisemigroup.

Definition 1. Let S = S1 ∪ S2 be a neutrosophic bisemigroup. If S has only bi-
group which is not a neutrosophic bigroup, then we all S a Smarandache pseudo neutrosophic
bisemigroup(S-pseudo neutrosophic bisemigroup).

Example 1. Let S = S1 ∪ S2 where S1 = Q(I) × Q(I) and S2 = {2 × 2 matrices
with entries from Q(I)} both S1 and S2 under multiplication is a semigroup. Thus S is a
neutrosophic bisemigroup. Take G = G1 ∪ G2 where G1 = {Q\(0) × Q\(0)} and G2= {set
of all 2× 2 matrices A with entries from Q such that |A| 6=0}. G1 and G2 are groups under
multiplication. So S is a pseudo Smarandache Neutrosophic bisemigroup.

Now we give the Smarandache representation of finite pseudo Smarandache neutrosophic
bisemigroups.

Definition 2. Let G = G1 ∪ G2 be a Smarandache neutrosophic bisemigroup and
V = V1 ∪ V2 be a bivector space. A Smarandache birepresentation of G on V is a mapping
Sρ = S1

ρ ∪ S2
ρ from H1∪H2 (H1∪H2 is a subbigroup of G which is not a neutrosophic bigroup)

to invertible linear bitransformation on V = V1 ∪ V2 such that

Sρxy = S1
ρx1y1

∪ S2
ρx2y2

=
(
S1

ρx1
◦ S1

ρy1

)
∪

(
S2

ρx2
◦ S2

ρy2

)

for all x1, y1 ∈ H1 and for all x2, y2 ∈ H2, H1 ∪ H2 ⊂ G1 ∪ G2. Here Sρx = S1
ρx1

∪ S2
ρx2

to denote the invertible linear bitransformation on V = V1 ∪ V2associated to x = x1 ∪ x2 on
H = H1 ∪H2, so that we may write

Sρx
(ν) = Sρx

(ν1 ∪ ν2) = S1
ρx1

(ν1) ∪ S2
ρx2

(ν2)
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for the image of the vector ν = ν1∪ν2 in V = V1∪V2 under Sρx
= S1

ρx1
∪ S2

ρx2
. As a result, we

have that Sρe
= S1

ρe1
∪ S2

ρz2
= I1∪I2 denotes the identity bitransformation on V = V1∪V2 and

S−1
ρx

= S1
ρx1−1

∪ S2
ρx2−1

=
(
S1

ρx1

)−1

∪
(
S2

ρx2

)−1

for all x = x1∪x2 ∈ H1∪H2 ⊂ G1∪G2 = G.

In other words a birepresentation of H = H1 ∪H2 on V = V1 ∪ V2 is a bihomomorphism
from H into GL(V ) i.e. (H1 into GL(V1))∪ (H2 into GL(V2)). The bidimension of V = V1∪V2

is called the bidegree of the representation.

Thus depending on the number of subbigroup of the S-neutrosophic bisemigroup we have
several S-birepresentations of the finite S-neutrosophic bisemigroup.

Basic example of birepresentation would be Smarandache left regular birepresentation and
Smarandache right regular birepresentation over a field K defined as follows.

We take VH = VH1 ∪ VH2 to be a bivector space of bifunctions on H1 ∪H2 with values in
K (where H = H1 ∪H2 is a subbigroup of the S-neutrosophic bisemigroup where H is not a
neutrosophic bigroup). For Smarandache left regular birepresentation (S-left regular biregular
representative) relative to H = H1 ∪H2 we define

SLx = S1 L1
x1
∪ S2 L2

x2
=

(
S1 ∪ S2

) (
L1 ∪ L2

)
x1∪ x2

,

from VH1 ∪ VH2 → VH1 ∪ VH2 for each x1 ∪ x2 ∈ H = H1 ∪ H2 by for each x = x1 ∪ x2

in H = H1 ∪ H2 by SLx(f)(z) = f(x−1z) for each function f(z) in VH = VH1 ∪ VH2 i.e.
S1 L1

x1
f1 (z1) ∪ S2 L2

x2
f2 (z2) = f1 (x−1

1 z1) ∪ f2 (x−1
2 z2).

For the Smarandache right regular birepresentation (S-right regular birepresentation) we
define SRx = SRx1∪ x2 : VH1 ∪ VH2 → VH1 ∪ VH2 ; H1∪H2 = H for each x = x1∪x2 ∈ H1∪H2

by SRx(f)(z) = f(zx).

S1 R1
x1

f1(z1) ∪ S2 R2
x2

(f2 (z2)) = f1(z1x1) ∪ f2(z2x2),

for each function f1(z1) ∪ f2(z2) = f(z) in VH = VH1 ∪ VH2 .

Thus if x = x1 ∪ x2 and y = y1 ∪ y2 are elements H1 ∪H2 ⊂ G1 ∪G2.

Then

(SLx ◦ SLy) (f(z)) = SLx(SLy)(f)(z)

= (SLy(f))x−1z

= f(y−1x−1z)

= f1

(
y−1
1 x−1

1 z1

) ∪ f2

(
y−1
2 x−1

2 z2

)

= f1((x1y1) −1z1) ∪ f2((x2y2)−1z2)

= S1L1
x1y1

(f1) (z1) ∪ S2L2
x2y2

f2(z2)

=
[(

S1L1
x1
∪ S2L2

x2

) (
S1L1

y1
∪ S2L2

y2

)]
f(z1 ∪ z2)

=
[(

S1L1
x1
∪ S2L2

x2

) ◦ (
S1L1

y1
∪ S2L2

y2

)]
(f1 (z1) ∪ f2 (z2)) .



Vol. 2 Smarandache representation and its applications 61

and

(SRx ◦ SRy)(f)(z) =
(
S1R1

x1
∪ S2 R2

x2

) ◦ (
S1R1

y1
∪ S2 R2

y2

)
(f) (z)

= SRx(SRy(f))(z)

=
(
S1R1

x1
∪ S2 R2

x2

) ◦ (
S1R1

y1
∪ S2 R2

y2

)
(f) (z)

=
(
S1 R1

y1
(f1) ∪ S2R2

y2
(f2)

)
(z1x1 ∪ z2x2)

= f1(z1x1y1) ∪ f2(z2x2y2)

= S1 R1
x1y1

f1(z1) ∪ S2 R2
x2y2

f2(z2)

= SRxy(f)(z).

Thus for a given S-neutrosophic bisemigroup we will have several V ’s associated with them
i.e. bivector space functions on each H1∪H2 ⊂ G1∪G2, H a subbigroup of the S-neutrosophic
bisemigroup with values from K. This study in this direction is innovative.

We have yet another Smarandache birepresentation which can be convenient is the follow-
ing. For each w = w1 ∪w2 in H = H1 ∪H2, H bisubgroups of the S-neutrosophic bisemigroup
G = G1 ∪G2.

Define a bifunction
φw(z) = φ1

w1
(z1) ∪ φ2

w2
(z2)

on H1 ∪ H2 = H by φ1
w1

(z1) ∪ φ2
w2

(z2) = 1 ∪ 1, where w = w1 ∪ w2 = z = z1 ∪ z2,
φ1

w1
(z1) ∪ φ2

w2
(z2) = 0 ∪ 0 when z 6= w.

Thus the functions φw = φ1
w1

∪ φ2
w2

for w = w1 ∪ w2 in H = H1 ∪H2 (H ⊂ G) form a
basis for the space of bifunctions on each H = H1 ∪H2 contained in G = G1 ∪G2.

One can check that

SLx (φw) = (φxw) i.e. S1 L1
x1

(φw1) ∪ S2 L2
x2

(φw2) = φ1
x1w1

∪ φ2
x12w2

,

SRx (φw) = φxw i.e. S1 R1
x1

(
φ1

w1

) ∪ S2R2
x2

(
φ2

w2

)
= φ1

x1w1
∪ φ2

x2w2
,

for all x ∈ H1 ∪H2 ⊂ G.
Observe that

SLx ◦ SRy = SRy ◦ SLx i.e.
(
S1L1

x1
∪ S2L2

x2

) ◦ (
S1L1

y1
∪ S2L2

y2

)

(
S1L1

y1
∪ S2L2

y2

) ◦ (
S1L1

x1
∪ S2L2

x2

)
,

for all x = x1 ∪ x2 and y = y1 ∪ y2 in G = G1 ∪G2.
More generally suppose we have a bihomomorphism from the bigroups H = H1 ∪ H2 ⊂

G = G1∪G2 (G a S-neutrosophic bisemigroup) to the bigroup of permutations on a non empty
finite biset. E1 ∪ E2. That is suppose for each x1 in H1 ⊂ G1 and x2 in H2, H2 ⊂ G2, x in
H1 ∪H2 ⊂ G1 ∪G2 we have a bipermutation π1

x1
∪ π1

x2
on E1 ∪ E2 i.e. one to one mapping

of E1 on to E1 and E2 onto E2 such that

πx ◦ πy = π1
x1
◦ π1

y1
∪ π2

x2
◦ π2

y2
, πe = π1

e1
∪ π2

e2
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is the biidentity bimapping of E1 ∪ E2 and πx−1 = π1
x−1
1

∪ π1
x−1
2

is the inverse mapping of

πx = π1
x1
∪ π2

x2
on E1∪E2. Let VH = V 1

H1
∪V 2

H2
be the bivector space of K-valued bifunctions

on E1 ∪ E2.
Then we get the Smarandache birepresentation of H1 ∪H2 on VH1 ∪ VH2by associating

to each x = x1 ∪ x2 in H1 ∪H2 the linear bimapping

πx = π1
x1

∪ π2
x2

: VH1 ∪ VH2 → VH1 ∪ VH2 ,

defined by

πx (f ) (a) = f (πx (a)) i.e. (πx1 ∪ πx2)
(
f1 ∪ f2

)
(a1 ∪ a2) = f1 (πx1 (a1)) ∪ f2 (πx2 (a2))

for every f1(a1) ∪ f2(a2) = f(a) in VH1 ∪ VH2 .
This is called the Smarandache bipermutation birepresentation corresponding to the bi-

homomorphism x 7→ πx i.e. x1 7→ πx1 ∪ x2 7→ πx2 from H = H1 ∪ H2 to permutations on
E = E1 ∪ E2.

It is indeed a Smarandache birepresentation for we have several E’s and VH = V 1
H1
∪ V 2

H2

′
s

depending on the number of proper subsets H = H1 ∪H2 in G1 ∪ G2 (G the S-bisemigroup)
which are bigroups under the operations of G = G1 ∪ G2 because for each x = x1 ∪ x2 and
y = y1 ∪ y2 in H = H1 ∪H2 and each function f(a) = f1(a1) ∪ f2(a2) in VH = V 1

H1
∪ V 2

H2
we

have

(πx ◦ πy) (f) (a) =
(
π1

x1
∪ π2

x2

) ◦ (
π1

y1
∪ π2

y2

)
(f1 ∪ f2) (a1 ∪ a2)

=
(
π1

x1
◦ π1

y1

)
(f1) (a1) ∪

(
π2

x2
◦ π2

y2

)
(f2) (a2)

= π1
x1

(
π1

y1
(f1) (a1)

) ∪ π2
x2

(
π2

y2
(f2) (a2)

)

= π1
y1

(f1)
(
π1

x1
(I1 (a1)

) ∪ π2
y2

(f2)
(
π2

x2
(I2 (a2)

)

= f1

(
π1

y1
1 (π1

x1
(1 (a1)

) ∪ f2

(
π2

y2
1 (π2

x2
(1 (a2)

)

= f1

(
π1

(x1y1)
1 (a1)

)
∪ f2

(
π2

(x2y2)
1 (a2)

)
.

Alternatively for each b = b1 ∪ b2 ∈ E1 ∪ E2 defined by

ψb (a) = ψ1
b1(a1) ∪ ψ2

b2 (a2)

be the function on E1 ∪ E2 defined by ψb(a) = 1 i.e.,

ψ1
b1(a1) ∪ ψ2

b2 (a2) = 1 ∪ 1.

When a = b i.e. a1 ∪ b1 = a2 ∪ b2, ψb(a) = 0 when a 6= b, i.e. ψ1
b1

(a1) ∪ ψ2
b2

(a2) = 0 ∪ 0
when a1 ∪ b1 6= a2 ∪ b2.

Then the collection of functions ψb for b ∈ E1 ∪ E2 is a basis for VH = V 1
H1

∪ V 2
H2

and
πx (ψ) = ψπx(b) ∀x in H and b in E i.e.

πx1 (ψ1) ∪ πx2 (ψ2) = ψ1
πx1(b1)

∪ ψ2
πx2(b2)

,

for x = x1 ∪ x2 in H = H1 ∪ H2 and b1 ∪ b2 in E1 ∪ E2. This is true for each proper subset
H = H1 ∪ H2 in the S-neutrosophic semigroup G = G1 ∪ G2 and the bigroup H = H1 ∪ H2

associated with the bipermutations of the non empty finite set E = E1 ∪ E2.
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Next we shall discuss about Smarandache isomorphic bigroup representation. To this end
we consider two bivector spaces V = V1 ∪ V2 and W = W1 ∪W2 defined over the same field K

and that T is a linear biisomorphism from V on to W .
Assume ρH = ρ1H1 ∪ ρ2H2 and ρ′H = ρ′1H1 ∪ ρ′2H2 are Smarandache birepresentations

of the subbigroup H = H1 ∪H2 in G = G1 ∪G2 (G a pseudo S-neutrosophic bisemigroup) on
V and W respectively. To

(ρH)x = (ρ′H)x ◦ T for all x = x1 ∪ x2 ∈ H = H1 ∪H2,

i.e.

(T1 ∪ T2) ◦
(
ρ1H1 ∪ ρ2H2

)
x1∪x2

= T1

(
ρ1H1

)
x1
∪ T2

(
ρ2H2

)
x2

= (ρ′H1)
1
x1
◦ T1 ∪ (ρ′H2)

2
x2
◦ T2,

then we say T = T1∪T2 determines a Smarandache bi-isomorphism between the birepresentation
ρH and ρ′H. We may also say that ρH and ρ′H are Smarandache biisomorphic S-bisemgroup
birepresentations.

However it can be verified that Smarandache biisomorphic birepresentation have equal
degree but the converse is not true in general.

Suppose V = W be the bivector space of K-valued functions on H = H1 ∪H2 ⊂ G1 ∪G2

and define T on V = W by
T (f)(a) = f(a−1) i.e. T1(f1)(a1) ∪ T2(f2)(a2) = f1

(
a−1
1

) ∪ f2

(
a−1
2

)
.

This is one to one linear bimapping from the space of K-valued bifunctions H1 on to itself
and

T ◦ SRx = SLx ◦ T ,

i.e. (
T1 ◦ S1 R1

x1

) ∪ (
T2 ◦ S2 R2

x2

)
=

(
S1L1

x1
◦ T1

) ∪ (
S2L2

x2
◦ T2

)
,

for all x = x1 ∪ x2 in H = H1 ∪H2.
For if f(a) is a bifunction on G = G1 ∪G2 then

(T ◦ SRx)(f)(a) = T (SRx(f))(a)

= SRx(f)(a−1)

= f(a−1x)

= T (f)(x−1a)

= SLx(T (f))(a)

= (SLx ◦ T )(f)(a).

Therefore we see that S-left and S-right birepresentations of H = H1 ∪H2 are biisomorphic to
each other.

Suppose now that H = H1 ∪ H2 is a subbigroup of the S-bisemigroup G and ρH =
ρ1H1 ∪ ρ2 H2 is a birepresentation of H = H1∪H2 on the bivector space VH = V 1

H1
∪ V 2

H2
over

the field K and let ν1,. . . ,νn be a basis of VH = V 1
H1
∪ V 2

H2
. For each x = x1∪x2 in H = H1∪H2
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we can associate to (ρH)x =
(
ρ1 H1

)
x1
∪ (

ρ2H2

)
x2

an invertible n×n bimatrix with entries
in K using this basis we denote this bimatrix by

(
M1H1

)
x1
∪ (

M2H2

)
x2

= (MH)x where
M = M1 ∪M2.

The composition rule can be rewritten as

(MH)xy = (MH)x(MH)y

(
M1H1

)
x1y1

∪ (
M2H2

)
x2y2[(

M1H1

)
x1
∪ (

M2H2

)
x2

] [(
M1 H1

)
y1
∪ (

M2 H2

)
y2

]

(
M1H1

)
x1

(
M1 H1

)
y1
∪ (

M2 H2

)
x2

(
M2 H2

)
y2

,

where the bimatrix product is used on the right side of the equation. We see depending on
each H = H1 ∪H2 we can have different bimatrices MH = M1H1 ∪M2H2, and it need not in
general be always a n×n bimatrices it can also be a m×m bimatrix m 6= n. A different choice
of basis for V = V1∪V2 will lead to a different mapping x 7→ Nx i.e. x1 ∪ x2 7→ N1

x1
∪ N2

x2

from H to invertible n× n bimatrices.
However the two mappings

x 7→ Mx = M1
x1
∪ M2

x2

x 7→ Nx = N1
x1
∪ N2

x2
,

will be called as Smarandache similar relative to the subbigroup H = H1 ∪H2 ⊂ G = G1 ∪G2

in the sense that there is an invertible n × n bimatrix S = S1 ∪ S2 with entries in K such
that Nx = SMxS−1 i.e. N1

x1
∪ N2

x2
= S1 M1

x1
(S1)−1 ∪ S2 M2

x2
(S2)−1 for all x = x1 ∪ x2 ⊂

G = G1 ∪ G2. It is pertinent to mention that when a different H’ is taken H 6= H ′ i.e.
H1∪H2 6= (H ′)1 ∪ (H ′)2 then we may have a different m×m bimatrix. Thus using a single S-
neutrosophic bisemigroup we have very many such bimappings depending on each H ⊂ G. On
the other hand one can begin with a bimapping x 7→ Mx from H into invertible n×n matrices
with entries in K i.e. x1 7→ M1

x1
∪ x2 7→ M2

x2
from H = H1 ∪ H2 into invertible n × n

matrices. Thus now one can reformulate the condition for two Smarandache birepresentations
to be biisomorphic.

If one has two birepresentation of a fixed subbigroup H = H1 ∪ H2, H a subbigroup
of the S-neutrosophic bisemigroup G on two bivector spaces V and W (V = V 1 ∪ V 2 and
W = W 1 ∪ W 2) with the same scalar field K then these two Smarandache birepresentations
are Smarandache biisomorphic if and only if the associated bimappings from H = H1 ∪H2 to
invertible bimatrices as above, for any choice of basis on V = V 1 ∪ V 2 and W = W 1 ∪W 2 are
bisimilar with the bisimilarity bimatrix S having entries in K.

Now we proceed on to give a brief description of Smarandache biirreducible birepresen-
tation, Smarandache biirreducible birepresentation and Smarandache bistable representation
and so on. Now we proceed on to define Smarandache bireducibility of finite S-neutrosophic
bisemigroups.

Let G be a finite neutrosophic S-bisemigroup when we say G is a S-finite bisemigroup or
finite S-bisemigroup we only mean all proper subset in G which are subbigroups in G = G1∪G2

are of finite order VH be a bivector space over a field K and ρH a birepresentation of H on VH .
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Suppose that there is a bivector space WH of VH such that (ρH)x WH ⊆ WH here WH =
W 1

H1
∪ W 2

H2
where H = H1 ∪H2 and VH = V 1

H1
∪ V 2

H2
, H = H1 ∪H2, ρH = ρ1H1 ∪ ρ2H2

and x = x1 ∪ x2 ∈ H i.e. x1 ∈ H1 and x2 ∈ H2.
This is equivalent to saying that

(ρH)x (WH) = WH

i.e. [(
ρ1H1

)
x1
∪ (

ρ2H2

)
x2

] [
W 1

H1
∪ W 2

H2

]
= W 1

H1
∪ W 2

H2
,

for all x = x1 ∪ x2 ∈ H1 ∪H2 as (ρH)x−1 = [(ρH)x]−1,
i.e.

(
ρ1H1 ∪ ρ2H2

)
(x1 ∪ x2)

−1 =
[(

ρ1H1 ∪ ρ2H2

)
(x1 ∪ x2)

]−1

,

(
ρ1H1

)
x−1
1
∪ (

ρ2H2

)
x−1
2

=
[(

ρ1H1

)
x1

]−1

∪
[(

ρ2H2

)
x2

]−1

.

We say WH = W 1
H1

∪ W 2
H2

is Smarandache biinvariant or Smarandache bistable under the
birepresentation ρH = ρ1H1 ∪ ρ2H2.

We say the bisubspace ZH = Z1
H1

∪ Z2
H2

of VH = V 1
H1

∪ V 2
H2

to be a Smarandache
bicomplement of a subbispace

WH = W 1
H1

∪ W 2
H2

if WH ∩ ZH = {0}
and

WH + ZH = VH i.e.
(
W 1

H1
∩ Z1

H1

) ∪ (
W 2

H2
∩ Z2

H2

)
= {0} ∪ {0}

and
(
W 1

H1
+ Z1

H1

) ∪ (
W 2

H2
+ Z2

H2

)
= V 1

H1
+ V 2

H2
,

here W i
Hi

+ Zi
Hi

(i = 1, 2) denotes the bispan of WH and ZH which is a subbispace of VH

consisting of bivectors of the form w + z = (w1 + z1) ∪ (w2 + z2) where w ∈ WH and z ∈ ZH .
These conditions are equivalent to saying that every bivector ν = ν1 ∪ ν2 ∈ V 1

H1
∪ V 2

H2
can

be written in an unique way as w+z = (w1 +z1)∪(w2 +z2), wi ∈ W i
Hi

and zi ∈ Zi
Hi

(i = 1, 2).
Complementary bispaces always exists because of basis for a bivector subspace of a bivector

space can be enlarged to a basis of a whole bivector space. If ZH = Z1
H1
∪ Z2

H2
and WH = W 1

H1
∪

W 2
H2

are complementary subbispaces (bisubspaces) of a bivector space VH = V 1
H1

∪ V 2
H2

then
we get a linear bimapping PH = P 1

H1
∪ P 2

H2
on VH = V 1

H1
∪ V 2

H2
on to WH = W 1

H1
∪ W 2

H2
along

ZH = Z1
H1

∪ Z2
H2

and is defined by PH(w + z)w for all w ∈ WH and z ∈ ZH . Thus IH −−PH

is the biprojection of VH on to ZH along WH where IH denotes the identity bitransformation
on VH = V 1

H1
∪ V 2

H2
.

Note. (PH)2 =
(
P 1

H1
∪ P 2

H2

)2 =
(
P 1

H1

)2 ∪ (
P 2

H2

)2 = P 1
H1

∪ P 2
H2

, when PH is a
biprojection.

Conversely, if PH is a linear bioperator on VH such that (PH)2 = PH then PH is the
biprojection of VH on to the bisubspace of VH which is the biimage of PH = P 1

H1
∪ P 2

H2
along

the subspace of VH which is the bikernel of ρH = ρ1H1 ∪ ρ2H2.
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It is important to mention here unlike usual complements using a finite bigroup we see
when we used pseudo S-neutrosophic bisemigroups. The situation is very varied. For each
proper subset H of G(H1 ∪ H2 ⊂ G1 ∪ G2) where H is a subbigroup of G we get several
important S-bicomplements and several S-biinvariant or S-bistable or S-birepresentative of
ρH = ρ1H1 ∪ ρ2H2.

Now we proceed on to define Smarandache biirreducible birepresentation. Let G be a S-
finite neutrosophic bisemigroup, VH = V 1

H1
∪ V 2

H2
be a bivector space over a field K, ρH =

ρ1H1 ∪ ρ2H2 be a birepresentation of H on VH and WH is a subbispace of VH = V 1
H1

∪ V 2
H2

which is invariant under ρH = ρ1H1 ∪ ρ2H2. Here we make an assumption that the field
K has characteristic 0 or K has positive characteristic and the number of elements in each
H = H1 ∪H2 is not divisible by the characteristic K, H1 ∪H2 ⊂ G1 ∪G2 is a S-bisemigroup.

Let us show that there is a bisubspace ZH = Z1
H1
∪ Z2

H2
of V 1

H1
∪ V 2

H2
= VH such that ZH

is a bicomplement of WH = W 1
H1

∪ W 2
H2

and ZH is also biinvariant under the birepresentation
ρH of H i.e. ρ1H1 ∪ ρ2H2 of H1 ∪ H2 on VH = V 1

H1
∪ V 2

H2
. To do this we start with

any bicomplements (ZH)o =
(
Z1

H1

)
o
∪ (

Z2
H2

)
o

of WH = W 1
H1

∪ W 2
H2

of VH = V 1
H1

∪ V 2
H2

and let (PH)o =
(
P 1

H1
∪ P 2

H2

)
o

: VH = V 1
H1

∪ V 2
H2

→ V 1
H1

∪ V 2
H2

be the biprojection of
VH = V 1

H1
∪ V 2

H2
on to W 1

H1
∪ W 2

H2
= WH along (ZH)o. Thus (PH)o =

(
P 1

H1
∪ P 2

H2

)
o

maps
V to W and (PH)ow = w for all w ∈ W .

Let m = m1 ∪ m2 denotes the number of elements in H = H1 ∪ H2 ⊂ G1 ∪ G2 i.e.
|Hi| = mi (i = 1, 2). Define a linear bimapping

PH : VH → VH

i.e.

P 1
H1

∪ P 2
H2

: V 1
H1

∪ V 2
H2
→ V 1

H1
∪ V 2

H2

by

PH = P 1
H1

∪ P 2
H2

=
1

m1

∑

x1∈H1

(
ρ1H1

)
x1
◦ (

P 1
H1

) ◦ (
ρ1H1

)−1

x1
∪ 1

m2

∑

x2∈H2

(
ρ2H2

)
x2
◦ (

P 2
H2

) ◦ (
ρ2H2

)−1

x2
,

assumption on K implies that 1
mi

(i = 1, 2) makes sense as an element of K i.e. as the
multiplicative inverse of a sum of m 1’s in K where 1 refers to the multiplicative identity
element of K. This expression defines a linear bimapping on VH = V 1

H1
∪ V 2

H2
because (ρH)′x s

and (PH)o are linear bimapping.

We actually have that PH = P 1
H1
∪ P 2

H2
bimaps VH to WH i.e. V 1

H1
∪ V 2

H2
to W 1

H1
∪ W 2

H2

and because the (PH)o =
(
P 1

H1
∪ P 2

H2

)
o

maps VH = V 1
H1
∪ V 2

H2
to WH = W 1

H1
∪ W 2

H2
, and

because the (ρH)′x s
(
=

(
ρ1

H1

)
x1
∪ (

ρ2
H2

)
x2

)
maps WH = W 1

H1
∪ W 2

H2
to W 1

H1
∪ W 2

H2
. If

w ∈ WH then

[(ρH)x]−1
w =

[(
ρ1H1

)
x1
∪ (

ρ2H2

)
x2

]−1

(w1 ∪ w2)

=
(
ρ1H1

)−1

x1
(w1) ∪ (

ρ2H2

)
x2

(w2) ∈ W 1
H1

∪ W 2
H2

,
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for all x = x1 ∪ x2 in H = H1 ∪H2 ⊂ G = G1 ∪G2 and then

(PH)o ((ρH)x)−1
ω = (PH)o

((
ρ1H1

)
x1

)−1

(w1) ∪
(
P 2

H2

)
o

((
ρ2H2

)
x2

)−1

(w2)

=
((

ρ1H1

)
x1

)−1

(w1) ∪
((

ρ2H2

)
x2

)−1

(w2).

Thus we conclude that

(PH)(w) = w i.e.
(
P 1

H1

)
(w1) = w1 ,

and (
P 2

H2

)
(w2) = w2 i.e. PH = P 1

H1
∪ P 2

H2
,

for all w = (w1 ∪ w2) in WH = W 1
H1

∪ W 2
H2

by the very definition of PH .
The definition of PH also implies that

(ρH)y ◦ PH ◦
[
(ρH)y

]−1

= PH

i.e.
(
ρ1H1

)
y1
◦ P 1

H1
◦

((
ρ1H1

)
y1

)−1

∪ (
ρ2H2

)
y2
◦ P 1

H2
◦

((
ρ2H2

)
y2

)−1

= P 1
H1

∪ P 2
H2

,

for all y ∈ H = H1 ∪H2.
The only case this does not occur is when WH = {0} i.e. W 1

H1
∪ W 2

H2
= {0} ∪ {0}.

Because PH(VH) ⊂ WH and PH(w) = w for all w ∈ WH = W 1
H1

∪ W 2
H2

. PH = P 1
H1

∪ P 2
H2

is a biprojection of VH onto WH i.e. P i
Hi

is a projection of V i
Hi

onto W i
Hi

, i = 1, 2 along
some bisubspace ZH = Z1

H1
∪ Z2

H2
of VH = V 1

H1
∪ V 2

H2
. Specifically one should take ZH =

Z1
H1

∪ Z2
H2

to be the bikernel of PH = P 1
H1

∪ P 2
H2

. It is easy to see that WH ∩ ZH = {0} i.e.
W 1

H1
∩ Z1

H1
= {0} and W 2

H2
∩ Z2

H2
= {0} since P i

Hi
(wi) = wi for all wi ∈ W i

Hi
, i = 1, 2.

On the other hand if ν = ν1 ∪ ν2 is any element of VH = V 1
H1

∪ V 2
H2

then we can write
ν = ν1 ∪ ν2 as PH (ν) = P 1

H1
(ν1) ∪ P 2

H2
(ν2) so PH(ν) + (V −−PH(ν)).

Thus ν − −PH(ν) lies in ZH , the bikernel of PH . This shows that WH and ZH satisfies
the essential bicomplement of WH in VH . The biinvariance of ZH under the birepresentation
ρH is evident.

Thus the Smarandache birepresentation ρH of H on VH is biisomorphic to the direct sum
of H on WH and ZH , that are the birestrictions of ρH to WH and ZH .

There can be smaller biinvariant bisubspaces within these biinvariant subbispaces so that
one can repeat the process for each H, H ⊂ G. We say that the subbispaces

(WH)1, (WH)2, · · · , (WH)t

of VH , i.e. (
W 1

H1
∪ W 2

H2

)
1
,

(
W 1

H1
∪ W 2

H2

)
2
, · · · ,

(
W 1

H1
∪ W 2

H2

)
t
,

of V 1
H1

∪ V 2
H2

form an Smarandache biindependent system related to each subbigroup H =
H1 ∪H2 ⊂ G = G1 ∪G2. If (WH)j 6= (0) for each j and if wj ∈ (WH)j , 1 ≤ j ≤ t and

t∑

j=1

wj =
t∑

j=1

w1
j ∪

t∑

j=1

w2
j = 0 ∪ 0,
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where wj = w1
j ∪ w2

j , w1
j ∈ W 1

H1
and w2

j ∈ W 2
H2

imply wi
j = 0(i = 1, 2; j = 1, 2, · · ·, t).

If in addition it spans (WH)1 , (WH)2, ..., (WH)t = V 1
H1

∪ V 2
H2

= VH , then every bivector

ν = ν1 ∪ ν2 on V 1
H1

∪ V 2
H2

can be written in a unique way as
t∑

j=1

uj with uj = u1
j ∪ u2

j ∈
(W 1

H1
∪ W 2

H2
) for each j.

Next we proceed on to give two applications to Smarandache Markov bichains and Smaran-
dache Leontief economic bimodels.

Suppose a physical or a mathematical system is such that at any movement it can occupy
one of a finite number of states when we view them as stochastic bioprocess or Markov bichains
we make an assumption that the system moves with time from one state to another so that a
schedule of observation times keep the states of the system at these times. But when we tackle
real world problems say even for simplicity the emotions of a person it need not fall under
the category of sad, cold, happy, angry, affectionate, disinterested, disgusting, many times the
emotions of a person may be very unpredictable depending largely on the situation, and the
mood of the person and its relation with another, so such study cannot fall under Markov
chains, for at a time more than one emotion may be in a person and also such states cannot be
included and given as next pair of observation, these changes and several feelings at least two
at a time will largely affect the very transition bimatrix

P = P1 ∪ P2 =
[
p1

ij

] ∪ [
p2

ij

]
,

with non negative entries for which each of the column sums are one and all of whose entries are
positive. This has relevance as even the policy makers are humans and their view is ultimate
and this rules the situation. Here it is still pertinent to note that all decisions are not always
possible at times certain of the views may be indeterminate at that period of time and may
change after a period of time but all our present theory have no place for the indeterminacy only
the neutrosophy gives the place for the concept of indeterminacy, based on which we have built
neutrosophic vector spaces, neutrosophic bivector spaces, then now the notion of Smarandache
-neutrosophic bivector spaces and so on.

So to overcome the problem we have indecisive situations we give negative values and
indeterminate situations we give negative values so that our transition neutrosophic bimatrices
individual columns sums do not add to one and all entries may not be positive.

Thus we call the new transition neutrosophic bimatrix which is a square bimatrix which
can have negative entries and I the indeterminate also falling in the set [−1, 1]∪{I} and whose
column sums can also be less than 1 and I as the Smarandache neutrosophic transition bimatrix.

Further the Smarandache neutrosophic probability bivector will be a bicolumn vector which
can take entries from [−1, 1] ∪ [−I, I] whose sum can lie in the biinterval [−1, 1] ∪ [−I, I]. The
Smarandache neutrosophic probability bivectors x(n) for n = 0, 1, 2, · · · are said to be the
Smarandache state neutrosophic bivectors of a Smarandache neutrosophic Markov bioprocess.
Clearly if P is a S-transition bimatrix of a Smarandache Markov bioprocess and x(n) = x

(n1)
1 ∪

x
(n2)
2 is the Smarandache state neutrosophic bivectors at the nth pair of observation then

x(n+1) 6= px(n)

i.e. x
(n+1)
1 ∪ x

(n2+1)
2 6= p1 x

(n1)
1 ∪ p2x

(n2)
2 .
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Further research in this direction is innovative and interesting.
Matrix theory has been very successful in describing the inter relation between prices

outputs and demands in an economic model. Here we just discuss some simple bimodels based
on the ideals of the Nobel laureate Massily Leontief. We have used not only bimodel structure
based on bimatrices also we have used the factor indeterminacy. So our matrices would be
only Neutrosophic bimatrices. Two types of models which we wish to discuss are the closed or
input-output model and the open or production model each of which assumes some economics
parameter which describe the inter relations between the industries in the economy under
considerations. Using neutrosophic bimatrix theory we can combine and study the effect of
price bivector. Before the basic equations of the input-output model are built we just recall the
definition of fuzzy neutrosophic bimatrix. For we need this type of matrix in our bimodel.

Definition 3. Let Mnxm = {(aij)/aij ∈ K(I)}, where K(I), is a neutrosophic field.
We call Mnxm to be the neutrosophic rectangular matrix.

Example 1. Let Q(I) = 〈Q ∪ I〉 be the neutrosophic field.

M4×3 =




0 1 I

−2 4I 0

1 −I 2

3I 1 0




,

is the neutrosophic matrix, with entries from rationals and the indeterminacy I.
We define product of two neutrosophic matrices and the product is defined as follows: let

A =


 −1 2 −I

3 I 0




2×3

and B =




I 1 2 4

1 I 0 2

5 −2 3I −I




3×4

AB =


 −6I + 2 −1 + 4I −2− 3I I

−4I 3 + I 6 12 + 2I




2×4

(we use the fact I2 = I ).
Let Mn×n = {(aij)|(aij) ∈ Q(I)},Mn×n is a neutrosophic vector space over Q and a strong

neutrosophic vector space over Q(I).
Now we proceed onto define the notion of fuzzy integral neutrosophic matrices and opera-

tions on them, for more about these refer [43].
Definition 4. Let N = [0, 1] ∪ I, where I is the indeterminacy. The m × n matrices

Mm×n = {(aij)/aij ∈ [0, 1] ∪ I} is called the fuzzy integral neutrosophic matrices. Clearly the
class of m× n matrices is contained in the class of fuzzy integral neutrosophic matrices.

Example 2. Let

A =


 I 0.1 0

0.9 1 I


,
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A is a 2× 3 integral fuzzy neutrosophic matrix.
We define operation on these matrices. An integral fuzzy neutrosophic row vector is 1× n

integral fuzzy neutrosophic matrix. Similarly an integral fuzzy neutrosophic column vector is
a m× 1 integral fuzzy neutrosophic matrix.

Example 3. A = (0.1, 0.3, 1, 0, 0, 0.7, I, 0.002, 0.01, I, 0.12) is a integral row vector or a
1× 11, integral fuzzy neutrosophic matrix.

Example 4. B = (1, 0.2, 0.111, I, 0.32, 0.001, I, 0, 1)T is an integral neutrosophic column
vector or B is a 9× 1 integral fuzzy neutrosophic matrix.

We would be using the concept of fuzzy neutrosophic column or row vector in our study.
Definition 5. Let P = (pij) be a m×n integral fuzzy neutrosophic matrix and Q = (qij)

be a n×p integral fuzzy neutrosophic matrix. The composition map P •Q is defined by R = (rij)
which is a m× p matrix where rij = max

k
min(pikqkj) with the assumption max(pij , I) = I and

min(pij , I) = I where pij ∈ [0, 1]. min(0, I) = 0 and max(1, I) = 1.
Example 5. Let

P =




0.3 I 1

0 0.9 0.2

0.7 0 0.4


, Q = (0.1, I, 0)T

be two integral fuzzy neutrosophic matrices.

P • Q =




0.3 I 1

0 0.9 0.2

0.7 0 0.4


 •




0.1

I

0


 = (I, I, 0.1).

Example 6. Let

P =




0 I

0.3 1

0.8 0.4


 and Q =


 0.1 0.2 1 0 I

0 0.9 0.2 1 0


.

One can define the max-min operation for any pair of integral fuzzy neutrosophic matrices
with compatible operation.

Now we proceed onto define the notion of fuzzy neutrosophic matrices.
Let Ns = [0, 1] ∪ nI/n ∈ (0, 1]}, we call the set Ns to be the fuzzy neutrosophic set.
Definition 6. Let Ns be the fuzzy neutrosophic set. Mn×m = {(aij)/aij ∈ Ns}, we call

the matrices with entries from Ns to be the fuzzy neutrosophic matrices.
Example 7. Let Ns = [0, 1] ∪ {nI/n ∈ (0, 1]} be the set

P =




0 0.2I 0.31 I

I 0.01 0.7I 0

0.31I 0.53I 1 0.1


 .
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P is a 3×4 fuzzy neutrosophic matrix.
Example 8. Let Ns = [0, 1] ∪ {nI/n ∈ (0, 1]} be the fuzzy neutrosophic matrix.

A = [0, 0.12I, I, 1, 0.31] is the fuzzy neutrosophic row vector:

B =




0.5I

0.11

I

0

−1




,

is the fuzzy neutrosophic column vector.
Now we proceed on to define operations on these fuzzy neutrosophic matrices.
Let M = (mij) and N = (nij) be two m× n and n× p fuzzy neutrosophic matrices.

M •N = R = (rij)

where the entries in the fuzzy neutrosophic matrices are fuzzy indeterminates i.e. the indeter-
minates have degrees from 0 to 1 i.e. even if some factor is an indeterminate we try to give
it a degree to which it is indeterminate for instance 0.9Idenotes the indeterminacy rate; it is
high where as 0.01Idenotes the low indeterminacy rate. Thus neutrosophic matrices have only
the notion of degrees of indeterminacy. Any other type of operations can be defined on the
neutrosophic matrices and fuzzy neutrosophic matrices. The notion of these matrices have been
used to define neutrosophic relational equations and fuzzy neutrosophic relational equations.

Here we give define the notion of neutrosophic bimatrix and illustrate them with examples.
Also we define fuzzy neutrosophic matrices.

Definition 7. Let A = A1∪A2, where A1 and A2 are two distinct neutrosophic matrices
with entries from a neutrosophic field. Then A = A1 ∪A2 is called the neutrosophic bimatrix.

It is important to note the following:
(1) If both A1 and A2 are neutrosophic matrices we call A a neutrosophic bimatrix.
(2) If only one of A1 or A2 is a neutrosophic matrix and other is not a neutrosophic matrix

then we all A = A1 ∪ A2 as the semi neutrosophic bimatrix. (It is clear all neutrosophic
bimatrices are trivially semi neutrosophic bimatrices).

It both A1 and A2 are m × n neutrosophic matrices then we call A = A1 ∪ A2 a m × n

neutrosophic bimatrix or a rectangular neutrosophic bimatrix.
If A = A1 ∪ A2 be such that A1 and A2 are both n × n neutrosophic matrices then we

call A = A1 ∪ A2 a square or a n × n neutrosophic bimatrix. If in the neutrosophic bimatrix
A = A1 ∪ A2 both A1 and A2 are square matrices but of different order say A1 is a n × n

matrix and A2 a s× s matrix then we call A = A1 ∪A2 a mixed neutrosophic square bimatrix.
(Similarly one can define mixed square semi neutrosophic bimatrix).

Likewise in A = A1 ∪ A2, if both A1 and A2 are rectangular matrices say A1 is a m × n

matrix and A2 is a p × q matrix then we call A = A1 ∪ A2 a mixed neutrosophic rectangular
bimatrix. (If A = A1∪A2 is a semi neutrosophic bimatrix then we call A the mixed rectangular
semi neutrosophic bimatrix).



72 W.B.Vasantha Kandasamy, M.Khoshnevisan and K.Ilanthenral No. 4

Just for the sake of clarity we give some illustration.
Notation. We denote a neutrosophic bimatrix by AN = A1 ∪A2.
Example 9. Let

AN =




0 I 0

1 2 −1

3 2 I


 ∪




2 I 1

I 0 I

1 1 2


,

AN is the 3× 3 square neutrosophic bimatrix.
At times one may be interested to study the problem at hand (i.e. the present situation)

and a situation at the rth time period the predicted model.
All notion and concept at all times is not determinable. For at time a situation may

exist for a industry that it cannot say the monetary value of the output of the ith industry
needed to satisfy the outside demand at one time, this notion may become an indeterminate
(For instance with the advent of globalization the electronic goods manufacturing industries are
facing a problem for in the Indian serenio when an exported goods is sold at a cheaper rate than
manufactured Indian goods will not be sold for every one will prefer only an exported good, so
in situation like this the industry faces only a indeterminacy for it cannot fully say anything
about the movements of the manufactured goods in turn this will affect the σij . σij may also
tend to become an indeterminate. So to study such situation simultaneously the neutrosophic
bimatrix would be ideal we may have the newly redefined production vector which we choose
to call as Smarandache neutrosophic production bivector which will have its values taken from
+ve value or –ve value or an indeterminacy.

So Smarandache neutrosophic Leontief open model is got by permitting.

x ≥ 0, d ≥ 0, c ≥ 0

x ≤ 0, d ≤ 0, c ≤ 0

and x can be I, d can take any value and c can be a neutrosophic bimatrix. We can say (1 −
c)−1 ≥ 0 productive (1− c)−1 < 0 non productive or not up to satisfaction and (1− c−1) = nI,
I the indeterminacy i.e. the productivity cannot be determined i.e. one cannot say productive
or non productive but cannot be determined. c = c1 ∪ c2 is the consumption neutrosophic
bimatrix.

c1 at time of study and c2 after a stipulated time period. x, d, c can be greater than or
equal to zero less than zero or can be an indeterminate.

x =




x1
1

...

x1
k


 ∪




x2
1

...

x2
k


,

production neutrosophic bivector at the times t1 and t2 the demand neutrosophic bivector
d = d1 ∪ d2
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d =




d1
1

...

d1
k


 ∪




d2
1

...

d2
k


,

at time t1 and t2 respectively. Consumption neutrosophic bimatrix c = c1 ∪ c2

c1 =




σ1
11 · · · σ1

1k

σ1
21 · · · σ1

2k

...

σ1
k1 · · · σ1

kk




, c2 =




σ2
11 · · · σ2

1k

σ2
21 · · · σ2

2k

...

σ2
k1 · · · σ2

kk




at times t1 and t2 respectively.

σi1 x1 + σ12 x2 + ... + σik xk

=
(
σ1

i1 x1
1 + σ1

i2 x1
2 + ... + σ1

ik x1
k

) ∪ (
σ2

i1 x2
1 + σ2

i2 x2
2 + ... + σ2

ik x2
k

)

is the value of the output of the ith industry needed by all k industries at the time periods t1

and t2 to produce a total output specified by the production neutrosophic bivector x = x1∪x2.
Consumption neutrosophic bimatrix c is such that; production if (1−c)−1 exists and (1−c)−1 ≥
0, i.e. c = c1 ∪ c2 and (1 − c1)−1 ∪ (1 − c2)−1 exists and each of (1 − c1)−1 and (1 − c2)−1 is
greater than or equal to zero. A consumption neutrosophic bimatrix c is productive if and only
if there is some production bivector x ≥ 0 such that

x > cx i.e. x1 ∪ x2 > c1x1 ∪ c2x2.

A consumption bimatrix c is productive if each of its birow sum is less than one. A
consumption bimatrix c is productive if each of its bicolumn sums is less the one. Non productive
if bivector x < 0 such that x < cx.

Now quasi productive if one of x1 ≥ 0 and x1 > c1x1 or x2 ≥ 0 and x1 > c1x1.
Now production is indeterminate if x is indeterminate x and cx are indeterminates or x is

indeterminate and c x is determinate. Production is quasi indeterminate if at t1 or t2, xi ≥ 0
and xi > cixi are indeterminates quasi non productive and indeterminate if one of xi < 0,
cixi < 0 and one of xi and Iixi are indeterminate. Quasi production if one of cixi > 0 and
xi > 0 and xi < 0 and Iixi < 0. Thus 6 possibilities can occur at anytime of study say at times
t1 and t2 for it is but very natural as in any industrial problem the occurrences of any factor
like demand or production is very much dependent on the people and the government policy
and other external factors.
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Abstract Superabundant semigroups with semilattice of idempotents are generalizations

of inverse semigroups. This paper proves that the translational hull of such kind of semigroups

is also of the same type.
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§1. Introduction

A mapping λ which maps a semigroup S into itself is called a left translation of S if
λ(ab) = (λa)b, for all a, b ∈ S; a mapping ρ which maps S into itself is called a right translation
of S if (ab)ρ = a(bρ), for all a, b ∈ S. A left translation λ and a right translation ρ of
the semigroup S are linked if a(λb) = (aρ)b, for all a, b ∈ S. In this case, we call the pair
of translations (λ, ρ) a bitranslation of S. The set Λ(S) of all left translations and the set
P (S) of all right translations of the semigroup S form the semigroups under the composition of
mappings. By the translational hull of a semigroup S, we mean a subsemigroup Ω(S) consisting
of all bitranslations (λ, ρ) of Λ(S)×P (S). The concept of translational hull of a semigroup was
first introduced by M.Petrich in 1970. Later on, J.E.Ault [1] studied the translational hull of an
inverse semigroup in 1973. Recently, Guo, Shum and Ren, Shum have studied the translational
hull of type-A semigroups [9] and strongly right or left adequate semigroups [6], respectively.

On a semigroup S the relation L∗ is defined by (a, b) ∈ L∗ if and only if the elements
a, b of S are L-related in some oversemigroup of S. The relation R∗ is defined dually. The
intersection of the relations L∗ and R∗ is denoted by H∗. A semigroup S is called abundant if
each L∗-class and each R∗-class of S contains an idempotent [1]. A semigroup in which each
H∗-class contains an idempotent is called superabundant. It is easy to see that a superabundant
semigroup is a natural generalization of a completely regular semigroup and a superabundant
semigroup with semilattice of idempotents is the analogue of an inverse semigroup. In this
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paper we will consider the translational hull of superabundant semigroups with semilattice of
idempotents and show that the translational hull of this kind of semigroups is of the same type.

§2. The translational hull

Lemma 2.1. [1] Let S be a semigroup and a, b ∈ S. Then the following statements hold:

(i) (a, b) ∈ L∗, if and only if ax = ay ⇔ bx = by, for any x, y ∈ S1;

(ii) for any idempotent e, (e, a) ∈ L∗, if and only if ae = a and ax = ay ⇒ ex = ey, for any
x, y ∈ S1.

The dual of Lemma 2.1 also hold.
Suppose that S is a superabundant semigroup with semilattice of idempotents. It is easy

to verify that every H∗-class of S contains a unique idempotent, denoted the idempotent in H∗
a

containing a of S by a∗.
Lemma 2.2. Let S be a superabundant semigroup with semilattice of idempotents.

Then every L∗-class and every R∗-class of S has a unique idempotent.
Proof. Suppose that aL∗b for any a, b ∈ S. Clearly, a∗L∗aL∗bL∗b∗. Since a∗ and b∗ are

both idempotents, we immediately have b∗ = b∗a∗ and a∗ = a∗b∗ and hence b∗ = b∗a∗ = a∗b∗ =
a∗ by hypothesis. This shows that every L∗-class of S contains a unique idempotent. Similarly,
every R∗-class of S has a unique idempotent.

Lemma 2.3. Let S be a superabundant semigroup with semilattice of idempotents.
Then for any a, b ∈ S, the following statements hold:

(i) a∗a = a = aa∗;

(ii) (a∗b∗)∗ = a∗b∗;

(iii) (ab)∗ = a∗b∗.

Proof. (i) and (ii)are straightforward from hypothesis.
(iii) Suppose that a, b ∈ S. Clearly, bR∗b∗. Since R∗ is a left congruence on S, we

have that abR∗ab∗. By Lemma 2.2, since every R∗-class contains a unique idempotent, we
obtain that (ab)∗ = (ab∗)∗. Similarly, since aL∗a∗ and L∗ is a right congruence, we also have
(ab∗)∗ = (a∗b∗)∗ = a∗b∗. Thus (ab)∗ = a∗b∗.

Lemma 2.4. Let S be a superabundant semigroup with semilattice of idempotents.
Then the following statements hold:

(i) if λ1 and λ2 are left translations of S, then λ1 = λ2 if and only if λ1e = λ2e for any e ∈ E;

(ii) if ρ1 and ρ2 are right translations of S, then ρ1 = ρ2 if and only if eρ1 = eρ2 for any
e ∈ E.

Proof. We only need to show that (i) since the proof of (ii) is similar. The necessity part
of (i) is clear. We now prove the sufficiency of (i). For any a in S, it is obvious that a∗a = a.

We have that λ1a = λ1(a∗a) = (λ1a
∗)a = (λ2a

∗)a = λ2(a∗a) = λ2a and hence λ1 = λ2.
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Recall that a semigroup S is said to be an idempotent balanced semigroup [6] if for any
a ∈ S, there exist idempotents e and f such that a = ea = af . It is clear from Lemma 2.3 that
a superabundant semigroup S is an idempotent balanced semigroup.

Lemma 2.5. [6] Let S be an idempotent balanced semigroup. If (λi, ρi) ∈ Ω(S)(i = 1, 2),
then the following statements are equivalent:

(i) (λ1, ρ1) = (λ2, ρ2);

(ii) ρ1 = ρ2;

(iii) λ1 = λ2.

We always suppose below that S is a superabundant semigroup with semilattice of idem-
potents and suppose (λ, ρ) ∈ Ω(S). For any a ∈ S, define λ∗, ρ∗ which mapping S into itself by
the following rule that

λ∗a = (λa∗)∗a, aρ∗ = a(λa∗)∗. (1)

Lemma 2.6. Let S be a given semigroup. Then for any e in E, we have

(i) eρ∗ = λ∗e and λ∗e ∈ E;

(ii) λ∗e = (λe)∗, eρ∗ = (eρ)∗.

Proof. (i) Suppose that e is an idempotent of S. Then eρ∗ = e(λe)∗ = (λe)∗e = λ∗e, and

(λ∗e)2 = (λe)∗e · (λe)∗e = (λe)∗(λe)∗ee = (λe)∗e = λ∗e.

Thus, λ∗e is idempotent.
(ii) Since L∗ is a left congruence on S and (λe)∗L∗λe, we have (λe)∗eL∗λe, that is, λ∗eL∗λe.

On the other hand, since λ∗e is idempotent and every L∗-class has a unique idempotent, we
get λ∗e = (λe)∗. Similarly, we can also prove eρ∗ = (eρ)∗.

Lemma 2.7. For (λ, ρ) ∈ Ω(S), (λ∗, ρ∗) defined above is an element of EΩ(S).
Proof. (1) We first show that λ∗ is a left translation of S. Suppose that a, b ∈ S. Then,

by Lemma 2.3, we have

λ∗(ab) = (λ(ab)∗)∗ab = (λa∗b∗)∗ab

= (λa∗(a∗b∗))∗ab = [(λa∗)(ab)∗]∗ab

= (λa∗)∗(ab)∗ab = (λa∗)∗ab

= (λ∗a)b.

(2) To see that ρ∗ is a right translation of S, we let a, b ∈ S. It is follows from Lemma 2.3
that

(ab)ρ∗ = ab(λ(ab)∗)∗ = ab(λa∗b∗)∗

= ab(λ(a∗b∗)b∗)∗ = ab[λ(ab)∗b∗]∗

= ab[(λb∗)(ab)∗]∗ = ab(λb∗)∗(ab)∗

= (ab)(ab)∗(λb∗)∗ = ab(λb∗)∗

= a(bρ∗).
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This completed the proof.
(3) Next, we want to prove that λ∗ and ρ∗ are also linked. For any a, b ∈ S, by Lemma 2.6

(i) and (2) above, we have

a(λ∗b) = a(λ∗b∗)b = a(b∗ρ∗)b

= aa∗(b∗ρ∗)b = a(a∗b∗)ρ∗b

= a(b∗a∗)ρ∗b = ab∗(a∗ρ∗)b

= a(a∗ρ∗)b∗b = (aρ∗)b.

Combining with these observations above, we have shown that (λ∗, ρ∗) ∈ Ω(S).
(4) For any e ∈ E(S), e(ρ∗)2 = e(eρ∗)ρ∗ = (eρ∗)(eρ∗) = eρ∗, by Lemma 2.5, (λ∗, ρ∗) =

(λ∗, ρ∗)2. So, (λ∗, ρ∗) ∈ EΩ(S).
Lemma 2.8. (λ∗, ρ∗)H∗(λ, ρ).
Proof. (1) In order to prove that (λ∗, ρ∗)L∗(λ, ρ), we first show that (λ, ρ)(λ∗, ρ∗) = (λ, ρ),

that is (λλ∗, ρρ∗) = (λ, ρ). By Lemma 2.5, we only need to show that λλ∗ = λ. Taking e ∈ E,
we have

λλ∗e = λ(λ∗e) = λ(eρ∗)

= λ[e(eρ∗)] = (λe)(eρ∗)

= (λe)(λ∗e) = (λe)(λe)∗ = λe.

This shows by Lemma 2.4 that λ = λλ∗ and hence, by Lemma 2.5, (λ, ρ)(λ∗, ρ∗) = (λ, ρ).
Now we let (λ1, ρ1), (λ2, ρ2) ∈ Ω(S) and (λ, ρ)(λ1, ρ1) = (λ, ρ)(λ2, ρ2). Clearly, ρρ1 = ρρ2.

Then (λe)∗ρρ1 = (λe)∗ρρ2 for any e in E. Since (λe)∗ρL∗[(λe)∗ρ]∗, we have [(λe)∗ρ]∗ρ1 =
[(λe)∗ρ]∗ρ2 by Lemma 2.1. Notice that [(λe)∗ρ]e = (λe)∗(λe) = λe, we have that e[(λe)∗ρ]∗ =
[(λe)∗ρ]∗e = (λe)∗. Thus, we can deduce that (λe)∗ρ1 = (λe)∗ρ2. By Lemma 2.6, we immedi-
ately have

eρ∗ρ1 = (eρ∗)ρ1 = (λ∗e)ρ1 = (λ∗e)ρ2 = eρ∗ρ2.

This shows that ρ∗ρ1 = ρ∗ρ2 from Lemma 2.4. Again, using Lemma 2.5, we have that
(λ∗, ρ∗)(λ1, ρ1) = (λ∗, ρ∗)(λ2, ρ2). This implies that (λ, ρ)L∗(λ∗, ρ∗) from Lemma 2.1.

(2) To prove that (λ∗, ρ∗)R∗(λ, ρ), we first prove that (λ∗, ρ∗)(λ, ρ) = (λ, ρ). By Lemma
2.5, we only need to show that eρ∗ρ = eρ for any e ∈ E. It follows from Lemma 2.6 that

eρ∗ρ = λ∗eρ = (λ∗e)(eρ)

= (eρ∗)eρ = (eρ)∗eρ = eρ.

This implies that ρ = ρ∗ρ. Again by Lemma 2.5, we have (λ∗, ρ∗)(λ, ρ) = (λ, ρ).
Next, for any (λ1, ρ1), (λ2, ρ2) ∈ Ω(S), we suppose that (λ1, ρ1)(λ, ρ) = (λ2, ρ2)(λ, ρ).

Clearly, λ1λ = λ2λ and hence λ1λe = λ2λe, for any e in E. Since λeR∗(λe)∗ and [λ1(λe)∗](λe) =
[λ2(λe)∗](λe), by the dual of Lemma 2.1, we have that [λ1(λe)∗](λe)∗ = [λ2(λe)∗](λe)∗. Thus,
λ1(λe)∗ = λ2(λe)∗ and

λ1λ
∗e = λ1(λ∗e) = λ1(λe)∗ = λ2(λe)∗ = λ2λ

∗e.
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Consequently, λ1λ
∗ = λ2λ

∗. Again using Lemma 2.5, we immediately have that (λ1, ρ1)(λ∗, ρ∗) =
(λ2, ρ2)(λ∗, ρ∗). Hence (λ, ρ)R∗(λ∗, ρ∗) from the dual of Lemma 2.1.

Thus, we have completed the proof of (λ∗, ρ∗)H∗(λ, ρ).
Lemma 2.9. Let

ΨΩ(S) = {(λ, ρ) ∈ Ω(S)|(∃(λ̂, ρ̂) ∈ Ω(S))(∀a ∈ S)λa = (λ̂a∗)∗a, aρ = a(λ̂a∗)∗}.

Then ΨΩ(S) is the set of all idempotents of Ω(S), that is, ΨΩ(S) = EΩ(S).
Proof. “⊆”. Let (λ, ρ) ∈ ΨΩ(S), then there exists (λ̂, ρ̂) ∈ Ω(S) such that λa = (λ̂a∗)∗a

and aρ = a(λ̂a∗)∗ for any a ∈ S. By equation 2.1, we know λ = λ̂∗, ρ = ρ̂∗, and then from
Lemma 2.7 we easily get ΨΩ(S) ⊆ EΩ(S).

“⊇”. Let (λ, ρ) ∈ EΩ(S), and (λ̂, ρ̂) ∈ H∗(λ,ρ). Then we can get (λ̂∗, ρ̂∗) which satisfies
λ̂∗a = (λ̂a∗)∗a and aρ̂∗ = a(λ̂a∗)∗. By Lemma 2.7 and Lemma 2.8 we know (λ̂∗, ρ̂∗) ∈ EΩ(S)

and (λ̂∗, ρ̂∗)H∗(λ̂, ρ̂). So(λ̂∗, ρ̂∗)H∗(λ, ρ). That is (λ̂∗, ρ̂∗)L∗(λ, ρ) and (λ̂∗, ρ̂∗)R∗(λ, ρ). From
Lemma 2.1 and its dual we get (λ̂∗, ρ̂∗)(λ, ρ) = (λ̂∗, ρ̂∗) and (λ̂∗, ρ̂∗)(λ, ρ) = (λ, ρ), so (λ̂∗, ρ̂∗) =
(λ, ρ). This show that for (λ, ρ) ∈ EΩ(S), there exists (λ̂, ρ̂) such that λa = λ̂∗a = (λ̂a∗)∗a and
aρ = aρ̂∗ = a(λ̂a∗)∗. Hence (λ, ρ) ∈ ΨΩ(S), and then ΨΩ(S) ⊇ EΩ(S).

Summarizing the above Lemma 2.7-2.9, we have proved that Ω(S) is a superabundant
semigroup.

Now we can obtain the following main theorem of this paper as follows:
Theorem. If S is superabundant semigroup with semilattice of idempotents. Then Ω(S)

is still of the same type.
Proof. By using Lemma 2.7, Lemma 2.8 and Lemma 2.9, we immediately know Ω(S) is

a superabundant semigroup. It remains to show that idempotents of Ω(S) form a semilattice.
Suppose that (λ∗, ρ∗) and (λ

′
, ρ
′
) in EΩ(S) and e ∈ E. Since λ∗λ

′
e = λ∗(λ

′
e)e = λ∗e(λ

′
e), by

Lemma 2.6, we know that λ∗e and λ
′
e are idempotent. Thus,

λ∗e(λ
′
e) = (λ

′
e)(λ∗e) = λ

′
e(λ∗e) = λ

′
(λ∗e)e = λ

′
λ∗e,

This implies that λ∗λ
′

= λ
′
λ∗ by Lemma 2.4 and hence, by Lemma 2.5, (λ∗, ρ∗)(λ

′
, ρ
′
) =

(λ
′
, ρ
′
)(λ∗, ρ∗). This shows that all idempotents of EΩ(S) commute and so the proof of theorem

is completed.
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It is not very common for a young PhD aspirant to select a topic for his dissertation that
makes exploratory forays into a fledgling science — one that is still in the process of finding
feet within the ramparts of academia. It would be considered a highly risky venture to say the
least given that through his dissertation the PhD aspirant would need to not only convince his
examiners on the merit of his own research on the topic but also present a strong case on behalf
of the topic itself.

Sukanto Bhattacharya’s doctoral thesis entitled“Utility, Rationality and Beyond — From
Behavioral Finance to Informational Finance”not only succeeded in earning him a PhD degree
but also went on to arguably become recognized as the first comprehensive published work of
its kind on the application of neutrosophic logic in theoretical finance.

Bhattacharya postulated that when the long-term price of a market-traded derivative se-
curity (e.g. an exchange-traded option) is observed to deviate from the theoretical price; three
possibilities should be considered:

(1) The theoretical pricing model is inadequate or inaccurate, which implies that the ob-
served market price may very well be the true price of the derivative security, or

(2) A temporary upheaval has occurred in the market possibly triggered by psychological
forces like mass cognitive dissonance that has pushed the market price “out of sync”with the
theoretical price as the latter is based on the assumptions of rational economic behavior, or

(3) The nature of the deviation is indeterminate and could be either due to (1) or (2) or a
mix of both (1) and (2) or is merely a random fluctuation with no apparent causal connection.

The systematic risk associated with transactions in financial markets is termed resolvable
risk in Bhattacharya’s dissertation. Since a financial market can only be as informationally
efficient as the actual information it gets to process, if the information about the true price
of the derivative security is misconstrued (perhaps due to an inadequate pricing model), the
market cannot be expected to reconcile it just because it is operating at a certain level of
informational efficiency.

Bhattacharya’s statement that “financial markets can’t be expected to pull jack-rabbits
out of empty hats”beautifully encapsulates the neutrosophic element of market risk.
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Bhattacharya coined the term irresolvable risk to represent the perceived risk resulting from
the imprecision associated with decidedly irrational psycho-cognitive forces that subjectively
interpret information and process the same in decision-making. He demonstrated that the
neutrosophic probability of the true price of the derivative security being given by any theoretical
pricing model is obtainable as NP (H

⋂
MC); where NP stands for neutrosophic probability,

H = {p : p is the true price determined by the theoretical pricing model }, M = {p : p is
the true option price determined by the prevailing market price } and the C superscript is the
complement operator.

Bhattacharya has since made significant contributions, either independently or collabora-
tively, to neutrosophic applications in various financial and economic problems ranging from
financial fraud detection to portfolio choice and optimization.

However, arguably perhaps Bhattacharya’s most significant contribution to the science
of neutrosophy so far is the extension of the fuzzy game paradigm to a neutrosophic game
paradigm and then successfully applying the same to model the vexing Israel-Palestine political
problem, in collaboration with Florentin Smarandache—the father of neutrosophic logic.

Although he has written a few purely abstract pieces mainly on the forms of Smarandache
geometries, Bhattacharya’s major works are highly application-oriented and stand out in their
brilliant innovation and real-world connection to business and the social sciences.

A bibliographical list of Bhattacharya’s significant published works till date on neutrosophic
applications in finance, economics and the social sciences is appended below:

[1] Bhattacharya S., Khoshnevisan M. and Smarandache F., Artificial intelligence and
responsive optimization, Xiquan, Phoenix, U.S.A. (ISBN 1-931233-77-2), 2003. (Cited by In-
ternational Statistical Institute in “Short Book Reviews”, 23(2003), No. 2, pp. 35.

[2] Bhattacharya S., Neutrosophic information fusion applied to the options market, In-
vestment Management and Financial Innovations, 2(2005), No. 1, pp. 139-145.

[3] Bhattacharya S., F. Smarandache and K. Kumar, Conditional probability of actually
detecting a financial fraud-a neutrosophic extension to Benford’s law, International Journal of
Applied Mathematics, 17(2005), No. 1, pp. 7-14.

[4] Bhattacharya S., Utility, Rationality and Beyond-From Behavioral Finance to Informa-
tional Finance, American Research Press, (ISBN 1-931233-85-3), 2005.

[5] Bhattacharya S., Smarandache F. and Khoshnevisan M., The Israel-Palestine question—
A case for application of neutrosophic game theory”, Octogon Mathematical Magazine, 14(2006),
No. 1, pp. 165-173.
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Abstract Let n be any positive integer, the famous Smarandache function S(n) is defined

by S(n) = min{m : n|m!}. The main purpose of this paper is using the elementary method

to prove that for some special positive integers k and m, the equation

mS(m1 + m2 + · · ·+ mk) = S(m1) + S(m2) + · · ·+ S(mk)

has infinity positive integer solutions (m1, m2, · · · , mk).

Keywords Vinogradov’s three-primes theorem, equation, solutions

§1. Introduction

For any positive integer n, the famous Smarandache function S(n) is defined as follows:

S(n) = min{m : n|m!}.

For example, S(1) = 1, S(2) = 2, S(3) = 3, S(4) = 4, S(5) = 5, S(6) = 3, S(7) = 7, S(8) = 4,
S(9) = 6, · · · . About this function, many people had studied its properties, see [1-4]. Let p(n)
denotes the greatest prime divisor of n, it is clear that S(n) ≥ p(n).

In fact, S(n) = p(n) for all most n, as noted by [5]. This means that the number of n ≤ x

for which S(n) 6= p(n), denoted by N(x), is o(x). Xu Zhefeng [7] studied the mean square value
for S(n)− p(n), and obtained an asymptotic formula as follows:

∑

n≤x

(S(n)− p(n))2 =
2ζ( 3

2 )x
3
2

3 ln x
+ O

(
x

3
2

ln2 x

)
.

It is easily to show that S(p) = p and S(n) < n except for the case n = 4, n = p. So there
have a closely relationship between S(n) and π(x):

π(x) = −1 +
[x]∑

n=2

[
S(n)

n

]
,

where π(x) denotes the number of primes up to x, and [x] denotes the greatest integer less than
or equal to x.

Recently, Lu Yaming [8] studied the solvability of the equation

S(m1 + m2 + · · ·+ mk) = S(m1) + S(m2) + · · ·+ S(mk),
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and proved that for each positive integer k, this equation has infinity positive integer solutions.
J. Sandor [9] obtained some inequalities involving the Smarandache function. That is, he proved
that for each k ≥ 2, there are infinitely many positive integers m1, m2, · · · , mk and n1, n2, · · · ,
nk such that

S(m1 + m2 + · · ·+ mk) > S(m1) + S(m2) + · · ·+ S(mk)

and

S(n1 + n2 + · · ·+ nk) < S(n1) + S(n2) + · · ·+ S(nk).

This paper, as note of [8] and [9], we shall prove the following main conclusion:
Theorem. If positive integers k and m satisfy one of the following three conditions:
(i) k > 2 and m ≥ 1 are both odd numbers;
(ii) k ≥ 5 is an odd number and m ≥ 2 is an even number;
(iii) any even number k > 3 and any integer m ≥ 1, then the equation

mS(m1 + m2 + · · ·+ mk) = S(m1) + S(m2) + · · ·+ S(mk)

has infinity positive integer solutions (m1,m2, · · · ,mk).
It is clear that our Theorem is a generalization of [8] and [9]. In fact, if we take m = 1,

then from our Theorem we can deduce the conclusion of [8]. If we take m > 1, then we can get
one of the two inequalities in [9].

§2. Proof of Theorem

To complete the proof of the theorem, we need the famous Vinogradov’s three-primes
theorem which was stated as follows:

Lemma 1. Let c be an odd integer large enough, then c can be expressed as a sum of
three odd primes.

Proof. (See Theorem 20.2 and 20.3 of [10]).
Lemma 2. Let odd integer k ≥ 3, then any sufficiently large odd integer n can be

expressed as a sum of k odd primes. That is,

n = p1 + p2 + · · ·+ pk,

where p1, p2, · · · , pk are primes.
Proof. The proof of this Lemma follows from Lemma 1 and the mathematical induction.
Now we use these two Lemmas to prove our Theorem. Let k ≥ 3 be an odd number, then

from Lemma 2 we know that for any fixed odd number m and every sufficiently large prime p,
there exist k primes p1, p2, · · · , pk such that

mp = p1 + p2 + · · ·+ pk.

Note that S(pi) = pi and S(mp) = p if p > m. So from the above formula we have

mS(mp) = mp = p1 + p2 + · · ·+ pk = S(p1) + S(p2) + · · ·+ S(pk).
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This means that for any odd number k > 2 and any odd number m, the theorem is correct if
we take m1 = p1, m2 = p2, · · · , mk = pk. If m ≥ 2 be an even number, then mp− 2− 3 be an
odd number. So for any odd number k ≥ 5, from the above conclusion we have

mp− 2− 3 = p1 + p2 + · · ·+ pk−2

or
mp = p1 + p2 + · · ·+ pk−2 + 2 + 3.

Taking m1 = p1, m2 = p2, · · · , mk−2 = pk−2, mk−1 = 2, mk = 3 in the theorem we may
immediately get

mS(m1 +m2 + · · ·+mk) = mS(mp) = mp = p1 +p2 + · · ·+pk = S(m1)+S(m2)+ · · ·+S(mk).

If k ≥ 4 and m are even numbers, then for every sufficiently large prime p, mp − 3 be an odd
number, so from Lemma 2 we have

mp− 3 = p1 + p2 + · · ·+ pk−1

or
mp = p1 + p2 + · · ·+ pk−1 + 3.

That is to say,

mS(m1 + m2 + · · ·+ mk) = S(m1) + S(m2) + · · ·S(mk)

with m1 = p1, m2 = p2, · · · , mk−1 = pk−1 and mk = 3.
If k ≥ 4 be an even number and m be an odd number, then we can write

mp− 2 = p1 + p2 + · · ·+ pk−1

or
mp = p1 + p2 + · · ·+ pk−1 + 2.

This means that the theorem is also true if we take m1 = p1, m2 = p2, · · · , mk−1 = pk−1 and
mk = 2.

This completes the proof of Theorem.

References

[1] C. Ashbacher, Some properties of the Smarandache-Kurepa and Smarandache-Wagstaff
function, Mathematics and Informatics Quarterly, 7(1997), pp. 114-116.

[2] A. Begay, Smarandache ceil functions, Bulletin of Pure and Applied Sciences, 16E(1997),
pp. 227-229.

[3] Mark Earris and Patrick Mitchell, Bounding the Smarandache function, Smarandache
Notions Journal, 13(2002), pp. 37-42.



86 Jing Fu No. 4

[4] Kevin Ford, The normal behavior of the Smarandache function, Smarandache Notions
Journal, 10(1999), pp. 81-86.

[5] P.Erdös, Problem 6674, American Math. Monthly, 98(1991), pp. 965.
[6] F. Smarandache, Only problems, not solutions. Xiquan Publishing House, Chicago,

1993.
[7] Xu Zhefeng, On the value distribution of the Smarandache function, Acta Mathematica

Sinica (Chinese), 49(2006), pp. 1009-1012.
[8] Lu Yaming, On the solutions of an equation involving the Smarandache function, Sci-

entia Magna, 2(2006), No.1, 76-79.
[9] J. Sándor, On certain inequalities involving the Smarandache function, Scientia Magna,

2(2006), No.3, 78-80.
[10] Pan Chengdong and Pan Chengbiao, Element of the analytic number theory, Science

Press, Beijing, 1997.



Scientia Magna
Vol. 2 (2006), No. 4, 87-90

The relationship between Sp(n) and Sp(kn)

Weiyi Zhu

College of Mathematics, Physics and Information Engineer, Zhejiang Normal University
Jinhua, Zhejiang, P.R.China

Abstract For any positive integer n, let Sp(n) denotes the smallest positive integer such
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§1. Introduction and Results

Let p be a prime and n be any positive integer. Then we define the primitive numbers
of power p (p be a prime) Sp(n) as the smallest positive integer m such that m! is divided by
pn. For example, S3(1) = 3, S3(2) = 6, S3(3) = S3(4) = 9, · · · . In problem 49 of book [1],
Professor F.Smarandache asked us to study the properties of the sequence {Sp(n)}. About this
problem, Zhang Wenpeng and Liu Duansen [3] had studied the asymptotic properties of Sp(n),
and obtained an interesting asymptotic formula for it. That is, for any fixed prime p and any
positive integer n, they proved that

Sp(n) = (p− 1)n + O

(
p

ln p
lnn

)
.

Yi Yuan [4] had studied the asymptotic property of Sp(n) in the form
1
p

∑

n≤x

|Sp(n + 1)− Sp(n)|,

and obtained the following result: for any real number x ≥ 2, let p be a prime and n be any
positive integer,

1
p

∑

n≤x

|Sp(n + 1)− Sp(n)| = x

(
1− 1

p

)
+ O

(
lnx

ln p

)
.

Xu Zhefeng [5] had studied the relationship between the Riemann zeta-function and an
infinite series involving Sp(n), and obtained some interesting identities and asymptotic formulae
for Sp(n). That is, for any prime p and complex number s with Res > 1, we have the identity:

∞∑
n=1

1
Ss

p(n)
=

ζ(s)
ps − 1

,

where ζ(s) is the Riemann zeta-function.
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And, let p be a fixed prime, then for any real number x ≥ 1 he got
∞∑

n=1
Sp(n)≤x

1
Sp(n)

=
1

p− 1

(
lnx + γ +

p ln p

p− 1

)
+ O(x−

1
2+ε),

where γ is the Euler constant, ε denotes any fixed positive number.
Chen Guohui [7] had studied the calculation problem of the special value of famous Smaran-

dache function S(n) = min{m : m ∈ N, n|m!}. That is, let p be a prime and k an integer with
1 ≤ k < p. Then for polynomial f(x) = xnk + xnk−1 + · · ·+ xn1 with nk > nk−1 > · · · > n1, we
have:

S(pf(p)) = (p− 1)f(p) + pf(1).

And, let p be a prime and k an integer with 1 ≤ k < p, for any positive integer n, we have:

S
(
pkpn

)
= k

(
φ(pn) +

1
k

)
p,

where φ(n) is the Euler function. All these two conclusions above also hold for primitive function
Sp(n) of power p.

In this paper, we shall use the elementary methods to study the relationships between
Sp(n) and Sp(kn), and get some interesting identities. That is, we shall prove the following:

Theorem. Let p be a prime. Then for any positive integers n and k with 1 ≤ n ≤ p and
1 < k < p, we have the identities:

Sp(kn) = kSp(n), if 1 < kn < p;

Sp(kn) = kSp(n)− p

[
kn

p

]
, if p < kn < p2, where [x] denotes the integer part of x.

§2. Two simple Lemmas

To complete the proof of the theorem, we need two simple lemmas which stated as following:
Lemma 1. For any prime p and any positive integer 2 ≤ l ≤ p− 1, we have:
(1) Sp(n) = np, if 1 ≤ n ≤ p;
(2) Sp(n) = (n− l + 1)p, if (l − 1)p + l − 2 < n ≤ lp + l − 1.
Proof. First we prove the case (1) of Lemma 1. From the definition of Sp(n) = min{m :

pn|m!}, we know that to prove the case (1) of Lemma 1, we only to prove that pn‖(np)!. That is,

pn|(np)! and pn+1†(np)!. According to Theorem 1.7.2 of [6] we only to prove that
∞∑

j=1

[
np

pj

]
= n.

In fact, if 1 ≤ n < p, note that
[

n

pi

]
= 0, i = 1, 2, · · · , we have

∞∑

j=1

[
np

pj

]
=

∞∑

j=1

[
n

pj−1

]
= n +

[
n

p

]
+

[
n

p2

]
+ · · · = n.

This means Sp(n) = np. If n = p, then
∞∑

j=1

[
np

pj

]
= n + 1, but pp † (p2 − 1)! and pp|p2!. This

prove the case (1) of Lemma 1. Now we prove the case (2) of Lemma 1. Using the same method
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of proving the case (1) of Lemma 1 we can deduce that if (l− 1)p + l− 2 < n ≤ lp + l− 1, then
[
n− l + 1

p

]
= l − 1,

[
n− l + 1

pi

]
= 0, i = 2, 3, · · · .

So we have
∞∑

j=1

[
(n− l + 1)p

pj

]
=

∞∑

j=1

[
n− l + 1

pj−1

]

= n− l + 1 +
[
n− l + 1

p

]
+

[
n− l + 1

p2

]
+ · · ·

= n− l + 1 + l − 1 = n.

From Theorem 1.7.2 of reference [6] we know that if (l − 1)p + l − 2 < n ≤ lp + l − 1, then
pn‖((n− l + 1)p)!. That is, Sp(n) = (n− l + 1)p. This proves Lemma 1.

Lemma 2. For any prime p, we have the identity Sp(n) = (n−p+1)p, if p2−2 < n ≤ p2.
Proof. It is similar to Lemma 1, we only need to prove pn‖((n − p + 1)p)!. Note that if

p2 − 2 < n ≤ p2, then
[
n− p + 1

p

]
= p− 1,

[
n− p + 1

pi

]
= 0, i = 2, 3, · · · . So we have

∞∑

j=1

[
(n− p + 1)p

pj

]
=

∞∑

j=1

[
n− p + 1

pj−1

]

= n− p + 1 +
[
n− p + 1

p

]
+

[
n− p + 1

p2

]
+ · · ·

= n− p + 1 + p− 1 = n.

From Theorem 1.7.2 of [6] we know that if p2 − 2 < n ≤ p2, then pn‖((n − p + 1)p)!. That is,
Sp(n) = (n− p + 1)p. This completes the proof of Lemma 2.

§3. Proof of Theorem

In this section, we shall use above Lemmas to complete the proof of our theorem.
Since 1 ≤ n ≤ p and 1 < k < p, therefore we deduce 1 < kn < p2. We can divide 1 < kn <

p2 into three interval 1 < kn < p, (m− 1)p + m− 2 < kn ≤ mp + m− 1 (m = 2, 3, · · · , p− 1)
and p2 − 2 < kn ≤ p2. Here, we discuss above three interval of kn respectively:

i) If 1 < kn < p, from the case (1) of Lemma 1 we have

Sp(kn) = knp = kSp(n).

ii) If (m − 1)p + m − 2 < kn ≤ mp + m − 1 (m = 2, 3, · · · , p − 1), then from the case (2)
of Lemma 1 we have

Sp(kn) = (kn−m + 1)p = knp− (m− 1)p = kSp(n)− (m− 1)p.

In fact, note that if (m − 1)p + m − 2 < kn < mp + m − 1 (m = 2, 3, · · · , p − 1), then

m − 1 +
[
m− 2

p

]
<

[
kn

p

]
< m +

[
m− 1

p

]
. Hence,

[
kn

p

]
= m − 1. If kn = mp + m − 1,



90 Weiyi Zhu No. 4

then
[
kn

p

]
= m, but pmp+m−1 † ((mp + m− 1)p− 1)! and pmp+m−1|((mp + m− 1)p)!. So we

immediately get

Sp(kn) = kSp(n)− p

[
kn

p

]
.

iii) If p2 − 2 < kn ≤ p2, from Lemma 2 we have

Sp(kn) = (kn− p + 1)p = knp− (p− 1)p.

Similarly, note that if p2 − 2 < kn ≤ p2, then p−
[
2
p

]
<

[
kn

p

]
≤ p. That is,

[
kn

p

]
= p− 1. So

we may immediately get

Sp(kn) = kSp(n)− p

[
kn

p

]
.

This completes the proof of our Theorem.

References

[1] F. Smarandache, Only problems, not solutions, Chicago, Xiquan Publishing House,
1993.

[2] Tom M. Apostol, Introduction to analytic number theory, New York, Springer-Verlag,
1976.

[3] Zhang Wenpeng and Liu Duansen, On the primitive numbers of power p and its asymp-
totic property, Smarandache Notions Journal, 13(2002), pp. 173-175.

[4] Yi Yuan, On the primitive numbers of power p and its asymptotic property, Scientia
Magna, 1(2005), No. 1, pp. 175-177.

[5] Xu Zhefeng, Some arithmetical properties of primitive numbers of power p, Scientia
Magna, 2(2006), No. 1, pp. 9-12.

[6] Pan Chengdong and Pan Chengbiao, The elementary number theory, Beijing University
Press, Beijing, 2003.

[7] Chen Guohui, Some exact calculating formulas for the Smarandache function, Scientia
Magna, 2(2006), No. 3, pp. 95-97.



Scientia Magna
Vol. 2 (2006), No. 4, 91-94

On the integer part of the M-th root and the
largest M-th power not exceeding N

Xiaoying Du

Department of Mathematics, Northwest University

Xi’an, Shaanxi, P.R.China

Abstract The main purpose of this paper is using the elementary methods to study the
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§1. Introduction and Results

Let m be a fixed positive integer. For any positive integer n, we define the arithmetical
function am(n) as the integer part of the m-th root of n. That is, am(n) = [n

1
m ], where [x]

denotes the greatest integer not exceeding to x. For example, a2(1) = 1, a2(2) = 1, a2(3) = 1,
a2(4) = 2, a2(5) = 2, a2(6) = 2, a2(7) = 2, a2(8) = 2, a2(9) = 3, a2(10) = 3, · · · . In [1],
Professor F. Smarandache asked us to study the properties of the sequences {ak(n)}. About
this problem, Z. H. Li [2] studied its mean value properties, and given an interesting asymptotic
formula: ∑

n≤x
n∈Ak

am(n) =
1

ζ(k)
m

m + 1
x

m+1
m + O(x),

where Ak denotes the set of all k-th power free numbers, ζ(k) is the Riemann zeta-function.
X. L. He and J. B. Guo [3] also studied the mean value properties of

∑

n≤x

a(n), and proved that

∑

n≤x

a(n) =
∑

n≤x

[x
1
k ] =

k

k + 1
x

k+1
k + O(x).

Let n be a positive integer. It is clear that there exists one and only one integer k such
that

km ≤ n < (k + 1)m.

Now we define bm(n) = km. That is, bm(n) is the largest m-th power not exceeding n. If m = 2,
then b2(1) = 1, b2(2) = 1, b2(3) = 1, b2(4) = 4, b2(5) = 4, b2(6) = 4, b2(7) = 4, b2(8) = 4,
b2(9) = 9, b2(10) = 9, · · · . In problem 40 and 41 of [1], Professor F. Smarandache asked us to
study the properties of the sequences {b2(n)} and {b3(n)}. For these problems, some people
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had studied them, and obtained many results. For example, W. P. Zhang [4] gave an useful
asymptotic formula:

∑

n≤x

d(u(n)) =
2

9π4
Ax ln3 x + Bx ln2 x + Cx lnx + Dx + O

(
x

5
6+ε

)
,

where u(n) denotes the largest cube part not exceeding n, A =
∏
p

(1− 1
(p + 1)2

), B, C and D

are constants, ε denotes any fixed positive number.
And in [5], J. F. Zheng made further studies for

∑

n≤x

d(bm(n)), and proved that

∑

n≤x

d(bm(n)) =
1

kk!

(
6

kπ2

)k−1

A0x lnk x+A1x lnk−1 x+ · · ·+Ak−1x lnx+Akx+O
(
x1− 1

2k +ε
)

,

where A0, A1,· · · Ak are constants, especially when k equals to 2, A0 = 1.
In this paper, we using the elementary methods to study the convergent properties of two

Dirichlet serieses involving am(n) and bm(n), and give some interesting identities. That is, we
shall prove the following conclusions:

Theorem 1. Let m be a fixed positive integer. Then for any real number s > 1, the

Dirichlet series f(s) =
∞∑

n=1

(−1)n

as
m(n)

is convergent and

∞∑
n=1

(−1)n

as
m(n)

=
(

1
2s−1

− 1
)

ζ(s),

where ζ(s) is the Riemann zeta-function.
Theorem 2. Let m be a fixed positive integer. Then for any real number s > 1

m , the

Dirichlet series gm(s) =
∞∑

n=1

(−1)n

bs
m(n)

is convergent and

∞∑
n=1

(−1)n

bs
m(n)

=
(

1
2ms−1

− 1
)

ζ(ms).

From our Theorems, we may immediately deduce the following:
Corollary 1. Taking s = 2 or s = 3 in Theorem 1, then we have the identities

∞∑
n=1

(−1)n

a2
m(n)

= −π2

12
and

∞∑
n=1

(−1)n

a3
m(n)

= −3
4
ζ(3).

Corollary 2. Taking m = 2 and s = 2 or m = 2 and s = 3 in Theorem 2, then we have
the identities

∞∑
n=1

(−1)n

b2
2(n)

= − 7
720

π4 and
∞∑

n=1

(−1)n

b3
2(n)

= − 31
30240

π6.

Corollary 3. Taking m = 3 and s = 2 or m = 3 and s = 3 in Theorem 2, then we have
the identities

∞∑
n=1

(−1)n

b2
3(n)

= − 31
30240

π6 and
∞∑

n=1

(−1)n

b3
3(n)

= −255
256

ζ(9).
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Corollary 4. For any positive integer s and m ≥ 2, we have

∞∑
n=1

(−1)n

bs
m(n)

=
∞∑

n=1

(−1)n

bm
s (n)

.

§2. Proof of the theorems

In this section, we shall complete the proof of our Theorems. For any positive integer n,
let am(n) = k. It is clear that there are exactly (k + 1)m − km integer n such that am(n) = k.
So we may get

f(s) =
∞∑

n=1

(−1)n

as
m(n)

=
∞∑

k=1

∞∑
n=1

am(n)=k

(−1)n

ks
,

where if k be an odd number, then
∞∑

n=1
am(n)=k

(−1)n

ks
=
−1
ks

. And if k be an even number, then

∞∑
n=1

am(n)=k

(−1)n

ks
=

1
ks

. Combining the above two cases we have

f(s) =
∞∑

t=1
k=2t

1
(2t)s

+
∞∑

t=1
k=2t−1

−1
(2t− 1)s

=
∞∑

t=1

1
(2t)s

−
( ∞∑

t=1

1
ts
−

∞∑
t=1

1
(2t)s

)

=
∞∑

t=1

2
2sts

−
∞∑

t=1

1
ts

.

From the integral criterion, we know that f(s) is convergent if s > 1. If s > 1, then

ζ(s) =
∞∑

n=1

1
ns

, so we have

f(s) =
∞∑

n=1

(−1)n

as
m(n)

=
(

1
2s−1

− 1
)

ζ(s).

This completes the proof of Theorem 1.
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Using the same method of proving Theorem 1 we have

gm(s) =
∞∑

n=1

(−1)n

bs
m(n)

=
∞∑

k=1

∞∑
n=1

bm(n)=km

(−1)n

kms

=
∞∑

t=1
k=2t

1
(2t)ms

+
∞∑

t=1
k=2t−1

−1
(2t− 1)ms

=
∞∑

t=1

2
2mstms

−
∞∑

t=1

1
tms

.

From the integral criterion, we know that gm(s) is also convergent if s > 1
m . If s > 1,

ζ(s) =
∞∑

n=1

1
ns

, so we may easily deduce

gm(s) =
∞∑

n=1

(−1)n

bs
m(n)

=
(

1
2ms−1

− 1
)

ζ(ms).

This completes the proof of Theorem 2.
From our two Theorems, and note that ζ(2) = π2

6 , ζ(4) = π4

90 , ζ(6) = π6

945 (see [6]), we
may immediately deduce Corollary 1, 2, and 3. Then, Corollary 4 can also be obtained from
Theorem 2.
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Sequence A110396 by Amarnath Murthy in the on-line encyclopedia of integer sequences

[1] is defined as
�

the 10’s complement factorial of n.
�

Let t(n) denote the difference between n

and the next power of 10. This is the ten’s complement of a number. E.g., t(27) = 73, because

100− 27 = 73. Hence the 10′s complement factorial simply becomes

tcf(n) = (10′s complement of n) ∗ (10′s complement of n − 1) · · ·

(10′s complement of 2) ∗ (10′s complement of 1).

How would the Smarandache function behave if this variation of the factorial function were

used in place of the standard factorial function? The Smarandache function S(n) is defined

as the smallest integer m such that n evenly divides m factorial. Let TS(n) be the smallest

integer m such that n divides the ( 10′s complement factorial of m.)

This new TS(n) function produces the following sequence (which is A109631 in the OEIS

[2]).

n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 · · · ,

TS(n) = 1, 2, 1, 2, 5, 2, 3, 2, 1, 5, 12, 2, 22, 3, 5, 4, 15, 2, 24, 5 · · · .

For example, TS(7) = 3, because 7 divides (10 − 3) ∗ (10 − 2) ∗ (10 − 1); and 7 does not

divide (10’s complement factorial of m) for m < 3.

Not surprisingly, the TS(n) function differs significantly from the standard Smarandache

function. Here are graphs displaying the behavior of each for the first 300 terms:
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Four Problems Concerning the New TS(n) Function

1. The Smarandache function and the ten’s complement factorial Smarandache function

have many values in common. Here are the initial solutions to S(n) = TS(n):

1, 2, 5, 10, 15, 20, 25, 30, 40, 50, 60, 75, 100, 120, 125, 128, 150, 175, 200, 225, 250, 256,

300, 350, 375, 384, 400, 450, 500, 512, 525, 600, 625, 640, 675, 700, 750, 768, · · · .

Why are most of the solutions multiples of 5 or 10? Are there infinitely many solutions?

2. After a computer search for all values of n from 1 to 1000, the only solution found for

TS(n) = TS(n + 1) is 374. We conjecture there is at least one more solution. But are there

infinitely many?

3. Let Z(n) = TS(S(n))−S(TS(n)). Is Z(n) positive infinitely often? Negative infinitely

often? The Z(n) sequence seems highly chaotic with most of its values positive. Here is a graph

of the first 500 terms:
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4. The first four solutions to TS(n) + TS(n + 1) = TS(n + 2) are 128, 186, 954, and 1462.

Are there infinitely many solutions?
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Abstract For any positive integer n, the famous F.Smarandache function S(n) is defined

as the smallest positive integer m such that n|m!. The main purpose of this paper is using

the elementary methods to study the hybrid mean value of the Smarandache function S(n)

and the Mangoldt function Λ(n), and prove an interesting hybrid mean value formula for

S(n)Λ(n).
Keywords F. Smarandache function, Mangoldt function, hybrid mean value, asymptotic

formula

§1. Introduction

For any positive integer n, the famous F.Smarandache function S(n) is defined as the
smallest positive integer m such that n|m!. That is, S(n) = min{m : n|m!, m ∈ N}. From
the definition of S(n) one can easily deduce that if n = pα1

1 pα2
2 · · · pαk

k is the factorization
of n into prime powers, then S(n) = max

1≤i≤k
{S(pαi

i )}. From this formula we can easily get

S(1) = 1, S(2) = 2, S(3) = 3, S(4) = 4, S(5) = 5, S(6) = 3, S(7) = 7, S(8) = 4, S(9) = 6,
S(10) = 5, S(11) = 11, S(12) = 4, S(13) = 13, S(14) = 7, S(15) = 5, S(16) = 6, · · · . About
the elementary properties of S(n), many people had studied it, and obtained some important
results. For example, Wang Yongxing [2] studied the mean value properties of S(n), and
obtained that: ∑

n≤x

S(n) =
π2

12
x2

lnx
+ O

(
x2

ln2 x

)
.

Lu Yaming [3] studied the positive integer solutions of an equation involving the function
S(n), and proved that for any positive integer k ≥ 2, the equation

S(m1 + m2 + · · ·+ mk) = S(m1) + S(m2) + · · ·+ S(mk)

has infinity positive integer solutions (m1,m2, · · · ,mk).
Jozsef Sandor [4] obtained some inequalities involving the F.Smarandache function. That

is, he proved that for any positive integer k ≥ 2, there exists infinite positive integer (m1,m2, · · · ,mk)
such that the inequalities

S(m1 + m2 + · · ·+ mk) > S(m1) + S(m2) + · · ·+ S(mk).
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(m1,m2, · · · ,mk) such that

S(m1 + m2 + · · ·+ mk) < S(m1) + S(m2) + · · ·+ S(mk).

On the other hand, Dr. Xu Zhefeng [5] proved: Let P (n) denotes the largest prime divisor
of n, then for any real number x > 1, we have the asymptotic formula

∑

n≤x

(S(n)− P (n))2 =
2ζ

(
3
2

)
x

3
2

3 ln x
+ O

(
x

3
2

ln2 x

)
,

where ζ(s) denotes the Riemann zeta-function.

The main purpose of this paper is using the elementary methods to study the hybrid mean
value of the Smarandache function S(n) and the Mangoldt function Λ(n), which defined as
follows:

Λ(n) =





ln p, if n = pα, p be a prime, α be any positive integer;

0, otherwise.

and prove a sharper mean value formula for Λ(n)S(n). That is, we shall prove the following
conclusion:

Theorem. Let k be any fixed positive integer. Then for any real number x > 1, we have

∑

n≤x

Λ(n)S(n) = x2 ·
k∑

i=0

ci · x2

lni x
+ O

(
x2

lnk+1 x

)
,

where ci (i = 0, 1, 2, · · · , k) are constants, and c0 = 1.

§2. Proof of the theorem

In this section, we shall complete the proof of the theorem. In fact from the definition of
Λ(n) we have

∑

n≤x

Λ(n)S(n) =
∑

α≤ ln x
ln 2

∑

p≤x
1
α

Λ(pα)S(pα) =
∑

α≤ ln x
ln 2

∑

p≤x
1
α

S(pα) ln p

=
∑

p≤x

p · ln p +
∑

2≤α≤ ln x
ln 2

∑

p≤x
1
α

S(pα) ln p. (1)

For any positive integer k, from the prime theorem we know that

π(x) =
∑

p≤x

1 = x ·
k∑

i=1

ai

lni x
+ O

(
x

lnk+1 x

)
, (2)

where ai ( i = 1, 2, · · · , k) are constants, and a1 = 1.
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From the Abel’s identity (see [6] Theorem 4.2) and (2) we have

∑

p≤x

p · ln p = π(x) · x · lnx−
∫ x

2

π(y)(ln y + 1)dy

= x lnx · x ·
(

k∑

i=1

ai

lni x
+ O

(
x

lnk+1 x

))
−

∫ x

2

(
k∑

i=1

ai

lni y
+ O

(
y

lnk+1 y

))
(ln y + 1)dy

= x2 ·
k∑

i=0

ci

lni x
+ O

(
x

lnk+1 x

)
, (3)

where ci ( i = 0, 1, 2, · · · , k) are constants, and c0 = 1.
On the other hand, applying the estimate

S(pα) ¿ α · ln p,

we have
∑

2≤α≤ ln x
ln 2

∑

p≤x
1
α

S(pα) ln p ¿
∑

2≤α≤ ln x
ln 2

∑

p≤x
1
2

α · p · ln p ¿ x · ln2 x. (4)

Combining (1)-(4) we have

∑

n≤x

Λ(n)S(n) = x2 ·
k∑

i=0

ci · x2

lni x
+ O

(
x2

lnk+1 x

)
,

where ci (i = 0, 1, 2, · · · , k) are constants, and c0 = 1.
This completes the proof of the theorem.
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Abstract This article originates from a proposal by M. L. Perez of American Research Press

to carry out a study on Smarandache generalized palindromes [1]. The prime numbers were

chosen as a first set of numbers to apply the development of ideas and computer programs

on. The study begins by exploring regular prime number palindromes. To continue the study

it proved useful to introduce a new concept, that of extended palindromes with the property

that the union of regular palindromes and extended palindromes form the set of Smarandache

generalized palindromes. An interesting observation is proved in the article, namely that the

only regular prime number palindrome with an even number of digits is 11.

Keywords Equation, solutions, Mersenne prime, perfect number

§1. Regular Palindromes

Definition. A positive integer is a palindrome if it reads the same way forwards and

backwards.

Using concatenation we can write the definition of a regular palindrome A in the form

A = x1x2x3 . . . xn . . . x3x2x1 or x1x2x3 . . . xnxn . . . x3x2x1

where xk ∈ {0, 1, 2, . . .9} for k = 1, 2, 3, . . . n, except x1 6= 0

Examples and Identification. The digits 1, 2, � , 9 are trivially palindromes. The

only 2-digit palindromes are 11, 22, 33, � 99. Of course, palindromes are easy to identify by

visual inspection. We see at once that 5493945 is a palindrome. In this study we will also refer

to this type of palindromes as regular palindromes since we will later define another type of

palindromes.

As we have seen, palindromes are easily identified by visual inspection, something we will

have difficulties to do with, say prime numbers. Nevertheless, we need an algorithm to identify
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palindromes because we can not use our visual inspection method on integers that occur in

computer analysis of various sets of numbers. The following routine, written in Ubasic, is built

into various computer programs in this study:

10 ’Palindrome identifier, Henry Ibstedt, 031021

20 input ”N”; N

30 s = n\10 : r = res

40 while s > 0

50 s = s\10 : r = 10 ? r + res

60 wend

70 print n, r

80 end

This technique of reversing a number is quite different from what will be needed later

on in this study. Although very simple and useful it is worth thinking about other methods

depending on the nature of the set of numbers to be examined. Let’s look at prime number

palindromes.

§2. Prime Number Palindromes

We can immediately list the prime number palindromes which are less than 100, they are:

2, 3, 5, 7 and 11. We realize that the last digit of any prime number except 2 must be 1, 3, 7 or

9. A three digit prime number palindrome must therefore be of the types: 1x1,3x3, 7x7 or 9x9

where x0, 1, . . . , 9. Here, numbers have been expressed in concatenated form. When there is no

risk of misunderstanding we will simply write 2x2, otherwise concatenation will be expressed

2−x−2 while multiplication will be made explicit by 2 · x · 2.

In explicit form we write the above types of palindromes: 101 + 10x, 303 + 10x, 707 + 10x

and 909 + 10x respectively.

A 5-digit palindrome axyxa can be expressed in the form:

a−000−a + x · 1010 + y · 100 where a ∈ {1, 3, 7, 9}, x ∈ {0, 1, . . . , 9} and y ∈ {0, 1, . . . , 9}

This looks like complicating things, but not so. Implementing this in a Ubasic program

will enable us to look for which palindromes are primes instead of looking for which primes are

palindromes. Here is the corresponding computer code (C5):

10 ’Classical 5-digit Prime Palindromes (C5)

20 ’October 2003, Henry Ibstedt

30 dim V(4), U(4)

40 for I=1 to 4 : read V(I): next

50 data 1,3,7,9

60 T=10001

70 for I=1 to 4

80 U=0:’Counting prime palindromes

90 A = V (I) ? T

100 for J=0 to 9



Vol. 2 The Palindromes Concept and Its Applications to Prime Numbers 103

110 B = A + 1010 ? J

120 for K=0 to 9

130 C = B + 100 ? K

140 if nxtprm(C-1)=C then print C : inc U

150 next : next

160 U(I)=U

170 next

180 for I=1 to 4 : print U(I): next

190 end

Before implementing this code the following theorem will be useful.

Theorem. A palindrome with an even number of digits is divisible by 11.

Proof. We consider a palindrome with 2n digits which we denote x1, x2, . . . , xn. Using

concatenation we write the palindrome

A = x1x2 . . . xnxn . . . x2x1.

We express A in terms of x1, x2, . . . , xn in the following way:

A = x1(102n−1 + 1) + x2(102n−2 + 10) + x3(102n−3 + 102) + . . . + xn(102n−n + 10n−1)

or

A =

n
∑

k=1

xk(102n−k + 10k−1) (1)

We will now use the following observation:

10q
− 1 ≡ 0(mod11) for q ≡ 0(mod2)

and

10q + 1 ≡ 0(mod11) for q ≡ 1(mod2)

We re-write (1) in the form:

A =

n
∑

k=1

xk(102n−k
± 1 + 10k−1

∓ 1) where the upper sign applies if k ≡ 1(mod2) and the

lower sign if k ≡ 0(mod2).

From this we see that A ≡ 0(mod11) for n ≡ 0(mod2).

Corollary. From this theorem we learn that the only prime number palindrome with an

even number of digits is 11.

This means that we only need to examine palindromes with an odd number of digits for

primality. Changing a few lines in the computer code C5 we obtain computer codes (C3, C7

and C9) which will allow us to identify all prime number palindromes less than 1010 in less than

5 minutes. The number of prime number palindromes in each interval was registered in a file.

The result is displayed in Table 1.

Table 1. Number of prime number palindromes
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Number of

Number Palindromes

of of type

digits 1. . . 1 3. . . 3 7. . . 7 9. . . 9 Total

3 5 4 4 2 15

5 26 24 24 19 93

7 190 172 155 151 668

9 1424 1280 1243 1225 5172

Table 2. Three-digit prime number palindromes

(Total 15)

interval Prime Number Palindromes

100-199 101 131 151 181 191

300-399 313 353 373 383

700-799 727 757 787 797

900-999 919 929

Table 3. Five-digit prime number palindromes

(Total 93)

10301 10501 10601 11311 11411 12421 12721 12821 13331

13831 13931 14341 14741 1545 1555 16061 16361 16561

16661 17471 17971 18181 18481 19391 19891 19991

30103 30203 30403 30703 30803 31013 31513 32323 32423

33533 34543 34843 35053 35153 35353 35753 36263 36563

37273 37573 38083 38183 38783 39293

70207 70507 70607 71317 71917 72227 72727 73037 73237

73637 74047 74747 75557 76367 76667 77377 77477 77977

78487 78787 78887 79397 79697 79997

90709 91019 93139 93239 93739 94049 94349 94649 94849

94949 95959 96269 96469 96769 97379 97579 97879 98389

98689

Table 4. Seven-digit prime number palindromes

(Total 668)
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1003001 1008001 1022201 1028201 1035301 1043401 1055501 1062601

1065601 1074701 1082801 1085801 1092901 1093901 1114111 1117111

1120211 1123211 1126211 1129211 1134311 1145411 1150511 1153511

1160611 1163611 1175711 1177711 1178711 1180811 1183811 1186811

1190911 1193911 1196911 1201021 1208021 1212121 1215121 1218121

1221221 1235321 1242421 1243421 1245421 1250521 1253521 1257521

1262621 1268621 1273721 1276721 1278721 1280821 1281821 1286821

1287821 1300031 1303031 1311131 1317131 1327231 1328231 1333331

1335331 1338331 1343431 1360631 1362631 1363631 1371731 1374731

1390931 1407041 1409041 1411141 1412141 1422241 1437341 1444441

1447441 1452541 1456541 1461641 1463641 1464641 1469641 1486841

1489841 1490941 1496941 1508051 1513151 1520251 1532351 1535351

1542451 1548451 1550551 1551551 1556551 1557551 1565651 1572751

1579751 1580851 1583851 1589851 1594951 1597951 1598951 1600061

1609061 1611161 1616161 1628261 1630361 1633361 1640461 1643461

1646461 1654561 1657561 1658561 1660661 1670761 1684861 1685861

1688861 1695961 1703071 1707071 1712171 1714171 1730371 1734371

1737371 1748471 1755571 1761671 1764671 1777771 1793971 1802081

1805081 1820281 1823281 1824281 1826281 1829281 1831381 1832381

1842481 1851581 1853581 1856581 1865681 1876781 1878781 1879781

1880881 1881881 1883881 1884881 1895981 1903091 1908091 1909091

1917191 1924291 1930391 1936391 1941491 1951591 1952591 1957591

1958591 1963691 1968691 1969691 1970791 1976791 1981891 1982891

1984891 1987891 1988891 1993991 1995991 1998991

3001003 3002003 3007003 3016103 3026203 3064603 3065603 3072703

3073703 3075703 3083803 3089803 3091903 3095903 3103013 3106013

3127213 3135313 3140413 3155513 3158513 3160613 3166613 3181813

3187813 3193913 3196913 3198913 3211123 3212123 3218123 3222223

3223223 3228223 3233323 3236323 3241423 3245423 3252523 3256523

3258523 3260623 3267623 3272723 3283823 3285823 3286823 3288823

3291923 3293923 3304033 3305033 3307033 3310133 3315133 3319133

3321233 3329233 3331333 3337333 3343433 3353533 3362633 3364633

3365633 3368633 3380833 3391933 3392933 3400043 3411143 3417143

3424243 3425243 3427243 3439343 3441443 3443443 3444443 3447443

3449443 3452543 3460643 3466643 3470743 3479743 3485843 3487843

3503053 3515153 3517153 3528253 3541453 3553553 3558553 3563653

3569653 3586853 3589853 3590953 3591953 3594953 3601063 3607063

3618163 3621263 3627263 3635363 3643463 3646463 3670763 3673763

3680863 3689863 3698963 3708073 3709073 3716173 3717173 3721273
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3722273 3728273 3732373 3743473 3746473 3762673 3763673 3765673

3768673 3769673 3773773 3774773 3781873 3784873 3792973 3793973

3799973 3804083 3806083 3812183 3814183 3826283 3829283 3836383

3842483 3853583 3858583 3863683 3864683 3867683 3869683 3871783

3878783 3893983 3899983 3913193 3916193 3918193 3924293 3927293

3931393 3938393 3942493 3946493 3948493 3964693 3970793 3983893

3991993 3994993 3997993 3998993

7014107 7035307 7036307 7041407 7046407 7057507 7065607 7069607

7073707 7079707 7082807 7084807 7087807 7093907 7096907 7100017

7114117 7115117 7118117 7129217 7134317 7136317 7141417 7145417

7155517 7156517 7158517 7159517 7177717 7190917 7194917 7215127

7226227 7246427 7249427 7250527 7256527 7257527 7261627 7267627

7276727 7278727 7291927 7300037 7302037 7310137 7314137 7324237

7327237 7347437 7352537 7354537 7362637 7365637 7381837 7388837

7392937 7401047 7403047 7409047 7415147 7434347 7436347 7439347

7452547 7461647 7466647 7472747 7475747 7485847 7486847 7489847

7493947 7507057 7508057 7518157 7519157 7521257 7527257 7540457

7562657 7564657 7576757 7586857 7592957 7594957 7600067 7611167

7619167 7622267 7630367 7632367 7644467 7654567 7662667 7665667

7666667 7668667 7669667 7674767 7681867 7690967 7693967 7696967

7715177 7718177 7722277 7729277 7733377 7742477 7747477 7750577

7758577 7764677 7772777 7774777 7778777 7782877 7783877 7791977

7794977 7807087 7819187 7820287 7821287 7831387 7832387 7838387

7843487 7850587 7856587 7865687 7867687 7868687 7873787 7884887

7891987 7897987 7913197 7916197 7930397 7933397 7935397 7938397

7941497 7943497 7949497 7957597 7958597 7960697 7977797 7984897

7985897 7987897 7996997

9002009 9015109 9024209 9037309 9042409 9043409 9045409 9046409

9049409 9067609 9073709 9076709 9078709 9091909 9095909 9103019

9109019 9110119 9127219 9128219 9136319 9149419 9169619 9173719

9174719 9179719 9185819 9196919 9199919 9200029 9209029 9212129

9217129 9222229 9223229 9230329 9231329 9255529 9269629 9271729

9277729 9280829 9286829 9289829 9318139 9320239 9324239 9329239

9332339 9338339 9351539 9357539 9375739 9384839 9397939 9400049

9414149 9419149 9433349 9439349 9440449 9446449 9451549 9470749

9477749 9492949 9493949 9495949 9504059 9514159 9526259 9529259

9547459 9556559 9558559 9561659 9577759 9583859 9585859 9586859

9601069 9602069 9604069 9610169 9620269 9624269 9626269 9632369
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9634369 9645469 9650569 9657569 9670769 9686869 9700079 9709079

9711179 9714179 9724279 9727279 9732379 9733379 9743479 9749479

9752579 9754579 9758579 9762679 9770779 9776779 9779779 9781879

9782879 9787879 9788879 9795979 9801089 9807089 9809089 9817189

9818189 9820289 9822289 9836389 9837389 9845489 9852589 9871789

9888889 9889889 9896989 9902099 9907099 9908099 9916199 9918199

9919199 9921299 9923299 9926299 9927299 9931399 9932399 9935399

9938399 9957599 9965699 9978799 9980899 9981899 9989899

Of the 5172 nine-digit prime number palindromes only a few in the beginning and at the

end of each type are shown in table 5.

Table 5a. Nine-digit prime palindromes of type 1−1

(Total 1424)

100030001 100050001 100060001 100111001 100131001 100161001

100404001 100656001 100707001 100767001 100888001 100999001

101030101 101060101 101141101 101171101 101282101 101292101

101343101 101373101 101414101 101424101 101474101 101595101

101616101 101717101 101777101 101838101 101898101 101919101

101949101 101999101 102040201 102070201 102202201 102232201

102272201 102343201 102383201 102454201 102484201 102515201

102676201 102686201 102707201 102808201 102838201 103000301

103060301 103161301 103212301 103282301 103303301 103323301

103333301 103363301 103464301 103515301 103575301 103696301

195878591 195949591 195979591 196000691 196090691 196323691

196333691 196363691 196696691 196797691 196828691 196878691

197030791 197060791 197070791 197090791 197111791 197121791

197202791 197292791 197343791 197454791 197525791 197606791

197616791 197868791 197898791 197919791 198040891 198070891

198080891 198131891 198292891 198343891 198353891 198383891

198454891 198565891 198656891 198707891 198787891 198878891

198919891 199030991 199080991 199141991 199171991 199212991

199242991 199323991 199353991 199363991 199393991 199494991

199515991 199545991 199656991 199767991 199909991 199999991

Table 5b. Nine-digit prime palindromes of type 3−3

(Total 1280)
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300020003 300080003 300101003 300151003 300181003 300262003

300313003 300565003 300656003 300808003 300818003 300848003

300868003 300929003 300959003 301050103 301111103 301282103

301434103 301494103 301555103 301626103 301686103 301818103

301969103 302030203 302070203 302202203 302303203 302313203

302333203 302343203 302444203 302454203 302525203 302535203

302555203 302646203 302676203 302858203 302898203 302909203

303050303 303121303 303161303 303272303 303292303 303373303

303565303 303616303 303646303 303757303 303878303 303929303

303979303 304050403 304090403 304131403 304171403 304191403

394191493 394212493 394333493 394494493 394636493 394696493

394767493 395202593 395303593 395363593 395565593 395616593

395717593 395727593 395868593 395898593 396070693 396191693

396202693 396343693 396454693 396505693 396757693 396808693

396919693 396929693 397141793 397242793 397333793 397555793

397666793 397909793 398040893 398111893 398151893 398232893

398252893 398363893 398414893 398474893 398616893 398666893

398676893 398757893 398838893 398898893 399070993 399191993

399262993 399323993 399464993 399484993 399575993 399595993

399616993 399686993 399707993 399737993 399767993 399878993

Table 5c. Nine-digit prime palindromes of type 7−7

(Total 1243)

700020007 700060007 700090007 700353007 700363007 700404007

700444007 700585007 700656007 700666007 700717007 700737007

700848007 700858007 700878007 700989007 701000107 701141107

701151107 701222107 701282107 701343107 701373107 701393107

701424107 701525107 701595107 701606107 701636107 701727107

701747107 701838107 701919107 701979107 701999107 702010207

702070207 702080207 702242207 702343207 702434207 702515207

702575207 702626207 702646207 702676207 702737207 702767207

702838207 702919207 702929207 702989207 703000307 703060307

703111307 703171307 703222307 703252307 703393307 703444307
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795848597 795878597 796060697 796080697 796222697 796252697

796353697 796363697 796474697 796494697 796515697 796636697

796666697 796707697 796717697 796747697 796848697 796939697

797262797 797363797 797393797 797444797 797525797 797595797

797676797 797828797 797898797 797939797 797949797 798040897

798181897 798191897 798212897 798292897 798373897 798383897

798454897 798535897 798545897 798646897 798676897 798737897

798797897 798818897 798838897 798919897 798989897 799050997

799111997 799131997 799323997 799363997 799383997 799555997

799636997 799686997 799878997 799888997 799939997 799959997

Table 5d. Nine-digit prime palindromes of type 9−9

(Total 1225)

900010009 900050009 900383009 900434009 900484009 900505009

900515009 900565009 900757009 900808009 900838009 900878009

900919009 900929009 901060109 901131109 901242109 901252109

901272109 901353109 901494109 901585109 901606109 901626109

901656109 901686109 901696109 901797109 901929109 901969109

902151209 902181209 902232209 902444209 902525209 902585209

902757209 902828209 902888209 903020309 903131309 903181309

903292309 903373309 903383309 903424309 903565309 903616309

903646309 903727309 903767309 903787309 903797309 903878309

903979309 904080409 904090409 904101409 904393409 904414409

994969499 995070599 995090599 995111599 995181599 995303599

995343599 995414599 995555599 995696599 995757599 995777599

996020699 996101699 996121699 996181699 996242699 996464699

996494699 996565699 996626699 996656699 996686699 996808699

996818699 996878699 996929699 996949699 996989699 997030799

997111799 997393799 997464799 997474799 997555799 997737799

997818799 997909799 997969799 998111899 998121899 998171899

998202899 998282899 998333899 998565899 998666899 998757899

998898899 998939899 998979899 999070999 999212999 999272999

999434999 999454999 999565999 999676999 999686999 999727999
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An idea about the strange distribution of prime number palindromes is given in diagram 1.

In fact the prime number palindromes are spread even thinner than the diagram makes believe

because the horizontal scale is in interval numbers not in decimal numbers, i.e. (100-200) is

given the same length as (1.1 · 109
− 1.2 · 109).

Diagram 1.

Intervals 1-9: 3-digit numbers divided into 9 equal intervals.

Intervals 11-18: 4-digit numbers divided into 9 equal intervals

Intervals 19-27: 5-digit numbers divided into 9 equal intervals

Intervals 28-36: 6-digit numbers divided into 9 equal intervals

Intervals 37-45: 7-digit numbers divided into 9 equal intervals

§3. Smarandache Generalized Palindromes

Definition. A Smarandache Generalized Palindrome (SGP) is any integer of the form

x1x2x3 . . . xn . . . x3x2x1 or x1x2x3 . . . xnxn . . . x3x2x1,

where x1, x2, x3, . . . , xn are natural numbers. In the first case we require n > 1 since otherwise

every number would be a SGP.

Briefly speaking xk ∈ 0, 1, 2, . . . , 9 has been replaced by xk ∈ N (where N is the set of

natural numbers).

Addition. To avoid that the same number is described as a SGP in more than one way

this study will require the xk to be maximum as a first priority and n to be maximum as a

second priority (cf. examples below).

Interpretations and examples. Any regular palindrome (RP) is a Smarandache Gen-

eralized Palindrome (SGP), i.e. RP⊂ SGP.

3 is a RP and also a SGP

123789 is neither RP nor SGP

123321 is RP as well as SGP
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123231 is not a RP but it is a SGP 1−23−23−1 The SGP 334733 can be written in three ways:

3−3−47−3−3, 3−3473−3 and 33−47−33. Preference will be given to 33−47−33, (in compliance

with the addition to the definition).

780978 is a SGP 78−09−78, i.e. we will permit natural numbers with leading zeros when they

occur inside a GSP.

How do we identify a GSP generated by some sort of a computer application where we

can not do it by visual inspection? We could design and implement an algorithm to identify

GSPs directly. But it would of course be an advantage if methods applied in the early part

of this study to identify the RPs could be applied first followed by a method to identify the

GSPs which are not RPs. Even better we could set this up in such a way that we leave the

RPs out completely. This leads to us to define in an operational way those GSPs which are

not RPs, let us call them Extended Palindromes (EP). The set of EPs must fill the condition

{RP} ∪ {EP} = {GSP}

§4. Extended Palindromes

Definition. An Extended Palindrome (EP) is any integer of the form

x1x2x3 . . . xn . . . x3x2x1 or x1x2x3 . . . xnxn . . . x3x2x1,

where x1, x2, x3, . . . , xn are natural numbers of which at least one is greater than or equal to 10

or has one or more leading zeros. x1 is not allowed to not have leading zeros. Again xk should

be maximum as a first priority and n maximum as a second priority.

Computer Identification of EPs.

The number A to be examined is converted to a string S of length L (leading blanks are

removed first). The symbols composing the string are compared by creating substrings from

left L1 and right R1. If L1 and R1 are found so that L1 = R1 then A is confirmed to be an EP.

However, the process must be continued to obtain a complete split of the string into substrings

as illustrated in diagram 2.

Diagram 2.
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Diagram 2 illustrates the identification of extended palindromes up to a maximum of 4

elements. This is sufficient for our purposes since a 4 element extended palindrome must have a

minimum of 8 digits. A program for identifying extended palindromes corresponding to diagram

2 is given below. Since we have Lk = Rk we will use the notation Zk for these in the program.

The program will operate on strings and the deconcatenation into extended palindrome elements

will be presented as strings, otherwise there would be no distinction between 690269 and 692269

which would both be presented as 69−2 (only distinct elements will be recorded) instead of

69−02 and 69−2 respectively.

Comments on the program

It is assumed that the programming in basic is well known. Therefore only the main

structure and the flow of data will be commented on:

Lines 20 - 80: Feeding the set of numbers to be examined into the program. In the actual

program this is a sequence of prime numbers in the interval a1 < a < a2.

Lines 90 - 270: On line 130 A is sent off to a subroutine which will exclude A if it happens

to be a regular palindrome. The routine will search sub-strings from left and right. If no equal

substrings are found it will return to the feeding loop otherwise it will print A and the first

element Z1 while the middle string S1 will be sent of to the next routine (lines 280 - 400). The

flow of data is controlled by the status of the variable u and the length of the middle string.

Lines 280 - 400: This is more or less a copy of the above routine. S1 will be analyzed in

the same way as S in the previous routine. If no equal substrings are found it will print S1

otherwise it will print Z2 and send S2 to the next routine (lines 410 - 520).

Lines 410 - 520: This routine is similar to the previous one except that it is equipped to

terminate the analysis. It is seen that routines can be added one after the other to handle

extended palindromes with as many elements as we like. The output from this routine consists

in writing the terminal elements, i.e. S2 if A is a 3-element extended palindrome and Z3 and

S3 if A is a 4-element extended palindrome.

Lines 530 - 560: Regular palindrome identifier described earlier.

10 ’EPPRSTR, 031028

20 input ”Search interval a1 to a2:”; A1, A2

30 A=A1

40 while A < A2

50 A=nxtprm(A)

60 gosub 90

70 wend

80 end

90 S=str(A)

100 M=len(S)

110 if M=2 then goto 270

120 S=right(S,M-1)

130 U=0:gosub 530

140 if U=1 then goto 270

150 I1=int((M-1)/2)



Vol. 2 The Palindromes Concept and Its Applications to Prime Numbers 113

160 U=0

170 for I=1 to I1

180 if left(S,I)=right(S,I) then

190 :Z1=left(S,I)

200 : M1 = M − 1 − 2 ? I : S1 = mid(S, I + 1, M1)

210 :U=1

220 endif

230 next

240 if U=0 then goto 270

250 print A;” ”;Z1;

260 if M1 > 0 then gosub 280

270 return

280 I2=int(M1/2)

290 U=0

300 for J=1 to I2

310 if left(S1,J)=right(S1,J) then

320 :Z2=left(S1,J)

330 : M2 = M1− 2 ? J : S2 = mid(S1, J + 1, M2)

340 :U=1

350 endif

360 next

370 if U=0 then print ” ”;S1:goto 400

380 print ” ”;Z2;

390 if M2 > 0 then gosub 410 else print

400 return

410 I3=int(M2/2)

420 U=0

430 for K=1 to I3

440 if left(S2,K)=right(S2,K) then

450 :Z3=left(S2,K)

460 : M3 = M2− 2 ? K : S3 = mid(S2, K + 1, M3)

470 :U=1

480 endif

490 next

500 if U=0 then print ” ”;S2:goto 520

510 print ” ”;Z3;” ”;S3

520 return

530 T=””

540 for I=M to 1 step -1:T=T+mid(S,I,1):next

550 if T=S then U=1:’print ”a=”;a;”is a RP”

560 return
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§5.Extended Prime Number Palindromes

The computer program for identification of extended palindromes has been implemented to

find extended prime number palindromes. The result is shown in tables 7 to 9 for prime numbers

< 107. In these tables the first column identifies the interval in the following way: 1 - 2 in the

column headedx 10 means the interval 1 · 10 to 2 · 10. EP stands for the number of extended

prime number palindromes, RP is the number regular prime number palindromes and P is the

number of prime numbers. As we have already concluded the first extended prime palindromes

occur for 4-digit numbers and we see that primes which begin and end with one of the digits

1, 3, 7 or 9 are favored. In table 8 the pattern of behavior becomes more explicit. Primes with

an even number of digits are not regular palindromes while extended prime palindromes occur

for even as well as odd digit primes. It is easy to estimate from the tables that about 25%

of the primes of types 1 . . . 1, 3 . . . 3, 7 . . .7 and 9 . . . 9 are extended prime palindromes. There

are 5761451 primes less than 108, of these 698882 are extended palindromes and only 604 are

regular palindromes.

Table 7. Extended and regular palindromes

Intervals 10-100, 100-1000 and 1000-10000

×10 EP RP P ×102 EP RP P ×103 EP RP P

1-2 0 1 4 1-2 0 5 21 1-2 33 135

2-3 0 2 2-3 0 16 2-3 0 127

3-4 0 2 3-4 0 4 16 3-4 28 120

4 - 5 0 3 4 - 5 0 17 4 - 5 0 119

5 - 6 0 2 5 - 6 0 14 5 - 6 0 114

6 - 7 0 2 6 - 7 0 16 6 - 7 0 117

7 - 8 0 3 7 - 8 0 4 14 7 - 8 30 107

8 - 9 0 2 8 - 9 0 15 8 - 9 0 110

9 - 10 0 1 9 - 10 0 2 14 9 - 10 27 112

Table 8. Extended and regular palindromes

Intervals 104
− 105 and 105

− 106

×104 EP RP P ×105 EP RP P

1 - 2 242 26 1033 1 - 2 2116 8392

2 - 3 12 983 2 - 3 64 8013

3 - 4 230 24 958 3 - 4 2007 7863

4 - 5 9 930 4 - 5 70 7678
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5 - 6 10 924 5 - 6 70 7560

6 - 7 9 878 6 - 7 69 7445

7 - 8 216 24 902 7 - 8 1876 7408

8 - 9 10 876 8 - 9 63 7323

9 - 10 203 19 879 9 - 10 1828 7224

Table 9. Extended and regular palindromes

Intervals 105
− 106 and 106

− 107

×106 EP RP P ×107 EP RP P

1 - 2 17968 190 70435 1 - 2 156409 606028

2 - 3 739 67883 2 - 3 6416 587252

3 - 4 16943 172 66330 3 - 4 148660 575795

4 - 5 687 65367 4 - 5 6253 567480

5 - 6 725 64336 5 - 6 6196 560981

6 - 7 688 63799 6 - 7 6099 555949

7 - 8 16133 155 63129 7 - 8 142521 551318

8 - 9 694 62712 8 - 9 6057 547572

9 - 10 15855 151 62090 9 - 10 140617 544501

We recall that the sets of regular palindromes and extended palindromes together form the

set of Smarandache Generalized Palindromes. Diagram 3 illustrates this for 5-digit primes.

Diagram 3. Extended palindromes shown with blue color, regular with red.
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Part II of this study is planned to deal with palindrome analysis of other number sequences.
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