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The effect of rotation on a homogeneous turbulent shear flow has been studied by means
of a series of direct numerical simulations with different rotation numbers. The evolution
of passive scalar fields with mean gradients in each of the three orthogonal directions in
the flow was investigated in order to elucidate the effect of rotation on turbulent scalar
transport. Conditions of the near-wall region of a boundary layer were approached by
using a rapid shear and therefore, comparisons could be made with with rapid distortion
theory based on the linearized equations of the flow and scalar transport. Reynolds
stresses, pressure-strain correlations and two-point velocity correlations were computed
and turbulent structures were visualized. It is shown that rotation has a strong influence
on the time development of the turbulent kinetic energy, the anisotropy of the flow and
on the turbulent structures. Furthermore, rotation significantly affects turbulent scalar
transport. The transport rate of the scalar and the direction of the scalar flux vector show
large variations with different rotation numbers and a strong alignment was observed
between the scalar flux and the principal axes of the Reynolds stress tensor. The ratio
of the turbulent and scalar time scales is influenced by rotation as well. The predictions
of the linear theory of the turbulent one-point statistics and the scalar flux agreed fairly
well with DNS results based on the full non-linear governing equations. Nonetheless, some
clear and strong non-linear effects are observed in a couple of cases which significantly
influence the development of the turbulence and scalar transport.

1. Introduction

Flows of gases and liquids often take place in a rotating system. The so-called Coriolis
force in this rotating system acts on the fluid and this gives rise to complicated but
interesting phenomena. Flow patterns can alter due to the influence of rotation and
also the turbulent characteristics change if there is rotation, which is proven by several
experimental and numerical studies (see Bech & Anderson 1997 and references therein).
It is more than likely that the alteration of the turbulence by rotation in its turn will
affect the transport and dispersion of scalars, for example pollutants, heat and reacting
species. For practical situations it is of considerable importance to know how rotation
affects turbulent flows and how rotation affects transport and dispersion of scalars in
turbulent flows.
In recent years the modelling of rotating turbulent flows or flows with streamline

curvature received considerable attention, see for instance the studies of Speziale, Younis
& Berger (2000), Poroseva et al. (2002), Wallin & Johansson (2002) and Gatski & Wallin
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(2004), but an accurate description of rotational effects remains even nowadays a difficult
subject.
Salhi & Cambon (1997) and Salhi (2002) studied the most basic case with both shear

and rotation, namely homogeneous turbulent shear flow in a rotating frame. They used
linear rapid distortion theory (RDT) to investigate the influence of the rotation on the
development of the flow. Assuming a linear shear flow with shear rate S, and a rotation
around the spanwise axis, with angular velocity Ω, Salhi & Cambon showed that maxi-
mum destabilization of the flow occurs at R = 2Ω/S = −1/2. (For convenience we take
Ui = S x3 δi1 as we do later in the article.) Moreover, they analysed the influence of pres-
sure on the turbulence development and compared the results of RDT with large-eddy
simulation (LES) of rotating homogeneous shear flow performed by Bardina, Ferziger &
Reynolds (1983) and found a reasonable agreement. In contrast to a pressure-less anal-
ysis, RDT reveals a difference between the cases R and −1−R regarding the growth of
the kinetic energy. Salhi (2002) presents analytical solutions for the RDT equations and
some statistical quantities.
Lee, Kim & Moin (1990) studied homogeneous turbulent shear flow with a high shear

rate but without rotation through direct numerical simulations (DNS). The value of the
non-dimensional shear number S K/ε, whereK is the turbulent kinetic energy and ε is the
energy dissipation, was approximately 17 in their simulations. This is of the same order
as the value of the non-dimensional shear number in the buffer region of a turbulent
boundary layer. Lee et al. observed in the rapidly sheared homogeneous flow streaky
turbulent structures, similar to the structures found in turbulent boundary layers and
concluded that a high shear rate is the most important requirement for the generation
of turbulent streaks and not the presence of a wall. In their study the RDT predictions
of the anisotropy of the Reynolds stresses agreed well with the DNS data at these high
shear rates. RDT was also able to describe the development of the turbulent structures,
showing the importance of linear effects for the dynamics of rapidly sheared homogeneous
turbulent flows.
Passive scalar transport in non-rotating shear flows received considerable attention

during the last decades. Tavoularis & Corrsin (1981) and Rogers, Mansour & Reynolds
(1989) investigated passive scalar mixing with a uniform mean scalar gradient in ho-
mogeneous turbulent shear flow. In the case of a scalar field with a mean gradient in
the transverse direction, they observed a much larger scalar flux in the flow direction
than in the transverse direction leading to a strong misalignment between the scalar flux
vector and the mean scalar gradient. Consequently, gradient-diffusion models are not
the most appropriate models to describe the turbulent scalar flux in homogeneous shear
flow because they assume alignment between the scalar flux and the mean gradient. An
alternative modelling approach, algebraic scalar flux modelling, has in the case of ho-
mogeneous and other turbulent shear flows considerable more success in predicting the
correct scalar flux (Rogers et al., 1989; Abe et al., 1996; Wikström, Wallin & Johansson,
2000; Högström et al., 2001).
Detailed studies of scalar transport in rotating shear flows are, nevertheless, rare. Re-

cently, Nagano & Hattori (2003) and Wu & Kasagi (2004) studied through DNS scalar
transport in a rotating turbulent channel flow at a low Reynolds number. The correla-
tion between the wall-normal velocity fluctuations and scalar fluctuations changes with
varying rotation numbers according to this study. Further detailed investigations of the
influence of rotation on turbulent scalar transport are lacking.
In this paper a study is presented of homogeneous turbulent shear flow with a passive

scalar field in a rotating frame at different rotation numbers. Direct numerical simulations
(DNS) and linear theory are used in this investigation. A linear and steady mean scalar
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Figure 1. Sketch of the mean velocity profile, coordinate system and the direction of rotation.

gradient is imposed and high shear rates are used with the aim of approximating the
conditions in a turbulent boundary close to the wall. The main objective of the study is
to clarify the following points: How are the development of turbulence and, in particular,
the anisotropy and the turbulent structures affected by rotation? What is the influence
of rotation on turbulent scalar transport? To find an answer to these questions results on
scalar fluctuations, scalar-velocity correlations and scalar dissipation will be presented.
Furthermore, how important are linear processes for the development of turbulence and
for scalar mixing in a rapidly sheared turbulent flow and can a linear model explain
the influence of rotation on turbulence and scalar mixing? To investigate these aspects
detailed comparisons between linear theory and the DNS data will be made.

2. Geometry and governing equations

The governing equations of the incompressible homogeneous turbulent shear flow in a
rotating frame are

∇ · u = 0 (2.1)

∂u

∂t
+ u · ∇u+ Sx3

∂u

∂x1
+ Su3e1 + 2Ω× u = −∇p+ ν∇2

u (2.2)

where u is the fluctuating velocity, ∇p is the sum of the pressure gradient and the
centrifugal force, both divided by the fluid density, ν is the viscosity, S = ∂U1/∂x3 is
the imposed linear mean velocity gradient, Ω is the rotation vector and ei is the unit
vector in the xi-direction. The last term on the left hand side of the equation represents
the Coriolis force. In the present case the frame is rotating around the spanwise axis
and thus Ω = Ωe2 with Ω the angular velocity of the frame. The mean velocity profile,
coordinate system and direction of rotation are sketched in figure 1.
Using these equations we can derive the Reynolds stress evolution equations

∂u1u1

∂t
= −2 u1u3 S (1 +R) + Π11 − ε11 (2.3)

∂u2u2

∂t
= Π22 − ε22 (2.4)

∂u3u3

∂t
= 2 u1u3 S R+Π33 − ε33 (2.5)

∂u1u3

∂t
= u1u1 S R− u3u3 S (1 +R) + Π13 − ε13 (2.6)
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where Πij and εij denote the usual pressure-strain correlation and dissipation rate, re-
spectively, and R = 2Ω/S. The pressure-strain correlation redistributes the energy be-
tween the different fluctuating velocity components and can be split into a slow part,
related to non-linear processes, and a rapid part, related to the large-scale distortion of
the flow. The Poisson equation for the rapid and slow part of the pressure, respectively
satisfy in our case

∇2p(r) = (−2S − 2Ω)
∂u3

∂x1
+ 2Ω

∂u1

∂x3
(2.7)

∇2p(s) = − ∂ui

∂xj

∂uj

∂xi
(2.8)

In Appendix A the stability of rotating homogeneous shear flow is analysed using the
Reynolds stress equations without the pressure-strain correlations and dissipation terms.
This is a drastic simplification but nevertheless, the analysis gives a reasonable qualitative
picture of the stability as a function of the rotation number. The conclusions of the
analysis is that (i) the turbulent kinetic energy grows algebraically if R = 0 or R = −1,
(ii) the flow is destabilized by rotation if −1 < R < 0 with an exponentially growing
kinetic energy and with at maximum destabilization at R = −1/2, (iii) the Reynolds
stresses have an oscillating behaviour and the turbulence is stabilized by rotation if
R < −1 or R > 0.
Using equation 2.2 we can derive for the fluctuating vorticity ω the following equation

∂ωi

∂t
+ uk

∂ωi

∂xk
+ Sx3

∂ωi

∂x1
= ωk

∂ui

∂xk
+ ν∇2ωi + Sω3δi1 + S(1 +R)

∂ui

∂x2
(2.9)

The second and third term on the left hand side of the equation are the advection by
the fluctuating and mean velocity. The first term on the right hand side is the non-linear
production of vorticity, the third and last term are the linear production of vorticity.
In the homogeneous turbulent shear flow we study the turbulent transport of a passive

scalar with an imposed mean and linear scalar gradient G. The transport equation for
the fluctuation of the passive scalar θ, which does not have an influence on the velocity
field, is given by

∂θ

∂t
+ u · ∇θ + Sx3

∂θ

∂x1
+G · u = κ∇2θ (2.10)

where κ is the molecular diffusivity of the scalar. The last term on the left hand is a
production term of scalar fluctuations. The effect of rotation does not directly enter
the scalar equation, but scalar transport is nevertheless, affected by rotation because of
the alteration of the velocity field by rotation. This can be noticed when the transport
equation for the mean turbulent scalar flux is considered, which for the present rotating
homogeneous shear flow reads

∂uiθ

∂t
= −uiuj Gj − u3θ S δi1 + 2 ǫij2 ujθΩ +Πθi − εθi (2.11)

Here, the first and second term on the right hand side are production terms due to
mean gradients, Πθi the pressure-gradient correlation and εθi the viscous and diffusive
destruction term, see e.g. Wikström et al., 2000. The third term is a direct consequence of
the rotation and affects in the present case the scalar flux in the streamwise and transverse
directions. This is, however, not the only term influenced by rotation. Reynolds stresses
and the pressure field are also affected by rotation, as we will see later, and therefore the
first and fourth term on the right hand side can change as well.
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3. Direct numerical simulations

The governing equations of the three-dimensional turbulent flow and scalar transport
given by equations (2.2) and (2.10) respectively, are solved with a pseudo-spectral method
with periodic boundary conditions on the computational domain. The aliasing errors are
reduced by a combination of phase shifting and truncation. Only after St = 10 at R = 0,
series B, the aliasing errors were completely removed by employing the 2/3 rule. A fourth-
order or a low-storage third-order Runge-Kutta scheme is used for the time advancement
of the non-linear terms and the linear viscous and diffusive terms are integrated exactly
in Fourier wave-number space. In order to be able use periodic boundary conditions in all
three directions, a coordinate transformation has been employed and consequently the
numerical grid is moving with the mean flow field. To avoid too large deformations of the
grid it is remeshed with regular time intervals at times (m+ 1/2) (Lx1

/Lx3
)S−1 (m =

0, 1, 2, ...) where Lxi
is the size of the domain in the xi-direction. The same procedure

has been used by Rogers et al. (1989). During the remeshing some information is lost,
especially at high wave numbers, but this was in general quite small in the present
simulations. The loss of kinetic energy was in fact negligible. The loss of energy dissipation
was more serious but, for example, in the run without system rotation series B the
decrease of energy dissipation during remeshing was not larger than 1.5%. Statistics
were computed when the coordinate system was non-skewed.

The numerical code has been thoroughly validated by comparing it with an indepen-
dently written code. The two codes produced essentially the same results for the velocity
and scalar field and the small differences could be attributed to the different time inte-
gration methods used. Also one of the cases of Rogers, Moin & Reynolds (1986), case
C128U , has been repeated and the major results concerning velocity and scalar statistics
could be reproduced.

The initial approximately isotropic velocity field for the present simulations has been
obtained from a DNS of decaying isotropic turbulence and has a Taylor Reynolds number
of Reλ = u′λ/ν = 32 where u′ is the root mean square (rms) of the velocity fluctuations
and λ the Taylor length scale.

Five cases with different rotation numbers have been simulated: R = 2Ω/S = 0 (pure
shear), R = −1/2, R = −1 (zero absolute mean vorticity), R = −3/2 and R = 1/2. The
numerical parameters used in the simulations are listed in table 1. Each case has been
simulated twice (series A and series B), with different number of grid points and domain
sizes, in order to investigate if the results are significantly affected by the finite size of
the domain, remeshing and resolution.

The conditions in a turbulent boundary layer close to the wall were approximated by
choosing an appropriate shear rate. Figure 2 (a) presents the non-dimensional shear num-
ber SK/ε obtained from DNS data of turbulent channel flow at Reτ = 590 (Moser et al.,
1999) and a zero-pressure gradient turbulent boundary layer (Komminaho & Skote 2002)
as a function of the distance to the wall. According to these simulations SK/ε has a high
value in the buffer layer with a maximum value between 16 to 18 at about y+ = 10. This
is also approximately the position where the production rate of turbulent kinetic energy
has its highest value as shown in figure 2 (b). In order to approximate the conditions in
the important part of the boundary layer where most of the kinetic energy is produced
we have set the initial value of non-dimensional shear number SK/ε in all simulations to
18. Note that this value is much larger than the asymptotic non-dimensional shear num-
ber in a homogeneous turbulent shear flow which is believed to be close to 6 (Tavoularis
& Karnik, 1989) and the equilibrium state will therefore not be reached in the present
numerical simulations. Hence, it is natural that the non-dimensional shear number does
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R = 2Ω/S Lx2
S N1 ×N2 ×N3 ℓ L kmaxη

Series A
0 3.11π 51.8 576× 448× 288 0.288 0.284 1.60

-1/2 3.11π 51.8 576× 448× 288 0.288 0.284 1.60
-1 2.5π 47.46 512× 320× 256 0.295 0.296 1.49

-3/2 2.5π 47.46 512× 320× 256 0.295 0.296 1.49
1/2 3π 46.6 512× 384× 256 0.298 0.299 1.50

Series B
0 3π 75.5 768× 640× 512 0.194 0.235 1.47

-1/2 3π 75.5 768× 640× 512 0.194 0.235 1.47
-1 3π 75.5 640× 480× 384 0.194 0.235 1.47

-3/2 3π 94.2 576× 440× 352 0.172 0.214 1.17
1/2 3π 94.2 576× 440× 352 0.172 0.214 1.17

Table 1. Overview of the numerical parameters that have been used. Only the size of the domain
in the spanwise direction and Lx2

has been varied. The size of the computational domain in the
streamwise and transverse direction, equal to 4π and 2π respectively, has been kept constant
in all simulations. Ni is the number of nodes in the xi-direction, ℓ is the longitudinal integral
length scale and L = u′3/ε of the initial isotropic velocity field, kmaxη is the largest resolved
wave number times the Kolmogorov length scale at t = 0.
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Figure 2. (a) SK/ε and (b) production of turbulent kinetic energy normalized with wall units
as a function of the non-dimensional distance to the wall y+ in terms of wall units. Solid line:
channel flow data (Moser et al., 1999); dashed line: boundary layer data (Komminaho & Skote
2002).

not stay constant during the simulations but varies. At R = 0, R = −1/2 and R = −1
the minimum value reached by SK/ε up to the non-dimensional time St = 8, was 13.
After St = 8, SK/ε decreased slightly to 11.8 at R = 0. At R = −3/2 and R = 1/2,
SK/ε reached lower values but stayed above 8.9.
In series A, transport equations for three passive scalars are solved together with the

flow equations. The three scalars all have a Schmidt number of ν/κ = 0.7 and have a
mean scalar gradient in the x1, x2 and x3-direction, respectively. The evolution for any
mean scalar gradient is a simple superposition of these three passive scalar fields. In
series B, only the evolution of one scalar field with a mean gradient in the x3-direction
has been simulated. The initial scalar fields are without scalar fluctuations but the mean
gradient acts as a source of fluctuations.
During the simulations the turbulent length scales grow and eventually become too
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large for the finite domain we use in the DNS. In order to be sure that the DNS results
are not depending on the size of the physical domain we have carefully followed the
development of the two-point velocity correlations during the computations and stopped
the simulations as soon as the correlations did not properly approach zero for increasing
separation distances.
While the largest scales tend to grow, the Kolmogorov length scale η becomes in general

smaller during the simulations which makes higher demands on the grid spacing. In series
A, kmaxη, were kmax is the largest resolved wave number, was always equal or larger than
1.0 during the simulations, except in the R = −1/2 case, series A, where kmaxη = 0.93 at
the end of the simulations at St = 6. To save computation time a coarser grid was used
in series B at R = 0 and R = −1/2 initially, but in the last part of the simulations the
resolution was increased to the values reported in table 1. During the simulations kmaxη
was, however, always smaller than one.

4. Linearized equations

If the shear or rotation rate is high enough, the Navier-Stokes equations and the
transport equation of the scalar can be approximated by their linearized forms. The
assumption of linearity is the main idea behind rapid distortion theory (RDT).
The necessary requirement for the applicability of RDT on the flow field in the present

case is that in equation (2.2) the non-linear term is much smaller than either the linear
term due to mean shear or the term due to rotation. Using a characteristic eddy size l
and eddy velocity u, the order of the non-linear term can be estimated as

|u · ∇u| = O(u2/l)

and the linear mean shear and rotation term can be estimated as

|Su3e1| = O(Su), |2Ω× u| = O(Ωu),

respectively. The energy containing scales can be approximated by u ≃ K1/2 and l ≃
K3/2/ε and hence, the necessary condition for the applicability of RDT becomes either
SK/ε ≫ 1 or ΩK/ε ≫ 1. In other words, the time scale of the turbulence must be much
larger than the time scale of shear or rotation and this condition is satisfied in all present
simulations, at least for the large scales. We can thus expect a reasonable prediction of
RDT of the large-scale turbulence characteristics such as the anisotropy. For the smaller
turbulent scales the time scale is shorter and the applicability of RDT is questionable.
Furthermore, we must stress that the condition SK/ε ≫ 1 or ΩK/ε ≫ 1 is a necessary
condition, but not always a sufficient condition, as we will notice later in this paper.
For the scalar the necessary condition for the applicability of RDT is that the second

advection term in equation (2.10) is much smaller than the fourth term due to the mean
scalar gradient. These terms can be estimated as

|u · ∇θ| = O(uθ′/l)

and

|G · u| = O(Gu),

respectively, where θ′ is the root mean square of the scalar fluctuations. The condition for
RDT becomes then (GK3/2)/(θ′ε) ≫ 1. In section 5 we will observe that (θ′/G)/(u/S) is
O(1) or larger after short distortion times. Assuming that the ratio is O(1) the condition
for the scalar becomes SK/ε ≫ 1, which is in fact the same as for the flow field. In
case (θ′/G)/(u/S) is not O(1) but larger, the condition SK/ε ≫ 1 is not necessarily
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sufficient and the more severe demand (GK3/2)/(θ′ε) ≫ 1 applies. The condition for the
applicability of RDT for scalar transport seems therefore more restrictive than for the
flow field.
In case of homogeneous flows the governing equations for the flow and scalar field can

be transformed to Fourier space with the definitions

ui =
∑

k

ûi(k , t)e
ik ·x (i = 1, 2, 3) (4.1)

and

θ =
∑

k

θ̂(k , t)eik ·x (4.2)

After the linearization, elimination of the pressure using the continuity equation and
transformation to a coordinate system moving with the mean flow, the RDT equations
for the homogeneous shear flow read

(
d

dSt
+ ν

k2

S

)

ûi = −
[
(
δi1 − 2

kik1
k2

)
δj3 − 2

Ω

S

(
ǫij2 −

kikn
k2

ǫnj2
)
]

︸ ︷︷ ︸

Lij

ûj (4.3)

and for the scalar fluctuation with a mean gradient
(

d

dSt
+ κ

k2

S

)

θ̂ = −Gi

S
ûi (4.4)

where the time t∗ is scaled with the shear rate and ǫijk is the permutation tensor. The
wave numbers evolve according to

dki
dSt

= −k1δi3 (4.5)

The viscous and diffusive terms are not neglected in the present analysis, but have been
taken into account in the RDT computations.
To compute the Reynolds stresses, scalar fluxes and other mean statistical moments

the Fourier coefficients of the velocity and scalar have to be integrated in wave number
space. However, in the present study the viscous and diffusive terms are retained and
therefore, an initial turbulent energy spectrum has to be specified. For the scalar field
no initial spectrum has to be specified because the fluctuations are initially zero, similar
to the initial conditions of the DNS. The following form is assumed for the initial energy
spectrum

E(k′) = Ck′2 exp(−2k′l) (4.6)

where C is a constant and l some characteristic turbulent length scale. The shape of
this spectrum agrees fairly well with the DNS data, but it has been observed that the
anisotropy of the flow and other statistics are not critically dependent on the exact form
of the initial energy spectrum.
Using the spectrum defined by (4.6) it can be shown that the initial non-dimensional

shear number is SK/ε = 1
6S

∗ where S∗ = Sl2/ν. The evolution of the flow and scalar
field according to the RDT equations is completely determined through the choice of
S∗ and the rotation number R. Here S∗ = 108 is taken which implies SK/ε = 18 and
hence, the initial value of the non-dimensional shear number in the DNS and the RDT
computations are the same. After the specification of the energy spectrum, S∗ and R
the Fourier coefficients of the velocity and the scalar can be integrated in time and the
development of the Reynolds stresses, pressure-strain correlations, scalar fluxes and scalar
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Figure 3. Time development of the turbulent kinetic energy K according to DNS (symbols)
and RDT (lines). The time t is made non-dimensional with the shear rate S and K is scaled
with its initial value. (▽,− · · − · · −), R = 1/2; (✷,——–), R = 0; (O,−−−), R = −1/2;
(△,· · · · ·), R = −1; (✸,− · − · −), R = −3/2. The gray filled symbols are DNS results from
series A and the white filled from series B. Sometimes they are not distinguishable because the
symbols overlap each other.

variances can be calculated. More details of the computational procedure are given in
Appendix B.
For Sc 6= 1 the computation of the scalar variance and scalar flux becomes complicated.

Rogers et al. (1986, 1989) observed a rather small difference between turbulent scalar
transport at Sc = 0.7 and Sc = 1 in their DNS of homogeneous shear flow and therefore
we take Sc = 1 in the RDT computations instead of the value Sc = 0.7 which is used in
the DNS.

5. Results of the DNS and RDT

In this section the results of the DNS and the predictions of RDT are presented. The
flow field is first analysed. One-point statistics and the anisotropy of the turbulence are
considered and the turbulent structures are studied by means of two-point velocity cor-
relations and visualizations. Then the turbulent transport of the scalars and the mixing
time scales are investigated.

5.1. Flow field

5.1.1. Development of the turbulent kinetic energy and anisotropy

The time development of the turbulent kinetic energy for the five different rotation
numbers is presented in figure 3. RDT predictions and DNS results from series A and
series B, which give similar results, are displayed in the figure. Both DNS and RDT show
a strong influence of rotation on the stability of the flow. In figure 4 only the DNS results
of series B at R = 0, −1/2 and −1 are plotted together with exponential and linear fits.
The case R = −1/2 is the most unstable case, in agreement with previous findings (Salhi



10 G. Brethouwer

0 2 4 6 8 10 12 14
St

0

2

4

6

8

10

K

Figure 4. Time development of the turbulent kinetic energy K according DNS, series B. ——–,
(thick line) R = 0; −−−,R = −1/2; · · · · ·, R = −1. The thin solid lines are fitted exponential
functions at R = 0 (exp(0.178St)) and R = −1/2 (exp(0.56St)) and a linear fit at R = −1.

& Cambon, 1997) and the analysis presented in Appendix A. The kinetic energy has a
very fast exponential growth according to figure 4 at larger St values. An exponential
growth of the kinetic energy is also observed in the DNS results at R = 0 at larger St
values, but the RDT results do not show this behaviour. Consequently, there is a quite
large discrepancy between the DNS and RDT results for St > 6 which also, but to a lesser
extent, can be observed at R = −1 for St > 8. In the other cases there is a reasonable to
good correspondence between DNS and RDT. At R = −1 the kinetic energy is growing
approximately linearly according the DNS as can be seen in figure 4. Bardina et al.

(1983) observed in their LES for R = −1 an approximately constant kinetic energy and
this difference is likely to be a consequence of the lower non-dimensional shear number
used in their study. In the other two cases, R = −3/2 and R = 1/2, the kinetic energy
first increases very slightly but then decreases slowly according to DNS and RDT which
implies a stabilizing influence of rotation on the turbulence (Salhi 2002). We observe also
in figure 3 a clear difference between the cases R and −1 − R, i.e. between R = 0 and
R = −1 and between R = 1/2 and R = −3/2 caused by the influence of the pressure,
confirming the analysis of Salhi & Cambon (1997).
The next point of attention is the anisotropy of the turbulence. Figure 5 shows the de-

velopment of the streamwise velocity fluctuation in terms of the Reynolds stress anisotropy
component b13 where bij = uiuj/(2K)−δij/3. At R = −1/2, b13 reaches very large nega-
tive values implying a strong correlation between the streamwise and transverse velocity
fluctuations. The velocity cross-correlation u1u3/u

′
1u

′
3 is as large as -0.86 at St = 6 ac-

cording to the DNS. At R = 0 and R = −1, b13 at first sharply decreases but then
increases again and it becomes approximately constant at larger St values. The DNS
corresponds well to the RDT predictions till St = 4 at R = 0, but thereafter b13 is sig-
nificantly larger negative in the DNS. The pressure-less analysis presented in appendix
A predicts oscillations of u1u3 with a period of 3.6 at R = −3/2 and R = 1/2 and this
behaviour can also be observed in the DNS and RDT results. Moreover, b13 becomes
positive according to RDT and DNS implying an energy transfer from the turbulence to
the mean flow.
The figures 6, 7 and 8 show the development of b11, b22 and b33, respectively. In the pure

shear case R = 0 the production term of u1u1 is positive and there is no production of
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Figure 5. Time development of the
Reynolds stress anisotropy component b13.
Symbols and lines as in figure 3.
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Figure 6. Time development of the
Reynolds stress anisotropy component b11.
Symbols and lines as in figure 3.

u3u3. At R = −1/2, however, both Reynolds stresses have a positive production term due
to rotation and at R = −1, only u3u3 has a production term as can be seen in equations
(2.3) and (2.5). In accordance with this, at R = 0 the streamwise velocity fluctuations
are large and b11 is positive, but at R = −1/2, b11 and b33 are approximately equal
and at R = −1, b33 is positive and b11 negative signifying strong transverse and weak
streamwise velocity fluctuations. RDT shows at R = 0 a monotic increase and decrease
of b11 and b33, respectively, but in the DNS the non-linear effects are strong enough to
reduce the anisotropy at larger St values as we see in figure 6 and 8 leading to significant
differences with the RDT predictions. The anisotropy of the turbulence, however, is still
much larger than in a homogeneous shear flow at the equilibrium state (Tavoularis &
Corrsin 1981). At R = 1/2 and R = −3/2, b11 and b33 follow initially the same trend as
at R = 0 and R = −1, respectively, but then start to oscillate with a decaying amplitude.

The spanwise velocity fluctuations are only influenced by rotation through the pressure-
strain correlation and the dissipation term according to equation (2.4). Weak oscillations
of b22 are observed in figure 7 at R = 1/2 and R = −3/2 and negative values at R = 0
and R = −1/2 at larger St values.
Similar trends regarding the anisotropy development of the turbulence at R = 0, −1/2

and −1 in rotating homogeneous shear flow but at a lower non-dimensional shear rate
have been observed by Bardina et al. (1983) and Salhi & Cambon (1997).
In order to get a better understanding of the influence of rotation on the anisotropy

of the turbulence it is worthwhile to consider the principal angle of the Reynolds stress
tensor, defined here as

αu =
1

2
tan−1

[
2u1u3/(u1u1 − u3u3)

]
(5.1)

The definition is such that αu is the angle of the principal axis corresponding to the largest
eigenvalue, i.e. largest principal Reynolds stress, with the x1-axis. The angles for the five
cases obtained form DNS and RDT are plotted in figure 9. It can be shown that for a
positive production rate of kinetic energy the requirement is −90◦ < αu < 0◦. For the
non-rotating case αu = −13◦ according to the DNS at St = 12 compared to the value
αu = −19◦ found in experiments which where conducted at a lower non-dimensional
shear number (Ferchichi & Tavoularis, 2002). At R = −1/2 and R = −1, αu is very
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Figure 7. Time development of the
Reynolds stress anisotropy component b22.
Symbols and lines as in figure 3.
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Figure 8. Time development of the
Reynolds stress anisotropy component b33.
Symbols and lines as in figure 3.
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Figure 9. Time development of αu. Symbols and lines as in figure 3.

close to −45◦ and −90◦, respectively, at larger St values which is related to decrease of
u1u1 production and the increase of u3u3 production due to rotation. A simple displaced
particle analysis predicts αu = 0◦, −45◦ and −90◦ for R = 0, −1/2 and −1, respectively
(Tritton, 1992), quite close to the DNS values. At R = 1/2, αu approaches a value around
0◦ and at R = −3/2, αu decreases below −90◦ and starts to oscillate.
The pressure-strain correlations are considered to get a more complete understanding

of development of the turbulent anisotropy and the importance of non-linear effects. In
the following part the rapid and the slow pressure-strain correlations are denoted by Πr

ij

and Πs
ij , respectively. The slow part of Πij is related to the non-linear part of the source

term in the Poisson equation of the pressure, and is therefore not included in the RDT.
The pressure-strain correlations presented in the figures are all scaled with SK.
In figure 10, Πr

11 and Πs
11 are presented. In all cases, except at R = −3/2, Πr

11 is a
sink term in the Reynolds stress equation for u1u1 and thus redistributes the streamwise
kinetic energy to the other directions. At R = 0 there is a considerable difference between
the RDT predictions of Πr

11 and the DNS results whereas in the other cases there is a
fair agreement. The DNS shows a decrease of Πr

11 after St = 8 at R = 0, in contrast to
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Figure 10. (a) Time development of Πr
11/(S K). Symbols and lines as in figure 3. (b) Time

development of Πs
11/(S K). Only DNS data are displayed. Symbols as in figure 3.
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Figure 11. (a) Time development of Πr
33/(S K). Symbols and lines as in figure 3. (b) Time

development of Πs
33/(S K). Only DNS data are displayed. Symbols as in figure 3.

the RDT predictions. At R = 0 and R = −1/2, Πs
11 is a sink term and gives a significant

contribution to the energy redistribution at larger St values. While at R = 0, Πs
11 is a

sink term, it is a source term at R = −1. Because Πr
11 becomes very small at R = −1

the sum of the slow and rapid part of the pressure-strain correlation becomes positive at
larger St values and thus the streamwise velocity fluctuations gain energy.
In figure 11, Πr

33 and Πs
33 are presented. At R = −1/2 and −1, Πr

33 is a large sink term
but this is opposed by a positive production term as discussed before and, as a result,
the transverse velocity fluctuations still grow. At R = 0, Πs

33 is much larger than Πr
33

at larger St and the sum becomes a source term. At R = −3/2, Πr
33 becomes a source

term after about St = 2 for the transverse velocity fluctuations. This does not result in
an increase of u3u3 because after St = 2 the production of u3u3 becomes negative.
In figure 12, Πr

13 and Πs
13 are displayed. At R = 0, Πr

13 is initially large but then
decreases rapidly whereas Πs

13 increases and is larger than Πr
13 for St > 5. At R = −1/2,

Πs
13 is also positive and gives a significant contribution at larger St values, but in the

other three remaining cases Πs
13 gives a very small contribution to the total pressure-

strain correlation.
The RDT predictions of the development of the kinetic energy, anisotropy and pressure-
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Figure 12. (a) Time development of Πr
13/(S K). Symbols and lines as in figure 3. (b) Time

development of Πs
13/(S K). Only DNS data are displayed. Symbols as in figure 3.
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Figure 13. Time development of (a) K and (b) ε at R = 0 series B (——–) and R = −1 series
B (· · · · ·) and the corresponding simulations without the non-linear terms at R = 0 (− − −)
and at R = −1 (− · − · −).

strain correlations correspond in general well with the DNS at R = 1/2 and R = −3/2.
The non-linear effects in terms of Πs

ij appear to be weak in these two cases and seem
to be strongly damped by the rotation. At R = −1/2 and R = −1 the non-linear
effects are noticeable, for instance in the development of the anisotropy, but the most
clear non-linear effects are observed at R = 0, although the non-dimensional shear rate
was high during the simulation period. However, a similar result was obtained by Kim
(1989) who found that the slow pressure fluctuations have the same magnitude as the
rapid pressure fluctuations in the rapidly sheared layer near the wall in a turbulent
channel flow, contrary to common belief. In the DNS in the present study, all the slow
pressure-strain correlations, except for the spanwise direction, are larger than the rapid
pressure-strain correlations for St > 7.
In order to study the importance of the non-linear effects on the development of the

turbulence at R = 0 and R = −1 in more detail, simulations have been performed with
the same initial velocity field, the same code and the same numerical parameters as
the cases R = 0 and R = −1 in series B, but with the non-linear terms explicitly set
to zero. The results of this linear simulation are compared with the cases R = 0 and
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Figure 14. Time development of (a) u3u3 at R = 0 and u1u1 at R = −1 and (b) u1u3 at
R = 0 and R = −1 in the linear and non-linear simulation. Lines as in figure 13.

R = −1 in series B. The results of the linear simulation should correspond well to the
RDT predictions, which they do, but we wanted to be sure to have the same influence
of finite domain size, domain deformation and remeshing in the linear and non-linear
simulations. The differences between the two simulations are thus solely the result of
non-linear contributions. Although the dissipation of kinetic energy is significant larger
for St > 6 as can be seen in figure 13 (b) due to the non-linear effects, the growth of K
at R = 0 is faster in the non-linear simulation than in the linear for St > 6 because of
a larger production term as will be discussed later. The growth of K at R = 0 in the
non-linear simulation at larger St values can be approximated by exp(0.178St) whereas
in the linear simulations it is approximately linear. The growth rate at R = 0 in the DNS,
which is at St = 12 still far from equilibrium conditions, is faster than in the experiments
close to equilibrium conditions of Tavoularis & Corrsin (1981). In the latter study the
growth rate can be approximated by exp(0.122St) when the centreline mean velocity in
the experiments is taken as the advection velocity. Rogers (1991) proves that in the long
time limit K grows linearly in a non-viscous RDT at R = 0. In a viscous RDT as in the
present study the growth rate is less than linear at large times, but up to St = 12 it is
close to linear in the linear simulation presented in figure 13. At R = −1 the differences
between the linear and non-linear simulations are not as large but also in this case K is
larger in the non-linear simulations at larger St values.
The largest difference between the non-linear and linear simulation at R = 0 occurs

in the development of u3u3, which is presented in figure 14(a). According to non-viscous
RDT (Rogers 1991) and viscous RDT u3u3 decays monotonically at R = 0 and this
happens also in the linear simulation. In the non-linear DNS, however, u3u3 grows for
St > 3 and at St = 12 there is a large difference between u3u3, a factor of 20, in
the linear and non-linear simulation. Already in an early stage of the simulations, at
St = 3, a difference between the linear and non-linear simulation can be noticed, which
is surprising in view of the high shear rate. The difference between the development of
u3u3 in the linear and non-linear simulation is a consequence of Πs

33 which gives a positive
contribution to the growth of the transverse velocity fluctuations, as has been shown in
figure 11. At R = −1, u1u1 grows for St > 7 in the non-linear simulation whereas in
the linear simulation it monotonically decays. At St = 14, u1u1 it is almost a factor of
5 larger in the non-linear simulation. In this case the difference is due to the positive
contribution of Πs

11 to the growth of the velocity fluctuations.
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Figure 15. The two-point correlations (a) ρ[u1](r) and (b) ρ[u3](r) at R = 0 and St = 12, series
B, for separation vectors in the (x1, x3)-plane. Here u1 is almost parallel to the principal axis
of the Reynolds stress tensor and u3 perpendicular.
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Figure 16. The two-point correlations (a) ρ[u](r) and (b) ρ[w](r) at R = −1/2 and St = 6,
series A, for separation vectors in the (x1, x3)-plane. Here u = u1 cos αu + u3 sin αu,
w = −u1 sin αu + u3 cos αu and αu = −45◦. Thus u is the strongest fluctuating velocity
component and is parallel to the principal axis of the Reynolds stress tensor and w perpendic-
ular.

Figure 14(b) presents the development of u1u3 in the linear and non-linear simulation.
Rogers has proven that u1u3 becomes constant in a non-viscous RDT at large times at
R = 0. Non-viscous RDT computations strongly indicate the same asymptotic behaviour
of u1u3 at R = −1 but in a viscous RDT u1u3 decays at large times, In figure 14(b)
we can observe a growing discrepancy between the linear and non-linear simulation for
St > 4. At the end of the simulations at R = 0 and R = −1, u1u3 is larger in the non-
linear simulation than in the linear simulation and this explains the faster growth of the
kinetic energy in the non-linear DNS. The reason for the larger magnitude of u1u3 is not
due to Πs

13 because at R = 0 it opposes the development of negative u1u3 correlations
and at R = −1 it is very small, but it is the larger u3u3 and u1u1 correlation in the
non-linear simulations at R = 0 and R = −1, respectively.

5.1.2. Turbulent structures

It is known that a high shear rate causes elongated streamwise structures in homoge-
neous shear flow which bear close similarities with the structures encountered in wall-
bounded shear flows (Lee et al., 1990). Quantitative information about turbulent length
scales can be obtained from two-point velocity correlations (no summation of repeated
indices)

ρ[ui](r) = ui(x)ui(x+ r)/ uiui (5.2)
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Figure 17. The two-point correlations (a) ρ[u3](r) and (b) ρ[u1](r) at R = −1 and St = 14,
series B, for separation vectors in the (x1, x3)-plane. Here u3 is almost parallel to the principal
axis of the Reynolds stress tensor and u1 perpendicular.

Two-point velocity correlations with the separation distance vector r in the (x1, x3)-
plane have been extracted from the DNS at different rotation numbers and at the end
of the simulations so that the elongation of the structures is most pronounced. Figure
15(a) presents ρ[u1](r) at R = 0, figure 16(a) presents ρ[ui](r) at R = −1/2 where ui is
the velocity component in the (x1, x3)-plane with an angle of −45◦ to the flow direction
and figure 17(a) presents ρ[u3](r) at R = −1. These velocity components are all ap-
proximately parallel to the principal axis of the Reynolds stress tensor corresponding to
Reynolds stress with highest fluctuation intensity. The direction of this particular prin-
cipal axis has been displayed in figure 9. The figures show the typical long correlation
length in a direction almost parallel to the flow direction of these velocity components
parallel or almost parallel to the principal axis of the Reynolds stress tensor. A closer
examination reveals that the longest correlation length appears at an angle of approxi-
mately 10◦ with the flow direction with little variation of the angle at different rotation
numbers.

Figure 15(b) presents ρ[u3](r) at R = 0, figure 16(b) presents ρ[ui](r) at R = −1/2
where ui is the velocity component in the (x1, x3)-plane with an angle of 45◦ to the flow
direction and figure 17(b) presents ρ[u1](r) at R = −1. These velocity components are
perpendicular to the velocity components whose two-point correlations are plotted in
figure 15(a), 16(a) and 17(a), respectively. They are thus almost parallel to the principal
axis of the Reynolds stress tensor corresponding to the Reynolds stress with the lowest
fluctuation intensity. The velocity components in this direction have a much shorter
correlation length as can be seen in the figures 15(b), 16(b) and 17(b). At R = 0,−1/2 and
−1 the velocity components with a high turbulence intensity have thus a long correlation
length and the velocity components with a low turbulence intensity a short correlation
length.

RDT significantly underpredicted the intensity of the transverse velocity fluctuations
at R = 0 and the streamwise velocity fluctuations at R = −1 because there was a
considerable energy transfer due to the slow pressure-strain correlations as we have ob-
served before. In these cases RDT overpredicts the correlation length in comparison with
the DNS (results are omitted here). This shows that in the DNS mainly the transverse
velocity fluctuations with higher wave numbers at R = 0 and the streamwise velocity
fluctuations with higher wave numbers at R = −1 gain energy by non-linear processes
which leads to shorter correlation lengths than in the RDT simulations.

In the two stabilized cases, R = −3/2 and R = 1/2, the two-point velocity correla-
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Figure 18. The instantaneous velocity in a (x, x2)-plane where x is at 10◦ with the flow direc-
tion. (a) streamwise velocity at R = 0 and St = 8; (b) streamwise velocity at R = 0 and St = 8
for the RDT (the other plots are all obtained from DNS); (c) velocity component u (see the
caption of figure 16 for the definition of u) at R = −1/2 and St = 6; (d) transverse velocity at
R = −1 and St = 10; (e) transverse velocity at R = −3/2 and St = 6; (f) streamwise velocity
at R = 1/2 and St = 6.

tions do not reveal clear elongated structures in the flow direction and are therefore not
presented here.
According to the two-point velocity correlation we might expect to see streaky velocity

structures at R = 0, R = −1/2 and R = −1. These are indeed observed in instantaneous
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plots of the fluctuating velocity presented in figure 18 (a), (c) and (d) in a plane with
an angle of 10◦ with the flow direction. In the plots elongated turbulent structures in
the flow direction can be observed of low and high speed flow. Note that at R = 0 an
instantaneous plot of the streamwise fluctuating velocity is shown but at R = −1/2 and
R = −1 an instantaneous plot of u (see the caption of figure 16 for the definition) and
the transverse fluctuating velocity is shown, respectively. At R = −1 an instantaneous
plot of the streamwise fluctuating velocity does not show any streaky structures, as can
be expected from the two-point correlation presented in figure 17.
The turbulent structures found at R = 0 are similar to the structures observed by

Lee et al. (1990) in a rapidly sheared non-rotating homogeneous shear flow. Lee et al.

remarked that these structures resemble the streaky streamwise structures in the near-
wall region of a turbulent channel flow. We have also performed a simulation with the
same parameters and initial velocity field as the R = 0 case but without the non-linear
terms. This simulation thus represents a RDT calculation and a plot of the streamwise
velocity fluctuations is shown 18 (b). Streamwise streaks are also observable in this case
which shows that linear processes can generate the streaks, an observation that is in
agreement with Kim & Lim (2000), but the velocity field is much smoother than in the
case with the non-linear terms included (see figure 18 a) because the small scales do not
gain energy by non-linear instabilities and are damped by viscous effects.
Alvelius & Johansson (1999) performed DNS of turbulent channel flow with spanwise

rotation. In the simulations there was a large region in the middle of the channel where
the absolute mean vorticity was approximately zero which corresponds to the R = −1
case considered here. It is interesting to note that Alvelius & Johansson observed long
streamwise structures with a positive wall-normal velocity in this middle region of the
rotating channel flow. This observation corresponds well with the results shown in figure
18 (d).
The figures 18 (e) and (f) present instantaneous plots of the transverse and streamwise

fluctuating velocity at R = −3/2 and R = 1/2, respectively, in a plane with an angle of
10◦ with the flow direction. These velocity components are also approximately aligned
with the principal axis of the Reynolds stress tensor. At R = 1/2 the instantaneous
streamwise velocity structures are somewhat stretched in the flow direction but there are
no such distinctive elongated structures as in the cases R = 0, R = −1/2 and R = −1.
Turbulent structures are even less clear at R = −3/2. The most coherent large scale
turbulent structures are thus in our study found in the cases where the kinetic energy is
growing.
To quantify the formation of streaky structures in homogeneous shear flows, Lee et

al. (1990) and Salhi & Cambon (1997) used the eddy elongation parameter L∗ = ℓ1/ℓ2.
In case of the streamwise velocity fluctuations we use ℓ1 = L1

1 and ℓ2 = 2L2
1 for the

streamwise and spanwise length scales, respectively, similar as Lee et al. (1990). The
length scales are obtained by integrating the two-point correlations (5.2)

Li
j =

∫ ∞

0

ρ[uj](r + xei)dx. (5.3)

Lee et al. suggested L∗ > 8 as criterium for streaky structures.
Figure 19 (a) shows L∗ extracted from the DNS at the different rotation numbers.

Analytical expressions for L∗ obtained from inviscid RDT are presented by Salhi &
Cambon (1997). At R = 0, L∗ seems to approach an asymptotic value close to the
criterium for streaky structures whereas in RDT L∗ monotonically increases (Salhi &
Cambon). An explanation is the decrease of L2

1 in the RDT whereas in the DNS it is
approximately constant after some time. The streak spacing or L2

1 in the DNS seems
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Figure 19. The elongation parameter for the streamwise velocity component (a) and for the
transverse velocity component (b). (——), R = 0; (−−−), R = −1/2; (· · ·), R = −1; (− · ·−),
R = 1/2; (− · −), R = −3/2.
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Figure 20. Two-point velocity correlations: (——–), ρ[u1](x2) at R = 0 and St = 12, series
B; (− − −), ρ[u](x2) at R = −1/2 and St = 6, series A (see the caption of figure 16 for the
definition of u); (· · · · ·), ρ[u3](x2) at R = −1 and St = 14, series B.

to be determined by (ν/S)1/2 as discussed hereafter, but in the RDT this is not the
case. Kim & Lim (2000) concluded from numerical experiments of turbulent channel flow
that the non-linear terms are necessary to produce the proper streak spacing and this
conclusions seems to be confirmed by the present simulations. At R = −1/2, L∗ grows
faster than at R = 0, but at R = 1/2, −1 and −3/2, L∗ stays approximately constant or
oscillates weakly showing the absence of streaky structures. Similar results are obtained
by RDT as shown by Salhi & Cambon (1997).
In figure 19 (b) we present L∗ = ℓ1/ℓ2 where ℓ1 = L1

3 and ℓ2 = L2
3, i.e. the integral

length scales for the transverse velocity component, extracted from the DNS at R = −1/2
and −1. (L∗ is always defined so that L∗ = 1 in isotropic turbulence). In both these cases
L∗ becomes very large revealing strong elongation of the structures in the streamwise
direction.
Elongated streaks of alternating high and low speed flow give rise to negative values

of the spanwise two-point correlations. The spanwise two-point velocity correlations are
plotted in figure 20 for the cases and velocity components that we can observe clear
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R = 2Ω/S St v11 v22 v33 v13

1/2 6 0.151 0.076 -0.227 0.117
0 8 -0.019 0.084 -0.064 0.111

−1/2 6 0.249 -0.156 -0.093 0.267
−1 10 0.542 -0.277 -0.265 0.167

−3/2 6 0.466 -0.187 -0.279 0.125

Table 2. The components of the anisotropy tensor of the vorticity fluctuations at different
rotation numbers, extracted from series A.

streaks, e.g. R = 0, R = −1/2 and R = −1. The mean spacing Λ between two high
speed or low speed streaks is about twice the separation at which the minimum value of
ρ[ui](x2) occurs. If the streak spacing is scaled with the viscous length scale (ν/S)1/2,
we find Λ = 87 at R = 0 and St = 12, Λ = 89 at R = −1/2 and St = 6, and Λ = 80
at R = −1 and St = 14. These values correspond reasonably well with the mean streak
spacing of Λ = 112 found in DNS of turbulent channel flow (Moser et al. (1999).

5.1.3. Vorticity structures

Rotation affects the small scales of the turbulence as we can see in the equation (2.9)
for the vorticity. The influence of vorticity on the small scales and in particular on vortices
is studied in this section.
In table 2 the values of the anisotropy tensor components of the mean vorticity fluc-

tuations (thus without the mean vorticity component)

vij =
〈ωiωj〉
〈ωkωk〉

− 1

3
δij , (5.4)

extracted from the DNS, are listed in table 2 for the different rotation numbers. According
to the table, v22 is the largest component at R = 0, but it is not much larger than the
other components. At R = −1/2, v11 is the dominating component and this is even more
pronounced at R = −1 where the vorticity fluctuations of ω2 and ω3 are much smaller
than of ω1. This can be understood if we consider the linearized form of the vorticity
equation (2.9). At R = −1, linear inviscid theory shows that ω2 and ω3 stay constant
and ω1 ∼ St because of amplification by mean shear (Cambon et al. 1994). The linear
production appears in fact to be dominant at R = −1 (results are not presented here).
Figure 21 presents joint probability density functions (PDFs) of the strain rate (2sijsij)

1/2

and the norm of the vorticity (ωiωi)
1/2 obtained from the DNS whereby now the mean

vorticity is included in ω2 and the mean strain rate is included in s13. Points close to the
line s = ω correspond typically to vortex sheets, but also the mean flow gives s = ω.
The joint PDF obtained from the DNS at R = 0 and at St = 8, displayed in figure 21

(a), shows a high probability around the line s = ω, suggesting vortex sheet behaviour,
especially at large values of strain and vorticity. At the same time there are regions in
the flow with high vorticity and low strain which typically are related to vortices, and
regions with high strain and low vorticity related to irrotational straining (Chong et al.

1998). This is even more pronounced at St = 12 where more regions are found with
high vorticity or high strain (figure 21 b). Results are omitted here, but in a simulation
without the non-linear terms and R = 0, regions with either large strain or large vorticity
are absent.
When the rotation number decreases from R = 0 to −1/2 and to −1 the vortex sheet

behaviour becomes less appearant according to figure 21 (a), (c) and (d). The probability
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Figure 21. The joint PDF of norm of the vorticity including the mean vorticity (ωiωi)
1/2

(horizontal axis) and the strain (2sijsij)
1/2 (vertical axis) whereby both are scaled with the rms

of the vorticity. The difference between each contour level is one decade and a lighter colour
corresponds to a higher probability. (a) R = 0 and St = 8; (b) R = 0 and St = 12; (c) R = −1/2
and St = 6; (d) R = −1 and St = 14; (e) R = −3/2 and St = 6; (f) R = 1/2 and St = 6.

of strain or vorticity dominated regions in the flow is quite large at R = −1/2. The
appearance of vorticity dominated regions, with sometimes extreme values of vorticity,
is even more likely at R = −1, which indicates the presence of many relative strong
vortices.

At R = −3/2 much less strain or vorticity dominated regions appear than in the former
three non-linear cases according to 21 (e). The strain and vorticity are mostly of the same
order indicating the presence of vortex sheets. Similar conclusions can be drawn for the
case R = 1/2. The appearance of less strain and vorticity dominated regions is probably
related to the less intensive non-linear processes in these two cases.

Further insight into the features of the vorticity field can be obtained by using three-
dimensional visualizations of vortex structures. There exist a number of techniques to
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Figure 22. Vortices identified by isosurfaces of |λci| in a domain of size
Lx1

× Lx2
× Lx3

= 1.5π × 1π × 0.5π (a,b,c,d). Lx1
× Lx2

× Lx3
= 2π × 1.5π × 0.8π

(e,f). (a) R = 0 and St = 8, |λci|/S = 1.68; (b) R = 0 and St = 12, |λci|/S = 2.75; (c)
R = −1/2 and St = 6, |λci|/S = 1.40; (d) R = −1 and St = 14, |λci|/S = 2.07; (e) R = −3/2
and St = 6, |λci|/S = 0.66; (f) R = 1/2 and St = 6, |λci|/S = 0.48.

identify vortices. We have applied a technique proposed by Zhou et al. (1999) and use the
imaginary part of the complex eigenvalue of the velocity gradient tensor λci to identify
the vortices. This quantity is related to the strength of the local swirling motion of the
velocity field. For instance, it is zero at places where the velocity field is not locally
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circular or swirling, as e.g. in vortex sheets. In the visualizations presented here we show
isosurfaces of the imaginary part of the complex eigenvalue of the velocity gradient tensor.
This means that only vortices with a swirling strength above a certain threshold value
are visualized and vortex sheets or shear layers are not visible in the figures.

The three-dimensional visualizations presented in figure 22 show the vortical structures
developed in the DNS. Many elongated, quasi streamwise vortices can be observed in
figure 22 (a) at R = 0 and St = 8 which are approximately aligned with the streaky
structures observed in figure 18 (b). Kim & Lim (2000) observed that in wall-bounded
shear flows linear processes can produce streaks but the non-linear terms are essential for
the formation of the streamwise vortices. In a simulation without the non-linear terms
we could observe streamwise vortices, but these were much weaker than in the simulation
with the non-linear terms. Apart form the streamwise vortices some hairpin-like vortical
structures can be distinguished in figure 22 (a) and many short, curved vortex tubes can
be seen which are more or less aligned with the spanwise direction. These latter structures
could well be parts or remains of hairpin vortices. The vorticity field has a quite different
appearance at a later stadium in the DNS at St = 12 when the non-linear processes
are much stronger, as shown in figure 22 (b). There are some streamwise vortices but
they are not as long and pronounced as at St = 8. Instead many relative short vortex
tubes can be observed with a more isotropic orientation or with a spanwise orientation.
These observations show similarities with the observations of Kida & Tanaka (1994) who
also found that the streamwise vortices disappear and the vorticity field becomes more
isotropic at larger St values in homogeneous shear flow.

Streamwise and spanwise vortex tubes and hairpin-like vortical structures have also
been observed by Rogers & Moin (1987) and Kida & Tanaka (1994) in non-rotating
homogeneous shear flows, but at much lower shear rates. The latter argued that the
spanwise vortex tubes are a consequence of a rolling up of vortex sheets through the
Kelvin-Helmholtz instability. This is, however, a linear instability process and one would
therefore expect to see these spanwise vortex tubes in a simulation without the non-linear
terms, if this linear instability mechanism exists, but they are absent in the simulation
without the non-linear terms at R = 0. The spanwise vortical structures in the DNS are
thus more likely related to non-linear processes.

In the most unstable case at R = −1/2 there exist many and intense streamwise
vortices as can be observed in figure 22 (c). They have a slightly steeper angle with the
flow direction, approximately 18◦, than the streamwise vortices at R = 0. A few hairpin-
like vortical structures can be observed at R = −1/2 and many curved vortices as well as
quasi spanwise vortices. Very elongated and intense streamwise vortex tubes are observed
at R = −1 in figure 22 (d). Similar structures were observed by Tanaka et al. (1998) in
rotating homogeneous shear flow at R = −1 at a lower shear rate. The dominance of the
streamwise vortices at R = −1 was already indicated by the vorticity anisotropy tensor
presented in table 2. To a smaller extent spanwise vortex tubes can be observed and
streamwise vortex tubes with a hook-like shape at one of the ends resembling one-sided
hairpin vortical structures.

Much weaker and less distinct streamwise vortex structures are observed in the sta-
bilized case R = −3/2 displayed in figure 22 (e), but the predominance of streamwise
oriented vortex tubes is still obvious. Vortices appear to be even weaker at R = 1/2
which is indicated by the low value of |λci| used in figure 22 (f) to visualize the vortices.
At R = 1/2 most of the vortices are not lying in a (x1, x3)-plane as in the other cases,
but have a component in the spanwise direction. Due to the strong shear they still have
a small angle with the flow direction. Beside these vortices also quite thick and short
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Figure 23. PDFs of the fluctuating relative helicity density h′ conditioned on high streamwise
vorticity: ——–, R = 0 and St = 8; − ·− ·−, R = 0 and St = 12; −−−, R = −1/2 and St = 6;
· · · · ·, R = −1 and St = 14.

vortical structures can be observed with a spanwise orientation. Hairpin-like vortical
structures seem to be absent in both stabilized cases.
The presence of streamwise vortices is a common feature at R = −1/2, −1 and 0 in the

DNS. The swirling motion of fluid particles in the streamwise vortices is however, quite
different at the different rotation numbers. To study this topic in more detail a useful
quantity is the relative helicity density fluctuation, which is defined as

h′ =
u · ω

|u| |ω| = cosφ (5.5)

where φ is the angle between the velocity and vorticity vector. Here the mean vorticity
is included in ω. The condition ω1 > 1.5ω′ is used where ω′ is the rms of the vorticity
to identify mainly streamwise vortices in the DNS, otherwise the interpretation of the
results will be complicated. The condition ω1 > 1.5ω′ eliminates the tracing of vortex
sheets and the heads of hairpin vortices because they have in general a relatively small
streamwise vorticity component. This condition is satisfied in about 1.5% to 2.5% of
the flow field and visualizations show that this condition indeed traces many of the
streamwise vortices.
Figure 23 presents the probability density functions (PDFs) of h′ extracted from the

DNS at R = 0, −1/2 and−1 for the regions of the flow field where the condition ω1 > β ω′

with β = 1.5 is satisfied. The conditioned PDFs appear to be rather insensitive to the
exact value of the threshold value β. The figure shows that there is a clear difference
between the conditioned PDFs at different rotation numbers. At R = 0 and St = 8 the
PDF has peaks at h′ = ±1 which indicates that in many streamwise vortices the fluid
particles undergo a swirling, helical motion with a large streamwise component. This is
likely the reason that the streamwise velocity has a long correlation length and has a
streak-like structure at R = 0. At St = 12 the peaks at h′ = ±1 have disappeared which
is likely related to the more isotropic character of the vortices at larger St values, but
the high probability of large negative or positive values of h′ still remains.
At R = −1/2 the fluid particles undergo a swirling motion with a smaller streamwise

component than at R = 0, which is indicated by the flat distribution in the PDF between
h′ = ±0.3. The conditioned PDF at R = −1 has a peak at h′ = 0 and this signifies
that the streamwise vortices are characterized by swirling motions with a very small
streamwise component. Remark that in this case we have seen that the transverse velocity
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Figure 24. Time development of the dimensionless parameter (a) B1 (only series A) and (b)
B3. Symbols and lines as in figure 3.

has a long correlation length in the flow direction and has a streak-like structure and the
streamwise velocity a short correlation length, which now can be explained by the small
streamwise velocity component in the streamwise vortices.

5.2. Scalar field

In this section the evolution of the three passive scalar fields with steady and linear mean
scalar gradients in the x1, x2 and x3-direction is studied by means of the DNS and RDT.
The corresponding passive scalar will be denoted by θ1, θ2 and θ3, respectively.

5.2.1. Scalar fluctuations

The dimensionless ratio of scalar versus velocity fluctuations is defined as

Bα =
θ′α/G

q/S
(5.6)

where θ′α is the root mean square of the scalar fluctuations and q2 = 2K. The time
development of this relative strength of scalar fluctuations versus velocity fluctuations
has been displayed in figure 24 for the five different rotation numbers. Both DNS results
and RDT predictions are plotted. Initially, the ratio is zero because there are no scalar
fluctuations at St = 0, but then it grows because of the presence of the mean scalar
gradient. In some cases the relative intensity seems to reach an asymptotic value at
the end of the simulations, but the simulation time was in general too short to reach
an asymptotic state. This is a difference with the experiments of Tavoularis & Corrsin
(1981) and DNS of Rogers et al. (1989) where the relative intensity reached quite fast
an asymptotic value because they used a lower shear rate. Nevertheless, at R = 0, θ′1
is considerably larger than θ′3, in agreement with the DNS of Rogers et al. (1989). The
effect of rotation on the relative strength of the scalar fluctuations is significant. In the
case with the mean scalar gradient in the x1-direction the DNS show that at R = 0 and
R = 1/2, B1 is larger than when the rotation number is negative. as we can see in figure
24 (a). At R = −1 and R = −3/2, B3 is on the other hand larger than in the other cases.
The RDT predictions agree in general quite well with the DNS, but some discrepancies
can be noticed at larger St values.
The change of the structure of the turbulent flow field by rotation influences in its turn

the structure of the scalar field. This is observable in figure 25 where visualizations of
the instantaneous scalar fluctuations in a plane perpendicular to the flow direction are
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Figure 25. The instantaneous scalar fluctuations in a (x2, x3)-plane. θ1 at (a) R = 0, St = 8
and (b) R = −3/2 and St = 6; θ2 at (c) R = −1/2, St = 6 and (d) R = 1/2 and St = 6; θ3 at
(e) R = 0, St = 12 and (f) R = −1 and St = 14.

presented. Small plume-like structures in the scalar field with a streamwise mean gradient
can be observed at R = 0 (figure 25 a), but these structures are absent at R = −3/2
(figure 25 b). Plume-like structures are also present in the scalar field with a spanwise
mean gradient at R = −1/2 (figure 25 c), but at R = 1/2 the structures are more
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Figure 26. Time development of the scalar flux coefficient (a) ζ11 and (b) ζ13 . Symbols (only
series A) and lines as in figure 3.

streak-like and elongated in the spanwise direction. Note the very thin scalar structures
at R = 1/2, which are probably caused by intense strain in the (x2, x3)-plane. A possible
origin of the plume-like structures can be scalar transport by the streamwise vortices
which are more dominantly present at R = 0 and R = −1/2 than at R = −3/2 and
R = 1/2 as we have seen before and are therefore probably responsible for a significant
part of the scalar transport. At R = 0 the structures in the scalar field with a transverse
mean gradient (figure 25 e) seem to be smaller than at R = −1, where again plume-like
structures can be observed (figure 25 f), but is this not surprising because of the presence
of many streamwise vortices in this case, as shown before.

5.2.2. Turbulent scalar fluxes

The turbulent scalar flux is affected by mean shear and rotation as can be seen in
equation (2.11) and does in general not align with the mean scalar gradient (Tavoularis
& Corrsin, 1981), but our knowledge about the effect of rotation on turbulent scalar
transport is limited and therefore a detailed analysis presented.
The scalar-velocity correlation coefficient is defined by (no summation of repeated

indices)

ζαi = uiθα/u
′

iθ
′

α (5.7)

where u′
i and θ′α are the root mean square of the velocity and scalar fluctuation. Figure

26 presents ζ11 and ζ13 obtained from DNS and RDT predictions. At R = 0, ζ11 shows a
large negative correlation but there is also a small scalar flux component in the transverse
direction shown by figure 26 (b). The decrease of ζ13 as seen in the DNS is not predicted
by RDT. The differences between the RDT predictions and DNS regarding scalar fluxes
is caused by differences in velocity fluctuations and the destruction term and the absence
of the slow pressure-scalar gradient correlation in the RDT, see equation (2.11). The
correlation ζ11 has at R = −1/2 a large negative correlation as well, but at R = −1,
ζ11 has a relative small negative value at the end of the simulation. This is probably a
consequence of the cancellation of the second and third production term on the right-
hand-side of equation (2.11) at R = −1. The RDT predicts a decrease of ζ11 but not as
rapid as the DNS. Also at R = 1/2 and R = −3/2 rotation strongly reduces ζ11 . In all
cases, except at R = 1/2, ζ13 is positive because the production term due to the mean
scalar gradient is positive. At R = 1/2 this production term of u3θ1 is small because
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Figure 27. Time development of the scalar flux coefficient ζ22 . Symbols (only series A) and
lines as in figure 3.
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Figure 28. Time development of the scalar flux coefficient (a) ζ31 and (b) ζ33 . Symbols and
lines as in figure 3.

u1u3 is small, but the third term on the right-hand-side of equation (2.11) is negative
leading to a negative ζ13 .
The correlation coefficient ζ22 is also affected by rotation as we see in figure 27, but

not as much as the other scalar-velocity correlations. At R = −3/2 and R = 1/2 the
RDT predictions and the DNS agree quite well, but at the other rotation numbers RDT
predicts stronger negative correlations than the DNS.
Figure 28 presents ζ31 and ζ33 . At R = 0, ζ33 = −0.41 at St = 12 in the DNS, which is

close to ζ33 = −0.45 obtained by Tavoularis & Corrsin (1981) and Rogers et al. (1986),
but in these investigations ζ31 ≃ 0.60, which is considerably smaller than ζ31 ≃ 0.86 we
observed at St = 12 in the DNS. A higher shear rate gives thus stronger streamwise
scalar-velocity correlations. At R = −1/2 the scalar fluctuations are strongly correlated
to the transverse and streamwise velocity fluctuations as shown by the large positive and
negative values of ζ31 and ζ33 , respectively. At R = −1, ζ33 has also large negative values
but ζ31 ≃ 0. This implies that the first product term in the transport equation of u1θ3
given by (2.11) is balanced by Πθ1 and εθ1 because the second and third term on the
right-hand-side cancel each other at R = −1. At R = −3/2, ζ33 becomes slightly positive
at St = 6 according to the DNS and RDT predictions, which implies that there is a
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Figure 29. Time development of αθ for the scalar with a (a) streamwise (only series A) and
(b) transverse mean scalar gradient. Symbols and lines as in figure 3.

small counter gradient scalar flux, although it is very small in the DNS. The counter
gradient flux is the result of the scalar flux interacting with the rotation which gives a
positive contribution in the transport equation (2.11) for u3θ3 because u1θ3 is negative
at R = −3/2. In this case ζ31 is negative because the sum of the second and third term
production term of u1θ3 on the right-hand-side of equation (2.11) equals 1

2Su3θ3 and is
negative till St = 4 and the first term is small because u1u3 is small. This is of course
a simplified explanation because the pressure-gradient correlation and the destruction
terms play also a role.
The RDT predictions in the two stabilized cases, R = −3/2 and R = 1/2, agree quite

well with the DNS, but in the other cases RDT predicts too strong correlations between
scalar and transverse velocity fluctuations.
We can gain further insight by studying the direction of the turbulent scalar flux at

different rotation numbers. The angle αθ of the mean turbulent scalar fluxes for the cases
with a streamwise or transverse mean scalar gradient is defined as

αθ = tan−1(u3θ/u1θ) (5.8)

and is the inclination angle of the scalar fluxes with the x1-axis. The scalar flux for
the case with a spanwise mean gradient is always aligned with the mean scalar gradient
because u1θ2 = u3θ2 = 0 due to flow symmetry.
Figure 29 (a) presents the time development of αθ for the cases with a streamwise

mean scalar gradient. Note that in this case αθ = 0o implies a scalar flux down the
mean gradient. It is obvious that the rotation has a large influence on the direction of
the turbulent scalar flux. At R = 1/2 and R = 0 the scalar flux has a small positive
and negative angle with the streamwise axis, respectively, but in the other cases the
scalar flux has a large negative angle with the mean scalar gradient. In the case R = −1,
αθ = −79o at St = 10 implying that the scalar flux is almost perpendicular to the mean
gradient.
Figure 29 (b) shows the time development of αθ for the cases with a transverse mean

scalar gradient. At R = −1, αθ is close to −90o during the entire simulation implying
a close alignment between the scalar flux and the mean scalar gradient. On the other
hand, at R = −1/2 and especially at R = 0 and R = 1/2 the scalar flux vector has a
large component in the streamwise direction at larger St values. The case R = −3/2 has
also a large scalar flux component in the streamwise direction at larger St values, but
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Figure 30. Time development of αu (white symbols) and αθ for θ1 (black symbols) and θ3
(gray symbols), extracted from the DNS. (a) shows the results of the cases (✷——✷), R = 0;
(O −−O), R = −1/2; (△ · · · △), R = −1; and (b) shows the results of the cases (▽− · · −▽),
R = 1/2; (✸− · −✸), R = −3/2.

the direction of the scalar flux is almost opposite to the direction of the scalar flux at
R = 0. Moreover, the scalar flux has a small counter gradient component in this case
as we have observed before. The RDT predictions correspond in all cases well with the
DNS and this signifies a large influence of the linear effects on the direction of the scalar
transport.
The large variation of the direction of the scalar flux with different rotation numbers is

quite remarkable, but some understanding for this large variation can be obtained when
the principal angle of the Reynolds stress tensor αu and the inclination angle of the scalar
fluxes αθ are compared. In figure 30 the time development of those two angles, extracted
from the DNS, has been displayed. The close connection between the large scale structure
of the turbulent flow field and the turbulent transport of scalars is apparent. In all cases,
except at R = −3/2, the turbulent scalar flux rapidly aligns itself with the principal
axes of the Reynolds stress tensor. The same observation, but only for a non-rotating
homogeneous shear flow, has been made by Rogers et al. (1989). The scalar flux vector
is thus in general aligned with the direction of the strongest velocity fluctuations. The
exception is the case R = −3/2 where the scalar flux with the transverse mean gradient
is almost perpendicular to the direction of the strongest velocity fluctuations at St = 6.
The streamwise vortices observed in the cases R = 0, −1/2 and −1 might also play an

important role in the transport of the scalars. This is in fact indicated by the plume-like
structure of the scalar field (figure 25). At R = 0 the streamwise vortices appear to
have a large streamwise velocity component, as shown in figure 23 by means of the PDF
of the fluctuating relative helicity density, and can therefore induce a large streamwise
scalar transport, which is what we observe. At R = −1 on the other hand the streamwise
vortices have a small streamwise velocity component which can cause a preferential scalar
transport in the transverse and spanwise direction rather than in the streamwise direction
and this is confirmed by the results of the DNS.
The simplest model for the scalar flux is based on a gradient diffusion assumption

uiθ = − νt
Sct

Gi (5.9)

where νt is the turbulent viscosity, which is in the present case equal to −u1u3/S, and
Sct is the turbulent Schmidt or Prandtl number. This model predicts a scalar flux down



32 G. Brethouwer

R St Sct for θ1 Sct for θ2 Sct for θ3
DNS RDT DNS RDT DNS RDT

1/2 6 -0.005 -0.011 -0.005 -0.010 -0.10 -0.31
0 8 0.05 0.03 0.24 0.11 0.97 0.78

−1/2 6 0.42 0.38 0.82 0.63 0.54 0.47
−1 10 0.86 0.44 0.08 0.03 0.04 0.02

−3/2 6 -0.07 -0.12 -0.007 -0.010 0.31 0.17

Table 3. The turbulent Schmidt number Sct for the scalars with a streamwise, spanwise and
transverse mean gradient, respectively. Data are obtained from the DNS, series A and RDT.
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Figure 31. Time development of (a) Υ1 (only series A), (b) Υ3 (gray symbols: series A and
white symbols: series B). Data are obtained from DNS and symbols and lines are as in figure
30.

the mean gradient which is thus inappropriate for the present case. In addition, Sct
is assumed to be a constant and of order one but Rogers et al. (1989) showed that
Sct strongly depends on the direction of the mean scalar gradient. Table 3, listing Sct
computed at the end of the DNS, shows that Sct does not only depend on the direction
of the mean scalar gradient, but also strongly on the rotation number. At R = 0, for
instance, Sct for the scalar with transverse mean gradient is of order one in agreement
with the value found in other shear flows, but at R = −1 it is much smaller. Even negative
turbulent Schmidt numbers are observed at R = −3/2 and R = 1/2 which is not due
to counter gradient fluxes but a consequence of negative equivalent turbulent viscosities.
The positive Schmidt number for θ3 at R = −3/2 is due to the counter gradient flux and
the negative turbulent viscosity. RDT predictions of Sct are also listed in table 3 and they
show quite similar trends regarding the influence of the rotation number as the results
obtained from DNS. In a few cases, however, there are significant differences between the
predictions of RDT and DNS. For example, at R = −1 where the DNS gives a significant
larger value for Sct than the RDT in case of a streamwise mean scalar gradient.

5.2.3. Time scale ratios

An often used model for the scalar dissipation is the assumption of a constant ratio of
turbulence time scale versus scalar time scale Υα = (2K/ε)/(θαθα/χ) (no summation of
repeated indices), where the scalar dissipation χ = κ(∂θα/∂xj)(∂θα/∂xj) (only summa-
tion of the index j). The time development of this time scale ratio for the scalars with
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mean gradients in the streamwise and transverse direction extracted from the DNS, is
presented in figure 31. In the DNS of non-rotating homogeneous shear flow of Rogers et
al. (1989) the time scale ratio had a value between 1.5 and 2.0, depending on the direction
of the mean scalar gradient. In the present case we observe at R = 0 a variation of the
time scale ratio with the mean scalar gradient direction as well, but it does not reach yet
an asymptotic value. Of importance is the large variation of the time scale ratios with
the rotation number. At R = −1/2 the time scale ratios reach large values compared to
the other cases, especially the scalar with a streamwise mean gradient as can be seen in
figure 31 (a) and (b), and the figures indicate that the time scale ratios may even become
larger if the simulations would be proceeded. On the other hand, in the two stabilized
cases R = −3/2 and R = 1/2 the time scale ratios have quite small values compared to
the other cases.

6. Conclusions

The time development of uniformly sheared homogeneous turbulent flows in a frame
rotating around the spanwise axis has been studied by means of a series of direct numer-
ical simulations (DNS). Together with the flow field, the development of passive scalar
field with mean gradients in the streamwise, spanwise and transverse direction, respec-
tively, was investigated in order to clarify the influence of rotation on scalar transport. A
relatively high shear rate has been applied in the present study with the aim to approxi-
mate the conditions of the near-wall region of turbulent boundary layers. It was therefore
anticipated that rapid distortion theory (RDT), based on a linearized set of equations,
would give a good description of the observed phenomena.

Several cases have been simulated with varying rotation numbers. In the case R =
2Ω/S = −1/2 the rotation strongly destabilized the flow resulting in a much more rapid
growth of the turbulent velocity fluctuations than in the non-rotating case. In two cases,
R = −3/2 and R = 1/2, the rotation stabilized the flow leading to a decay of the turbulent
kinetic energy. The anisotropy of the turbulence was also strongly affected by the rotation.
Predictions of RDT agreed in general quite well with the fully non-linear DNS, but a
closer examination revealed that, even though the applied shear rate was high, non-linear
effects gained in importance during the simulations and sometimes clearly affected the
flow. At R = 0, for instance, the kinetic energy has an exponential growth at larger
St values in the DNS whereas the RDT predicts an approximately linear growth. The
importance of the non-linear processes was quite apparent in the development of the slow
pressure-strain correlations associated with non-linear processes, which were in a couple
of cases of the same order or larger than the rapid pressure-strain correlations associated
with linear processes. The strongest non-linear effects were observed at R = 0 where the
transverse velocity fluctuations were much more intense in the DNS than in a simulation
without the non-linear terms.

In the non-rotating case the streamwise velocity field had a streak-like structure and the
vorticity field showed streamwise vortex tubes and some hairpin-like vortex structures,
although it changed later in the DNS because then the long streamwise vortices disap-
peared and the vorticity field became more isotropic. At earlier times these structures
are, indeed, quite similar as in boundary layers. The structures drastically changed, how-
ever, under the influence of rotation. In the case of zero absolute mean vorticity R = −1
the transverse velocity field and not the streamwise velocity field had a streak-like struc-
ture and very elongated streamwise vortex tubes were observed. An examination of the
helicity showed a predominant swirling motion in the streamwise vortices with a small
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streamwise velocity component at R = −1 whereas at R = 0 the helical motion in the
streamwise vortices had a large streamwise component.
The results presented regarding the influence of rotation on passive scalar transport

in a homogeneous shear flow show interesting effects of rotation on turbulent scalar
transport. Scalar-velocity correlations were significantly affected and could strongly be
reduced or enhanced by rotation. The direction of the turbulent scalar flux also showed
large variations, depending on the rotation number. It was shown that the scalar flux
vector align itself with the direction of the strongest turbulent velocity fluctuations at
different rotation numbers. Some of the phenomena, like the influence of rotation on
the scalar flux direction, could be fairly well predicted by RDT revealing that linear
processes are important for scalar transport in rapidly sheared flows, but the scalar-
velocity correlations showed quite large differences in the RDT and DNS in a couple of
cases, especially for the transverse scalar-velocity correlation at R = 0, −1/2 and −1,
proving the importance of non-linear processes for scalar transport.
The ratio of turbulent time scale versus scalar time scale, characterizing small-scale

mixing, was affected by rotation as well. In the case that rotation destabilized the flow,
the ratio of time scales was smaller and at R = −1/2 larger than at R = 0.
The statistics of the Reynolds stresses and pressure-strain correlations presented in

this study are useful for modelling of turbulent shear flows where rotation or streamline
curvature plays a role, or for modelling of rapidly distorted and rotating flows. Scalar
transport modelling in rotating turbulent flows has been relatively neglected, although it
can be argued that is of relevance in many practical situations. This study has therefore
important implications because it has clearly been proven that the effect of rotation on
scalar transport is significant and must be taken into account properly. The concept of
gradient diffusion fails to describe the variation of the scalar flux direction and neither
does the assumption of constant turbulent Schmidt number hold with varying rotation
numbers. If one tries to model scalar transport in rotating flows, it is thus recommendable
to consider algebraic scalar flux models, because they are in principal able to take into
account the influence of rotation. They have only been tested for non-rotating cases so
far, but it of interest to investigate their ability to predict turbulent scalar transport in
rotating flows.

The author wishes to thank Anshu Dubey and the Astronomy & Astrophysics depart-
ment of the University of Chicago for making their numerical code available, and Arne
Johansson, Erik Lindborg, Stefan Wallin and professor A. Yoshizawa for the valuable
discussions and comments. The financial support from the Swedish Research Council
and the Göran Gustafsson Foundation is gratefully acknowledged.

Appendix A. Analysis of the stability of rotating homogeneous shear

flows using the simplified Reynolds stress equations

It is enlightening to consider the simplified Reynolds stress equations because these
explain at least in a qualitative manner some of the observed phenomena. A more exten-
sive analysis using the simplified Reynolds stress equations is given by Tritton (1992),
see also Leblanc & Cambon (1997). The simplified Reynolds stress equations read

∂u1u1

∂t∗
= −2 u1u3 (1 +R) (A 1)

∂u2u2

∂t∗
= 0 (A 2)
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∂u3u3

∂t∗
= 2 u1u3 R (A 3)

∂u1u3

∂t∗
= u1u1 R− u3u3 (1 +R) (A 4)

where t∗ = St. The pressure-strain correlations and the dissipation terms are neglected
in this analysis. The equations without the pressure terms show in a quantitative way
the role of the Coriolis term regarding the stability of the flow because the spectral
modes which are mostly affected by the Coriolis force are the spanwise modes (Leblanc
& Cambon 1997) for which the pressure effects vanishes (Salhi et al. 1997). However,
the influence of the pressure is not negligible as seen in the present DNS and RDT and
shown by Salhi & Cambon (1997).
Combining the simplified Reynolds stress equations we can derive for u1u3 and the

turbulent kinetic energy, respectively

∂2u1u3

∂t∗2
= −4u1u3(1 +R)R (A 5)

∂K

∂t∗
= −u1u3 (A 6)

Considering equation (A 5) three different case can be distinguished: R(R + 1) > 0,
R(R+ 1) = 0 and R(R + 1) < 0.
If R(R+ 1) > 0, i.e. R > 0 or R < −1, there is a wave-like solution

u1u3 ∼ exp
(
2i
√

R(R+ 1) t∗
)

(A 7)

The other Reynolds stress components have then also an oscillatory behaviour. The
period of the oscillations is π/

√

R(R+ 1). For R = 1/2 and R = −3/2 the period is 3.6.
If R(R + 1) = 0, i.e. R = 0 or R = −1, the solution is given by u1u3 = −c1t

∗ − c2
where c1, c2 are constants. The growth of the kinetic energy is then given by K =
1
2c1t

∗2 + c2t
∗ +K(t∗ = 0) and is thus algebraic. If R = 0, u1u1 has an algebraic growth

and u3u3 is constant and if R = −1 it is the other way around.
If R(R+ 1) < 0, e.g. −1 < R < 0, the solution is

u1u3 ,K ∼ exp
(
2
√

−R(R+ 1) t∗
)

(A 8)

and the kinetic energy has thus an exponential growth. The fastest growth occurs when
R = −1/2, then K ∼ exp(t∗).

Appendix B. Some details of the RDT computations

The solution of the set of linear equations (4.3) is

ûi(k, t) = exp

(

−νk2

S
f(k/k, St)

)

Aij(k/k, t)ûj(k
′, t = 0) (B 1)

where

f(k/k, St) = St

(

1 +
k1k3
k2

St+
k21
k2

(St)2

3

)

The matrix Aij obeys the equation

dAij

dt∗
= −LiqAqj (B 2)

where Lij is defined in (4.3). The initial conditions are Aij(k
′, t = 0) = δij − k′ik

′
j/k

′2

where k′i = ki(t = 0) is the initial wave vector.
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The time development of the Reynolds stress tensor is now given by

uiuj =

∫

AipAjq

(

δpq −
k′pk

′
q

k′2

)
E(k′)

4πk′2
exp

(

−2
νk2

S
f(k/k, St)

)

d3k′ (B 3)

Using a spherical coordinate system (k′, θ, φ) for k′ and E(k′) given by (4.6), equation
(B 3) can be rewritten as

uiuj =
C

4π

∫ 2π

0

∫ π

0

AipAjq

(

δpq −
k′pk

′
q

k′2

)

[∫ ∞

0

k′2 exp

(

−2k′l − 2
νk2

S
f(k/k, St)

)

dk′
]

sin θdθdφ (B 4)

The integral between brackets can be solved analytically. The solution is

− b3

4l3

(

−2b+
√
π (2b2 + 1)eb

2

erfc b
)

, b2 =
1

2
S∗ k

′2

k2
f(k/k, St)

where erfc b is the complementary error function. The expression for the pressure-strain
correlation, which is by definition the rapid pressure-strain correlation, reads

Πij =
C

4π

∫ 2π

0

∫ π

0

1

k2
([
(S +Ω)k1A3q − Ωk3A1q

]
(kjAip + kiAjp)

)
(

δpq −
k′pk

′
q

k′2

)

[∫ ∞

0

k′2 exp

(

−2k′l − 2
νk2

S
f(k/k, St)

)

dk′
]

sin θdθdφ (B 5)

with the same analytical solution for the integral between brackets as in (B 4).
If there are no initial scalar fluctuations the solution of equation (4.4) for the scalar is

θ̂i(k, t) = exp

(

−κk2

S
f(k/k, St)

)

Bj(k/k, t)ûj(k
′, t = 0) (B 6)

where θi is the scalar with a mean gradient G in the xi-direction. For θi the vector Bj

is the solution of

dBj

dt∗
= −G

S
Aij exp

(

−(ν − κ)
k2

S
f(k/k, St)

)

(B 7)

where G is the norm of the mean scalar gradient.
The scalar flux is now derived from

ujθi =

∫

AjpBq

(

δpq −
k′pk

′
q

k′2

)
E(k′)

4πk′2
exp

(

−(ν + κ)
k2

S
f(k/k, St)

)

d3k′ (B 8)

and the scalar variance from

θ2i =

∫

BpBq

(

δpq −
k′pk

′
q

k′2

)
E(k′)

4πk′2
exp

(

−2
κk2

S
f(k/k, St)

)

d3k′ (B 9)

The integrals in (B 8) and (B 9) can then be simplified in the same way as in (B 4) if
Sc = 1.
For the time integration of (B 2) and (B 7), the spatial integration of (B 4), (B 5), (B 8)

and (B9) and for the computation of erfc b optimized numerical libraries have been used.
Analytical solutions for (4.3) and (4.4) for homogeneous shear flow without rotation are

presented in Rogers (1991). In that article also short-time and long-time approximations
of the Reynolds stresses, scalar fluxes and scalar variances are presented for the case
without viscosity and diffusivity.
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