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Recent advances in genetic code engineering in Escherichia coli
Michael Georg Hoesl and Nediljko Budisa

The expansion of the genetic code is gradually becoming a

core discipline in Synthetic Biology. It offers the best possible

platform for the transfer of numerous chemical reactions and

processes from the chemical synthetic laboratory into the

biochemistry of living cells. The incorporation of biologically

occurring or chemically synthesized non-canonical amino

acids into recombinant proteins and even proteomes via

reprogrammed protein translation is in the heart of these

efforts. Orthogonal pairs consisting of aminoacyl-tRNA

synthetase and its cognate tRNA proved to be a general

tool for the assignment of certain codons of the genetic code

with a maximum degree of chemical liberty. Here, we

highlight recent developments that should provide a solid

basis for the development of generalist tools enabling a

controlled variation of chemical composition in proteins

and even proteomes. This will take place in the frame of

a greatly expanded genetic code with emancipated

codons liberated from the current function or with totally

new coding units.
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Introduction
Nature builds up proteins with the 20 canonical amino

acids (cAAs) encoded by the 61 sense codons. However,

these 20 side-chain functionalities are obviously not suf-

ficient for proteins to cover all the chemical diversity

necessary to maintain many vital biological functions in

both unicellular and multicellular organisms. Evolution

invented two strategies to increase the side-chain inven-

tory: a small fraction of proteins is co-translationally

equipped with special proteinogenic amino acids such

as selenocysteine (Sec) and pyrrolysine (Pyl) by reassign-

ment of termination codons. However, the major

classes of chemical modifications that contribute to the

protein structure/function diversity are post-translational

modifications (PTMs). These reactions are selectively

and timely coordinated chemistries performed by dedi-

cated enzymes and enzymatic complexes, usually in

specialized cell compartments.

Certainly, one of the main goals of Synthetic Biology is

to generate new and emergent biological functions in

streamlined cells which are equipped with ‘tailor-made

biochemical production lines’. However, it is extremely

difficult to mimic nature’s complex machineries such as

the PTM-apparatus. Thus, we usually highjack and/or

divert cellular systems such as protein translation to gain

additional chemical diversity. To achieve this goal, we

need to find a way for efficient cellular uptake, meta-

bolic stability and translational activity (i.e. incorpora-

tion) of useful non-canonical amino acids (ncAAs) which

are usually chemically synthesized. Furthermore, we

need to (re)assign coding units (i.e. codons) in the

genetic code to accommodate ncAAs into target

proteins.

Here, we briefly sketch the most important developments

in the field in the last three years. For further and more

comprehensive information we refer to other recently

published reviews which give an excellent overview of

the methods, the incorporated ncAAs, and their diverse

applications [1��,2��,3,4�,5�].

General in vivo incorporation strategies
ncAAs for protein engineering can be divided into two

groups: first, amino acids which are isostructural to cAAs

and therefore recognized by the endogenous host cell

machinery, and second, amino acids which are orthogonal

to the host cell system because they do not participate in

conventional translation. To exploit the beneficial fea-

tures of both ncAA groups for protein engineering, two

distinct in vivo approaches are available for their co-

translational incorporation (see Figure 1).

For isostructural ncAAs, residue-specific replacement of

cAAs is performed with the supplementation-based

incorporation method (SPI) using auxotrophic host strains

[6–8]. In contrast, orthogonal ncAAs are added to the amino

acid repertoire by site-specific incorporation in response to

stop or quadruplet codons (stop codon suppression, SCS)

using orthogonal aminoacyl-tRNA synthetase:tRNA pairs

(o-pairs) [9,10]. Both approaches have particular advan-

tages and pitfalls, depending on the specific biological

questions and problems being addressed. Biological func-

tions based on collective effects of many residues (e.g.

activity [11], stability [12,13], or conformational prefer-

ences [14]) are particularly well studied and tailored by
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SPI. In contrast, the site-specific SCS approach enables the

punctual dissection and modification of proteins (e.g.

[15,16]).

Methanocaldococcus jannaschii TyrRS versus
Methanosarcinaceae PylRSs
Since the introduction of orthogonality as a tool for

protein engineering by Furter [9], various o-pairs were

developed (see [1��] and [17] for comprehensive lists).

Nevertheless, until recently the most frequently used

o-pair was based on the TyrRS from Methanocaldococcus
jannaschii (mjTyrRS). Altogether, the incorporation of

around 40 different ncAAs, mainly aromatic analogs of

Phe and Tyr, was reported [1��]. Among these, 4-ben-

zoylphenylalanine (Bpa) for crosslinking [18] or 4-acetyl-

phenylalanine (ActF) [19] and 4-azidophenylalanine

(AzF) [20] for site-specific coupling reactions are certainly

the most popular ones.

Now we are witnessing the spreading utilization of pyr-

rolysyl-tRNA synthetase (PylRS) and its cognate suppres-

sor tRNA pylT from Methanosarcinaceae species in the

whole field. In the native context, this ‘natural o-pair’

enables cells to incorporate the mostly aliphatic Pyl into

target proteins in response to the amber (UAG) stop

codon. In contrast to mjTyrRS, however, PylRSs already

naturally display a broad substrate tolerance towards

orthogonal ncAAs [21]. Within a very short time, a large

number of different PylRS variants for incorporation of

highly valuable aliphatic ncAAs were developed (see

Figure 2 and [4�]). Remarkably, the evolved Pyl o-pair

systems show a very high flexibility with respect to amino

752 Tissue, cell and pathway engineering
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Aminoacylation with canonical and non-canonical amino acids for protein translation. (a) In the natural scenario, tRNA aminoacylation is catalyzed by

the corresponding aminoacyl-tRNA synthetase (aaRS) responsible for charging the tRNA with the cognate amino acids. (b) The supplementation-

based incorporation method (SPI) exploits the natural substrate tolerance of the endogenous host aaRSs by using auxotrophic host strains. This allows

the simultaneous exchange of many residues in a target protein by sense-codon reassignment [57]. The substrates for this procedure are non-

canonical amino acids (ncAAs) which are isostructural to their canonical counterparts (i.e. atomic mutation concept [58]). (c) Stop codon suppression

methodologies (SCS) are nominally site-specific and make use of a heterologous orthogonal aaRS:tRNA pair (o-pair) to incorporate an orthogonal

amino acid in response to a stop or quadruplet codon. At this level, orthogonality is defined by a lack of cross-reactivity between the o-pair (including

the ncAA) and the endogenous host synthetases, amino acids and tRNAs. Orthogonality of the o-pair is based on species-specific differences in tRNA

recognition by the aaRS. The o-pair has to be evolved to enable the participation of a desired orthogonal ncAA in ribosome mediated protein synthesis

(reviewed in [1��]).
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acid charging. For example, the groups of Wang and Liu

evolved PylRSs for aromatic Phe and Tyr analogs (see

Figure 2 and [22,23]). Most importantly, the system is

very tolerant in regard to different tRNA anticodons.

UAG, UAA, UGA, UAGA were read without further

adaptations in the tRNAPyl [24]. Doubtlessly, the PylRS

systems are not only highly valuable tools for ncAA

incorporation but are also superior to mjTyrRS systems.

However, it should always be kept in mind that selection

of orthogonal aaRS variants for new ncAAs is still a

laborious and time consuming task.

Another important issue of o-pairs tackled only recently is

the degree of substrate tolerance in these systems. Like

endogenous aaRSs, orthogonal aaRSs can also display

significant substrate tolerance. In contrast to SPI, the

whole system maintains orthogonality towards all cAAs.

Remarkably, Young et al. found that mjTyrRS evolved for

4-cyanophenylalanine can incorporate 18 different Phe

and Tyr analogs [25]. Similarly, Miyake-Stoner et al.
generated mjTyrRSs capable of incorporating a variety

of differently fluorinated 4-methylphenylalanines which

are useful in 19F NMR studies [26]. These studies nicely

demonstrate that the re-screening of previously available

o-pairs can also be a strategy to identify an aaRS capable

of charging a desired ncAA.

Parallel incorporation of multiple ncAAs in a
single expression experiment
The incorporation of a single ncAA at a single position in a

protein is certainly useful as tool to study particular

biological problems (e.g. receptor–ligand interactions

[27]). However, it is often not sufficient for many aca-

demic and biotechnological applications. This will lever-

age the whole field towards the introduction of two or

more reactive handles or probes into recombinant

proteins. The first experiment was reported by Schultz

and coworkers [28] followed by recent works of Chin and

Liu (reviewed in [29�]). The combination of mjTyrRS

and Methanosarcina mazei PylRS derived o-pairs enabled

the simultaneous reassignment of an amber stop and an

ochre (UAA) [24] or quadruplet [30] codon. However, the
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Figure 2
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Survey of some important ncAAs incorporated by SPI or SCS methods. (a) Isostructural ncAAs incorporated by SPI: (1) (4S)-fluoroproline ((4S)-FPro)

[12], (2) (4R)-fluoroproline ((4R)-FPro) [13], (3) norleucine (Nle) [59], (4) azidohomoalanine (Aha) [60], (5) homopropargylglycine (Hpg) [61].

1 and 2 are incorporated in response to Pro codons while 3–5 are substrates for the endogenous MetRS. (b) Orthogonal ncAAs incorporated by SCS:

(6) 4-azidophenylalanine (AzF) [62], (7) 4-acetylphenylalanine (ActF) [63], (8) 4-benzoylphenylalanine (Bpa) [64], (9) 4-iodophenylalanine (IF) [22,65],

(10) 4-bromophenylalanine (BrF) [22,66], (11) O-methyltyrosine (OmeY) [10,23], (12) pyrroline-carboxy-lysine (Pcl) [56��], (13) N6-[(2-propynyloxy)-

carbonyl]-lysine (PoxK) [67], (14) N6-[(cyclooct-2-yn-1-yloxy)carbonyl]-lysine (CoK) [68], (15) 2-amino-8-oxononanoic acid (KetoK) [69],

(16) O-phosphoserine (Sep) [54��]. 6–8 are incorporated by variants of mjTyrRS, 12-15 by variants of PylRS, and 9–11 were incorporated by both

systems. Currently available PylRS-based o-pairs are derived from Methanosarcina barkeri [70], Methanosarcina mazei [71], and Desulfitobacterium

hafniense [72]. O-phosphoserine was genetically encoded by a Methanococcus maripaludis SepRS:mjtRNACys
CUA o-pair and a mutated EF-Tu. If

available, particular applications were cited for the presented ncAAs. For a more comprehensive view we refer to reviews [1��,2��,3,4�,5�].
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reassignment of further codons using SCS methodologies

is currently impeded by two crucial limitations. First,

suppressor tRNAs have to compete with the endogenous

release factors RF1 and RF2 during translation at the

ribosome. Second, frame-shift suppression is still very

inefficient [31].

In contrast, a multiple incorporation of three and even

more ncAAs into a single target protein is possible by SPI

without substantial loss of protein yield. For example, the

parallel incorporation of homopropargylglycine (Hpg,

click handle), 4-azatryptophan (fluorescence tag), and

(4S)-fluoroproline ((4S)-FPro) (stabilizing amino acid)

yielded active tailor-made protein [32�]. Similarly, a

highly fluorinated active lipase with amino acid

exchanges at as many as 24 positions was reported [33].

We also explored the potential of multi-labeling by SPI in

combination with site-specific SCS. In particular, Bpa

along with norleucine or (4S)-FPro incorporation provided

a useful combination of desired features in the recombi-

nant protein [34]. At the same time, Yun and coworkers

expressed a green fluorescent protein (GFP) variant har-

boring 3,4-dihydroxy-phenylalanine and Hpg or azidoho-

moalanine (Aha) using the same strategy [35].

Engineering of bacterial strains free of release
factors or particular termination codons
The major challenge in the further development of all

suppression-based methodologies is to achieve unlimited

reassignments of the codons of interest, for example the

amber stop codon. The main obstacles include release

factor competition, catalytic performance of o-pairs and

poorly understood mRNA context effects. In this regard,

systems based on amber suppression have been consider-

ably improved in the last years. These improvements

include first, the use of more suppressor tRNA copies

[36], second, optimized suppressor tRNAs for enhanced

ncAA-tRNA binding to elongation factor Tu (EF-Tu)

[37], third, enhanced co-expression plasmids for higher

aaRS expression [38,39], and finally, the co-expression of

the C-terminal domain of the ribosomal protein L11 [40].

Furthermore, the decreased affinity of orthogonal ribo-

somes towards RF1 led to higher amber suppression [41].

Despite these important improvements, the expression of

target proteins with more than three in-frame amber stop

codons had yet to be reported.

Doubtlessly, the most appealing idea to efficiently elim-

inate this drawback for the amber stop codon was the

removal of RF1 from Escherichia coli since it would elim-

inate the competition reaction with the amber suppressor

tRNA during translation. However, the prfA gene coding

for RF1 is essential in E. coli [42]. Therefore, Church and

coworkers set out to exchange all 314 TAG codons in the

E. coli genome by TAA and remove RF1, subsequently

[43]. In their study, they succeeded in generating four

strains with around 80 complementary TAG to TAA

mutations each. Unfortunately, the final step to unify

these four subsets to one TAG free E. coli strain and the

RF1 knockout was not performed in the study.

In contrast to this genome remodeling approach, the

teams of Yokoyama/Sakamoto [44�] and Lei Wang

[45�] came up with two different genetic strategies to

solve the ‘RF1 problem’ without the removal of all TAG

codons from the genome. In the frame of the first strategy

it was speculated that the degradation of essential

proteins due to ribosome stalling at unassigned UAG

codons [46] may be a possible reason for RF1 essentiality.

Thus, the E. coli strain was trans complemented with

TAA ending versions of seven essential genes originally

terminated with TAG. In the second step, an engineered

o-pair reading UAG was introduced. Host cells configured

in this way, allowed successful knockout of prfA. Not

surprisingly, an enhanced version of this DprfA strain [47]

enabled glutathione S-transferase expression with differ-

ent ncAAs at up to seven amber positions in parallel. In

contrast, the second strategy assumes that insufficient

termination at UAA instead of UAG codons (RF1 and

RF2 are both reading UAA) upon prfA knockout causes

RF1 essentiality. Indeed, by enhancing RF2 expression

and activity, Wang and coworkers could successfully

knockout prfA [45�] from a genome reduced E. coli strain

[48]. The approach enabled the successful read-though of

10 UAG codons in GFP.

It is still difficult to rationalize how these two different

strategies can be reconciled. However, the DprfA strain

designed by Wang and coworkers has the advantage of

being independent of trans complementation. This per-

mits the facile use of already available expression systems

with o-pairs virtually without limitations.

New orthogonal pairs and mutually orthogonal
mjTyrRSs
The successful knockout of RF1 leads to the liberation of

the amber codon for complete reassignment. However,

multiple in vivo incorporations with distinct ncAAs will

need a further extended number of blank codons. A quite

popular opinion in the academic community is that this

‘lack of blank codons’ could be solved by introducing

quadruplet codons [49]. In addition, we are convinced

that the liberation of some (rare) codons from their natural

assignments (i.e. codon emancipation) might also be very

powerful to obtain new blank codons for reassignment to

ncAAs [50]. In any case, many different (and mutually

orthogonal) o-pairs from various sources will be needed

for this task. Therefore, a lot of effort should be made in

the further development of existing o-pairs and the search

for natural ones. For example, Hughes et al. rationally

designed an o-pair based on Saccharomyces cerevisiae
TrpRS:tRNATrp for use in E. coli [17]. Furthermore,

the Caulobacter crescentus HisRS:tRNAHis pair was ident-

ified as a natural o-pair in E. coli [51]. Finally, starting from

754 Tissue, cell and pathway engineering
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the parent mjTyrRS:tRNATyr
CUA o-pair, two mutually

orthogonal systems were developed recently [52�].

It should be kept in mind that only the design of o-pairs and

their use in suitable host cells will not be sufficient for

incorporation of many desired ncAAs. For example, the

issue of ncAA-tRNA interaction with EF-Tu was not

considered for a long time in the whole field. Sisido and

co-workers were the first ones to discover that it is possible

to improve EF-Tu interaction with various ncAA-tRNAs in
vitro [53]. The most striking example for EF-Tu inter-

action engineering was recently provided by Söll and

coworkers [54��]. In particular, they developed an amber

suppression based co-translational O-phosphoserine (Sep)

incorporation system starting from a natural pathway in

Methanococcus maripaludis. The system is based on a natu-

rally orthogonal SepRS and its establishment included first,

engineering of a cognate amber suppressor tRNASep, sec-

ond, screening for EF-Tu mutants capable of binding Sep-

tRNASep, and finally, host cell engineering to block

endogenous phosphoserine phosphatase activity. Interest-

ingly, the strategy for designing the Sep encoding system

was borrowed from a natural example, since natural sele-

nocysteine incorporation includes a specialized elongation

factor as well (reviewed in [55]).

Outlook — codon emancipated cells with
maximum chemical liberty
The rapid development of new orthogonal pairs and new

aaRS specificities for various ncAAs discussed in this

review will allow the assignment of novel functionalities

of the genetic code with a maximum degree of chemical

liberty. Orthogonal pairs should be designed to serve as

generalist tools so that ncAAs-mediated protein engineer-

ing will not only be relevant for single recombinant

proteins, but also feasible throughout the entire E. coli
proteome. The ground-breaking works of Dieter Söll on

GluRS systems clearly highlight how codons can be eman-

cipated and liberated from the current function [50]. In

addition, the use of genome remodeling [43] will enable

stable and valuable ncAA additions to the entire proteome

of a cell. As the whole research area moves towards matur-

ity, more and more approaches will contribute to solve

industrially relevant bio-production problems, including

advanced peptide and protein production.
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