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ABSTRACT 

A continuous increase in production speed and manufacturing precision raises a demand for the automated detection of 
small image features on rapidly moving surfaces. An example are wire drawing processes where kilometers of 
cylindrical metal surfaces moving with 10 m/s have to be inspected for defects such as scratches, dents, grooves, or 
chatter marks with a lateral size of 100 µm in real time. Up to now, complex eddy current systems are used for quality 
control instead of line cameras, because the ratio between lateral feature size and surface speed is limited by the data 
transport between camera and computer. This bottleneck is avoided by “cellular neural network” (CNN) cameras which 
enable image processing directly on the camera chip. This article reports results achieved with a demonstrator based on 
this novel analogue camera – computer system. The results show that computational speed and accuracy of the analogue 
computer system are sufficient to detect and discriminate the different types of defects. Area images with 176 x 144 
pixels are acquired and evaluated in real time with frame rates of 4 to 10 kHz – depending on the number of defects to be 
detected. These frame rates correspond to equivalent line rates on line cameras between 360 and 880 kHz, a number far 
beyond the available features. Using the relation between lateral feature size and surface speed as a figure of merit, the 
CNN based system outperforms conventional image processing systems by an order of magnitude. 
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1. INTRODUCTION 

Within industrial manufacturing, imaging and image processing systems are often crucial elements to the production 
process especially in automation and quality control. Therefore, they have a great leverage effect on other industries [1]. 
To maintain or even increase this market share, they have to cope with the increasing production speed and precision. 
This makes it important to overcome their limitations like the temporal resolution given by the frame rate and the latency 
time. A typical application in quality control are wire drawing processes, because they work on high feeding rates in the 
range of 10 m/s and the quality of the resulting product is defined by the quality of the surface when the wire passes a 
die. Even rather small surface flaws with a lateral size of 100 µm are able to cause breakage of the wire [2-4]. According 
to the sampling theorem, the theoretical limit for the minimum line frequency is 200 kHz. However, for a robust 
detection three lines per defect or a line frequency of 300 kHz is desirable – which is not feasible for conventional image 
processing systems whose maximum frame rates are 140 kHz or below [5, 6]. The fastest wire drawing inspection 
system available on the market based on line cameras reaches just 35 kHz [7]. Therefore, the majority of quality 
assurance systems for wire drawing processes today are based on eddy-current principles [8, 9]. The problem with these 
systems is that they require a complex mechanical setup in which point sensors rotate around the wire and that it is 
almost impossible to find false detections in the signals from kilometers of wire. Images are far easier to interpret, even if 
the exact position is unknown. 

To overcome this situation, we used cameras based on cellular neural networks (CNN) which enable the integration of a 
“single instruction, multiple data” (SIMD) processor architecture into the electronic circuitry of CMOS camera pixels. 
Compared to conventional image processing, this novel camera technique offers two major advantages: Firstly, image 
preprocessing on the camera chip reduces data transfer between camera and processor which forms a common bottleneck 
in conventional image processing systems. Secondly, SIMD processors are in particular efficient in terms of 
computational speed and power consumption for low level image processing operations [10]. This paper discusses the 
properties of CNN-cameras for surface inspection applications at the example of the wire drawing application. 
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Figure 1. CNN enable the integration of a SIMD processor architecture into the electronic circuitry of  
CMOS camera pixels. Every cell is interconnected with its eight nearest neighbors (3 x 3 neighborhood). 

2. CELLULAR NEURAL NETWORKS (CNN) 

Cellular neural networks were originally introduced by Chua and Yang [11] as a regular array of locally interconnected 
analog processing elements called cells which operate in parallel. The dynamic behavior is determined by the cell 
connectivity pattern (spatial neighborhood) and a set of configurable parameters. Such networks can be implemented 
using the voltage in condensers as a state variable. Together with some memory elements, such systems form the so 
called “CNN universal machine” which is a universal computer in the sense of Touring [12]. The major advantage for 
the integration into the sensors of CMOS cameras is that it can be implemented in a small space with the aid of mixed 
signal CMOS processes in an array of optical sensors together with analogue and digital data processing elements [13] 
(figure 1). This is important for the sensitivity of the optical sensor, because the additional circuitry per pixel reduces the 
fill factor of the camera. For the Q-Eye chip which is used for the wire drawing application, the size of the cell is 33.6 
µm and the size of the photo sensor is 7 µm, so the fill factor is about 4 % [14]. The increased size of the cell also affects 
the resolution which typically lies in the range of 128 x 128 to 256 x 256 cells [13-18]. Although there are also FPGA 
based implementations [19, 20], this paper concentrates on CMOS implemented “focal-plane sensor-processor chips” 
because these systems overcome the bottleneck of data transfer in real-time image processing. 

The potential advantages of this technology are high computational speed, high frame rates, short latency times, and high 
computational power at low energy consumption. In contrast to other SIMD architectures like GPUs, CNN offer a 2D 
spatial neighborhood – most systems have a 3 x 3 cell connectivity pattern – and a temporal neighborhood. Therefore, 
they are very efficient for many low-level image processing operations like linear convolutions, morphological 
operations, thresholding or logical concatenation of binary images [21]. High computational speed combined with short 
data access times promise high frame rates and short latency times. For simple algorithms like thresholding combined 
with binary operations, frame rates of up to 100 kHz for both, acquisition and image evaluation have been reported [17]. 
In combination with latency times in the range of 100 µs, CNN are in particular promising for closed-loop control of 
industrial processes [22, 23]. Despite their computational speed, the typical energy consumption of such chips lies well 
below 1 W [14-16] which allows small form factors or mobile vision systems [24, 25]. 

However, CNN also have some disadvantages which are mainly due to their analogue nature. The computational 
accuracy is limited due to noise, spatial inhomogeneity between the cells, and fading, i. e. the loss of charges due to 
shunt currents in analogue memories [26]. In addition, divisions are restricted to a small number of integer values [21]. 
Trigonometric or arithmetic functions are not available in any of these platforms. 

This shows that CNN-based cameras have specific properties which are not equally suited for every application. The 
high frame rate and the short latency times have the potential to enable new machine vision applications in surface 
inspection. Some previous publications investigate the system design for the inspection of metal properties [4, 27]. The 
aim of this paper is to proof that the computational properties are sufficient for industrial requirements. The system 
discussed hereafter is based on the Q-Eye [14], which consists of 176 x 144 cells with a 3 x 3 neighborhood. The Q-Eye 
is part of the Eye-RIS camera which contains an additional FPGA based NIOS II processor by Altera to control the 
operation of the whole vision system and to analyze the information output of the Q-Eye, e.g. performing all the 
decision-making and synchronization tasks. 



 
 

 

 

 

 

 

Figure 2. Surface defects of the Aluminum wire drawing process. From left to right:  
Small die marks, large die marks, chatter marks, and cross dents. Wire diameter is 3.3 mm. 

3. SURFACE INSPECTION SYSTEM 

Wire drawing is a metal working process used to reduce the cross section of a wire by pulling it through a series of 
drawing dies. The profile of each die is designed to introduce a predefined series of strains which alter the microstructure 
of the wire material. Therefore, besides a plastic deformation certain material properties such as hardening or surface 
quality are achieved [28-30]. As a result of numerical simulations of the drawing process [4], four relevant defect classes 
were identified (figure 2). Small die marks are not yet critical for material quality, but they indicate some initial damage 
on the die surface. If they occur, the manufacturer is able to change the dies to avoid material degradation or waste on a 
large scale. Otherwise, the die surface deteriorates further and large die marks appear. Since wires are usually drawn 
through a series of dies, resonant vibrations occur. These vibrations cause chatter marks which are also critical for 
material quality. The severest impairments originate from cross dents perpendicular to the wire axis, because they induce 
shear forces shear forces which weaken or even break the wire. For the aluminum wires investigated in this paper, even 
small dents with a width of 100 µm are critical for crack formation. This raises the need for surface inspection systems 
which are able to detect such defects at typical feeding rates of 10 m/s. As pointed out in the introduction, this 
application is not feasible for conventional line cameras because they do not reach the minimum frame rate of 200 kHz 
required by the sampling theorem. 

3.1 Measurement setup for gapless surface inspection 

The aim is a measurement setup which enables a 100 % surface inspection of cylindrical wires. Figure 3 a) sketches the 
measurement system consisting of four cameras and four illumination units where each has to cover a 90° section of the 
wire. To show the feasibility, a combination of a single camera and two lightings for a 90° section of the wire is 
sufficient (figure 3 b). Due to symmetry the angle  between the lightings and the optical axis in the radial plane is 45 
degrees. The tilt angle  of the lightings towards the wire axis is introduced in order to avoid specular reflections towards 
the camera optics. For cylindrical wires with a diameter of 3.3 mm each camera has to observe a section with a width of 
2.3 mm in y-direction and a depth of 0.5 mm in z-direction (figure 3 c). To that area, the lateral movements of the wire 
(± 0.75 mm) must be added. Therefore, the minimum width By of the field of view is 3.8 mm and the depth z of the 
measurement volume becomes 2 mm. The height Bx of the field of view is determined below. 

 

Figure 3. a) Measurement setup with four cameras and illumination units. b) Coordinate system for a single camera.  
c) 90° section of a wire observed by a single camera mounted in z-direction. 



 
 

 

 

 

 

 

  

Figure 4. Left side: Measurement head with four cameras and illumination systems (diameter: 53 cm). The wire runs from 
left to right. Right side: Test setup for measuring short samples with one camera and two illumination units (see figure 3b). 

Figure 4 shows the final measurement head which is installed in a production line. Cameras and illumination units are 
arranged like in figure 3a). For the proof of feasibility, a test site with a single CNN camera and two illumination units 
was used. This test site has the advantage that short sample pieces with defects can be mounted on a rotating disk. 
Therefore, algorithms can be compared on a known set of samples and under well-defined conditions. 

3.2 Measurement requirements 

Within the measurement volume BxByz, the optical resolution defined by the focal diameter d is determined by the 
minimum defect size lmin. According to the sampling theorem the maximum focal diameter dmax of the camera optics 
must fulfill the condition 
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A similar condition can be derived for the magnification  of the camera optics considering a defect of size lmin which is 
observed under the angle . This defect must be resolved with at least 2 pixels resulting in the condition 
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where lCNN is the pixel pitch of the CNN camera. The factor 3 is chosen instead of 2/cos() taking the 3x3 
neighborhood of the CNN into account. To comply with these conditions throughout the depth z of the measurement 
volume, f-number 11 was necessary for the camera optics.  

With a given magnification  and the resolution of the CNN sensor of M = 176 rows and N = 144 columns, the field of 
view BxBy can be calculated as 
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The result is a field of view with a width By of 4.8 mm and a height Bx of 5.8 mm. This height Bx and the feeding rate u 
define the minimum frame rate f for a 100 % surveillance 
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This condition defines a minimum overlap of 50 % between two consecutive images. The reason is that the detection of 
large area defects like chatter marks shall be independent of their position in the image. It limits the computation time 
available for the evaluation of each image. For the wire drawing process with u = 10 m/s and Bx = 5.8 mm, the minimum 
frame rate f becomes 3.5 kHz.  

The exposure time tE is not only limited by the frame rate but also by the motion blur b = u tE. In order to obtain a 
sufficient contrast for small defects, this motion blur must be smaller than the minimum defect size lmin resulting in the 
condition for the maximum exposure time 
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According to this condition, maximum exposure time is 10 µs for the wire drawing process.  

This last condition for short exposure times contradicts condition (1) for small focal diameters over a large depth of 
focus. This contradiction must be resolved by a high brightness lighting system. In addition, on uneven metallic surfaces 
specular reflections must be avoided in order to achieve a homogeneous intensity distribution on the “good” object 
surface and making a high contrast for those features to be observed. Therefore, the lighting is essential for the 
performance. The LED based partial dark field illumination system used in the setup was described in detail in [26]. In 
the meantime, the exposure time was reduced to 10 µs. 

3.3 CNN Algorithms 

Algorithm 1 for the detection of cross dents uses the horizontal Sobel operator for edge enhancement (figure 5). The 
result is a line shaped local maximum near to a local minimum. In order to increase the robustness, both, the maximum 
and the minimum are filtered by a high threshold and a low threshold, respectively. Since the Sobel filter is a high pass 
filter, this operation is sensitive to noise. Therefore, both threshold images are combined by a pixel wise OR operation. 
The noise is filtered by a single dilation which closes the contour of the minimum and the maximum and a double 
erosion to delete the noise. Both, the Sobel and the morphological dilation/erosion operators exploit the spatial 
neighborhood of the CNN. Therefore, the runtime of this algorithm is about 40 µs. 

 

Figure 5. Algorithm 1: Detection of cross dents based on the horizontal Sobel operator (runtime tAlg1 = 40 µs). 

Algorithm 2 sketched in figure 6 is designed to detect large die marks and chatter marks. It exploits the vertical gradient 
introduced in the illumination by the angle . In a combination with a global threshold, this leads to a variable size of the 
wire when dark spots appear on the wire surface. Since a dark field illumination is used, the brightness of the wire 
surface is defined by surface roughness. “Good” areas appear bright because they are rough. Die marks and chatter 
marks appear as dark spots because they have an increased specular reflectivity. Therefore, threshold values exist which 
are below the darkest grey values of “good” areas but which vary the bottom border of the wire within the threshold 
images in the presence of defects. These variations can be measured by executing a XOR-operation between consecutive 
threshold images. The size of the white areas is discriminated by five consecutive dilations and seventeen erosions. Both, 
die marks and chatter marks can be discriminated in time domain. Due to its irregular shape, chatter marks cause an 
alternating defect signal if three or more consecutive images are evaluated. This algorithm benefits from the temporal 
neighborhood between consecutive images. The runtime of this algorithm is 61 µs. This algorithm requires an overlap of 
about 50 % between consecutive images to make it insensitive against defect position. 



 
 

 

 

 

 

 

Figure 6. Algorithm 2: Detection of large die marks and chatter marks (runtime tAlg2 = 61 µs). 

Algorithm 3 for the detection of small die marks is the most complex one because it has to discriminate them from 
allowed structures with a similar size. The scheme is sketched in figure 7. In order to limit the minimum defect size, the 
input image is smoothed by a so-called “diffusion” filter which averages the intensities of neighbored pixels. Since the 
die marks run in vertical direction, this filter is applied two times in horizontal and ten times in vertical direction. 
Afterwards, a vertical Sobel operator is applied for edge enhancement. Like in algorithm 1, the dark areas are filtered by 
a low and the bright areas by a high threshold value. Because the vertical Sobel filter is a first order derivative in 
horizontal direction, the dark vertical lines of the small die marks form neighbored negative edges on their left and 
positive edges on their right side. To discriminate the die marks from other structures, the negative edges on the left are 
shifted to the right and concatenated with the positive edges by the AND-operator. Again, noise is removed by some 
dilation and erosion operations.  

 

Figure 7. Algorithm 3: Detection of small die marks (runtime tAlg3 = 115 µs). 

All three algorithms return ‘true’ if white pixels remain in the result image and false otherwise. In order to optimize the 
frame rate of the CNN camera, the algorithms were aligned as shown in figure 8. Since algorithm 2 for the detection of 
the die marks and chatter marks requires two consecutive images, the shutter for image i is opened while algorithm 1 
evaluates image i-1. Afterwards, algorithms 2 and 3 are applied to images i and i-1. The shutter time corresponds to the 
runtime of algorithm 2. Since the trigger must be set by the conventional NIOS processor, the exposure time is set by a 



 
 

 

 

 

 

current pulse of length tE which is delayed by a time tD (about 20 µs). The results of the algorithms are evaluated by the 
NIOS processor during the acquisition of image i+1. The duration τP of one period was about 244 µs resulting in a frame 
rate f of roughly 4.1 kHz when all algorithms are applied. Since the evaluation time of the results of the algorithms on the 
NIOS processor is negligible, the latency time is two times τP or 488 µs. When only algorithm 1 is applied for the 
detection of cross dents, the frame rate is limited by the illumination system to 10 kHz and the latency time becomes 
200 µs. 

 
Figure 8: Temporal alignment of trigger, shutter, and algorithms. 

3.4 Demonstration of feasibility 

To demonstrate the feasibility of the wire drawing application, the requirements defined in section 3.2 have to be 
verified. Since conditions (1) to (3) are fulfilled due to the design of the optical system, the remaining task is the 
verification of conditions (4) and (5). The aim is to show that the CNN algorithms are sufficient for a safe detection of 
the defects shown in figure 2 in the presence of motion. 

 

Figure 9: Influence of motion blur on a cross dent at feeding rates of 0 and 10 m/s. Left side: Camera images. Right side: 
Normalized Sobel images. The standard deviation of the grey values in the rectangles is 33.5 and 30.7 digits. 

The first task is to show that the optical resolution is sufficient in the presence of motion blur. Figure 9 shows 
measurement results of the most sensitive defect type: a cross dent with a vertical extend in the range of 100 µm. It 
shows two input images for algorithm 1 from the same cross dent acquired on the test site at 0 and 10 m/s with an 
exposure time of 10 µs. The other two images are the corresponding images after the application of the horizontal Sobel 
filters which are the first derivative of the grey value in vertical direction. Since the cross dent appears as a bright line, a 
pair of a local minimum and maximum appears on the rising and the falling edge of the cross dent. To show the signal to 
noise ratio between the defect area and other parts of the wire surface, the intensity of the minimum is normalized to the 
grey value zero and the maximum to 255. Afterwards the standard deviation of the grey values in the green rectangles 
was calculated as a measure for the noise. These noise values were 33.5 and 30.7 digits for feeding rates of 0 and 10 m/s. 
Therefore, the detectability of the cross dents in the Sobel image should not decrease at 10 m/s despite the presence of 
motion blur.  



 
 

 

 

 

 

The second task is to show that the numerical accuracy of the CNN is sufficient for a safe detection and discrimination of 
the defect types shown in figure 2. To do this, a series of 501 reference images was used to test algorithm results (see 
table 1). Nearly half of the images are from good wire surfaces without any defect. These images were selected to 
represent the full range of “good” images during production as much as possible in order to make the algorithms robust 
against “false positive” detection, i.e. against defect detections on surfaces without defects. Nevertheless, the fraction of 
good images is much larger during production. Therefore, table one lists the detection rates of the algorithms from the 
previous section measured under the condition that no false detection occurs within the samples without defects. For 
cross dents, chatter marks, and large die marks, the detection rate under that constraint is 100 %. This high detection rate 
is in particular important for cross dents, because they appear only in one single image. All other defects extend over a 
number of images. Therefore, the detection rate for the small die marks is still sufficient.  

Table 1: Detection rates measured on a series of reference images and frame rates for the CNN algorithms. For a safe 
detection of cross dents the frame is 10 kHz, for a safe detection and discrimination of all defect types is 4.1 kHz. 

Defect type   Number of images Detection rate Frame rate 

No defect 226 0 % 
10 kHz 

4.1 kHz 

Cross dents 10 100 % 

Chatter marks 45 100 %  

Large die marks 91 100 %  

Small die marks 129 97 %  

So the results from table 1 show that the numerical accuracy is sufficient for robust defect detection in this application. 
For a practical application, defect discrimination is also desirable. This can be done by using subsequent images. For 
example both, chatter marks and large die marks are detected by algorithm 2. To discriminate them from each other, the 
results of subsequent images can be taken into account. Whereas large die marks cause a continuous defect signal from 
algorithm 2 over several meters, chatter marks create an alternating signal. Among the chatter marks in our reference 
series, large die marks could be identified when the defect signal from algorithm 2 extends over more than three images.  

This shows that both, defect detection and discrimination is possible with a frame rate of 4.1 kHz which allows for 
gapless surface inspection.  

4. COMPARISON WITH CONVENTIONAL VISION SYSTEMS 

Due to the symmetry of the application, line cameras are preferred in conventional image processing systems. Since 
CNN have area image sensors, a figure of merit is needed for comparison. As such, the effective number of lines is used 
because it is directly linked to the minimum defect size lmin. Due to the overlap of 50 % between two consecutive 
images required by algorithm 2, a line camera has to sample M/2 lines for every image of the CNN camera – where 
M = 176 is the number of rows in the CNN image. Therefore an effective line frequency fL can be defined for the CNN 

 .
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This means that the temporal resolution achieved with the CNN system at frame rates f of 4.1 kHz and 10 kHz 
corresponds to the resolution of line camera systems with frame rates fL of 360 kHz and 880 kHz, respectively. In the 
CNN system, the frame rate is limited by the computation time. Nevertheless, it is still above the maximum frame rates 
which current line cameras achieve due to data transport. Therefore, these results show that CNN cameras increase the 
temporal resolution of image processing systems. 

Even if the camera interfaces become faster, an implementation of the CNN algorithms from section on conventional 
processors will be difficult. This is shown in table 2, which lists runtimes measured for some important image processing 
operators on a CNN chip [13] and on an Intel Core i7 processor [30]. The image size is the one of the CNN (176 x 144 
pixels) and the code for the Core i7 was written in C++ as a single threaded application using the Microsoft Visual 
Studio with optimization “fast” for a 64 bit platform. The binary images were also encoded as one bit per pixel. 
Therefore, the threshold operator, where this encoding is done, is quite slow and the AND operator benefits most. 



 
 

 

 

 

 

Table 2. Runtimes for image processing operators on 176 x 144 pixel images. 

Operator Q-Eye Core i7 ratio 

Laplace 27.3 µs 89 µs 3.2 

Sobel 17.0 µs 91 µs 5.3 

threshold 3.0 µs 184 µs 61.3 

AND between binary images 2.4 µs 0.5 µs 0.2 

Erosion (1 iteration) 4.1 µs 4.7 µs 1.1 

Peak power consumption 1 W 45 W 45 

Although the C++ implementation uses just one of the four processor cores, the results show that the Intel processor 
cannot reach the frame rates of the Q-Eye. Even the simplest of the CNN algorithms (algorithm 1) consists of one 
application of the Sobel operator, two threshold applications, one OR concatenation, and three erosions (a dilation is the 
same as an erosion on the black pixels). Therefore this algorithm has a runtime of about 472 µs compared to 40 µs on the 
Q-Eye. This means that the Intel Core i7 will not reach a frame rate 4 kHz with CNN resolution, even if the workload is 
distributed to all processor cores and if the computational efforts of data copying and thread synchronization are 
neglected. 

Another advantage of the Q-Eye processor is the low power consumption. Regarding the measurement head on the left 
side of figure 4, the effort of cooling is reduced significantly. This simplifies the design of compact and sealed 
measurement systems enormously. 

5. CONCLUSION 

This article discusses new opportunities which CNN based cameras open for the inspection of metal surfaces as it is 
widely used in industrial quality control. The wire drawing process is used as an example application because there 
surface defects with a lateral size of 100 µm have to be detected at a feeding rate of 10 m/s. This application is not 
feasible for state-of-the-art line cameras because they do not reach the minimum frame rate of 200 kHz required by the 
sampling theorem. In addition, the runtime of the algorithms on an Intel Core i7 processor should be insufficient. 

As an alternative, CNN based cameras were used because this technology enables the integration of SIMD processors 
into CMOS camera chips which eliminates the bottleneck of data transport. The reason is that CNN are implemented 
analogue devices which require a smaller area than digital processors. In comparison to GPUs, CNN offer a 2D spatial 
neighborhood and a temporal neighborhood. The spatial neighborhood accelerates image processing operators based on 
linear convolutions like Sobel filters or morphological operators like erosions. The temporal neighborhood is exploited 
by logical concatenations of binary images. Therefore, CNN are very efficient for many image processing applications in 
terms of computational speed, power consumption and latency. 

Despite these advantages, CNN are not suitable for every application. Compared to cameras without focal plane 
processors, the integration of the SIMD architecture increases pixel size which reduces resolution (Q-Eye: 176 x 144 
pixels) and fill factor (Q-Eye: 4 %) of the image sensor. In addition, it is an analogue technology with a limited 
computational accuracy for grey value operations. The measurement results of the wire drawing application prove that 
the accuracy is sufficient for many industrial surface inspection applications and that is possible to design image 
processing systems which outperform conventional ones. Using the relation between lateral feature size and surface 
speed as a figure of merit, the CNN based system outperforms existing quality control systems for the wire drawing 
application by an order of magnitude. 

These results show that CNN which are integrated in CMOS camera chips have gained the maturity for a broader range 
of industrial applications. It is in particular suitable for real-time applications where high frame rates, short latency times, 
and low power consumption are required and where their accuracy of grey value operations is sufficient. 
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