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Recent Advances in Telecommunications
Avalanche Photodiodes

Joe C. Campbell, Fellow, IEEE

Abstract—For high-bit-rate long-haul fiber optic communica-
tions, the avalanche photodiode (APD) is frequently the pho-
todetector of choice owing to its internal gain, which provides a
sensitivity margin relative to PIN photodiodes. APDs can achieve
5-10-dB better sensitivity than PINs, provided that the multipli-
cation noise is low and the gain-bandwidth product is sufficiently
high. In the past decade, the performance of APDs for optical fiber
communication systems has improved as a result of improvements
in materials and the development of advanced device structures.
This paper presents a brief review of APD fundamentals and
describes some of the significant advances.

Index Terms—Avalanche photodiode, fiber optics, optical re-
ceiver, photodetector, photodiode.

I. INTRODUCTION

VER THE past five decades, avalanche photodiodes

(APDs) have been utilized for a wide range of commer-
cial, military, and research applications. In recent years, the
primary driving force for research and development of APDs
has been the optical communications. It is well known that the
internal gain of APDs provides a higher sensitivity in optical
receivers than PIN photodiodes [1]-[4], however, at the cost of
more complex epitaxial wafer structures and bias circuits. The
APDs have been successfully deployed in optical receivers that
operate up to 10 Gb/s, and research on materials and device
structures that will extend to higher bit rate applications is
ongoing.

First-generation optical fiber communication systems, which
operated in the wavelength range from 800 to 900 nm, utilized
Si PIN and APDs [5]. The evolution of transmission wave-
lengths to 1300 and 1550 nm, to take advantage of the opti-
mum windows for low dispersion and attenuation, motivated a
research on “long-wavelength” photodetectors. Ing 53Gag 47As
(referred to henceforth as InGaAs) homojunctions quickly be-
came the PIN photodiodes of choice, but at the high electric
fields required for impact ionization, an excess dark current
resulting from tunneling prevented their development as APDs
[6], [7]. The tunneling component of the dark current was effec-
tively eliminated with the development of separate absorption
and multiplication (SAM) APD structures [8]. In these APDs,
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the p-n junction and, thus, the high-field multiplication region
are located in a wide bandgap semiconductor such as InP where
the tunneling is insignificant and the absorption occurs in an
adjacent InGaAs layer. By properly controlling the charge den-
sity in the multiplication layer, it is possible to maintain a high
enough electric field to achieve a good avalanche gain while
keeping the field low enough to minimize the tunneling and im-
pact ionization in the InGaAs absorber. However, the frequency
response of SAM APDs, as originally implemented, was very
poor, owing to the accumulation of photogenerated holes at the
absorption/multiplication heterojunction interface [9]. Several
approaches to eliminate the slow release of trapped holes,
including the use of a chirped-period InP/InGaAs superlattice
to form a pseudoquaternary In,Ga;_,As;_,P, layer [10] and
continuous grading of the transition region [11], have been
reported. However, the approach that has been most widely
adopted utilizes a transition region consisting of one or more
latticed-matched intermediate-bandgap In, Ga;_,As;_, P, lay-
ers [9], [12], [13]. A second modification to the original SAM
APD structure has been the inclusion of a high—low doping
profile in the multiplication region [14]-[16] similar to the
reach-through structure that has been widely used for Si APDs
[17]. In this structure, the wide-bandgap multiplication region
consists of a lightly doped (usually unintentionally doped) layer
where the field is high, and an adjacent doped charge layer
or field control region. This type of APD, which is frequently
referred to as the SACM structure with the “C” representing
the charge layer, decouples the thickness of the multiplication
region from the charge density constraint in the SAM APD.

Most of the initial work on InP/InGaAsP/InGaAs SAM and
SACM APDs utilized mesa structures because of their fabrica-
tion simplicity and reproducibility. However, the consensus that
planar structures are more reliable than mesa-type photodiodes
spurred the development of planar configurations. Some of the
techniques that have been successfully demonstrated utilize
a lateral extended guard ring [18]-[20], floating guard rings
[21]-[24], pre-etched charge sheet with regrowth [25], etched
diffusion well [26], or selective ion implantation of the charge
region [15]. Each of these approaches has been successful in
suppressing an edge breakdown. Fig. 1 shows a schematic cross
section of an InP/InGaAsP/InGaAs SACM APD with a double
diffused floating guard ring [22]. The adjacent graph shows
the electric field profile normal to the surface and illustrates
how the charge layer is used to tailor the relative fields in the
multiplication and absorption layers.

While the InP/InGaAsP/InGaAs SACM APDs have achieved
excellent receiver sensitivities up to 2.5 Gb/s [27]-[29], there
are three factors that limit their performance at higher bit
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Fig. 1. Schematic cross section of InP/InGaAsP/InGaAs SACM APD with
double-diffused floating guard ring configuration [22].

rates. Since they operate under a normal incidence, and since
the absorption coefficient of InGaAs at telecommunications
wavelengths is ~10%* cm™"! [30], [31], the absorption region
must be approximately 2.5-pm thick in order to absorb > 90%
of the light that enters the detector. The associated transit times
limit the bandwidth to 10 GHz at low gain. At higher gains, the
relatively low gain-bandwidth product (< 100 GHz) restricts
the frequency response. As will be discussed below, the gain-
bandwidth product and the high excess noise are consequences
of the reasonably unfavorable ionization coefficients of InP
[32], [33]. Much of the recent work on APDs has focused on de-
veloping new structures and incorporating alternative materials
that will yield lower noise and higher speed while maintaining
optimal gain levels.

The multiplication region of an APD plays a critical role
in determining its performance, specifically the gain, the mul-
tiplication noise, and the gain-bandwidth product. According
to MclIntyre’s local-field avalanche theory [34]-[36], both the
noise and the gain-bandwidth product of APDs are determined
by the electron v and hole [ ionization coefficients of the
semiconductor in the multiplication region, or more specifi-
cally, their ratio k = /. The noise power spectral density ¢
for mean gain (M) and mean photocurrent () is given by
the expression ¢ = 2q(Ipn)(M)?>F(M). F(M) is the excess
noise factor, which arises from the random nature of impact
ionization. Under the conditions of uniform electric fields and
pure electron injection, the excess noise factor is

F(M) = (M?)/(M)*
= k(M) + (1 = k)(2 = 1/(M)). (D

Equation (1) has been derived under the condition that the
ionization coefficients are in local equilibrium with the electric
field, hence, the designation “local field” model. This model
assumes that the ionization coefficients at a specific position are
determined solely by the electric field at that position. It is well
known that the impact ionization is nonlocal, in that, carriers in-
jected into the high-field region are “cool” and require a certain
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Fig. 2. Schematic cross section of wafer-bonded Si/InGaAs heterojunction
APD [46].

distance to attain a sufficient energy to ionize [37]. This also
applies to carriers immediately after the ionization, because
their final states are typically near the band edge. The distance
in which essentially no impact ionization occurs is frequently
referred to as the “dead space” d ) for electrons (holes). If the
multiplication region is thick, the dead space can be neglected,
and the local field model provides an accurate description of
the APD characteristics. It is clear from (1) that the lower noise
is achieved when k = 1. The gain-bandwidth product results
from the time required for the avalanche process to build up
or decay: The higher the gain, the higher the associated time
constant and, thus, the lower the bandwidth. Emmons [38] has
shown that the frequency-dependent gain can be approximated
by the expression M (w) = M,/+/1+ (wM,k7)?, where M,
is the dc gain, and 7 is approximately (within a factor of ~2)
the carrier transit time across the multiplication region. It
follows from this expression that for M, > a///3, the frequency
response is characterized by a constant gain-bandwidth product
that increases as k decreases.

There are three documented methods to achieve a low ex-
cess noise in an APD. The best known approach is to select
materials such as Si [39]-[42] or Hg, ,Cdp 3Te [43], [44]
that have k = 1. The low-noise characteristics of Si are well
documented; however, Si photodiodes do not operate at the
telecommunications wavelengths because the bandgap of Si is
transparent at 1300 and 1550 nm. Hg, ,Cdg 3Te, which has a
long-wavelength cutoff of ~4.3 pm, has achieved the lowest
excess noise reported to date, k ~ 0 [44]. The low noise appears
to result from novel aspects of the bandstructure; the effec-
tive mass ratio (my/me ~ 30) is very large, and unlike most
III-V semiconductors, Hg, ,Cdy 3Te has a very small bandgap
(0.25 eV) for the T" valley, and very high L and X valleys
(1.5 and 2.5 eV, respectively) [45]. On the other hand, the
small bandgap of Hg, ,Cdy 3Te necessitates cooling in order
to reduce the dark current. It will be interesting to see if these
low-noise characteristics can be extended to higher bandgap
(shorter operating wavelength) compositions that operate at
room temperature.

An intriguing device structure (Fig. 2) that takes advantage
of the excellent noise characteristics of Si while attaining a
response to ~1.6 pum involves wafer bonding of a narrow
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Fig. 3. Excess noise factor F'(M) for wafer-bonded Si/InGaAs heterojunc-

tion APD. Excess noise for an InP APD is shown for comparison [48].

bandgap absorber such as Ing 53Gag 47As to a Si multiplication
region [46]-[48]. This approach is also attractive because Si
APDs have achieved very high gain-bandwidth products, and
the breakdown voltage exhibits a temperature dependence of
only 0.026 V/°C [48] compared to 0.15 V/°C for InP APDs.
Si/InGaAs heterojunction APDs have achieved low dark current
(4 x 10~°A/em?@M = 50) [48], excess noise levels (Fig. 3)
comparable to Si homojunction devices (k ~ 0.02) [47], [48],
and bandwidths up to 4.8 GHz [48]. However, a commercial
production of 10-Gb/s APDs has yet to be achieved because
of the material issues related to the bonded interface between
InGaAs and Si.

A variant of this approach is the solid-state impact-ionization
multiplier (SIM), in which the photocurrent from an arbitrary
photodiode is amplified by an impact ionization in Si [49]-[51].
To date, two variants have been reported. One configuration,
as shown in Fig. 4(a), consists of a Si Schottky barrier on
a p~ epitaxial layer with an implanted n™ region to collect
primary and secondary electrons. The other SIM, a surface
structure [Fig. 4(b)], is fabricated on an n-type substrate and
has implanted p regions adjacent to the Schottky barrier. The
operation of both implementations is similar. A current is in-
jected into the Schottky barrier from an external current source,
typically a PIN photodiode. The bias between the n* contact
and the Schottky barrier creates a high-field region in which a
gain is achieved by an impact ionization of electrons. Without
the lateral p-type electrodes [substrate contact in Fig. 4(a) and
“p-sink” in Fig. 4(b)], the secondary holes would recombine
with incoming primary electrons and quench the avalanche
gain. Advantages of the SIM include the following: 1) The
photodetector and the amplification functions can be optimized
separately without the constraint of materials compatibility;
2) small-element large-area arrays can be fabricated using the
conventional VLSI process technology; and 3) amplifier stages
can be cascaded to achieve a net noise reduction. One perfor-
mance metric is gain efficiency, the product of the injection
efficiency, and the current gain. Fig. 5 shows the gain efficiency
of a SIM similar to that in Fig. 4(a), with a photocurrent
injected from an external InGaAs PIN photodiode. Since the
SIM input can be an arbitrary current source, SIM stages can
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Fig. 4. (a) Solid-state impact ionization multiplier with substrate p contact
[51] and (b) surface structure with ion-implanted “p sink” regions [50].
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be cascaded. The benefit of cascading can be deduced from (1).
The noise power divided by the signal gain increases with gain.
It follows that two cascaded amplifiers, each with gain M, have
the same gain but less noise compared to a single stage with
gain M [2], [51].

Low excess noise and high gain-bandwidth product have also
been achieved by a submicrometer scaling of the thickness of
the multiplication region w,, . This is somewhat counterintuitive
since it appears to contradict the local field model. As w,,
is reduced, in order to maintain the same gain, the electric
field intensity must increase in order to reduce the distance
between ionization events. However, for high electric fields, the
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for high field (solid line) and low field (dashed line).

electron and hole ionization coefficients tend to merge so that &
approaches unity. Consequently, based on the excess noise ex-
pression in (1), a higher excess noise would be expected for the
same gain. We recall, however, that the local field model is only
valid when the dead space can be ignored, which proves not to
be the case for thin multiplication regions. The importance of
the nonlocal nature of the impact ionization, as manifested in
the “dead space,” in reducing the excess noise can be explained
as follows: Since the impact ionization is a stochastic process,
it can best be described in terms of the probability distribution
function (pdf) p(x), which is the probability per unit length that
a carrier ionizes a distance x from the injection point or the
point where it was created by another impact ionization event.
For the local field theory, as shown in Fig. 6(a), the pdf for elec-
trons has the form p.(x) = o~ ! exp(—ax). At the high fields
encountered in the thin multiplication regions, the pdf must
be modified to account for the fact that p(z) ~ 0 for z < the
dead space. Several analytical [52]-[56] and numerical models
[57]-[59] have successfully been developed to accurately in-
clude the effect of the dead space. Although differing markedly
in their approach, the physical picture that emerges from these
models is consistent and matches up well with the experimental
measurements. Fig. 6(b) illustrates qualitatively how incorpo-
rating the dead space alters the pdfs. First, we observe that
the dead space length decreases with an increasing field. As
carriers transit the multiplication region, they continuously gain
energy from the electric field and lose energy by an optical
phonon scattering. At the highest fields, the phonon scattering
becomes less significant because the phonon energy is small, a
few tens of microelectronvolts. As a result, the carrier transport
becomes “quasi-ballistic,” and the dead space length is, to good
approximation, equal to FE),/qF, where Ey, is the threshold
energy for impact ionization, q is the electron charge, and F'
is the electric field strength. The decrease in dead space length
with an increasing field tends to make it less significant at high
fields. However, we note that the pdf also narrows significantly
with the increasing field. Since the width of the pdf decreases
faster than the contraction in the dead space, the net result is
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Fig. 7. Comparison of the gain distribution curves for Alp.48Ing.52As APDs
having multiplication region widths of 1.0 xm (dashed line) and 0.1 pm (solid
line). The average gain for both APDs is M ~ 20, but the excess noise factors
for the 1.0- and 0.1-pm APDs are 6.9 and 4, respectively [60].

that the ionization process becomes more deterministic which
reduces the variation in M. Fig. 7 shows the calculated gain
distributions for two Alg 4g8Ing 50As APDs with multiplication
layer thickness of 1.0 um (dashed line) and 0.1 pm (solid line)
[60]. These APDs have the same average gain, M ~ 20, but
the excess noise factors are 6.9 and 4.0 for the 1.0 and 0.1 ym
APDs, respectively. The gain distribution of the 1.0-pm
APD is broader than that of the 0.1-xm device, which gives rise
to higher excess noise. This graph also shows that the thicker
device has higher probabilities for both high gain (M > 100)
and low gain (M = 1), while the probabilities for the thin
device are higher for gains in the range 2 < M < 100. This
is reasonable since they have different standard deviations in
M while keeping (M) the same. It is interesting to note that
the 1.0-um APD has a peak at M = 1, while the 0.1-pum
APD has a peak at M = 2. This is consistent with the pdfs in
Fig. 6. The long tail in the distribution at low field, which is a
characteristic of thick multiplication regions, is indicative of a
greater probability that a carrier will travel a longer distance,
which in some cases can be the whole multiplication region,
before ionizing. This has also been observed in [58].

Noise reduction in thin APDs has been demonstrated for a
wide range of materials, including InP [61]-[64], GaAs [58],
[63]-[68], Al,In;_,As [63], [64], [69], Si [70], [71],
Al,Ga;_,As [63], [64], [72]-[75], SiC [76], GaP [77], and
GalnP [78]. Fig. 8 shows the excess noise figure versus the
gain for GaAs APDs with w,, in the range from 0.1 to 0.8 ym
[54]. The dashed lines are plots of (1) for &k = 0.2 to 0.5. These
lines are not representative of the actual k£ values; they are
presented solely for reference because the k value has become
a widely used indirect figure of merit for excess noise. For
constant gain, it is clear that the excess noise falls significantly
with a decreasing w,,,.

While shrinking the multiplication region thickness is an
effective approach to noise reduction, it should be noted
that this is relative to the characteristic noise of the bulk
(thick) material. Thus, it appears that lower noise can be
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Fig. 8. Comparison of the calculated noise curves (solid lines) with ex-
perimental data for GaAs homojunction APD of different thickness 0.1 (x),
0.2 (M), 0.5 (), and 0.8 pum(6).

achieved by beginning with “low-noise” semiconductors. For
this reason, Ing 52Alg48As is an attractive candidate to re-
place InP in telecommunications APDs. Like Ing 53Gag 47As,
Ing.50Alp.48As (referred to below as InAlAs) can be grown
lattice-matched on InP substrates. Watanabe et al. [79] have
measured the ionization coefficients for InAlAs and found
that 5/« ~ 0.3 to 0.4 for electric field in the range from 400
to 650 kV/cm, which compares favorably with /3 ~ 0.4 to
0.5 for InP. Lenox et al. [69] investigated the excess noise
characteristics of PIN-structure InAlAs APDs; the excess noise
was equivalent to £ = 0.2 and 0.31 for w,,, = 200 and 1600 nm,
respectively. Thin layers of AllnAs have also been incorporated
into the multiplication region of SACM APDs. A resonant-
cavity InGaAs/InAlAs SACM APD operating at wavelength of
1.55 pm achieved 70% external quantum efficiency, 24-GHz
unity gain bandwidth, excess noise equivalent to k£ ~ 0.18, and
290-GHz gain-bandwidth product [80]. Li et al. [81] reported
that the undepleted-absorber InAlAs APDs with 180-nm-
thick multiplication regions exhibited an excess noise equiv-
alent to £ = 0.15 and gain-bandwidth product of 160 GHz.
InGaAs/InAlAs SACM APDs with thin multiplication layers
have also been used to fabricate a 40 x 40 imaging array [82].
Fig. 9 shows a pass-fail map and a histogram of dark current
for the 1600 elements of the array. The average dark current at
a gain of ten was 1.66 nA, with a standard deviation of only
0.17 nA, i.e., ~10%. The gain was also very uniform with a
similar deviation. This type of array does not have a direct
bearing on fiber optic transmission systems, but the results
do provide a good indication of material quality and unifor-
mity, which is germane to manufacturing yield of discrete
devices. The APDs reported in [80]—[82] were mesa structures.
Several planar InAlAs/InGaAs SACM APDs have also been
developed. This has been more challenging than fabricating
planar InP/InGaAs SACM APDs owing to the absence of a
good n-type diffusant coupled with the requirement for electron
injection. Watanabe et al. [83], [84] developed a quasi-planar
structure, with InAIGaAs-InAlAs multiple quantum well mul-
tiplication region and Ti-implanted guard ring. These APDs

exhibited a dark current of 0.36 pA at a gain of ten, an ex-
ternal quantum efficiency of 67%, a 110-GHz gain-bandwidth
product, and a low gain bandwidth of 15 GHz. Deployment of
these APDs, however, has been limited by the difficulties in
optimizing Ti ion dosage and the Ti-activation anneal and the
relatively high dark current [85]. Recently, an AllnAs/InGaAs
planar SACM APD without a guard ring has been reported
[85], [86]. Fig. 10 shows a schematic cross section. The active
region is defined by a Zn diffusion through a transparent InP
window layer to the InGaAs absorption region. In this case, the
p-n junction and, thus, the high-field region are located below
the diffusion front at the interface between the p-type InAlAs
charge layer and the thin (200 nm) unintentionally doped In-
AlAs multiplication region. These APDs have achieved a gain
of > 40, high external quantum efficiency (88%), 10-GHz low
gain bandwidth, and gain-bandwidth product of 120 GHz.

The noise characteristics of Al,Ga;_,As for z =0 to 0.9
have been studied for bulk and thin multiplication layers [72],
[73], [87]-[91]. Plots of the excess noise of Al,Ga;_,As p*inJr
for z in the range from 0.4 to 0.9 are shown in Fig. 11 [89].
The multiplication layer thickness for these measurements was
between 0.8 and 1.1 um. The excess noise decreases with an
increasing Al content; very low noise corresponding to k < 0.2
is observed for < 0.8 even for a multiplication thickness of
~1 pm. Ng et al. [89] have attributed this to a decrease in the
hole ionization coefficient. Even lower excess noise (equivalent
to k < 0.1) has been achieved by reducing the multiplication
length to take advantage of the nonlocal effect [89], [90]. The
combination of low noise, wide bandgap to suppress tunneling,
and lattice match to GaAs make Al,Ga;_,As an attractive
candidate for high-performance APDs. However, more research
is required to incorporate an absorption region that can extend
operation to telecommunications wavelength. One approach is
to utilize GalnAs(N), which has been widely studied for “Al-
free” lasers. A concern for this approach is the lattice mismatch
between GaAs(N) and Al,Ga;_,As, which makes it difficult to
obtain sufficiently thick absorbing layers to achieve acceptable
responsivity. One approach to circumvent this difficulty would
be to utilize the thin absorbing layers in a resonant-cavity
structure [92].

Recently, it has been shown that the noise of APDs with
thin multiplication regions can be reduced even further by
incorporating new materials and impact ionization engineering
(I?E) with appropriately designed heterostructures [93]-[100].
Structurally, I?E is similar to a truncated multiple quan-
tum well (frequently mislabeled as “superlattice”) APD [101],
[102]; however, operationally, there is a fundamental differ-
ence, in that, these APDs do not invoke heterojunction band
discontinuities. The structures that have achieved the lowest
excess noise, to date, utilize the multiplication regions in
which electrons are injected from a wide bandgap semicon-
ductor into an adjacent low bandgap material. Initial work
that demonstrated the efficacy of this approach utilized the
GaAs/Al,Ga;_,As material system [93], [94], [96]-[98]. Ex-
cess noise equivalent to £ < 0.1 has been demonstrated [96],
[97]. Recently, InGaAlAs/InP implementations that operate at
the telecommunications wavelengths have been reported. Using
both a single-well structure and a pseudograded bandgap based
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on InAlAs/InGaAlAs materials, Wang et al. [99] demonstrated
an excess noise equivalent to k& ~ 0.12 and a dark current
comparable to that of homojunction InAlAs APDs. Duan et al.
have incorporated a similar /2FE multiplication region into a
Molecular Beam Epitaxy (MBE) grown InGaAlAs I2E SACM
APD [100]. A cross section of the layer structure is shown in
Fig. 12. The first layer grown was a 100-nm-thick unintention-
ally doped Ing 50Alp 48As layer to suppress a silicon diffusion
into the semi-insulating InP substrate from the Ing 50Alg 48AsS
n-contact layer, which can cause an excessive parasitic capac-
itance between contact pads. A 500-nm-thick heavily doped
n*-type (silicon, > 8 x 10*® cm~3) Ing 52Alg 45As layer was
grown as a buffer layer and was followed by a 500-nm n™-type
(silicon, > 5 x 10'® cm™3) Ing 50Alg 48As contact layer. Fol-
lowing the n-type contact layer was the I2E multiplication
region. The compound multiplication region consisted of an
unintentionally doped layer of Ing 52Alg48As with a thick-
ness of 80 nm, an unintentionally doped Ing 53Gag.17Alg.3AS
layer with a thickness of 80 nm, a p-type (Be, 2.2 x
10'7 ecm~3) 120-nm-thick Ing 53Gag.17Aly.3As, and an 80-nm-
thick Ing 52Alp.48As layer with the same p-type doping level.
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The latter two layers also served as the field control or
“charge” region. A 420-nm-thick intrinsic Ing 53Gag 47As layer
was grown as the absorbing layer. Undoped InGaAlAs grad-
ing layers (50 nm) were inserted to reduce the barrier be-
tween Ing 50Alp 48As and Ing 53Gag 47As in order to prevent
a carrier pileup at the heterointerface. The absorber was slightly
p-doped in order to suppress the impact ionization in the
absorption region. Ideally, the doping in the absorber would be
graded to provide a slightly higher field in the direction of the
multiplication region. This was approximated by step doping
the absorber in two regions, one at 1 X 1016 /cm3 and the
other at 4 x 1016 /cm?®. After the top grading layer, a 400-nm-
thick p-type (Be-doped, 4 x 10'® cm™3) Ing 50Alg.48As win-
dow layer was grown. The p-type contact layers consisted of
100 nm of Ing 55Alg 43As (Be: > 9 x 10'® cm~3) capped with
50 nm of Ing 53Gag 47As doped at the same level. Based on
Monte Carlo simulations of similar GaAs/Al,Ga;_,As I2F
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APDs [96], it can be inferred that there are relatively few
ionization events in the Ing s2Alp 48As layer, owing to the
combined effects of “dead space” and the higher threshold
energy in Ing 50Alg 4gAs. Fig. 13 shows the excess noise factor
F(M) versus gain. The dotted lines in Fig. 13 are plots of
F(M) for k=0 to 0.5 using the local field model. For
M < 4, it appears that £ < 0, which is unphysical and simply
reflects the inapplicability of the local field model for this type
of multiplication region. At higher gain, the excess noise is
equivalent to a k£ value of ~0.12. For reference, the excess
noise factor for InP/Ing 53Gag 47As SACM APDs is shown as
the shaded region in Fig. 13.

An important question is whether the excess noise for these
heterojunction APDs is lower than it would be in the homojunc-
tion APDs having the same multiplication width and composed
of either of the constituent materials. Since most of the impact
ionization occurs in the narrow bandgap region, it might also
be appropriate to compare to homojunction APDs having a
multiplication thickness equal to that of the narrow bandgap
region in the heterojunction devices. Groves et al. [95] studied
the avalanche multiplication and excess noise on a series of
Al,Ga;_,As-GaAs and GaAs-Al,Ga;_,As (z = 0.3, 0.45,
and 0.6) single heterojunction p*in™ diodes and concluded that
the properly designed heterojunctions can reduce the noise.

They attribute this to two functions provided by the wide
bandgap layer. Electrons gain energy in the wide bandgap
layer but do not readily ionize, owing to its high threshold
energy. The hot electrons are then injected into the GaAs region,
which has lower threshold energy, where they more readily
ionize. The wide bandgap layer also effectively suppresses
the hole ionization. Both of these effects reduce the excess
noise. Hayat et al. [103] have developed a modified dead space
multiplication theory to describe the injection of carriers with
a substantial kinetic energy into the multiplication region and
have identified a mechanism, the “initial-energy effect,” that
reduces the excess noise. The energy buildup can occur through
a sharp electric field gradient or, in the case of I?E structures, in
a wide bandgap injector [94]. The initial energy of the injected
carriers is linked to a reduced noise through a reduction in
the initial dead space associated with the injected avalanche-
initiating carrier, i.e., “the strong localization of the first impact
ionization event at the beginning of the multiplication region...is
akin to having two injected carriers per absorbed photon” [103].

In order to circumvent the responsivity-bandwidth tradeoff
that restricts a high-speed operation of the normal-incidence
PIN photodiodes, waveguide structures have been developed
[104]-[108]. Input is achieved by direct coupling to the edge
of the photodiode or evanescently using tapered couplers or
optical matching layers. In order to achieve the bandwidths
required for future high-bit-rate fiber optic systems, SACM
APDs have been incorporated into edge-coupled [109]-[114]
and evanescently coupled [115], [116] waveguide photodi-
odes. Nakata et al. [111] have reported an edge-coupled
Ino,52A10_48As/In0_53Ga0_47As APD (Flg 14) that achieved
0.73 A/W responsivity, low gain bandwidth of 35, and 140-GHz
gain-bandwidth product. At 40 Gb/s, the receiver sensitivity
was —19 dBm for 10710 bit error rate. Fig. 15 shows the
eye diagrams for M = 3, 5, and 10 and bit-error-rate plot at
40 Gb/s. At 10 Gb/s, the receiver sensitivity of —30.2 dBm
was obtained with a similar edge-coupled APD having an
asymmetric waveguide [112]. Demiguel ef al. [116] have re-
ported an evanescently coupled Ing 52Alg 48 As/Ing 53Gag 47As
SACM APD having a planar short multimode input waveguide.
A schematic cross section of this APD is shown in Fig. 16. The
planar (i.e., without lateral confinement) multimode waveguide
consisted of a diluted waveguide and two optical matching
layers. The diluted waveguide was a stack of ten periods
of undoped 100-nm/80-nm InP/GalnAsP (1.1-ym bandgap)
layers. The number of periods was optimized to achieve a
high coupling efficiency with an input fiber and low TE/TM
polarization dependence. The two optical matching layers were
n-doped GalnAsP with bandgaps (thickness) corresponding to
1.1 pm (0.65 pm) and 1.4 pm (0.1 pm) for the first and
second optical matching layers, respectively. This provides a
gradual increase of the optical refractive index from the diluted
waveguide to the APD. The SACM APD consisted, starting
from the bottom, of an n-type InAlAs layer, an undoped AllnAs
multiplication region of 150 nm, a p-type 50-nm-thick InAlAs
charge layer with a nominal doping level of 8 x 10'7 cm™3,
an undoped 30-nm-thick graded layer, an InGaAs absorbing
layer, two 20-nm-thick InGaAsP “grading” layers (1.4- and
1.1-pm bandgaps), and an InGaAs contact layer. The absorbing
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layer thickness was 190 nm, resulting in a total active SACM as
thin as 0.46- ;m, which resulted in short transit times enabling
high-speed operation. Coupling from the input waveguide into
the photodiode is illustrated below the device in the graph
of the field intensity along the incident axis. The photocur-
rent, dark current, and gain versus reverse bias are plotted
in Fig. 17(a). The breakdown occurred at ~18.5 V, and the
dark current at 90% of the breakdown was in the range from
100 to 500 nA. The responsivity was 0.62 A/W with TE/TM
polarization dependence of < 0.5 dB. Fig. 17(b) shows the
bandwidth versus gain; at low gain, the bandwidth was 35-GHz
maximum bandwidth, and the high-gain response exhibits a
gain-bandwidth product of 160 GHz. The —1-dB alignment
horizontal and vertical tolerances for a 5-um wide diode were
+1.8 and +0.9 pm, respectively.

4
10

coplanar electrode
APD mesa

AR coating

1 T 1 T 1 T H
Back-to-back
NRZ
PRBS: 27-1

A=155um
M=10

22 20 -18 -16

Received optical power (dBm)

Eye diagrams at M = 3, 5, and 10 and bit error rate at 40 Gb/s for edge-coupled Ing.52Alg.48As/Ing.53Gag.a7As APD [111].

Quantum cryptography or quantum key distribution is a
rapidly emerging field of optical fiber communications [117].
The goal is to provide a shared secret key to two authorized
parties who desire to communicate securely, even if an eaves-
dropper has an access to all of the message traffic. A key feature
of the quantum cryptography is that it provides the ultimate
security based on the quantum mechanical properties of single
photons. These systems are presently being studied and devel-
oped in laboratories around the world. A critical function for
these systems is a single photon detection with high efficiency
and minimal false positives. The photodetector of choice is the
single photon counting avalanche photodetector (SPAD). The
operation of an APD below a breakdown voltage is referred
to as a linear mode operation. Operation above the breakdown
voltage is fundamentally different. Above breakdown, an APD
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acts as a trigger element similar to a Geiger—Muller counter
of nuclear radiation. Consequently, this mode of operation is
frequently referred to as the Geiger-mode operation. In the
Geiger mode, an APD sustains the high bias across the de-
pletion layer until a carrier is injected into the multiplication
region. Once a carrier has initiated an avalanche process, owing
to the high field, the current will continue to increase limited
only by the external circuit. The net result is that a macroscopic
current pulse is produced in response to a single carrier in the
depletion layer. This is the “ON” state of the Geiger-mode APD.
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The single carrier can be photogenerated, by which the single
photon detection is achieved, or may have its origin in the dark
current, giving rise to a dark count. Optimum performance is
achieved when the single photon detection efficiency is high,
and the dark count rate is low.

The first SPADs were Si, and these devices still achieve the
best performance; a good review of the history of Si SPADs
and state-of-the-art performance can be found in [118]. The
development of fiber optic distribution systems has created a
need for long-wavelength SPADs. To that end, InP/InGaAs
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InP/InGaAs SPAD [122].

SACM SPADs have been studied widely as single-photon
counters. Although most of these studies have used commer-
cially available APDs that were designed for fiber optic trans-
mission, recently, there have been some efforts in designing
InP-based SACM APDs for single photon counting applications
[119]-[121]. Liu et al. [122] have reported the high single
photon detection efficiency (~45%) and low dark count rate
(< 10*/s) with an InP/InGaAs SACM APD similar in structure
to that in Fig. 1. Fig. 18 shows the dark count rate versus
the single photon detection efficiency at 1.31 pum. Essentially,
identical results were achieved at 1.55 pm. The reason that
the dark count rate increases with the increasing detection
efficiency is that higher detection efficiencies are achieved by
increasing the excess bias above breakdown, which results in
higher dark counts. While room temperature operation has been
achieved, it is clear that cooling reduces the dark count rate
by over two orders of magnitude. The single photon detection
efficiency is the product of the external quantum efficiency
and the probability that a photogenerated carrier will initiate
an avalanche breakdown. As a result, the external quantum
efficiency (68% for these APDs) is the theoretical maximum
for single photon detection efficiency; hence, for these APDs,
~60% of the photons that are absorbed are counted.

In the past decade, the performance of APDs for optical
fiber communication systems has improved as a result of
improvements in materials and the development of advanced
device structures. Techniques to reduce the excess noise and
increase the gain-bandwidth product have enabled the operation
at higher bit rates and set the stage for future systems that will
benefit from the compact size, low cost, and high sensitivity that
the APDs provide.
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