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ABSTRACT 

Motivation: Since 1990, the Basic Local Alignment Search Tool 

(BLAST) has become one of the most popular and fundamental 

bioinformatics tools for sequence similarity searching, receiving 

extensive attention from the research community. The two pioneer-

ing papers on BLAST have received over 96,000 citations. Given the 

huge population of BLAST users and the increasing size of se-

quence databases, an urgent topic of study is how to improve the 

speed. Recently, graphics processing units (GPUs) have been wide-

ly used as low-cost, high-performance computing platforms. The 

existing GPU-BLAST is a promising software tool that uses a GPU 

to accelerate protein sequence alignment. Unfortunately, there is still 

no GPU-accelerated software tool for BLAST-based nucleotide se-

quence alignment. 

Results: We developed G-BLASTN, a GPU-accelerated nucleotide 

alignment tool based on the widely used NCBI-BLAST. G-BLASTN 

can produce exactly the same results as NCBI-BLAST, and it has 

very similar user commands. Compared with the sequential NCBI-

BLAST, G-BLASTN can achieve an overall speedup of 14.80X un-

der megablast mode. More impressively, it achieves an overall 

speedup of 7.15X over the multithreaded NCBI-BLAST running on 4 

CPU cores. When running under blastn mode, the overall speedups 

are 4.32X (against 1-core) and 1.56X (against 4-core). G-BLASTN 

also supports a pipeline mode that further improves the overall per-

formance by up to 44% when handling a batch of queries as a whole. 

Availability:  

http://www.comp.hkbu.edu.hk/~chxw/software/G-BLASTN.html 

Contact: chxw@comp.hkbu.edu.hk 

1 INTRODUCTION  

BLAST is one of the most fundamental software tools in bioin-

for-matics for matching biological sequences (Altschul et al., 1990; 

Altschul et al., 1997). Due to the explosive growth of sequence 

data, improving the speed of BLAST has become increasingly 

critical. In the last decade, many attempts have been made to de-

sign and develop new BLAST software tools for specific hardware 

(Jacob et al., 2007; Sotiriades and Dollas, 2007; Fei et al., 2008) or 

even parallel supercomputers (Lin et al., 2008). Unfortunately, 

most researchers do not have access to these hardware platforms. 

Following the popularity of multicore processors, several BLAST 

software tools using multiple CPU cores for increased speed have 

been developed. One good example is the widely used National 

Center for Biotechnology Information (NCBI) BLAST, which 
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supports multithreading in the preliminary stage of the BLAST 

algorithm (Camacho et al., 2009). Our experiments on a server 

with two quad-core Intel Xeon CPUs show that the multithreaded 

NCBI-BLAST can achieve an average speedup of 3~4X over the 

sequential version. NCBI-BLAST also supports an indexed Mega-

BLAST module, which uses the database index to achieve an ap-

proximate speedup of 2~4X (Morgulis, 2008). PLAST is a parallel 

implementation of BLAST (Nguyen and Lavenier, 2009) that ap-

plies a new indexing technique together with SSE instructions and 

multithreading to achieve better alignment speed. At present, 

PLAST only supports protein sequence alignment. 

In recent years, Graphics Processing Units (GPUs) have been 

widely accepted as low-cost, high-performance computing plat-

forms (Owens et al., 2008). Compared with traditional multi-core 

CPUs, GPUs have much higher computational horsepower and 

memory bandwidth. Many bioinformatics tools have been acceler-

ated by GPUs in recent years (Manavski and Valle, 2008; Dematte 

and Prandi, 2010; Liu et al., 2012; Lu et al., 2012; Lu et al., 2013). 

The significant difference between GPU and CPU architectures has 

created many challenges in developing highly efficient GPU soft-

ware (Nickolls, 2007). Without the development of carefully de-

signed parallel algorithms and sophisticated optimizations, the 

huge potential of GPUs may not be fully realized. 

Some GPU-based software tools have been developed for pro-

tein sequence alignment. Ling’s GPU-based BLAST software can 

achieve a speedup of 1.7~2.7X, compared with NCBI-BLAST 

(Ling and Benkrid, 2010). Recently, Vouzis and Sahinidis devel-

oped GPU-BLAST, which can typically achieve acceleration 

speedup of 3~4X relative to the sequential NCBI-BLAST (Vouzis 

and Sahinidis, 2011). The major advantage of GPU-BLAST is that 

it can produce the same results as NCBI-BLAST. Remarkably, this 

work was one of the top-ten highest downloaded articles published 

in Bioinformatics in 2011. 

To the best of our knowledge, we are the first to provide an 

open-source GPU solution, namely G-BLASTN, for nucleotide 

sequence alignment that can produce the same results as NCBI-

BLAST. G-BLASTN is developed on top of the NCBI-BLAST 

source code. It currently supports the megablast and blastn modes 

of NCBI-BLAST. Hereafter, we use BLASTN to refer to the nu-

cleotide blast module of NCBI-BLAST, for simplicity. The major 

idea behind G-BLASTN is to store a small hash table in the fast 

GPU cache memory and then scan the DNA database in parallel 

using all of the available GPU cores. We have overcome several 

challenges to fully use the GPU horsepower. To achieve significant 

speedup, some other parts of BLASTN have also been optimized. 

We evaluate G-BLASTN’s performance by running a set of exper-
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iments on human and mouse genome databases, as well as a partial 

of the NCBI nucleotide collection (nt) database. Using a contem-

porary NVIDIA GTX780 GPU with a cost of $650, G-BLASTN 

under megablast mode can achieve significant speedups over the 

multithreaded BLASTN running on 4-core or 8-core CPUs. When 

running under the more sensitive blastn mode, G-BLASTN also 

achieves reasonable speedups. When processing a batch of queries, 

G-BLASTN supports a pipeline mode that can further improve the 

performance by up to 44%. We believe that G-BLASTN is an at-

tractive and cost-effective option for bioinformatics practitioners. 

The remainder of the article is organized as follows. In Section 

2, we briefly review the main algorithms of BLASTN and present 

our design for G-BLASTN. In Section 3, we present the detailed 

implementation of G-BLASTN. In Section 4, we present the exper-

imental results. We conclude the article in Section 5. 

2 METHODS 

2.1 BLASTN algorithms 

BLASTN is designed to efficiently search nucleotide databases using a 

nucleotide query sequence (Camacho et al., 2009). BLASTN’s high level 

pseudocode is given in Figure 1, which consists of four stages. The setup 

stage prepares search options, reads and prepares the query sequence and 

database sequence and builds the lookup table. The scanning stage per-

forms a preliminary search comprising three steps: seeding, ungapped 

extensions and gapped extensions. The seeding step scans the database for 

hits (i.e., a match with some word in the lookup table). The hits are then 

extended by ungapped alignment. The alignments that exceed a threshold 

score will go through the gapped extensions. Only the gapped alignments 

that exceed another threshold score will be saved as “preliminary” matches. 

The trace-back stage takes the preliminary matches as input, considering 

ambiguous nucleotides, and finds the locations of insertions and deletions. 

The output stage displays the alignment results to the user. 

 

1 [Setup] prepare the BLASTN options, query, database, lookup table 

2 [Scanning] for each of N threads { 

2.1     while the database still has unsearched sequences { 

2.2         Retrieve a group of sequences from the database 

2.3         Seeding: find exact word matches 

2.4         Ungapped extensions 

2.5         Gapped extensions 

2.6     } 

2.7 } 

3 [Trace-back] for each database sequence containing alignments, 

perform trace-back 

4 [Output] print the alignment results 

Fig. 1. High Level Pseudocode of BLASTN 

 

BLASTN’s efficiency relies on the assumption that any alignment of in-

terest between the query and the database will contain at least one W-gram 

(i.e., a subsequence of length W), where W is a parameter known as 

“BLASTN word size”. In practice, for any given query sequence BLASTN 

will construct a lookup table that stores the offsets into the query where 

each possible w-gram occurs, where w is a parameter known as the “lookup 

table word size” which is less than or equal to W. Because each letter can 

be one of {A, C, G, T}, the lookup table has 4w entries. The seeding proce-

dure walks through the database sequence to find hits. In each round, it 

fetches a w-gram, calculates its hash value, looks into the lookup table and 

records all matched offset pairs (i.e., the pair of offsets of the matched w-

gram in the query and database, respectively) if there are any. When W is 

larger than w, it is not necessary to scan the database letter by letter; instead, 

BLASTN scans the database in strides. The maximum stride size without 

missing any match is W-w+1. For extremely long nucleotide databases, the 

seeding procedure is usually the most time-consuming step.  

After all w-gram hits have been found, we must determine whether each 

hit belongs to a W-gram match. This is done through the mini-extension 

procedure (a.k.a. exact match extension), which extends each w-gram in 

both the left and right directions to check the existence of exact W-gram 

matches. The mini-extension step can be time consuming if millions of w-

gram hits must be extended. Once we find all of the W-gram hits, the un-

gapped extension step begins, allowing for mismatches. Ungapped align-

ments that exceed a threshold score are stored for gapped extension. In the 

scanning stage, gapped extension returns only the score and extent of the 

alignment while the number and position of insertions, deletions and 

matching letters are not stored. During the whole scanning stage, BLASTN 

processes the sequence in NCBI-NA2 format, in which each nucleic acid is 

represented by two bits. Hence, ambiguities cannot be handled. In the trace-

back stage, ambiguous nucleotides are restored by converting NCBI-NA2 

format into NCBI-NA8, and more sensitive heuristic parameters are used 

for the final gapped alignment. Finally, the output step formats the results 

according to the user options and prints the results for the user. 

2.2 Design of G-BLASTN 

Fig. 2. GPU Memory Hierarchy 

 

GPUs have become mature, many-core processors with much higher com-

putational power and memory bandwidth than today’s CPUs. A GPU con-

sists of a scalable number of streaming multiprocessors (SMs), each con-

taining some streaming processors (SPs), special function units (SFUs), a 

multithreaded instruction fetch and issue unit, registers and a read/write 

shared memory. CUDA is currently the most popular programming model 

for general purpose GPU computing. The best way to use the hundreds to 

thousands of GPU cores is to generate a large number of CUDA threads 

that can access data from multiple memory spaces during their execution, 

as illustrated in Figure 2. Each thread has its private registers and local 

memory. Each GPU kernel function generates a grid of threads that are 

organized into thread blocks. Each thread block has shared memory visible 

to all threads within the block and with the same lifetime as the block. All 

threads have access to the same global memory. Two additional read-only 

memory spaces are accessible by all threads: the constant and texture 

memory spaces, both of which have limited caches. 

Due to the complexity of BLASTN software, exploiting GPUs to accel-

erate BLASTN is a non-trivial task. The main challenge is that not all of 

the steps involved in BLASTN are suitable to be parallelized by GPUs. To 

identify which steps should be parallelized, we conducted a profiling study 

by running 300 different queries with a broad range of lengths against the 

human build 36 genome database to analyze the time distribution of differ-
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ent BLASTN steps under megablast mode (Figure 3). We mainly observed 

the following details. The scanning stage is the most time-consuming and 

accounts for 69-93% of the total execution time. Surprisingly, BLASTN 

spends 5-25% of the total execution time in the setup stage, mainly initial-

izing the mask database. The trace-back stage takes negligible time for 

most queries, but can occasionally take a very long time. 

Fig. 3. Profiling of BLASTN for 300 query sequences (ranging from 500 to 

100,000 bases) against human build 36 genome database under megablast 

mode. The lengths of the query sequences can be found in Figure S1 of the 

supplementary. 

To achieve a good overall speedup, we designed G-BLASTN as follows. 

Its major component is a set of CUDA kernel functions that run on GPUs to 

significantly accelerate the seeding and mini-extension steps in the scan-

ning stage. It is designed to initialize the mask database once and then serve 

a large number of queries. Therefore, the time spent in database initializa-

tion can be largely removed. We optimized the two most time consuming 

functions in the trace-back stage and further designed a pipeline mode 

under which the trace-back, output and scanning stages can run simultane-

ously. The general framework of G-BLASTN is shown in Figure 4. 

Fig. 4. The framework of G-BLASTN 

3 IMPLEMENTATION 

We use CUDA C language to implement G-BLASTN based on NCBI 

BLAST 2.2.28 software package. It supports both Windows and Linux 

platforms. In the following, we present the detailed implementation of the 

major modules of G-BLASTN. 

 

3.1 Accelerating the seeding step by GPU 

The main task of the seeding step is to scan the database sequences and 

identify all w-gram matches. Due to the large database sizes, the seeding 

step is the most time consuming in BLASTN. Fortunately, there is a good 

chance that the seeding step can be parallelized due to the independence of 

the tasks at different offsets of the database. G-BLASTN first loads the 

database sequences to GPU global memory. Then for each query sequence, 

it stores a copy of the lookup table in GPU texture memory to achieve 

ultrafast table lookup. For each database sequence, it invokes a GPU kernel 

function that generates a large number of GPU threads to scan the database 

sequence in parallel; and hence the large number of GPU cores can be fully 

utilized to speed up the seeding step. 

The implementation of the seeding step on the GPU is a major challenge, 

however. In CUDA, each thread block is organized as a number of warps, 

and each warp of threads is executed by a Single Instruction, Multiple Data 

(SIMD) hardware. When threads within a warp take different execution 

paths, the SIMD hardware will take multiple runs to go through these di-

vergent paths, which will significantly decrease the utilization of GPU 

cores. In the case of BLASTN, the w-grams at different offsets of the data-

base sequence may have no match or many matches to the query sequence, 

which can lead to severe thread branch divergence that decreases the GPU 

performance significantly. To conquer this challenge, we divide the seeding 

step into two sub-steps: scan and lookup. In the scan sub-step, we go 

through the whole database sequence in parallel and record all offsets of the 

database that have at least one match to the query. Notice that we do not 

need to know how many matches have been found and where they are for 

each offset. Thus, each GPU thread can perform almost the same execution 

path and the effect of thread branch divergence can be minimized. In the 

lookup sub-step, we use another GPU kernel function to recheck all 

matched offsets and construct the complete set of matched offset pairs. This 

strategy works very well because the scan sub-step dominates the time of 

the seeding step.  

 There is yet another challenge in efficiently implementing the scan sub-

step on the GPU. Once a thread finds a w-gram match, it has to increase a 

global counter and then write the matched offset into a global array. There 

are two negative consequences: (1) increasing the global counter must be 

an atomic operation, which means only one among all threads can operate 

while others have to wait; and (2) writing a single offset pair into the global 

array can waste a lot of GPU memory bandwidth. To overcome this chal-

lenge, we use a local counter and a local array for each thread block as 

temporary storage for the global counter and global array. The local counter 

and array are held in GPU shared memory, which is very fast. Now all 

thread blocks can operate on their own local counters and arrays simultane-

ously, boosting the overall performance. Once a local array becomes full, 

the set of offset pairs is written into global array as a whole and the global 

counter is updated by an atomic operation. We exploit coalesced memory 

write operations to achieve very high memory bandwidth. Meanwhile, the 

number of atomic operations on the global counter can be significantly 

reduced. The framework of the scan sub-step on GPU is shown in Figure 5. 

For performance consideration, BLASTN supports two types of lookup 

tables for different types of queries: small and megablast1. Each type of 

lookup table has its own set of algorithms. Therefore, we have to imple-

ment different GPU kernel functions for different types of lookup tables. 

  
1 In current NCBI-BLAST, both types of lookup tables are supported by 

blastn mode and megablast mode. 
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Fig. 5. Framework of scan sub-step on GPU 

A small lookup table contains a simple backbone array and an overflow 

array, both of which are simply an array of 16-bit integers. If the value of a 

backbone cell is nonnegative, it means that position in the lookup table 

contains exactly one query offset, which equals the cell value. If the value 

is −1, the corresponding w-gram does not exist in the query sequence. If the 

value is −x (x > 1), the corresponding w-gram appears multiple times in the 

query sequence and their offsets begin at offset x of the overflow array and 

continue until a negative value is encountered. The pseudocode of our GPU 

scan and lookup kernel functions using a small lookup table are shown in 

Figures 6 and 7, respectively. The backbone array is held in GPU texture 

memory. Notice that a GPU kernel function specifies the behavior of a 

single GPU thread. There are hundreds of thousands of GPU threads simul-

taneously active, each of which executes the same instructions while work-

ing on different data items. 
 

Input: backbone[] // in texture memory 

Output: P1[], P2[], globalCounter  // P1 stores exact offset pairs, P2 stores 

overflow offset pairs, globalCounter stores the number of matches 

Key Variables: BlastOffsetPair localArray[K]; // in shared memory 

                          uint localCounter; // in shared memory 

1 s_index = blockIdx.x*blockDim.x + threadIdx.x; 

2 do 

3 load base pairs into s from database sequence; 

4 h = hash_function(s); 

5 hv = backbone[h]; 

6 calculate db_offset; 

7 if hv > −1 then 

8     atomicAdd(localCounter, 1); 

9 write offset pair (hv, db_offset) into localArray;  

10     end if 

11 if hv < −1 then 

12     atomicAdd(overflowCounter, 1); 

13 write offset pair (-hv, db_offset) into P2; 

14 end if   

15     __syncthreads( ); // local barrier 

16     if localCounter >= K/2 then   

17         if threadIdx.x == 0 atomicAdd(globalCounter, localCounter); 

18         __syncthreads( ); // local barrier 

19     copy the offset pairs in localArray to P1; 

20     if threadIdx.x == 0 localCounter = 0; 

21     __syncthreads( ); // local barrier 

22     end if 

23     update s_index; 

24 repeat until out of range 

25 if localCounter > 0 then 

26     if threadIdx.x == 0 atomicAdd(globalCounter, localCounter); 

27     __syncthreads( ); // local barrier 

28     copy offset pairs in localArray to P1; 

29 end if 

Fig. 6. The GPU scan kernel function using small lookup table 

 

Input: P1[], P2[], overflowTable[], globalCounter // P1 is exact offset pair 

array, P2 is overflow offset pair array, overflowTable is in texture memory 

Output: P1[], globalCounter; 

1 index = blockIdx.x*blockDim.x + threadIdx.x; 

2 read pair (hv, db_offset) from P2[index]; 

3 q_offset = overflowTable[hv++]; // overflow table lookup 

4 do 

5 atomicAdd(globalCounter, 1);  

6 write offset pair (q_offset, db_offset) into P1; 

7 if hv <= the length of overflow table then 

8 q_offset = overflowTable[hv++]; 

9 else 

10 break; 

11     end if 

12 repeat until q_offset < 0 

Fig. 7. The GPU lookup kernel function using small lookup table 

 

The megablast lookup table comprises three arrays: presence vector (PV 

array), hash table (hashtable[]) and next position (next_pos[]). The PV 

array is a bit field with one bit for each hash table entry. If a hash table 

entry contains a query offset, the corresponding bit in the PV array is set. 

The scanning process first checks the PV array to see whether there are any 

query offsets in a particular lookup table entry. The hashtable[] array is a 

thick backbone with one word for each of the lookup table entries. If a 

lookup table entry has no query offsets, the corresponding entry in hashta-

ble[] is zero; otherwise, it is an offset into next_pos[]. The position in 

next_pos[] is in fact the query offset, and the actual value at that position is 

a pointer to the succeeding query offset in the chain. A value of zero means 

the end of the chain. The pseudocode of our GPU scan and lookup kernel 

functions using the megablast lookup table are shown in Figures 8 and 9, 

respectively. The scan kernel function checks the PV array to quickly de-

termine whether there is a match. To achieve the best table lookup perfor-

mance, the PV array is held in texture memory. The lookup kernel function 

takes the output of scan function as input and checks the hashtable[] and 

next_pos[] to find the complete set of matched offset pairs. 
 

3.2 Accelerating the mini-extension step by GPU 
It is not uncommon for the scan sub-step to return millions of seed matches. 

The mini-extension step is designed to verify whether each w-gram match 

can be extended to a W-gram match when w < W. We can create a huge 

number of GPU threads to extend those w-gram matches simultaneously. 

Each GPU thread reads one offset pair from the matched offset pair array, 

extends on the left side and then extends on the right side. If it finds a W-

gram match, this offset pair will be recorded for further gapped extension. 

Given that the mini-extension algorithm exhibits no big difference from the 

original BLASTN, we do not provide the pseudocode here. We note that 

there are two versions of mini-extension, one for the small lookup table and 

another for the megablast lookup table. 
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Input: PV // presence vector, in texture memory 

Output: P[], globalCounter // P stores all matched offset pairs  

Key Variables: BlastOffsetPair localArray[K]; // in shared memory 

                          uint localCounter; // in shared memory 

1 s_index = blockIdx.x*blockDim.x + threadIdx.x; 

2 do 

3 load base pais into s from database sequence;  

4 h = hash_function(s);  

5 if BlastMBLookupHasHits(h) == 1 then 

6     calculate db_offset; 

7     atomicAdd(localCounter, 1); 

8 write offset pair (h, db_offset) into localArray  

9     end if 

10     __syncthreads( ); // local barrier 

11     if localCounter >= K/2 then   

12         if threadIdx.x == 0 atomicAdd(globalCounter, localCounter); 

13         __syncthreads( ); // local barrier 

14     copy offset pairs in localArray to P; 

15     if threadIdx.x == 0 localCounter = 0; 

16     __syncthreads( ); // local barrier 

17     end if 

18     update s_index; 

19 repeat until out of range 

20 if localCounter > 0 then 

21     if threadIdx.x == 0 atomicAdd(globalCounter, localCounter); 

22     __syncthreads( ); // local barrier 

23     copy offset pairs in localArray to P; 

24 end if 

Fig. 8. The GPU scan kernel function using megablast lookup table 

 

Input: P, hashtable, next_pos 

Output: P1 

1 index = blockIdx.x*blockDim.x + threadIdx.x; 

2 read pair (h, db_offset) from P[index]; 

3 q_offset = hashtable[h]; 

4 while q_offset > 0 

5 atomicAdd(globalCounter, 1); 

6 write (q_offset-1, db_offset) to P1; 

7 if q_offset < the length of next_pos table then 

8 q_offset = next_pos[q_offset]; 

9 else  

10 break; 

11     end if 

12 end while 

Fig. 9. The GPU lookup kernel function using megablast lookup table 

 

3.3 Optimizing the trace-back step 
As mentioned in Section 2.2, occasionally the trace-back step takes quite a 

long time, which may counteract the speedup achieved by the previous 

steps. Unfortunately, the trace-back step is not naturally suitable for GPUs. 

We therefore resort to the following optimization techniques. First, func-

tion s_SeqDBMap NA2ToNA8() uses a translation table to convert sequence 

data from NCBI-NA2 to NCBI-NA8 format. BLASTN translates the data 

character by character, which does not fully use the CPU memory band-

width. In G-BLASTN, we replace four 8-bit memory writes with a single 

32-bit memory write, which boosts the speed by 2 to 3 times. Second, 

function s_SeqDBMapNcbiNA8To BlastNA8() uses a 16-byte translation 

table to convert sequence data from NCBI-NA8 to BLAST-NA8 format, 

character by character. G-BLASTN uses a 128-bit union (denoted by 

ntob_table) to hold the 16-byte translation table, and then SSE instructions 

to write 16 bytes as a whole, which achieves a speedup of 3~4X. The SSE 

instructions are shown in Figure 10. 
 

1 set pointer p_buf to the address of 128-bit data; 

2 __m128i t_buf = _mm_loadu_si128(p_buf); // load data into register 

3 t_buf=_mm_shuffle_epi8(ntob_table, t_buf); // translate the data 

4 _mm_storeu_si128(p_buf,  t_buf); // write back data 

Fig. 10. SSE instructions used by s_SeqDBMapNcbiNA8ToBlastNA8() 

 

3.4 Pipeline mode for multiple queries 
Once we have accelerated the scanning stage by GPU, other stages such as 

trace-back and output may start to occupy a relatively large portion of the 

total execution time, especially when there are many final hits. G-BLASTN 

supports a pipeline mode when handling a batch of queries. The main ad-

vantage of the pipeline mode is that the GPU and CPU can work on differ-

ent tasks simultaneously, as shown in Figure 11. In short, when the GPU is 

busy with seeding or mini-extension, the CPU can execute the trace-back or 

output steps for a previous query. To achieve this purpose, G-BLASTN 

uses multithreading to maintain four queues: query, job, prelim and result. 

A master thread reads the queries and puts them into the query queue, and 

then creates the job queue. The prelim thread(s) fetches jobs from the job 

queue and uses GPU to execute the preliminary search, storing the results 

in the prelim queue. The trace-back thread(s) reads from the prelim queue, 

executes the trace-back step and stores the results in the results queue. 

Finally, the print thread prints the results. This pipeline design can effi-

ciently use both GPU and CPU resources.  

Fig. 11. The pipeline mode of G-BLASTN 

4 RESULTS 

4.1 General setup and data sets 

The GPU experiments were performed on a desktop computer with 

an Intel quad-core CPU and Nvidia GTX780 GPU. The CPU ex-

periments were performed on two different platforms: a 4-core 

platform which is the same computer that runs the GPU experi-

ments; and an 8-core platform which is a server with two Intel 

Xeon CPUs. The detailed system configuration is shown in Table 1. 
 

Table 1 System configuration 

CPU Memory GPU Storage OS 

Intel Core i7-

3820 (4-core, 

3.6GHz) 

32GB 

(DDR3 

1600) 

Nvidia 

GTX780 

SATA 

2TB  

CentOS 6.4 

(Linux kernel 

2.6.32) 

2 x Intel Xeon 

E5620 (8-core, 

2.4GHz) 

24GB 

(DDR3 

1333) 

N/A SATA 

1TB 

Redhat 5.5 

(Linux kernel 

2.6.18) 
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We used the following two command lines to run NCBI 

BLASTN and G-BLASTN, respectively. More details about the 

command options of G-BLASTN can be found on our website. 

$blastn -db <database> -query <query> -task megablast|blastn -outfmt 7 -

out <file> -dust yes -window_masker_db <masker_db> -num_threads 

<1|4|8> 

$gblastn -db <database> -query_list <query list> -task megablast|blastn -

outfmt 7 -out <file> -dust yes -window_masker_db <masker_db> -use_gpu 

true -mode <1|2> -num_threads <1|4|8> 

We used gettimeofday() functions to measure the program exe-

cution time. Each experiment was run 10 times and the average 

results are reported in this paper. 

Databases. We chose human build 36 and mouse build 36 genome 

databases for the experiments of megablast mode. In addition, we 

constructed a database to test the blastn mode by selecting all 

sequences with length no less than 2million from NCBI nt database. 

This partial NCBI nt database has a raw size of 8.4GB and can 

well fit into a single GPU card with 3GB memory after compres-

sion. All databases were masked with WindowMasker (Morgulis et 

al., 2006a), including low-complexity filtering by DUST (Morgulis 

et al., 2006b). The length information of all database sequences 

can be found in Figure S2 of the Supplementary. 

Queries. To test the megablast mode, we chose queries from the 

NCBI ftp server: ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/indexed_ 

megablast/queries (Morgulis 2008). Six query sets, each containing 

100 queries, were used, which are referred to as Qsmall (∼500 

bases, range: 501-506), Qmedium (∼10 Kbases, range: 10000-

10446) and Qlarge (∼100 Kbases, range: 100001-102087). To test 

the blastn mode, we chose the first 500 bacterial sequences from 

the NCBI server: http://www.ncbi.nlm.nih.gov/sra/SRX338063, 

namely Qbac. The length information of all query sequences can 

be found in Figure S1 of the Supplementary. 

4.2 Experimental results 

4.2.1 Performance under normal mode 

Under normal mode, G-BLASTN handles the queries one at a 

time. We first present the experimental results of megablast. The 

speedups over 8-core platform on human genome database are 

shown in Figure 12. The speedups of other experiments are shown 

in Figures S3-S6 of the Supplementary. We also show the average 

speedup of each query set in Table 2. The overall speedups are 

calculated as the average of all 1600 query experiments for each 

hardware setting. As compared with 4-core Intel i7-3820, G-

BLASTN achieves an overall speedup of 7.15X. As compared with 

the 8-core platform, G-BLASTN achieves an overall speedup of 

13.76X. There are several reasons why BLASTN runs much faster 

on i7-3820 than on Xeon E5620. Firstly, i7-3820 has a much high-

er working frequency than E5620. Secondly, the memory band-

width of i7-3820 is twice of E5620. Thirdly, the memory module 

of our i7-3820 platform is faster than that of E5620 platform. 

Based on the results of E5620, we can notice that the speedups 

achieved using 8 cores are only slightly better than using 4 cores.  

We also notice that the speedups on the human database are less 

than those on the mouse database. This is mainly because the hu-

man build 36 database consists of 367 sequences, more than 200 of 

which are short sequences (less than 1 million bps). In contrast, the 

mouse build 36 database consists of 21 very long sequences. We 

will discuss more on this issue in Section 5. 

(a) speedup of Qsmall queries 

(b) speedup of Qmedium queries 

 (c) speedup of Qlarge queries 

Fig. 12. Speedup of G-BLASTN on human genome database (GTX780 vs. 

Two Xeon E5620) 

 
Table 2 Average speedup of G-BLASTN under megablast mode 

Database Query 
Intel i7-3820 Intel Xeon E5620 

1-core 4-core 1-core 4-core 8-core 

Human Qsmall 10.47 5.11 26.90 12.88 10.52 

Qmedium 11.49 4.53 32.68 11.98 8.50 

Qlarge 9.22 3.37 21.07 7.54 5.25 

Qbac 10.80 5.37 26.04 12.71 10.47 

Mouse Qsmall 18.50 9.37 44.12 21.87 18.28 

Qmedium 17.84 7.39 49.16 19.11 14.32 

Qlarge 10.44 4.14 23.16 9.14 6.92 

Qbac 20.97 10.73 49.28 24.71 20.80 

Overall 14.80 7.15 35.85 16.85 13.76 

 
We evaluate the performance of blastn mode using Qbac query 

set against human, mouse, and the partial NCBI nt databases. We 

show the average speedups of each database and the overall 

speedups in Table 3. G-BLASTN achieves an overall speedup of 

1.56 and 2.95 as compared with 4-core i7-3820 and 8-core E5620, 

respectively. As compared with megablast mode, blastn mode has 

a much smaller value of stride size, which results in more scanning 

workload and more seed hits. Therefore the ungapped extension 

step under blastn mode takes much longer time than under mega-

blast mode, as shown in Figure S7 of the Supplementary. Since the 

ungapped extension is sequentially executed on CPU, the speedups 

achieves under blastn mode are much less than megablast.  
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Table 3 Speedup of G-BLASTN under blastn mode using Qbac query set  

Database 
Intel i7-3820 Intel Xeon E5620 

1-core 4-core 1-core 4-core 8-core 

Human 4.58 1.57 8.01 2.99 2.15 

Mouse 5.02 1.83 8.84 3.51 2.70 

NCBI nt 3.37 1.29 5.71 2.36 1.74 

Overall 4.32 1.56 7.52 2.95 2.20 

4.2.2 Performance under pipeline mode 

To evaluate the performance of pipelined G-BLASTN, we use all 

queries in each data set as a single input to G-BLASTN. The 

speedups against the NCBI BLAST on Intel i7-3820 are shown in 

Table 4. If we compare Table 4 with Tables 2 & 3, we can observe 

a significant improvement on the speedups for many data sets. For 

small and medium queries under megablast, the trace-back and 

output steps account for a very small portion of the total time, and 

hence the pipeline design does not offer much of an advantage. For 

large queries using megablast, however, the trace-back and output 

steps take a much longer time due to a greater number of final hits, 

and thus the pipeline design hides a significant portion of time. 

Under blastn mode, the pipeline design can further improve the 

speedups of the Qbac query set by 19-44%. 

Table 4 Speedup of pipelined G-BLASTN (GTX780 vs. Intel i7-3820) 

Mode Database Query 1-core 4-core  

megablast Human 

 

 

Qsmall 10.83 5.28 

Qmedium 12.67 5.05 

Qlarge 12.19 4.68 

Mouse  Qsmall 20.49 10.37 

Qmedium 20.12 8.51 

Qlarge 12.09 5.47 

blastn Human  Qbac 5.49 1.87 

Mouse  Qbac 6.49 2.36 

NCBI nt  Qbac 4.73 1.86 

5 DISCUSSIONS AND CONCLUSIONS  

In this paper, we describe our design and implementation of G-

BLASTN, an open source software tool for nucleotide alignment 

based on the widely used NCBI-BLAST. G-BLASTN exploits the 

power of GPUs to accelerate nucleotide alignments. Compared 

with a contemporary quad-core Intel CPU running at 3.6GHz, G-

BLASTN on a single $650 GPU card can achieve  overall 

speedups of 14.8X and 4.32X under megablast mode and blastn 

mode respectively. When compared with multithreaded NCBI-

BLAST that uses four CPU cores, G-BLASTN can still achieve 

overall speedups of 7.15X (megablast) and 1.56X (blastn). G-

BLASTN also supports a pipeline mode that further improves the 

overall performance by up to 44% when handling multiple queries.  

G-BLASTN can be improved in the following directions. At 

present, G-BLASTN invokes a kernel function for each database 

sequence, which is not efficient when the length of the database 

sequence is shorter than one million bps. Besides the constant 

overhead of invoking a kernel function, another reason is that short 

database sequence only generates a small number of hits during the 

scanning stage, and hence the effect of our optimization strategy 

on the atomic operations will diminish. There are several possible 

solutions to this problem. One possibility is to aggregate short 

database sequences into longer ones. Another solution is to process 

multiple database sequences in each kernel function call. G-

BLASTN is also limited by the GPU memory size. We plan to 

extend G-BLASTN to support multiple GPU cards. Doing so can 

not only support much larger databases, but also achieve better 

speedups. A more challenging task is to accelerate other steps such 

as ungapped extension, gapped extension, and trace-back, which 

will improve the performance of blastn mode significantly. Finally, 

we also plan to support discontiguous megablast mode in our 

future work. 
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