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Abstract	
Aims:	To	determine	whether	and	to	what	extent	acute	cannabis	intoxication	increases	motor	vehicle	

crash	risk.	
Design:	Study	1	replicates	two	published	meta-analyses,	correcting	for	methodological	shortcomings.	

Study	2	is	an	updated	meta-analysis	using	28	estimates	from	21	observational	studies.	These	
included	studies	from	three	earlier	reviews,	supplemented	by	results	from	structured	search	
in	Web	of	Science	and	Google	Scholar,	supplemented	by	the	personal	libraries	of	the	
research	team.	Risk	estimates	were	combined	using	random	effects	models	and	meta-
regression	techniques.	

Setting:	Study	1	replicates	the	analysis	of	Asbridge	et	al,	based	on	9	studies	from	5	countries	-		
published	1982-2007,	and	Li	et	al,	based	on	9	studies	from	6	countries		-	published	2001-10.	
Study	2	involves	studies	from	13	countries	published	in	the	period	1982-2015.	

Participants:	In	Study	1,	total	counts	extracted	totalled	50	877	(27	967	cases,	22	910	controls)	for	
Asbridge	et	al	and	93	229	(4	236	cases	and	88	993	controls)	for	Li	et	al.	Study	2	used	
confounder-adjusted	estimates	where	available	(combined	sample	size	of	222	511)	and	crude	
counts	from	the	remainder	(17	228	total	counts),	giving	a	combined	sample	count	of	239	739.	

Measures:		Odds-ratios	were	used	from	case-control	studies	and	adjusted	odds-ratio	analogues	from	
culpability	studies.	The	impact	of	the	substantial	variation	in	confounder	adjustment	was	
explored	in	subsample	analyses.	

Findings:	Study	1	substantially	revises	previous	risk	estimates	downwards,	with	both	the	originally	
reported	point	estimates	lying	outside	the	revised	confidence	interval	.	Revised	estimates	
were	similar	to	those	of	Study	2,	which	found	cannabis-impaired	driving	associated	with	a	
statistically	significant	risk	increase	of	low-to-moderate	magnitude	(random	effects	model	
odds	ratio	1.36	(1.15-1.61),	meta-regression	odds	ratio	1.22	(1.1-1.36)).	Subsample	analyses	
found	higher	odds-ratio	estimates	for	case	control	studies,	low	study	quality,	limited	control	
of	confounders,	medium	quality	use	data,	and	not	controlling	for	alcohol	intoxication.	

Conclusions:	Acute	cannabis	intoxication	is	associated	with	a	statistically	significant	increase	in	crash	
risk.	The	increase	is	of	low	to	medium	magnitude.	Remaining	selection	effects	in	the	studies	
used	may	limit	causal	interpretation	of	the	pooled	estimates.	

Introduction	
The	raised	traffic	crash	risks	of	cannabis-impaired	drivers	has	received	increasing	attention	from	
researchers	and	policy	makers	following	legislative	changes	for	medical	and	recreational	cannabis,	
particularly	in	US	states.	Researchers	have	highlighted	cannabis-impaired	driving	as	one	the	three	
“primary	reasons	for	concern	about	legalized	cannabis”	[1],	and	the	current	consensus,	as	
summarized	in	a	recent	narrative	review	of	cannabis	research,	holds	that	the	evidence	“suggests	
strongly”	that	cannabis-impaired	driving	increases	the	crash	risk	2-3	times	[2].	

The	evidence	for	this	claim	includes	both	laboratory	and	epidemiological	research.		Experimental	
studies	find	evidence	of	dose-related	impairment	on	a	number	of	driving-relevant	abilities,	with	a	
typical	duration	of	3-4	hours	following	intake	through	smoking	[3,4],	but	also	find	that	cannabis	users	
tend	to	be	aware	of,	and	to	some	extent	compensate	for,	these	impairments	when	driving.		Overall,	
the	external	validity	of	these	studies	remains	unclear,	necessitating	the	use	of	observational	
epidemiological	studies	to	assess	the	net	traffic	risk	of	cannabis	intoxication.		This	requires	the	use	of	
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meta-analytic	techniques	that	pool	evidence	from	different	studies,	since	individual	studies	tend	to	
be	small	and	find	strongly	differing	risk	estimates.	The	most	widely	referenced	meta-reviews	are	
both	from	2012,	and	report	summary	odds-ratios	from	pooled	studies	of	1.92	and	2.66	[5,6],	each	
based	on	a	set	of	nine	estimates.	

The	present	meta-review	was	motivated	by	two	concerns:		One,	we	suspected	that	methodological	
issues,	particularly	relating	to	established	confounders,	were	insufficiently	addressed	in	the	earlier	
meta-analyses.	For	this	reason,	we	replicated	the	analyses	of	Asbridge	et	al	[5]	and	Li	et	al	[6],	
correcting	for	a	set	of	identified	methodological	issues	(Study	1).	Second,	the	evidence	base	has	
grown	rapidly	in	recent	years	as	a	result	of	increased	research	attention.	To	address	this,	we	
performed	an	updated	and	more	comprehensive	meta-analysis	that	identified	a	total	of	26	estimates	
from	21	studies	(Study	2).		

Study	1:	A	critique	and	re-analysis	of	previous	meta-analyses	

Study	selection	and	comparability	
Meta-analyses	are	meaningful	to	the	extent	that	the	underlying	studies	can	yield	comparable	
estimates	of	the	effect	of	interest.	

	In	Li	et	al	[6],	study	selection	criteria	are	unclear	and	hard	to	rationalize.		The	pooled	studies	report	
qualitatively	different	types	of	associations:	Self-reported	crashes	in	some	past	period	for	cannabis	
ever-users	vs	never-users	[7,8],	self-reported	crashes	in	a	past	period	for	those	with	self-reported	
intoxicated	driving	episodes	in	the	past	vs.	those	without	[9,10],	and	acute	intoxication	amongst	
crash	involved	and	other	motorists	[11–15].	In	addition	to	the	difference	in	outcome	measures,	this	
means	that	habitual	cannabis	users	who	do	not	drive	while	intoxicated	are	placed	in	the	exposed	
counts	extracted	from	some	studies	and	the	control	counts	extracted	from	others.	The	review	does	
not	discuss	how	these	differences	affect	the	interpretation	of	the	pooled	estimate.	

The	study	selection	criteria	in	Asbridge	et	al	[5]	are	clearly	stated:		studies	on	the	association	
between	acute	intoxication	and	traffic	crashes	resulting	in	serious	injuries	or	fatalities.	To	avoid	
confounding	from	alcohol,	counts	are	extracted	from	“no-alcohol”	subsamples	of	the	underlying	
studies.		

While	the	research	question	in	the	studies	pooled	by	Asbridge	et	al	are	similar,	the	studies	pooled	
use	two	distinct	methodological	approaches	that	yield	incompatible	estimators:	culpability	studies	
and	case-control	studies.	A	case-control	study	compares	the	ratio	of	intoxicated	to	non-intoxicated	
drivers	amongst	those	involved	in	crashes	to	the	same	ratio	amongst	those	not	involved	in	crashes.	
This	estimates	the	increased	crash	risk	associated	with	acute	use.	A	culpability	study	uses	data	on	
crash-involved	drivers	only,	and	compares	the	ratio	of	intoxicated	to	non-intoxicated	drivers	amongst	
those	judged	culpable	for	their	crash	to	the	same	ratio	amongst	those	not	judged	culpable.	While	this	
is	commonly	interpreted	as	an	estimate	of	the	increase	in	crash	risk,	it	is	actually	an	estimate	of	the	
increased	risk	of	culpable	accidents	associated	with	acute	use,	which	will	necessarily	be	higher	than	
the	overall	increase	in	crash	risk.	

To	see	this,	note	that	the	identifying	assumption	of	culpability	studies	is	“that	drivers	found	non-
culpable	after	a	car	crash	represent	a	random	sample	of	the	general	driving	population	»	[16].	By	this	
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assumption,	the	denominator	in	the	odds-ratio	estimator	of	case-control	studies	can	be	proxied	by	
the	intoxication	odds	of	the	non-culpable	drivers,	yielding	the	estimator:	
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A	simple	simulation	exercise	comparing	these	two	estimators	shows	that	the	traditional	culpability	
estimator	is	biased	upwards	relative	to	the	underlying	true	value	(see	Figure	1).	The	explanation	lies	
in	the	identifying	assumption	of	culpability	studies,	which	requires	that	non-culpable	crashes	were	
random	and	not	due	to	intoxication.	Consequently,	an	intoxicated	driver	would	have	the	same	
number	of	non-culpable,	but	a	raised	number	of	culpable	accidents,	and	the	risk	increase	has	to	be	
multiplied	by	the	baseline	culpability	share1.	Actual	baseline	culpability	rates	in	the	culpability	studies	
used	in	Asbridge	et	al.	ranged	from	42-76%.	

																																																													
1	For	adjusted	odds-ratios	controlling	for	known	confounders,	we	use	 ˆ ˆ (1 )A B culp culpq q= × + - ,	where	culp	
is	the	baseline	culpability	rate	in	non-intoxicated	drivers.	This	correction	fails	to	reduce	the	estimator’s	
standard	error	appropriately,	but	is	sufficient	for	our	purposes.	
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Figure	1	–	Compared	distributions	of	estimators	from	simulated	culpability	studies.	Solid	line	shows	underlying	effect,	
dashed	lines	show	mean	value	of	estimators	(line	for	Alternative	estimator	mean	indistinguishable	from	solid	due	to	
overlap).	Assumptions:	DUIC	and	non-DUIC	drivers	have	same	risk	of	non-culpable	crash,	non-DUIC	drivers	have	50%	
culpability	rate,	DUIC	doubles	risk	of	culpable	crash.	Each	simulated	study	had	500	participants	drawn	from	a	
multinomial	distribution,	figure	is	based	on	100	000	simulations.	Laplace-correction	applied	to	both	estimators.	

Data-extraction	
We	re-extracted	counts	from	the	individual	studies	used	in	Asbridge	et	al	and	Li	et	al.	In	some	cases,	
the	extracted	numbers	could	not	be	inferred	from	or	control-checked	using	the	underlying	studies	
and	the	original	study	authors	were	contacted	directly.		

For	Asbridge	et	al,	this	resulted	in	substantial	changes	(>10%)	of	extracted	OR	estimates		for	four	of	
the	nine	studies	used,	all	of	which	were	adjusted	downwards.	For	Blows	et	al	[12],	Asbridge	et	al		
misinterpreted	a	published	table.	Accurate	counts	of	cannabis-only	and	non-intoxicated	case	and	
controls	had	to	be	requested	from	the	authors	of	the	underlying	study,	yielding	an	OR	estimate	of	2.6	
rather	than	the	7.2	extracted	by	Asbridge	.	For	Terhune	[17],	Asbridge	et	al	included	the	“partly	
culpable”	as	culpable	–	while	excluding	the	same	group	when	extracting	counts	from	Drummer	[18].	
Excluding	them	in	both	cases	reduced	the	Terhune	OR	from	4.4	to	1.72.	The	remaining	two	
substantial	adjustments	were	smaller,	causing	a	roughly	20%	reduction	in	the	extracted	OR	[19,20].	
In	addition,	the	re-extracted	counts	caused	the	total	counts	extracted	from	studies	to	change	
substantially	(>10%)	for	three	studies,	with	two	total	counts	declining	[12,17]	and	one	increasing	[20].	

																																																													
2	Including	the	contributory	cases	would	have	reduced	the	OR	from	Drummer	from	3.25	to	3.		
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In	Li	et	al,	substantial	(>10%)	changes	in	OR	was	found	only	for	one	study	[7],	where	the	correct	OR	
was	1.4	rather	than	the	2.4	extracted	by	Li	et	al.	No	studies	saw	substantial	changes	in	total	counts	
after	re-extraction	of	data.	

Sparse	data	bias	in	odds-ratios	
The	odds-ratio	estimator	has	a	known	upward	bias	when	cells	have	small	counts	[21–23].	A	
resampling	analysis	examined	the	impact	of	this	for	the	two	meta-reviews.	From	each	study,	the	
(corrected)	counts	were	taken	to	accurately	characterize	the	underlying	case	and	control	populations,	
and	new	case	and	control	samples	were	drawn	10	000	times	from	this	population,	each	with	the	
same	sample	size	as	the	original	study.	Taking	the	mean	of	all	finite	estimates,	the	results	indicate	
that	sparse	data	bias	is	an	issue	with	a	third	of	the	studies	used	in	Asbridge	et	al	and	one	in	Li	et	al	
(Figure	2):	Samples	of	the	size	used	in	these	studies	would	be	expected	to	overestimate	the	
underlying	risks.		Repeating	the	exercise	with	Laplace	correction	of	the	resampled	OR	estimates,	i.e.,	
adding		1	to	each	cell	count	and	rescaling	all	cells	proportionately	to	keep	total	sample	size	fixed,	
largely	removed	the	bias.	

	

Figure	2	–	Indications	of	sparse	data	bias	in	studies	used	by	Asbridge	et	al	and	Li	et	al.	The	plots	compare	the	odds	ratios	
calculated	from	(corrected)	counts	with	means	of	10	000	simulated	studies	of	the	same	size,	resampled	from	the	same	
case	and	control	counts.	

Known	and	observable	confounders	
Using	cannabis	and	driving	under	the	influence	are	behaviours	that	are	more	common	among	young	
adults	and	males,	groups	with	higher	crash	risks	irrespective	of	use.	Estimated	odds-ratios	typically	
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decline	substantially	after	adjustments	for	such	factors.	Despite	this,	both	meta-reviews	used	case	
and	control	counts	from	individual	studies	rather	than	adjusted	estimates,	although	Asbridge	et	al	
avoid	confounding	from	alcohol	by	using	“no-alcohol”	subsamples.	The	choice	not	to	use	adjusted	
risks	systematically	and	substantially	raises	risk	estimates,	as	can	be	seen	by	plotting	the	counts-
based	odds	ratios	against	the	adjusted	estimates	from	the	underlying	studies	where	both	are	
available	(Figure	3).				

	

Figure	3	–	Crude	odds	based	on	corrected	counts	versus	adjusted	odds	reported	in	the	original	studies	(for	studies	where	
confounder	adjusted	estimates	were	reported).	Note:	For	Gerberich	[8],	used	in	Li	et	al,		adjusted	estimates	were	
reported	for	men	(OR=1.96)	and	women	(OR=1.23)	separately.	The	estimate	for	men	was	chosen	as	they	were	72%	of	the	
current	users	in	the	sample.	

Overall	impact	of	methodological	issues	on	pooled	estimates	
Correcting	for	the	methodological	issues	noted	substantially	and	systematically	revises	the	pooled	
estimates	downwards	(Figure	4)3.	All	pooled	analyses	use	the	DerSimonian-Laird	Random	Effects	
estimate,	using	the	metafor	R-package	[24].		Note	that	the	originally	reported	pooled	estimates	of	
both	meta-analyses	are	outside	the	95%	confidence	bands	of	the	revised	pooled	estimates.	For	Li	et	
al,	however,	the	main	shortcoming	remains	the	lack	of	clear	study	selection	criteria	which	gives	the	
resulting	pooled	estimate	no	meaningful	interpretation.	

																																																													
3	For	the	pooled	estimates	based	on	adjusted	odds-ratios	sparse	data	bias	could	not	be	corrected	for.	
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Figure	4	–	Pooled	estimates	after	adjustments.	Left	panel	displays	results	for	Asbridge	et	al	(1:	Reported	counts,	2:	
Corrected	counts,	3:	As	2	+	Laplace	correction,	4:	As	3	+	adjusted	culpability	estimator,	5:	Adjusted	estimates	from	
underlying	studies,	6:	As	5	+	adjusted	culpability	estimator).	Right	panel	displays	results	for	Li	(1:	Reported	counts,	2:	
Corrected	counts,	3:	As	2	+	Laplace	correction,	4:	Adjusted	estimates	from	underlying	studies)	

Study	2:	An	updated	meta-analysis	of	cannabis	intoxication	and	traffic	
risks	

Sources	
We	aimed	to	include	studies	using	case-control	or	culpability	methods	to	assess	the	effects	of	acute	
cannabis	intoxication	on	the	risks	of	traffic	crashes	involving	motor	vehicles.	Studies	from	before	
2011	were	identified	by	pooling	the	studies	identified	in	Asbridge	et	al,	Li	et	al,	and	the	cannabis-
related	studies	included	in	a	broader	overview	of	studies	on	crashes	and	drugs	[25].	Studies	
published	since	2011	were	identified	using	a	structured	search	in	Google	Scholar	and	Web	of	
Science.4	The	database	was	supplemented	by	reviews	of	the	authors’	personal	research	libraries.	In	
cases	with	substantial	overlap	in	the	data	employed,	studies	reporting	estimates	after	adjustment	for	
relevant	confounders	and	studies	with	larger	sample	sizes	were	preferred	(see	supplementary	
material).	

																																																													
4(cannabis	OR	marihuana	OR	marijuana	OR	hash	OR	THC	OR	cannabinoids	OR	hashish	OR	ganja	OR	hemp	OR	
pot)	AND	(car	OR	automobile	OR	vehicle	OR	traffic	OR	road)	AND	(accident*	OR	crash*	OR	collision*	OR	collide	
OR	injury	OR	fatal*).	The	first	500	search	results,	April	5	2015,	were	assessed.	
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Data	collection	
One	author	(RE)	extracted	data	from	the	recent	and	additional	studies,	adding	these	to	a	database	
containing	extracted	data	from	the	studies	used	in	the	three	earlier	meta-reviews.	Extracted	
information	included	study	details	(author,	year,	country,	study	design),	measure	of	cannabis	
exposure,	and	multivariate	associations	between	cannabis	and	outcomes.	For	studies	without	
adjusted	estimates,	subsamples	free	of	alcohol	and	other	drugs	were	inferred	when	possible.The	
other	author	(OR)	checked	each	result	(odds	ratios	and	standard	errors)	against	the	original	studies,	
documenting	the	locations	of	the	information	as	well	as	any	inferences	required	(see	supporting	
material).		

Quality	assessment	for	individual	studies	
Study	quality	was	assessed	in	terms	of	four	criteria	[25]:	

1. The	quality	of	the	information	regarding	the	use	of	cannabis	while	driving	
2. Specification	of	crash	severity	
3. Control	for	potential	confounding	factors	
4. Test	of	the	presence	of	a	dose-response	pattern	in	the	relationship	between	the	dose	taken	

of	cannabis	and	the	increase	in	crash	risk	

Table	1	explains	how	the	various	characteristics	of	study	quality	were	defined	and	measured.	

Table	1:	Quantitative	assessment	of	study	quality	(from	[25])	

Study characteristic Scores assigned Maximum possible score 

Measure of drug use 5 = laboratory analysis of blood samples for all subjects (cases and 
controls); 4 = laboratory analysis of samples of saliva or mix of blood 
and saliva; 3 = laboratory analysis of samples of urine or mix of urine 
and other body fluids; 2 = prescriptions; 1 = self report 

5 (25 % of total score) 

Specification of crash 
severity 

2 = at least two levels of crash or injury severity included in the same 
study; 1 = crashes at a specific level of severity (fatal, injury, property 
damage) included; 0 = a mix of injury crashes and property damage 
crashes included 

2 (10 % of total score) 

Control for 
confounding factors 

9 = if all the following potentially confounding factors are controlled for: 
Age, gender, km driven, drug use history, dose of drug, use of other 
drugs, use of alcohol, health status (co-morbidity), place of residence 

11 (55 % of total score) 

 2 = additional points if multiple other potentially confounding factors are 
controlled for 

 

 1 = additional point if one other potentially confounding factor is 
controlled for 

 

Test of dose-
response 

2 = tested and found; 1 = tested but not found; 0 = not tested or not 
relevant 

2 ( 10 % of total score) 

 Scoring of studies  

 Points counted and divided by maximum possible score (20 = 5 + 2 + 
11 + 2). Expressed as relative score, e.g. 12/20 = 0.60 

 

	

Laboratory	analyses	of	blood	samples	for	all	subjects	included	in	a	study	was	rated	as	providing	the	
best	information	on	acute	intoxication	while	driving.	The	second	best	indicator	is	saliva.	Urine	is	a	
less	informative	indicator,	since	inactive	metabolites	of	cannabis	can	be	detected	in	samples	of	urine	
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a	long	time	after	the	substance	became	inactive.	Prescription	data,	which	would	be	more	relevant	for	
medicinal	drugs	than	for	cannabis,	and	self-reported	use,	were	regarded	as	the	least	reliable	data	on	
the	use	of	cannabis.	

Several	illicit	drugs	are	known	to	increase	the	risk	of	serious	crashes	more	than	the	risk	of	less	serious	
crashes.	To	test	whether	there	is	such	a	severity	gradient,	a	study	should	estimate	crash	risk	for	at	
least	two	levels	of	severity.	Evidence	regarding	a	severity	gradient	based	on	different	studies	is	less	
conclusive,	since	different	studies	may	differ	in	many	ways	that	influence	estimates	of	crash	risk.	

Nine	potential	confounding	factors	have	been	listed;	in	addition	to	these	a	study	may	earn	a	bonus	if	
it	controls	for	more	confounding	factors.	

Finally,	testing	for	a	dose-response	pattern,	and	confirming	its	existence,	is	essential	if	one	wants	to	
support	causal	inferences,	i.e.	claims	that	cannabis	intoxication	is	causally,	not	merely	statistically,	
related	to	crash	occurrence.	

Points	have	been	assigned	to	the	various	characteristics	in	Table	1.	The	use	of	formal	quality	scoring	
is	controversial	in	meta-analysis	[26,27].	One	may,	however,	use	the	study	characteristics	listed	in	
Table	1	as	a	screening	device,	without	applying	a	formal	quality	scoring.	

Synthesis	of	results	
Driving	under	the	influence	of	cannabis	is	a	behaviour	that	tends	to	be	concentrated	in	sub-
populations	with	raised	risks	of	crashes	irrespective	of	cannabis	use.	It	is	statistically	associated	with	
being	a	young	adult,	male,	and	holding	“high-risk”	attitudes	towards	driving	and	traffic	as	reflected	in,	
e.g.,	higher	rates	of	driving	under	the	influence	of	alcohol	[28–31].	For	this	reason,	the	adjusted	
estimates	of	risk	and	their	associated	standard	errors	were	always	employed	when	available.	

Subgroup	analyses	were	performed	to	assess	differences	associated	with	study	design	(culpability	vs.	
case	control),	study	quality,	crash	severity,	the	measure	of	cannabis	intoxication	used,	and	whether	
or	not	individual	studies	adjusted	for	simultaneous	alcohol	intoxication.		

Meta-analyses	were	performed	using	two	approaches:	Random	effects	modelling	using	the	
DerSimonian-Laird	estimator	in	the	Metafor	R-package	[24].	Given	the	presence	of	small	sample	(and	
possibly	publication)	bias,	we	also	employ	a	weighted	least	squares	meta-regression	technique	
(PEESE)	that	has	been	shown	to	handle	such	biases	better	than	random	effects	models	[32,33].	In	
addition,	trim-and-fill	methods	were	employed	to	test	and	correct	for	publication	bias	[34–36].	

Results	

Study	selection	
The	primary	criterion	for	study	inclusion	was	the	quality	of	the	information	given	about	cannabis	use,	
in	particular	if,	based	on	the	information	given,	there	was	reason	to	believe	that	cannabis	had	been	
used	while	driving	or	recently	enough	before	driving	for	effects	to	persist.	

The	earlier	reviews	considered	9	[5],	9	[6]	and	42	[25]	estimates	relating	to	cannabis	and	traffic	
crashes.	New	and	additional	studies	found	increased	this	to	a	total	of	74	risk	estimates	from	46	
studies,	of	which	28	estimates	from	22	studies	(Table	2)	fit	our	specified	study	selection	criteria.		
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Characteristics	of	included	studies	
The	studies	included	(table	2)	were	published	between	1982	and	2015.	A	case-control	or	culpability	
design	was	used	in	all	studies.	Nearly	all	studies	estimated	the	risk	of	injury	accidents	or	fatal	
accidents.	All	studies	used	the	odds	ratio	as	estimator	of	risk.	Use	of	cannabis	was	determined	by	
laboratory	analysis	of	body	fluids	in	all	studies	except	one.	Studies	differed	greatly	in	terms	of	which	
potentially	confounding	variables	they	controlled	for.	A	minority	of	studies	tried	to	find	a	dose-
response	relationship	between	the	amount	of	cannabis	taken	and	the	size	of	the	change	in	crash	risk.	

Risk	of	bias	assessment	
The	quality	of	information	regarding	cannabis	use	is	known	to	be	an	issue,	in	that	poor	quality	(e.g.,	
measuring	inactive	metabolites	in	urine)	will	produce	a	bias	towards	zero	effect	(OR=1).	This	risk	can	
be	assessed	using	our	quality	scores:	Included	studies	scored	an	average	of	4.11	on	the	five	point	
scale	for	quality	of	information	about	cannabis	use.	Studies	not	included	scored	an	average	of	2.16.		

A	recent	analysis	of	cannabis-and-traffic	studies	from	a	cross-national	project	highlighted	the	issues	
of	selection	bias,	small	sample	sizes	and	cell	counts	[38].	Small	sample	bias	is	likely	to	be	an	issue	for	
several	studies	given	the	typically	low	count	of	positive	cases	and	controls,	inflating	estimates	
upwards.		Selection	bias	(non-random	sampling)	in	case-control	studies	are	due	to	non-response	
rates,	particularly	from	controls	stopped	in	traffic-side	stops.	Non-response	is	likely	to	be	more	
common	for	potential	controls	influenced	by	drugs	or	alcohol,	inflating	the	odds	ratio	[39].	In	
culpability	studies	using	administrative	data	registers,	toxicological	testing	may	be	conducted	more	
often	when	the	driver	is	seen	as	culpable	and/or	suspected	of	intoxication.	This	can	result	in	both	
upwards	or	downwards	bias	of	estimates	depending	on	the	details.	A	related	issue	present	in	some	
studies	(e.g.	Mura	[14]	as	pointed	out	in	Baldock	[40])	is	the	use	of	control	groups	not	drawn	from	
non-crash	involved	drivers,	raising	issues	of	comparability.	
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Table	2:	Studies	included	in	the	meta-analysis	

 
Reference 

 
 
Authors 

 
 
Year 

 
 
Country 

 
 
Design 

 
Accident 
severity 

 
Estimator 
of risk 

Measure 
of drug 
use 

Confounders 
controlled 
(see Table 1) 

Dose-
response 
assessed 

Dose-
response 
found 

[17,37] Terhune 1983 United 
States 

Culpability Mostly 
PDO 

Odds ratio Lab 
analysis 

Alcohol, other 
drug use 

No No 

[41] Williams et 
al. 

1985 United 
States 

Culpability Fatal Odds ratio Lab 
analysis 

Alcohol, other 
drug use 

No No 

[19] Terhune et 
al. 

1992 United 
States 

Culpability Fatal Odds ratio Lab 
analysis 

Alcohol, other 
drug use 

No No 

[42] Longo et al. 2000 Australia Culpability Injury Odds ratio Lab 
analysis 

Alcohol, other 
drug use 

Yes Yes 

[43] Lowenstein 2001 United 
States 

Culpability Injury Odds ratio Lab 
analysis 

Alcohol, other 
drug use 

No No 

[14] Mura et al. 2003 France Case-
control 

Injury Odds ratio Lab 
analysis 

Age, gender No No 

[11] Brault et al. 2004 Canada Case-
control 

Fatal Odds ratio Lab 
analysis 

Age, gender, 
time of day 

No No 

[18] Drummer et 
al. 

2004 Australia Culpability Fatal Odds ratio Lab 
analysis 

Age, gender, 
other drug 
use, alcohol, 
type of 
accident, 
place of 
residence 

Yes Yes 

[44] Assum 2005 Norway Case-
control 

Mostly 
fatal 

Odds ratio Lab 
analysis 

Region No No 

[12] Blows et al. 2005 New 
Zealand 

Case-
control 

Injury Odds ratio Self 
report 

Age, gender, 
ethnicity, 
education, 
alcohol, km 
driven, speed, 
time of day 

No No 

[20] Laumon et 
al. 

2005 France Culpability Fatal Odds ratio Lab 
analysis 

Age, alcohol, 
time of day 

Yes Yes 

[45] Mathijssen 2005 Netherlands Case-
control 

Injury Odds ratio Lab 
analysis 

Alcohol, other 
drug use 

No No 

[15] Woratanarat 
et al. 

2009 Thailand Case-
control 

Injury Odds ratio Lab 
analysis 

None No No 

[46] Kuypers et 
al 

2012 Belgium Case-
control 

Serious 
injury 

Odds ratio Lab 
analysis 

Age gender, 
time of day 

Yes No 

[47] Hels et al 2011 Denmark, 
Italy,  
Netherlands 

Case-
control 

Serious 
injury 

Odds ratio Lab 
analysis 

Age, gender No No 

[47] Hels et al  2011 Lithuania Case-
control 

Serious 
injury 

Odds ratio Lab 
analysis 

None No  No 

[47] Hels et al  2011 Norway Case-
control 

Fatality Odds ratio Lab 
analysis 

Age, gender No No 

[47] Hels et al 2011 Portugal Case 
control 

Fatality Odds ratio Lab 
analysis 

None No No 

           
[48] Gjerde et al 2013 Norway Case-

control 
Fatal Odds ratio Lab 

analysis 
Age, gender, 
region, 
season, time 
period, road 
type 

No No 

[49] Li et al 2013 United 
States 

Case-
control 

Fatal Odds ratio Lab 
analysis 

None No No 

[50] Poulsen et 
al 

2014 New 
Zealand 

Culpability Fatal Odds ratio Lab 
analysis 

Age, gender, 
alcohol, other 
drug use, 
license 
status, 
vehicle type, 
road class, 
crash type 

Yes No 

[51] Romano et 
al 

2014 United 
States 

Case-
control 

Fatal Odds ratio Lab 
analysis 

Alcohol, other 
drug use 

No No 

[52] Compton et 
al 

2015 United 
States 

Case-
control 

Mostly 
PDO 

Odds ratio Lab 
analysis 

Age, gender, 
ethnicity, 
alcohol 

No No 

[53] Dubois et al 2015 United 
States 

Culpability Fatal Odds ratio Lab 
analysis 

Age, gender, 
alcohol, other 
drug use, 

No No 
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driving history 
           
           
	

Primary	and	secondary	analyses	
The	primary	analysis	is	shown	in	Figure	5.	For	culpability	studies,	point	estimates	were	adjusted	using	
their	baseline	culpability	rates,	for	studies	based	on	crude	counts,	Laplace	correction	was	applied.		

	

	

Figure	5	-	Meta-analysis	of	observational	studies	investigating	the	association	between	acute	cannabis	consumption	and	
motor	vehicle	crashes	(ordered	by	year)	

A	subsample	analysis	(table	3)	was	conducted	by	splitting	the	studies	according	to	type	(case	control	
vs	culpability),	study	quality	(low	vs	medium	vs	high),	control	for	confounders	(limited	vs	high),	use	
data	quality	(low	vs.	medium	vs	.high),		control	for	alcohol	(no	vs	yes)	and	crash	severity	(fatalities	
involved	vs.	not).	Pooled	risks	and	confidence	intervals	were	calculated	within	each	subsample	using	
both	random	effects	and	a	PEESE	metaregression.	 	
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Group # Mixed effects 
model 

Meta-regression model (PEES) 

OR CI OR CI Publication 
bias 

(p-value) 
All		 28		 1.36		 [1.15,	1.61]		 1.22		 [1.1,	1.36]		 0.52		
Case	control		 17		 1.60		 [1.19,	2.15]		 1.32		 [1.04,	1.68]		 0.55		
Culpability		 11		 1.12		 [1.05,	1.2]		 1.20		 [1.08,	1.35]		 0.78		
High	quality		 9		 1.39		 [1.06,	1.83]		 1.18		 [1.05,	1.34]		 0.10		
Medium	quality		 12		 1.30		 [0.95,	1.78]		 1.15		 [0.87,	1.51]		 0.90		
Low	quality		 7		 1.45		 [0.97,	2.17]		 1.79		 [1.34,	2.39]		 0.36		
Limited	or	no	confounder	
adjustment		 17		 1.52		 [1.07,	2.15]		 1.70		 [1.19,	2.41]		 0.62		

High	confounder	
adjustment		 11		 1.17		 [1.04,	1.33]		 1.18		 [1.06,	1.31]		 0.49		

Low	quality	use	data		 7		 1.07		 [0.92,	1.25]		 1.08		 [0.9,	1.3]		 0.83		
Medium	quality	use	data		 9		 1.81		 [1.23,	2.66]		 1.90		 [1.41,	2.55]		 0.61		
High	quality	use	data		 12		 1.37		 [1.05,	1.79]		 1.20		 [1.04,	1.39]		 0.37		
Alcohol	controlled		 14		 1.11		 [1.04,	1.18]		 1.18		 [1.07,	1.3]		 0.75		
Alcohol	not	controlled		 14		 1.79		 [1.28,	2.51]		 1.69		 [1.25,	2.28]		 0.90		
Fatalities	involved		 15		 1.32		 [1.08,	1.61]		 1.24		 [1.1,	1.4]		 0.92		
Fatalities	not	involved		 13		 1.51		 [1.02,	2.24]		 1.11		 [0.82,	1.49]		 0.37		
Table	3	–	Subgroup	analyses	

Publication	bias	
Overall,	the	PEESE	meta-regression	technique	finds	no	indication	of	publication	bias	in	the	28	
estimates	(p=0.52,	see	Table	3),	indicating	a	best	estimate	for	the	underlying	effect	of	1.23.	The	trim	
and	fill	method	indicated	a	weak	publication	bias,	with	a	trimmed	mean	summary	estimate	of	risk	of	
1.23,	in	effect	similar	to	that	from	the	meta-regression	model.		

Discussion	
The	replication	of	Asbridge	et	al	[5]	and	Li	et	al	[6]	in	study	1	indicates	that	their	published	pooled	
estimates	substantially	overestimated	the	effect	of	acute	cannabis	intoxication	on	crash	risk,	and	that	
the	pooled	estimate	presented	by	Li	et	al	is	hard	to	interpret	given	the	qualitatively	different	
estimates	pooled.	The	revised	estimate	from	the	studies	used	in	Asbridge	et	al	was	in	line	with	the	
results	from	the	expanded	meta-analysis	in	study	2,	lying	in	between	the	the	pooled	odds	from	the	
mixed-effects	model	of	1.36	(CI:	1.15-1.61)	and	the	pooled	odds	from	the	PEESE	meta-regression	of	
1.22	(meta-regression	model,	CI:	1.1-1.36).		

The	effect	sizes	found	represent	an	average	risk	increase	for	those	driving	after	the	use	of	cannabis.	
Under	a	causal	interpretation,	this	suggests	that	roughly	20-30%	of	traffic	crashes	involving	cannabis	
use	occur	because	of	the	cannabis	use.	By	comparison,	the	comparable	“average”	relative	risk	for	
accidents	with	fatalities	after	drinking	alcohol	has	been	estimated	at	7.5	[54],	which	would	imply	that	
around	85%	of	crashes	involving	alcohol	occur	because	of	alcohol.	Assuming	causality,	the	
differences	can	be	due	to	differences	in	the	impairment	produced	at	various	consumption	levels,	
and/or	differences	in	the	average	consumption	levels	of	those	choosing	to	drive	after	cannabis	and	
alcohol	use	respectively.		
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The	average	effect	of	1.2-1.4	found	for	cannabis	is	comparable	to	the	increased	risk	for	any	traffic	
crash	found	for	a	blood	alcohol	content	(BAC)	of	0.04-0.05	[55].	Since	alcohol	seems	to	be	more	
reliably	linked	to	an	increase	in	risky	driving,	however,	the	risk	of	crashes	resulting	in	fatalities	from	a	
0.02-0.05	BAC	is	estimated	to	rise	by	100-360%	depending	on	age	and	crash	type	[56].	No	
comparable	increase	in	the	risk	of	crashes	involving	fatalities	is	found	in	the	subsample	analysis	for	
cannabis	studies	(Table	3).	This	is	consistent	with	results	from	the	experimental	literature,	which	
reports	that	alcohol	increases	driving	speed	and	risk	taking	while	some	cannabis	users	attempt	to	
compensate	for	their	impairment	by	driving	more	cautiously.		

While	there	is	heterogeneity	across	studies,	the	subsample	analyses	all	show	pooled	effects	in	the	
range	of	1.07-1.81	(random	effects)	and	1.08-1.9	(meta-regression),	suggesting	that	the	average	risk	
increase	after	cannabis	use	is	unlikely	to	be	of	the	magnitude	associated	with	alcohol.	The	
importance	of	confounding	is	particularly	evident	the	subsample	analysis	for	alcohol-confounding,	
where	both	methods	find	an	OR	below	1.2	when	alcohol	is	controlled	for	and	higher	estimates	(1.79	
and	1.69)	when	not.	Higher	estimates	are	associated	with	case	control	studies,	low	study	quality,	
limited	control	of	confounders,	medium	quality	use	data,	not	controlling	for	alcohol	intoxication.		

Alternative	interpretations	of	the	results	
The	causal	interpretation	of	the	above	results	would	be	that	cannabis	intoxication	has	a	moderate	
effect	on	traffic	risks.	However,	it	is	important	to	note	that	remaining	selection	effects	may	bias	the	
estimates	in	either	direction.	

Since	cannabis	users	tend	to	be	aware	of	their	impairment	[4],	this	may	cause	selection	on	effect:	if	
users	are	more	likely	to	drive	when	they	judge	their	impairment	to	be	low,	then	the	estimates	above	
will	underestimate	the	(unobserved)	crash	risk	of	the	currently	non-driving	users.	This	matters:	If	the	
low	estimates	are	taken	as	evidence	that	“driving	after	cannabis	use”	is	unproblematic,	the	new	
users	would	tend	to	be	more	impaired	and	have	a	higher	cannabis-induced	increase	in	crash	risk.		

An	opposite	bias	can	result	from	residual	confounding	due	to	selection	into	cannabis	use	and	
selection	of	users	into	‘”driving	after	use.”	In	particular,	deciding	to	drive	while	intoxicated	is	a	
decision	correlated	with	traits	that	predict	higher	crash	risk	independently	of	cannabis	use:	high	
speeds,	close	following,	dangerous	lane	shifts	and	drunk	driving	[7,29–31].	This	would	give	estimates	
an	upward	bias,	in	that	“driving	after	cannabis	use”	functions	as	an	indicator	of	an	underlying	high-
risk	type	of	driver.		

While	both	types	of	bias	are	possible,	we	note	that	they	predict	different	patterns	across	empirical	
studies.	When	the	share	of	users	who	decide	to	drive	after	use	increases,	selection	on	effect	implies	
that	OR	estimates	increase	since	the	new	drivers	will	have	higher	risks.	Selection	into	“driving	after	
use”	would	imply	that	OR	estimates	decline,	since	the	new	drivers	would	have	lower	underlying	risk-
traits.		

Policy	implications	
The	growing	interest	in	the	crash	risk	associated	with	cannabis	use	is	related	to	the	ongoing	debate	
about	cannabis	policy.	Concerns	have	been	raised	that	liberalized	laws	would	increase	cannabis	use,	
increasing	the	number	of	cannabis	intoxicated	drivers	and	raising	the	traffic	crash	rate.	While	our	
estimates	suggest	that	the	impact	on	crash	rates	would	be	low	to	moderate	even	if	this	argument	
were	correct,	we	would	stress	that	such	simple	extrapolations	are	unlikely	to	be	robust	to	larger	
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policy	changes:	Driving	under	the	influence	of	legal	cannabis	would	likely	be	made	a	direct	target	for	
policy,	leading	to	efforts	with	documented	effects	from	the	alcohol	field	[57–59].	Cannabis	use	may	
also	influence	traffic	risks	through	other	causal	channels:	an	ecological	study	using	the	staggered	
introduction	of	medical	marijuana	laws	across	US	states	found	a	net	reduction	in	traffic	crashes	
associated	with	the	introduction	of	these	laws	[61].	The	authors	suggest	that	this	could	be	due	to	
consumers	shifting	from	alcohol	(with	high	crash	risk)	to	cannabis	(with	lower	crash	risk),	or	due	to	
cannabis	users	driving	less	than	they	would	have	after	drinking	(e.g.,	smoking	at	home	rather	than	
driving	to	a	bar).	This	underscores	the	larger	policy	point	that	a	low-to-moderate	causal	effect	of	
acute	cannabis	intoxication	on	crash	rates	is	likely	to	play	a	limited	role	in	the	overall	policy	picture	
surrounding	cannabis	legislation.	

Conclusions	
A	comprehensive	review	of	the	literature	on	acute	cannabis	intoxication	and	road	traffic	crashes	
finds	that	acute	intoxication	is	related	to	a	statistically	significant	risk	increase	of	low	to	moderate	
magnitude.	Higher	estimates	from	earlier	meta-reviews	were	found	to	be	largely	driven	by	
methodological	issues–	in	particular	the	use	of	counts	data	without	adjustment	for	known	
confounders.	Correcting	for	these	issues,	the	pooled	estimates	from	these	reviews	were	in	line	with	
the	results	from	the	updated	and	more	extensive	review.	Remaining	selection	effects	discussed	in	
the	“alternative	interpretations”	section	may	complicate	causal	interpretations	of	the	pooled	
estimates.	
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