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Roles of the multifunctional glycoprotein, emmprin
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Summary
Emmprin (basigin;CD147) is a widely distributed cell surface gly-
coprotein that belongs to the Ig superfamily and is highly en-
riched on the surface of malignant tumour cells. Emmprin is in-
volved in numerous physiological and pathological systems and
exhibits several molecular and cellular characteristics, but a
major function of emmprin is stimulation of synthesis of several
matrix metalloproteinases. In tumours, emmprin most likely
stimulates matrix metalloproteinase production in stromal fi-
broblasts and endothelial cells as well as in tumour cells them-
selves by a mechanism involving homophilic interactions be-
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tween emmprin molecules on apposing cells or on neighbouring
cells after membrane vesicle shedding. Membrane-associated
cofactors, including caveolin-1 and annexin II, regulate emmprin
activity. Emmprin induces angiogenesis via stimulation of VEGF
production, invasiveness via stimulation of matrix metalloprotei-
nase production and multidrug resistance via hyaluronan-me-
diated up-regulation of ErbB2 signaling and cell survival pathway
activities. Although the detailed mechanisms whereby it regu-
lates these numerous phenomena are not yet known, it is clear
that emmprin is a major mediator of malignant cell behavior.
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Introduction
The progression of cells to malignancy is characterized by
emergence of several properties, including self-sufficiency with
respect to growth-promoting signals, insensitivity to growth-in-
hibitory signals, evasion of apoptosis, limitless replicative po-
tential, invasiveness, and metastatic potential (1).A central creed
in cancer research over the past few decades has been that ac-
quisition of these properties is triggered by genetic mutations of
oncogenes and tumour suppressor genes within developing tu-
mour cells. However, both old and new research has also impli-
cated tumour-stroma interactions in each of the critical steps in
cancer progression. For example, sustained angiogenesis, which
arises from tumour-host interactions, has been added to the ‘ca-
nonical’ list of properties characteristic of developing tumours
(1). The stromal compartment of a tumour contains a variety of
host cells, including endothelial cells, fibroblasts, and inflam-
matory cells and it is becoming increasingly appreciated that
these host-derived cells infiltrate into tumour tissue, interact
with tumour cells, and are subsequently conscripted by tumour

cells to produce an array of soluble and insoluble factors that
stimulate tumour angiogenesis, growth, and metastasis. Ac-
cumulating evidence suggests a prominent role for emmprin in
mediating interactions both between tumour cells themselves
and between tumour cells and “hijacked” host stromal cells to
promote a number of events during cancer progression. One of
the important and most studied functions of emmprin is its role in
induction of matrix metalloproteinase (MMP) production via
cell interactions – thus the derivation of its name: extracellular
matrix metalloproteinase inducer (2).

Structure and functional activity of
emmprin
Emmprin was identified independently in numerous systems as
an antigen or cDNA of unknown function or as a factor of known
function but unknown identity. Consequently numerous names
(basigin, neurothelin, OX-47, gp42, CE9, 5A11, M6, HT7) were
used to designate the same protein in different species and tis-
sues of origin. Emmprin was designated CD147 at the Sixth In-
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ternational workshop and Conference on Human Leukocyte Dif-
ferentiation Antigens (3). Several studies have shown that emm-
prin and its homologs belong to the Ig superfamily with homo-
logy to both the Ig variable (V) domain and MHC class II
b-chains (4–7). A family of molecules related but not identical to
emmprin has been described (8–10).

Emmprin as an inducer of matrix metalloproteinases
In the 1980s, the laboratory of Chitra Biswas was attempting to
identify a factor shed from the surface of tumour cells which was
responsible for stimulation of interstitial collagenase (matrix
metalloproteinase-1; MMP-1) production by fibroblasts
(11–13). Biswas's studies became of great interest to the oncol-
ogy community with the discovery that stromal fibroblasts with-
in human tumours were producing most MMPs, rather than the
tumour cells themselves (14–16). Subsequent experiments
showed that the source of most of the MMP-1-stimulating factor
produced by B16 murine melanoma cells and LX-1 human lung
carcinoma cells (originally called tumour collagenase stimulat-
ing factor orTCSF) was plasma membrane-derived and could act
via direct cell-cell interaction or via shedding of the factor from
the cell surface (13, 17). It was also found to be capable of stimu-
lating production of several matrix metalloproteinases (MMP-1,
MMP-2, MMP-3, MMP-9, MMP-14, MMP-15) by fibroblasts
(18–23) and endothelial cells (24). Likewise, it was found that
emmprin was not only produced by malignant tumour cells but
also by non-malignant cells, albeit in much lower concentrations
(25, 26). Thus when TCSF was fully characterized as a 58 kDa
transmembrane glycoprotein of the Ig superfamily by Biswas et
al. (2), it was renamed emmprin. On cloning of emmprin cDNA,
it became apparent that emmprin is identical to human basigin
and the M6 antigen present on membranes of leukocytes from
patients with rheumatoid arthritis. Mouse emmprin (basigin)
was demonstrated to have the same MMP stimulatory effect as
its human counterpart (27).

Emmprin structure and functional interactions
Emmprin is a glycoprotein containing two C2-like immunoglo-
bulin extracellular domains, a transmembrane domain, and a cy-
toplasmic domain (4–7). The presence of a highly conserved
acidic residue (glutamic acid) and leucine zipper-like sequences
within the hydrophobic sequence of the transmembrane domain
suggests that intramembrane associations are likely to occur
with other membrane proteins. The overall amino acid sequence
identity between mouse and rat emmprin is 94%, between human
and mouse emmprin is 58% and between mouse and chicken is
45% (7, 28). Most of the differences between species lie within
the extracellular domains. The transmembrane domain is almost
totally conserved across species whereas the cytoplasmic do-
main is only moderately conserved. For example, the transmem-
brane domain is completely conserved between human, mouse,
and chick, and ~80% between these vertebrates and Drosophila
(29). However, the human cytoplasmic domain has only 68%
homology with chick and the external domains only 34% homo-
logy. Current evidence indicates that the N-terminal Ig domain is
required for stimulation of fibroblast MMP production by
human emmprin (2, 30, 31). Murine emmprin (basigin) has been
shown to stimulate MMP production (27) but it remains to be

seen whether emmprin homolog preparations from more distant
species, which have very different ectodomain sequences, also
stimulate MMP production. Emmprin has three conserved
N-glycosylation sites that are variably glycosylated. Glycosyl-
ation is also known to be important for emmprin function (19,
30) and differences in glycosylation, and therefore activity, are
regulated by interaction with caveolin-1 (32).

Similar to other members of the Ig superfamily, emmprin
forms homo-oligomers in a cis-dependent manner in the plasma
membrane; the N-terminal Ig-like domain is necessary and suf-
ficient for oligomerization, probably through hydrophobic inter-
actions (33). The MMP-inducing function of emmprin in part in-
volves the molecule acting as a counter-receptor for itself (30).
This homophilic counter-receptor binding activity of emmprin
requires the N-terminal Ig domain, but in this case interaction is
in a trans manner. Inhibition of this homophilic interaction inter-
feres with MMP production and MMP-dependent invasion in tu-
mour cells (30). Emmprin also interacts with integrins a3b1 and
a6b1 (34), probably via the N-terminal Ig domain (35). A subset
of emmprin molecules, separate from that which associates with
integrin, associates with caveolin-1 in lipid rafts. The second Ig
domain is required for lipid raft association. Over-expression of
caveolin-1 causes a decrease in clustering of emmprin on the cell
surface and decreased induction of MMP-1, thereby contribu-
ting to the onco-suppressive effects of caveolin-1 (35). Associ-
ation with caveolin-1 also prevents formation of highly glycosyl-
ated forms of emmprin and consequently blocks emmprin aggre-
gation and activity (32). Annexin II also interacts with emmprin
and is required for its activity in stimulating MMP production
(H. Guo et al, submitted for publication). This is of interest in
view of the finding that at least two other cell surface-associated
proteases, plasminogen activator (36) and cathepsin B (37), in-
teract with annexin II suggesting a coordinating function for an-
nexin II in assembling proteases at the cell surface. In addition to
stimulating production of MMPs, emmprin also binds MMP-1
and retains it at the cell surface, an arrangement that may pro-
mote turnover of pericellular collagen (38).

The emmprin gene
The emmprin gene consists of seven exons and six introns span-
ning 7.5 kb (39, 40). The 5' upstream sequence of the emmprin
gene contains no TATA or CAAT box but has a CpG-rich island.
A 470-bp fragment upstream of the coding region of emmprin
has been shown to promote its transcription. A 30-bp element of
this sequence (-142 to –112 bp) which contains a binding site for
Sp1, was also demonstrated to be important for emmprin tran-
scription (41). The nuclear protein, pinin, may negatively regu-
late emmprin expression (42); this may be of importance since
pinin is down-regulated in several types of cancer cell (43).

Other functions of emmprin
A knockout mouse has been produced in which emmprin (basi-
gin) is lacking (44, 45). Although experimental challenges in the
null mouse have been limited, much has been learned about the
functions of emmprin. The null mutant is small, and usually un-
able to undergo implantation, possibly due to alterations in
MMPs required in the reproductive process. Those embryos that
implant survive past birth, but the mature offspring are sterile
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and have deficiencies in spermatogenesis, fertilization, sensory
and memory functions, and mixed lymphocyte responses (44,
45). It is clear from numerous studies of various tissue and organ
systems that emmprin is multifunctional and that stimulation of
MMP production is not common to all of these systems. For
example defects in retinal development in the basigin null mouse
are most likely due to failure of monocarboxylate transporter-1
(MCT-1), a lactose transporter, to integrate into the plasma mem-
branes of Muller cells and retinal pigmented epithelium (46, 47).
Recent studies have demonstrated clearly that emmprin is an es-
sential chaperone for assembly of MCT-1 and MCT-4 into mem-
branes (48, 49). Emmprin may also be involved in immune cell
interactions and activation (3, 50–54), viral entry into cells (55),
cell-cell interactions in the developing nervous system (56),
blood-brain barrier development and maintenance (57, 58),
cyclophilin function (54, 55), and calcium mobilization (59). A
unifying mechanism for the role of emmprin in these phenomena
has not been elucidated. Although many of these functions of
emmprin are unlikely to depend on its ability to up-regulate
MMP production, stimulation of MMPs may be the basis of
emmprin function in disease processes such as heart failure (60,
61), atherosclerosis (41), arthritis (62–64) and lung injury (65,
66). In each of these cases, there is a close correlation between
increased emmprin and MMP expression.

Role of emmprin in cancer
Regulation of tumour growth, invasion and
angiogenesis
The pathological consequences of elevated emmprin expression
in tumour growth and invasion were directly demonstrated using
emmprin-overexpressing cancer cells. MDA-MB-436 human
breast cancer cells are normally slow-growing cells when they
are implanted into nude mice. However, when these cells are
transfected with emmprin, they adopt a more aggressive pheno-
type, exhibiting both accelerated growth and increased invasive-
ness (67). MMP-2 and MMP-9 expression was increased in the
emmprin-enhanced tumours. A new observation arising out of
this and other studies (30) was the realization that emmprin
stimulates MMP production in tumour cells themselves in addi-
tion to stromal cells. This most likely occurs via homophilic in-
teractions between emmprin molecules on adjacent cells (30), as
described in the previous section. However, it is likely that MMP
production in homotypic cancer cell interactions also requires
the cytoplasmic domain of emmprin (68). Using MDA-MB-231
human breast cancer cells engineered to express different levels
of emmprin, the potential role of increased expression of emm-
prin in tumours was further elucidated (69). In both in vitro and
in vivo studies using these cells, emmprin was found to increase
production ofVEGF in the tumour cells. In vivo, increased emm-
prin expression accelerated tumour growth, accompanied by en-
hanced tumour angiogenesis partially due to a significant up-
regulation ofVEGF and MMPs in both tumour and stromal com-
partments. Co-localization of mouse (i.e. host) emmprin, VEGF
and MMP to angiogenic blood vessels suggested direct involve-
ment of these molecules in tumour angiogenesis, supporting a
new paradigm in which tumour cell surface emmprin plays a key
role in regulating tumour angiogenesis and growth (69).

Host-tumour cell interactions
It is now well established that many of the MMPs found in tu-
mours are produced mainly by peritumoral stromal cells rather
than by tumour cells themselves. For example, examination of
MMP expression patterns in clinical tumour specimens has
shown that these fibroblasts produce tumour-associated intersti-
tial collagenase (MMP-1), stromelysin-1 (MMP-3), stromely-
sin-3 (MMP-11), and gelatinase A (MMP-2) in breast, colon,
lung, skin and head and neck cancers (70–73). On the other hand,
examination of emmprin expression in clinical samples by a var-
iety of means has revealed that in most cases emmprin is pri-
marily expressed by tumour cells themselves, e.g. in cancers of
the lung (73), breast (73), bladder (74, 75), ovary (76), brain (77),
and in lymphomas (31), although in some tumours emmprin ex-
pression has been noted in stromal fibroblasts and endothelial
cells (76, 78).
The receptor on fibroblast cells that is responsible for emmprin-
mediated stimulation of MMP or VEGF production has re-
mained elusive (18, 19). It has been shown that emmprin serves
as its own counter-receptor in homotypic cancer cell inter-
actions, thus stimulating MMPs via homophilic emmprin inter-
action (30). One could speculate the same mechanism may also
be applicable for cancer cell-fibroblast interaction. However,
this hypothesis has appeared unlikely since only very low levels
of emmprin expression can usually be detected in resting fibrob-
last cells. A more careful study of the dynamics of emmprin ex-
pression led to the discovery of a novel positive feedback regula-
tory mechanism of emmprin expression that provides an expla-
nation for the potential role of emmprin as its own counter-recep-
tor in cancer cell-fibroblast interactions (23). When fibroblasts
are exposed to an emmprin stimulus, emmprin expression is up-
regulated in these cells at both RNA and protein levels. Newly
synthesized emmprin is then presented on the cell surface and
serves as the counter-receptor for emmprin-dependent signaling
between tumour cells and fibroblasts (23). In a nude mouse xe-
nograft model, over-expression of emmprin in human tumour
cells results in a profound increase in mouse emmprin ex-
pression in host cells, both in the periphery of the tumour and in
stromal cells infiltrated into the tumour tissue (69). This novel
regulatory mechanism is supported by recent findings of emm-
prin mRNA expression in peritumoral fibroblasts in ovarian car-
cinoma (76) and in some breast cancer cases (78). However, this
homophilic interaction may only account for emmprin-mediated
tumour-host cell interactions in some tumours since emmprin
expression has not been detected in the stroma of some other tu-
mours, including melanoma (21), lung and breast cancer (73).
In many cases, tumour cells and stromal cells are separated by
distances that would not permit direct cell interactions, thus
raising the question whether, and if so, how emmprin is released
from tumour cells and translocated from the tumour cell to the
stromal cell surface. The possibility that emmprin is released
from the cell surface by shedding, as a result of either proteolytic
scission or by shedding of membrane vesicles, was raised in
early studies (11, 79). The former mechanism has been ques-
tioned (80) but a recent study indicates that full length emmprin
is released from the surface of cells via constitutive microvesicle
shedding (81), which is an active process in many tumour cells
(82). Shedding can be amplified on exposure of cells to phorbol



202

Yan, et al.: Emmprin, MMPs and cancer

esters through a signaling cascade dependent on protein kinase
C, calcium mobilization, and mitogen-activated protein kinase
kinase (MEK 1/2) acting upstream of Erk 1/2. However, these
vesicles are unstable and rapidly breakdown to release full-
length, bioactive emmprin (81).

Emmprin and signal transduction
The abnormally high levels of emmprin in cancer cells have re-
cently been attributed to dysregulation of EGFR signaling. Am-
phiregulin, acting through interaction with EGFR, promotes tu-
mour progression through emmprin-induced increases in pro-
duction of MMPs by fibroblasts and endothelial cells (83). The
signaling events downstream of emmprin interactions that result
in stimulation of MMP production are not yet established but
MAPK p38 has been implicated in induction of MMP-1 produc-
tion (84) and activation of 5-lipoxygenase and phospholipase A2
in MMP-2 production (80). Investigation of the mechanism
whereby emmprin promotes tumour growth in vivo (67) led to in
vitro experiments demonstrating that emmprin induces anchor-
age-independent growth (85), a phenomenon that is character-
istic of malignant cancer cells and that reflects resistance to an-
oikis, i.e. apoptosis caused by cell detachment from extracellular
matrix. Further investigation showed that emmprin stimulates
cell survival pathway signaling, including phosphorylation of
Akt, Erk and FAK. These effects of emmprin were shown to de-
pend on stimulation of production of hyaluronan, a pericellular
polysaccharide (85, 86). The increase in anti-apoptotic signaling
in turn leads to increased multidrug resistance and is dependent
on hyaluronan-induced ErbB2 and cell survival signaling path-
ways (86, 87). Interestingly, it has been shown that multidrug re-
sistant cancer cells express increased amounts of emmprin, and

as a consequence produce higher levels of MMP-1, MMP-2, and
MMP-9 (22). Although it has not yet been fully established, the
stimulatory effects of emmprin on MMP production and invas-
iveness may also be mediated through hyaluronan-induced sig-
naling (88). In addition, a disruptive role for emmprin in calcium
mobilization through G-protein sensitive pathways has been
demonstrated in tumour cells, and it was suggested that this ef-
fect of emmprin enhances the metastatic potential of hepatoma
cells (59). In the light of these findings, Metuximab, a murine
HAb18 F(ab')2 fragment specific for emmprin (59) (also known
as LICARTIN), has been developed in the iodine131-labeled form
and is currently being tested for safety and clinical efficacy in he-
patocellular carcinoma.

Conclusions
Emmprin expression in primary breast and ovarian cancer tissue
correlates with tumour size and staging, and is predictive of poor
prognosis (76, 89). Correlations between emmprin expression
and malignancy have also been demonstrated in other cancers,
e.g. bladder carcinomas (74), lung carcinomas (73), gliomas
(77), melanomas (21), and lymphomas (31). Of particular inter-
est is the finding that emmprin is frequently expressed in micro-
metastases (89, 90). In addition to these findings in human pa-
tients, experimental studies have demonstrated that emmprin in-
duces several malignant properties associated with cancer, in-
cluding invasiveness, angiogenesis, anchorage-independent
growth and chemoresistance. Consequently, the development of
effective therapeutic interventions targeted to emmprin would
provide a novel and potentially powerful alternative to current
treatments.
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