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Planar subwavelength structures are described, which rely on a hitherto unrecognized property of
Maxwell’s equations to provide superlensing, i. e., electromagnetic focusing well beyond the dif-
fraction limit, at arbitrary frequencies. The resulting fields bear a striking resemblance to those
shown by negative-refraction slabs. The structures’ design is related to that of the Fresnel plates
in that diffraction forces the input field to converge to a spot on the focal plane. Unlike the dif-
fraction-limited zone plates, for which focusing results from standard interference of traveling
waves, the subwavelength plates control the near field and, as such, their superlensing properties

originate from a new, static form of interference.

PACS numbers:



The closely related problems of electromagnetic imaging and focusing beyond Abbe’s dif-
fraction limit (set by ~ A/n where A is the vacuum wavelength and 7 is the refractive index [1])
have received considerable attention in the past decade, motivated in part by the optical studies
of Betzig and Trautman [2], who used subwavelength apertures to probe the near field (for re-
lated work at microwave frequencies, see [3]). Since then, various schemes have been developed
to improve the resolution, involving, e. g., sharp tips [4,5], tapered plasmonic waveguides [6]
and far-field time reversal mirrors [7], and values as small as ~ A/100 have been reported for the
THz range [8]. Subwavelength focusing necessarily involves the evanescent components of the
field, i. e., the near field. Because of this, standard interference techniques or geometrical optics
methods do not apply. More recently, negative refraction has emerged as a new topic of interest
to near-field studies [9,10], following Pendry’s work on perfect lenses [11] (see also [12,13,14]),
and the subsequent experimental verification of negative refraction at microwave frequencies
[15,16] and imaging beyond Abbe’s limit with negative-permittivity slabs [17,18]. In this work, a
novel approach to subwavelength focusing is described which uses patterned, planar structures to
induce convergence of the near field. The focusing effect described here is reminiscent of, but
the physics is significantly different than that of, both, negative refraction slabs and Fresnel zone

plates [19].

Let F be one of the cartesian components of the electric (E) or the magnetic field (H), and
assume that all the field sources are monochromatic, with time-dependence given by e™ ( is

the angular frequency), and that they lie, say, to the left of a particular plane, defined as z = 0.



Then, for z >0, F satisfies the Helmholtz equation V2F +k*F =0 and can thus be expressed in

the angular-spectrum-representation form [20]
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providing an exact relationship between the solution to the wave equation in two arbitrary planes,

parallel to each other, z = z,> 0 and z = zg> 0. Here, k = 2r/A and
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With the sources located in the half-space z < 0, the choice of signs in (2) is dictated by the re-
quirements that the homogeneous and inhomogeneous (or evanescent) solutions to the wave

equation must travel and decay in the positive z direction, respectively.

Since, according to Eq. (1), the field in the region z > 0 is determined by the boundary values
F(x,y,0), the question of focusing (for, both, the subwavelength and the conventional, diffrac-
tion-limited cases) becomes that of identifying the sources needed to generate the field profile at
z =0 that converges to a spot of a predetermined size at the focal plane, z =f. While the angu-
lar-spectrum representation shows that F(x,y,0) is, in turn, uniquely determined by the fo-
cal-plane values, F(x,y.f), the answer to the focusing problem is not unique, and the search for
the optimal solution is not trivial, because “focal spot” is, at best, an electromagnetically vague
concept. The difficulty here is that the wrong choice of F(x,y,f) may result in a field that is un-

suitable for applications, diverges or does not exist (everywhere in a region or at certain points),



or a boundary field that is difficult to implement in practice. In our approach, F (x,,0) is defined
by the transmission properties of subwavelength-patterned planar structures that behave, in some
sense, like the evanescent-wave counterparts to Fresnel’s zone plates [19]. Similar to the latter
structures, the waves exit our plates in a pattern set by the plate design, which forces them to
converge to a spot on the focal plane, as prescribed by Eq. (1). Unlike the Fresnel plates, which
rely on interference involving radiative components of the field (and are thus subjected to Abbe’s
constraint), our plates affect primarily the evanescent waves leading to interference effects that
are electrostatic or magnetostatic in nature and, as a result, the spot size can be arbitrarily small.
As with other near-field effects, our plates’ ability to focus at large distances is severely limited
by the exponential decay of the near field which, in practical applications, constrains the focal

length to dimensions much smaller than A.

The plates we propose can be tailored to give subwavelength focal patterns of various types
and symmetries. Here, we concentrate on two key geometries displaying cylindrical and azi-
muthal symmetry. In the cylindrical or two-dimensional case, dF /dx =0, the perfect focus is a

line and Eq. (1) becomes
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where K(g) is given by (2) with ¢’ +q;f — g° . For electromagnetic fields propagating in the + z
direction that have azimuthal symmetry (e. g., the axicon [21] and Bessel beams [22]), the tan-

gential, ¢-component of the electric field as well as the z- and the radial, p-component of H van-



ish, while the non-zero components ¥ = Hy or E, obey
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Replacing the Bessel function J; by Jy, one obtains the corresponding expression for E;. Note
that e’ exp[iK(qo)z] and J,(g,p)explix(g,)z] are, respectively, solutions of (3) and (4) for
arbitrary qo, that become evanescent modes for |go| > k. For |qo| < k, the corresponding fields are
the well-known diffraction-free plane waves and Bessel beams. As discussed in the next para-
graph, these states and, more generally, source-free electromagnetic fields with components of

the form f, (p)explik(q,)z], where p is a vector normal to the z-axis, play a crucial role in

near-field lensing.

Our approach to subwavelength focusing relies on a property of the near field which, to the

best of our knowledge, has not been considered before. Assume that f, exp[ik(q,)z] is part of
a full solution to Maxwell’s equations, and that a certain field component (cartesian or otherwise)
at the source plane, z=0, is of the form M (p)X f, (p) where M is a modulation function,
which is characterized by the length scale L and satisfies the requirements specified below. Then,

it can be shown for |go| >> k that the field converges to a focal spot of resolution defined by
¢ = 21/|qo|, after propagating through a distance of order L. This remarkable effect is illustrated in
Fig. 1 for, both, the two-dimensional and azimuthally-symmetric cases. The basic concepts of
near-field lensing are best understood in the cylindrical geometry. In Eq. (3), take

F(v,0)=M(y)e™ and integrate to calculate F(y,7). Since, for |go| >> k, the relevant states are



evanescent waves, we can approximate K(g) =i ]ql SO that
F(y,z)= J.Ieiq"e’|q'ZM (¥)e"““™ ¥ dy'dg/2m . Lensing occurs for a wide choice of modulation
functions. Mathematically, a sufficient condition for focusing is that M should have one or more
poles in the complex plane with non-zero imaginary components. To prove this, we assume that

M(y) is a real and even function, with poles at * /L. Performing a simple integration, we obtain
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As anticipated, the first term of this expression leads to focusing at z = L such that, for L >> /,
|F ( y,L)I2 oc lsin(qo y/2)/ ylz (the second term gives, comparatively, a weakly-varying back-
ground). A comment is in order here. Since there are no phases associated with evanescent waves,
it should come as a surprise that the lensing process shows telltale signs of conventional inter-
ference, particularly in the way the waves contributing to (3) add up constructively and destruc-
tively at the focal plane. Because it involves nonradiative modes, we will refer to this unconven-

tional form of focusing as radiationless interference.

Fig. 1A shows plots of |F(y,z)|" , obtained from Eq.(3), for f ., =€ and
M =(1+y*/L*)™. This form of M is the simplest one for an even function with poles at y = * iL.
The calculations are consistent with Eq. (5), and support our contention that the focal length and
the resolution are determined, respectively, by the modulation length, L, and the length scale of
the unperturbed field component, £. As shown in Fig. 1B, the modulated azimuthally-symmetric

field (ring-like focus) exhibits a similar effect. Although our study has been so far limited to



simple poles located in the imaginary axis, it can be easily shown that (i) focusing can also be
attained with higher-order poles, (ii) modulation functions with multiple poles give multiple foci,
and (iii) the real and imaginary part of a given pole determine, respectively, the off-axis position
of the focal spot and the corresponding focal length. Within this context, it is of interest to apply
our analysis to a negative-refraction slab which exhibits perfect focusing at n=-1 [11]. For
|1+ n| <<1 and a source consisting of a line of dipoles, the expression for the field is known
analytically [14]. In particular, if the slab thickness is d and the source is at a distance d/2 from
the nearest slab surface (and, therefore, its image is at d/2 from the other surface [11]), the eva-

nescent field at the exit side of the slab can be written as M (y)e'® where

- cosh(my/2d)—isinh(my /2d)
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and g,=-In|[l+n|/d [14]. As expected, M exhibits a pole at y = id/2 reflecting the image loca-
tion and, moreover, the expression for g, is in perfect agreement with the known slab resolu-
tion [14,23]. Since M has an infinite number of additional poles at y=i(d/2+2pd), where
p > 0is an integer, a near-perfect slab will exhibit not just one, but an infinite number of images,

for which the intensity decays exponentially with p.

For the two-dimensional geometry, the above results can be trivially extended from the sim-
ple sinusoidal to the general case of a periodic field P,(y), of period 4. It is apparent that, for
values at the source plane given by F(y,0)=M(y)F,(y), the field will converge at z=L to a

focal spot of size ~ ¢. This suggests the path for a practical implementation of cylindrical

near-field lensing. Since a periodic field can be simply realized by letting a plane wave go



through an array of periodically-placed slits (or ribbons), it is clear that a field of the form
M (y)F,(y) can be obtained by introducing a slowly-varying modulation in, say, the width or
the properties of the material an element is made of. Similarly, in the case of azimuthal symmetry,
a Bessel beam can be used together with a set of concentric rings of properly-modulated width
placed, say, at radii satisfying J,(g,p) =0. The technology for manufacturing plates of this kind
for microwave applications has been available for quite some time, while nanofabrication meth-
ods involving, say, focused ion beam lithography, can be used for the infrared and optical range.
An important consideration in the design of a near-field plate is to avoid as much as possible the
presence of terms, such as the second one of (5), giving a background that could overwhelm the
sharp features of the field. An example of background-free focusing is shown in Fig. 2. These
results are for the diffraction of a plane wave by a set of ribbons of very narrow width << ¢ and

parameters such that the total current density is j = (j,,0,0) where

(=1)’8(y —s¢)
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(the incident electric field is parallel to the cylindrical axis). Such an array of currents, with the
sign varying from one element to the next, can be realized at infrared and optical frequencies by
alternating material with positive and negative permittivity and, in the microwave regime, by us-
ing a set of interchanging capacitive and inductive elements. Fig. 2B shows a contour plot of the
y-component of the diffracted magnetic field (logarithmic scale). These results are remarkably
similar to those reported for negative-refraction slabs [14,24], thereby revealing the close rela-

tionship between both phenomena. Finally, to help ascertain the origin of radiationless interfer-



ence, we show in Fig. 2C a linear plot of the field intensity, normalized to its largest value at a
given z. The figure clearly shows behavior suggestive of beam coupling in that the diffraction of
the beam produced by a particular current source is prevented by the presence of its neighbors. It
is only after the intensity of its neighbors has decreased a sufficient amount that the central beam

is allowed to spread, and the point at which this happens determines the focal length.

In summary, we have shown that near-field focusing can be achieved by modulating an eva-
nescent state, that is itself a solution to Maxwell’s equations. The process by which subwave-
length focusing is attained is a new, radiationless form of interference. We further showed that
this effect is closely related to lensing by negative refraction slabs, and proposed a practical im-

plementation utilizing planar structures whose design is related to that of Fresnel zone plates.
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Figure Captions

Fig. 1. Subwavelength focusing. (A) Two-dimensional case: |F (y, z)|2 vs. y/£ from Eq. (3)
where  F(y,0)ec ™ /(1+y*/[’) and L/¢=2.5. (B) Azimuthally-symmetric geometry:
¥ (p. z)l2 vs.q,p from Eq. (4) where ¥(p,0)< J,(g,p)/(1+p>/I*) and L/¢=8. The contour

plots show the focal line (A) and ring (B) at z =L .

Fig. 2. Radiationless interference. (A) Schematic diagram showing a subwavelength plate, rep-
resented as a modulated array of linear current sources at z =0 and the plane showing the focal
line. L/¢ =3; see Eq. (7). (B) Contour plot of lanyl . (C) Contour plot of ’H_v (z,y)/H, (z,O)Iz.

The dashed white line at z = L denotes the focal plane.
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Figure 1
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