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ABSTRACT

We have investigated the first dynamical stage of comet cloud formation, the scattering of planetesimals by a planet.
The orbits of planetesimalswere calculated using circular restricted three-body formalism.We obtained the probabilities
of the following results of scattering as functions of the orbital parameters of the planets and planetesimals: (1) collision
with the planet, (2) escape from the planetary system, and (3) candidacy as a member of the comet cloud (planetesimals
with large semimajor axes). We also derived simple empirical formulae for these probabilities that are accurate enough
for order-of-magnitude estimation. We found that a planetesimal with an initial eccentricity of e k 0:4 can escape from
the planetary system or be a candidate for an element of the comet cloud due to scattering by a planet. As the energy
range of the comet cloud is narrow, the probability of any planet producing escapers is always much higher than that of
producing candidates. Using the probabilities and assuming a distribution of planetesimals, we obtained the efficiencies
of collision, escape, and candidacy for a given planet. We applied the results to the solar system and found that, among
the four giant planets, Jupiter is the planet most responsible for producing candidate elements of the Oort Cloud, as long
as the inclination of planetesimals is constant or proportional to the reduced Hill radius of each planet.
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1. INTRODUCTION

The Oort Cloud is a spherical comet reservoir surrounding
the solar system. It is generally accepted that it consists of more
than1012 comets, and its size is on the order of 104–105 AU (e.g.,
Weissman 1990; Dones et al. 2004). The existence of this comet
reservoir was first proposed by Oort (1950). He suggested that
planets scattered small bodies in the planetary region outward
and that passing stars raised their perihelia out of the planetary
region. There is general agreement that the Oort Cloud comets
are the residual planetesimals of planet formation.

The standard scenario of the Oort Cloud formation consists
of two dynamical stages: (1) giant planets raising the aphelia of
planetesimals to the outer region of the solar system and (2) the
Galactic tide, passing stars, and giant molecular clouds pulling
their perihelia out of the planetary region. The first dynami-
cal stage has been studied analytically by several authors (e.g.,
Safronov 1972; Weidenschilling 1975; Fernández 1978). Safronov
(1972) estimated the ejection rate of planetesimals by the four
giant planets and the relative importance of the planets for ejec-
tion and comet cloud formation. Using a Monte Carlo, Öpik-type
code, Fernández (1978) calculated the probability of a plane-
tesimal colliding with a planet, being ejected from the solar sys-
tem, and having a near-parabolic orbit with close encounters
with planets. Both Safronov (1972) and Fernández (1978) con-
cluded that Jupiter and Saturn hardly contribute to the forma-
tion of the Oort Cloud, since their ejection rates are too high
because of their large masses, and that Uranus and Neptunemay
have had important roles in the Oort Cloud formation.

The first direct numerical calculation of the overall formation
of the Oort Cloud was performed by Duncan et al. (1987). Their
calculation included the gravity of the four giant planets and
passing stars, and the Galactic tide. They concluded that the den-
sity profile between 3000 and 50,000 AU is roughly a power law
proportional to r�3.5, where r is the heliocentric distance, and that
the inner Oort Cloud (semimajor axis <20,000 AU) contains
roughly 5 times as many comets as the outer Oort Cloud. Dones
et al. (2006) performed a similar calculation but with small ini-
tial eccentricities of planetesimals, which may be more realistic
initial conditions. Their calculations showed that planetesimals
typical of those that form the Oort Cloud are originally from
the Uranus-Neptune region and are given the last scattering by
Saturn. Both papers deal only with the solar system and do not
focus on the general properties of planet-planetesimal scatter-
ing. Therefore, their results cannot be applied to other planetary
systems.

Tremaine (1993) first considered the formation of comet clouds
in other planetary systems. Using the results of previous studies
(e.g., Duncan et al. 1987; Heisler & Tremaine 1986), he derived
a condition for comet cloud formation as a function of the mass
(mp) and semimajor axis of a planet (ap). However, this condition
is based on the previous calculations, which are applicable only
to the solar system.

In order to construct a general theory of comet cloud forma-
tion applicable to general planetary systems, it is necessary to
clarify the elementary processes with parameters other than those
for the solar system. In this paper we investigate the first dy-
namical stage of comet cloud formation using numerical cal-
culations. In the late stage of planet formation, the scattering of
planetesimals by a planet results in one of four events: (1) col-
lision with the planet, (2) escape from the planetary system,
(3) survival in the planetary system, and (4) a fall onto the central
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star. We call the planetesimals with fates 1, 2, and 4 ‘‘colliders,’’
‘‘escapers,’’ and ‘‘fallers,’’ respectively. The fate 3 planetesimals
with large semimajor axes, for example, larger than 3000 AU, are
candidates to be elements of the comet cloud (hereafter ‘‘candi-
dates’’). We calculate the probabilities of producing colliders,
escapers, and candidates by orbital integration using circular
restricted three-body formalism. We integrate the orbits of the
planetesimals for one Kepler period to evaluate the probability
for one encounter. The ratios of these fates depend on the pa-
rameters of the planetary system, i.e., the orbital elements of the
planetesimals and the orbital elements and mass of the relevant
planet. We investigate the dependence of the ratios on these
parameters. We also present simple and useful empirical fitting
formulae for these probabilities.

The outline of this paper is as follows: We describe the nu-
merical method, model, and initial conditions in x 2. In x 3 we
present the results for the probabilities of colliders, escapers, and
candidates. We derive empirical fitting formulae of the probabil-
ities in x 4. In x 5, using the probabilities, we estimate the effi-
ciencies of planets for producing colliders, escapers, and candidates
and apply the results to the solar system. Section 6 is devoted to
a summary and discussion.

2. METHOD OF CALCULATION

2.1. Model and Initial Conditions

We consider a star-planet-planetesimal three-body problem
in which a planetesimal is treated as a massless particle. We con-
sider planets of ap ¼ 1, 5, 10, and 30AU andmp ¼ 0:1mJ, 0.3mJ,
1mJ, 3mJ, and 10mJ, where mJ � 0:001m� and m� is the mass of
the star, which is set as m� ¼ 1 M�. The orbit of the planet is
assumed to be circular.We set the densities of the planet and star
as 1 g cm�3.

We set up an initial planetesimal disk that consists of plan-
etesimals and a planet. All the planetesimals have the same
eccentricity e and inclination i. The range of e is from 0.1 to 0.9
with an interval of 0.1, and the range of i is from 0 to 0.1 rad
with an interval of 0.01. The semimajor axes of the planetes-
imals a are uniformly distributed over the planetesimal disk;
in other words, the surface number density of planetesimals is
proportional to a�1. We call the region of a where the coplanar
orbits of the planet and a planetesimal cross the ‘‘orbit-crossing
region.’’ The inner and outer edges of the orbit-crossing region for
unperturbed orbits are amin ¼ ap /(1þ e) and amax ¼ ap/(1� e),
respectively, where ap is the semimajor axis of the planet. We
distribute planetesimals in a range wider than the orbit-crossing
region, since gravitational focusing of the planet is effective. The
argument of the perihelion !, the longitude of the ascending node
�, and the mean anomaly l of the planetesimals are distributed
randomly. In the disk, a ring in awith awidth of 1AUcontains 106

or 107 planetesimals. The initial disk parameters are summarized
in Table 1.

2.2. Integration Method

The orbits of the planetesimals are integrated numerically using
the fourth-orderHermite scheme (Makino&Aarseth 1992)with a
hierarchical time step (Makino 1991). The equation of motion for
a planetesimal is

d2r

dt2
¼ �Gm�

r

r3
� Gmp

r� rp

jr� rpj3
þ rp

r3p

 !
; ð1Þ

where G is the gravitational constant, rp is the heliocentric
position of the planet, and r is the heliocentric position of the

planetesimal. The last term of the right-hand side represents the
indirect term.
We calculate the orbits of all the planetesimals for 1 Kepler

period (TK). During the orbit integration, if the separation be-
tween the planet and a planetesimal becomes smaller than the
radius of the planet Rp or the heliocentric distance of the plane-
tesimal becomes smaller than the radius of the central star R�, the
planetesimal is counted as a collider in the former and a faller in
the latter. Orbital elements of planetesimals except colliders and
fallers are checked after TK. If the perihelion distance of the
planetesimal is smaller than R�, it is also counted as a faller. If
the eccentricity of the planetesimal is larger than 1, it is counted
as an escaper. A planetesimal with a > acan is counted as a can-
didate, where acan is the minimum semimajor axis of a candi-
date for inclusion in the comet cloud. If the separation between
the planet and a planetesimal after TK is smaller than the Hill
radius of the planet, rH ¼ ap(mp/3m�)1

=3, we discard the plan-
etesimal. This is just because its orbit changes a great deal due
to strong interaction with the planet.

2.3. Definitions of Probability and Efficiency

We denote the probabilities of producing colliders, escapers,
and candidates per TK as Pcol, Pesc, and Pcan. Using these prob-
abilities P, we define the efficiencies K of a planet. Efficiencies
Kcol, Kesc, and Kcan represent the expected numbers of colliders,
escapers, and candidates per unit time and are defined as

K ¼
Z aout

ain

P

TK
ns2�a da; ð2Þ

where ns is the surface number density of planetesimals, given
as ns ¼ n1a

�, where n1 is the reference surface number density

TABLE 1

List of the Initial Model Parameters

Planetesimal Planet

Case e

i

(rad)

ap
(AU) mp /mJ

0...................... 0.1–0.9 0.05 5 1

1...................... 0.1–0.9 0 5 1

2...................... 0.1–0.9 0.01 5 1

3...................... 0.1–0.9 0.02 5 1

4...................... 0.1–0.9 0.03 5 1

5...................... 0.1–0.9 0.04 5 1

6...................... 0.1–0.9 0.06 5 1

7...................... 0.1–0.9 0.07 5 1

8...................... 0.1–0.9 0.08 5 1

9...................... 0.1–0.9 0.09 5 1

10.................... 0.1–0.9 0.1 5 1

11.................... 0.1–0.9 0 1 1

12.................... 0.1–0.9 0.05 1 1

13.................... 0.1–0.9 0 10 1

14.................... 0.1–0.9 0.05 10 1

15.................... 0.1–0.9 0 30 1

16.................... 0.1–0.9 0.05 30 1

17.................... 0.1–0.9 0 5 0.1

18.................... 0.1–0.9 0.05 5 0.1

19.................... 0.1–0.9 0 5 0.3

20.................... 0.1–0.9 0.05 5 0.3

21.................... 0.1–0.9 0 5 3

22.................... 0.1–0.9 0.05 5 3

23.................... 0.1–0.9 0 5 10

24.................... 0.1–0.9 0.05 5 10
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at a ¼ 1 AU, � is the power-law index of the radial distribution,
and ain and aout are the inner and outer edges of the planetesimal
disk. In the present paper we do not show or discuss the prob-
ability and efficiency of becoming a faller.

3. PROBABILITIES

We numerically evaluate P and investigate its dependences on
the parameters of the planetesimals and planets: a, e, i, ap, and
mp. We show the results in order of Pcol, Pesc, and Pcan. We refer
to ‘‘case 0’’ as the standard case. For each P we first present the
results of the standard case and the dependences on a and e. Next
we show the dependences of P on the other parameters. The
details of the parameter dependences are discussed in x 4.

3.1. Collision with the Planet

3.1.1. Standard Case

Figure 1 shows Pcol against a for e ¼ 0:5 in the standard case.
In this case amin ¼ 3:3 AU and amax ¼ 10 AU. Collision takes
place over the orbit-crossing region. The probability Pcol has
two peaks, one at each end of the region. The relative velocity
between a planetesimal and the planet, vr, explains this feature.
In the two-body approximation, the collisional cross section of
the planet is given by

�col ¼ �R2
p 1þ Vesc

vr

� �2
" #

; ð3Þ

where Vesc is the surface escape velocity from the planet, given
by Vesc ¼ 2Gmp/Rp

� �
1=2
. For the parameter range of this study,

vr < Vesc and gravitational focusing is effective (e.g., Kokubo
& Ida 1996). Thus, the first term on the right-hand side of equa-
tion (3) can be neglected, and �col is proportional to v�2

r . The
number of collisions per TK is proportional to �col. The relative
velocity for the unperturbed orbit of a planetesimal is given as

vr
vp

� �2
¼ 3� 2

a

ap
1� e2
� �� �1=2

cos i� ap

a
; ð4Þ

where vp is the Kepler velocity of the planet (e.g., Bertotti et al.
2003). Figure 2 shows vr against a over the orbit-crossing re-
gion for i ¼ 0:05. At both ends of the orbit-crossing region,
vr is smaller, and thus, Pcol is larger. The real relative velocity

may be slightly different from equation (4) because of planetary
perturbation. However, the essential behavior of the real rela-
tive velocity is almost the same as that of equation (4).

Figure 1 also showsPcol for e ¼ 0:7. In this case amin ¼ 2:9AU
and amax ¼ 16:7 AU. The overall shape of Pcol is similar to that
for e ¼ 0:5. The region for collision expands and Pcol decreases
in its entirety as e increases.

3.1.2. Parameter Dependences

WecomparePcol for different values of i, ap , andmp in Figure 3.
The overall shape of Pcol does not change with different i, ap ,
and mp . Figure 3a compares Pcol for i ¼ 0:05 and 0.07. The
value of Pcol decreases with increasing i. For i ¼ 0:07, Pcol is
about two-thirds of Pcol for i ¼ 0:05. Figure 3b shows Pcol for
ap ¼ 5 and10 AU. The orbit-crossing region shifts outward and
expands with ap , while Pcol decreases with increasing ap . For
ap ¼ 10 AU, Pcol is about half of Pcol for ap ¼ 5 AU at the same
a/ap . Figure 3c shows Pcol for mp ¼ 1mJ and 0.3mJ. The value
of Pcol increases with mp . For mp ¼ 0:3mJ, Pcol is about one-
fifth of Pcol for mp ¼ 1mJ.

3.2. Escape from a Planetary System

3.2.1. Standard Case

Figure 4 shows Pesc against a for e ¼ 0:7 in the standard case,
in which amin ¼ 2:9 AU and amax ¼ 16:7 AU. Escapers appear
over most of the orbit-crossing region. In this region Pesc in-
creases with a and suddenly drops before the outer edge of the
region. This increase is also explained by vr. The gravitational
radius (impact parameter for 90

�
deflection) of a planet is given

by rg ¼ Gmp/v
2
r
, which means that planetesimals with smaller vr

are easily scattered at large angles. The increase in Pesc with a
may reflect that vr decreases with increasing a for ak ap (Fig. 2).

Figure 4 also shows Pesc for e ¼ 0:8, where amin ¼ 2:8 AU
and amax ¼ 25 AU. The overall shape of Pesc is similar to that
for e ¼ 0:7. The value of Pesc decreases with increasing e at
constant a, although the maximum value of Pesc increases with
e. The maximum value of Pesc for e ¼ 0:8 is about twice that
for e ¼ 0:7.

We find that there are no escapers for e � 0:3. This is ex-
plained by a simple fly-by theory (e.g., Madonna 1997) based on
the two-body approximation. By using vr and vp, the velocity
of a planetesimal is written as v ¼ jvp þ vrj. To escape from the
planetary system, v needs to satisfy v > vesc, where vesc is the
local escape velocity vesc ¼ 2Gm�/ap

� �
1=2¼

ffiffiffi
2

p
vp. There is also

Fig. 1.—Probability Pcol shown against a. Circles and crosses indicate Pcol

for e ¼ 0:5 and 0.7, respectively, in the standard case (case 0) [(i; ap; mp) ¼
(0:05; 5 AU; 1mJ)]. The solid lines show the empirical fits.

Fig. 2.—Relative velocities between a planetesimal and a planet scaled by vp for
e ¼ 0:1, 0.2, : : : , 0.9 and i ¼ 0:05 are plotted against a scaled by ap over the orbit-
crossing region. The dashed line shows the critical velocity for escapers, vmin

r .

SCATTERING OF PLANETESIMALS BY PLANET 1121No. 2, 2006



the minimum relative velocity vmin
r for escape derived from the

fly-by theory. A planetesimal gains the largest additional ve-
locity if it is scattered in the direction of the orbital motion
of the planet. In this case vmin

r is given by vmin
r ¼ vesc � vp ¼ffiffiffi

2
p

� 1
� �

vp (e.g., Fernández 1978).We plot vmin
r also in Figure 2.

In the region where vr is smaller than vmin
r , no planetesimals can

escape. To satisfy the condition vr > vmin
r , we need e k 0:4.

Thus, planetesimals initially with e P 0:4 cannot escape. Even
for e k 0:4, the condition is not satisfied near the end of the
orbit-crossing region, and this explains the sudden drop in Pesc

before the end of the region. However, in the case of large mp,
the simple fly-by theory is no longer valid. In case 16 there exist
escapers even for e ’ 0.

3.2.2. Parameter Dependences

In Figure 5 we compare Pesc for different values of i, ap , and
mp . The overall shape of Pesc, the increase and sudden drop
against a, does not change with different i, ap, andmp. Figure 5a

compares Pesc for i ¼ 0:05 and 0.07. Similarly to Pcol, Pesc de-
creases with increasing i. The probability Pcol for i ¼ 0:07 is
about two-thirds of Pcol for i ¼ 0:05. In Figure 5b we show Pesc

for ap ¼ 5 and 10 AU. The orbit-crossing region shifts outward
and expands with ap, while Pesc at the peaks is almost the same,
which may imply that Pesc is scaled by a/ap. Figure 5c compares
Pesc for mp ¼ 1mJ and 0.3mJ. Compared to Pcol, Pesc increases
steeply with mp. The probability Pesc for mp ¼ 0:3mJ is about
1/10 of Pesc for mp ¼ 1mJ.

3.3. Candidacy To Be a Member of a Comet Cloud

3.3.1. Standard Case

Figure 6 shows Pcan against a for e ¼ 0:7 and in the standard
case, in which amin ¼ 2:9 AU and amax ¼ 16:7 AU. We use
acan ¼ 3000 AU, which corresponds to the inner edge of the
inner Oort Cloud (Dones et al. 2006). Candidates appear almost
over the orbit-crossing region. In this region Pcan increases with
a and suddenly drops before the end of the region. This behav-
ior is similar to that of Pesc because large scattering is required
for producing candidates, as well as escapers. However, the
dependence on a is stronger than that of Pesc.
Figure 6 also showsPcan for e ¼ 0:8. In this case amin ¼ 2:8 AU

and amax ¼ 25 AU. Similarly to Pesc , the value of Pcan decreases
with increasing e at constant a, and the maximum value of Pcan

increases with e. Themaximumvalue for e ¼ 0:8 is about 3 times
that for e ¼ 0:7. There are no candidates for e � 0:3. It should
be noted that Pcan is always much smaller than Pesc.

3.3.2. Parameter Dependences

In Figure 7 we show Pcan for a variety of parameters includ-
ing i, ap ,mp , and acan. The overall shape of Pcan does not change
with i, ap, mp , and acan. Figure 7a compares Pcan for i ¼ 0:05
and 0.07. The probability Pcan for i ¼ 0:07 is about two-thirds
of Pcan for i ¼ 0:05. The decrease in P with increasing i is a fea-
ture common to Pcol , Pesc, and Pcan. Figure 7b compares Pcan for
ap ¼ 5 and 10 AU. The orbit-crossing region shifts outward and
expands with ap , and the maximum value of Pcan increases with
ap. The maximum value of Pcan for ap ¼ 10 AU is about twice
that for ap ¼ 5 AU. Figure 7c compares Pcan for mp ¼ 1mJ and
0.3mJ. The probability Pcan formp ¼ 0:3mJ is about 1/10 of Pcan

for mp ¼ 1mJ. The value of Pcan increases with mp in a manner
similar to Pesc.

Fig. 3.—Probabilities Pcol for e ¼ 0:5 in the standard case (circles) and var-
ious other cases (crosses) shown against a. The crosses in (a), (b), and (c) indicate
Pcol in cases 6 (i ¼ 0:07), 11 (ap ¼ 10 AU), and 14 (mp ¼ 0:3mJ), respectively.
The solid lines show the empirical fits.

Fig. 4.—Probability Pesc shown against a. Circles and crosses indicate Pesc

for e ¼ 0:7 and 0.8, respectively, in the standard case [(i; ap; mp) ¼ (0:05;
5 AU; 1mJ)]. The solid curves show the empirical fits.
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We plot Pcan for acan ¼ 3000 and 5000 AU in Figure 7d . The
value of Pcan decreaseswith increasing acan. For acan ¼ 5000AU,
the probability Pcan is about half of Pcan for acan ¼ 3000 AU.

3.4. Two-dimensional Cases

Figures 8, 9, and 10 show P against a for i ¼ 0, i.e., cases 1,
13, and 19. Each panel compares P for different values of e,
ap , and mp . In all panels the qualitative features of P are almost
the same as for i 6¼ 0, but the values are higher. For example, in
case 1, Pcol , Pesc , and Pcan for i ¼ 0 are typically�100,�10, and
�5 times higher than in the standard case, respectively. The
parameter dependences of P, except on acan , are weaker than
those in all cases for i 6¼ 0.

4. EMPIRICAL FITS FOR PROBABILITIES

We derive simple empirical formulae for P using the results
of numerical integration, which is useful in estimating P for

general planetary systems. For the empirical formulae for Pfit,
we use simple power-law fitting in a, e, i, ap, mp, and acan,

P Bt ¼ fa�e� sin i�a�pm
�
pa

	
can; ð5Þ

where f is a numerical factor and �, �, �, �, �, and 	 represent
power-law indices. The last term a 	

can is only for candidacy. This
assumption works well to reproduce the numerical results. By
comparing Pfit with P, we estimate the values of f, �, �, �, �, �,
and 	 for collision, escape, and candidacy, and those for i ¼ 0
empirically in simple figures. We adopt integers or simple frac-
tions for their power-law indices. The empirical fits are suffi-
ciently accurate for order-of-magnitude estimation of P. We plot
Pfit in Figures 1 and 3–10 over the orbit-crossing region.

4.1. Collision with a Planet

By comparing equation (5) with Pcol we obtain the empirical
formula

P Bt
col � 7 ; 10�7e�2 sin i�1 ap

AU

� ��1
mp

mJ

� �4=3

; ð6Þ

where we approximate Pcol as being constant in a, neglecting
peaks at the ends of the orbit-crossing region. Although the fit
of P Bt

col does not reproduce the peaks at both ends of the orbit-
crossing region, it approximates the average value of Pcol for
0:1 � e � 0:9. Equation (6) is valid in all cases for i 6¼ 0 in
Table 1.

4.2. Escape from a Planetary System

We consider the cases for e � 0:5 and mp � 3mJ, excluding
cases 23 and 24, in which the simple fly-by theory is not valid.
We replace e with (1�e) in equation (5) because Pesc strongly
depends on the perihelion distance q ¼ a (1� e) rather than on e
(e.g., Duncan et al. 1987).

By comparing equation (5) with Pesc, we obtain

P Bt
esc � 4 ; 10�6 a

ap

� �3

(1� e) sin i�1 mp

mJ

� �2

: ð7Þ

Comparing Pesc and equation (7) we find that the overall feature
of Pesc for i 6¼ 0 is approximated by equation (7), except for

Fig. 5.—Probabilities Pesc for e ¼ 0:7 in the standard case (circles) and
various other cases (crosses) shown against a. Crosses in (a), (b), and (c) in-
dicate Pesc in cases 6 (i ¼ 0:07), 11 (ap ¼ 10 AU), and 14 (mp ¼ 0:3mJ), re-
spectively. The solid curves show the empirical fits.

Fig. 6.—Probability Pcan shown against a. Circles and crosses indicate Pcan

for e ¼ 0:7 and 0.8, respectively, in the standard case [(i; ap; mp; acan) ¼
(0:05; 5 AU; 1mJ; 3000 AU)]. The solid curves show the empirical fits.
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e ¼ 0:9 in case 2 and for e ¼ 0:9 in case 22. In these exceptional
cases Pesc is roughly given by equation (10).

Note that P Bt
esc reproduces only the increase in Pesc with a and

overestimates Pesc for a after the rapid decrease around amax.
The overestimation is due to the difference between the orbit-
crossing region and the escape region. If these two regions are
completely the same, there is almost no overestimation. How-
ever, the outer edge of the escape region,where vr > vminr , is smaller
than the outer edge of the orbit-crossing region, amax. Since this
difference is larger for smaller e, the overestimation of Pesc by
P Bt
esc is larger for smaller e. We find that P Bt

esc agrees with the
increase of Pesc with a for e � 0:5.

For a planetesimal with a3ap, in other words, with e 	 1, the
energy change of planetesimals depends on a and e only through
q (Duncan et al. 1987; Dones et al. 1996). Hence, under such
conditions, equation (7) is no longer valid.

4.3. Candidacy To Be a Member of a Comet Cloud

The parameter ranges of e andmpwe consider here are e � 0:4
and mp � 3mJ, and we replace e with (1�e) in equation (5) for
the same reason as for escape. By comparing equation (5) with
Pcan, we obtain P Bt

can:

P Bt
can � 1:2 ; 10�5 a

ap

� �5
(1� e)2 sin i�1 mp

mJ

� �2
acan

ap

� ��1

: ð8Þ

Equation (8) is in good agreement with the increase in Pcan

for acan k 10a and for e � 0:6. Similarly to P Bt
esc , P Bt

can ex-

presses only the increase in Pcan with a but not the decrease
around amax. We find that the behavior of Pcan for e ¼ 0:9 in
cases 2, 3, and 22 is expressed by equation (11) rather than
equation (8).
In previous studies, many authors mentioned Jupiter’s in-

efficiency in forming candidates because of its high mass; how-
ever, we find that the ratio of P Bt

can to P
Bt
esc does not depend on mp

from equations (7) and (8). For a planetesimal with a3ap or
e 	 1, equation (8) is not valid for the same reason as for escape
(Duncan et al. 1987; Dones et al. 1996).

4.4. Two-dimensional Cases

We consider P in cases for i ¼ 0. By comparing Pcol , Pesc ,
Pcan, and Pfit, we obtain P Bt

2D:

P Bt
2D;col � 8 ; 10�4e�1 ap

AU

� ��1=2
mp

mJ

� �2=3

; ð9Þ

P Bt
2D;esc � 2 ; 10�3 a

ap

� �3=2

(1� e)1=2
mp

mJ

� �
; ð10Þ

P Bt
2D;can � 3 ; 10�3 a

ap

� �7=2

(1� e)3=2
mp

mJ

� �
acan

ap

� ��1

: ð11Þ

As seen in Figures 8–10, equations (9)–(11) reproduce P well.
We find that the ratio of P Bt

2D;can to P Bt
2D;esc

also does not depend
on mp from equations (10) and (11).

Fig. 7.—Probabilities Pcan for e ¼ 0:7 in the standard case for acan ¼ 3000 AU (circles) and various other cases (crosses) shown against a. Crosses in (a), (b), (c), and
(d ) indicate Pesc in cases 6 (i ¼ 0:07), 11 (ap ¼ 10 AU), 14 (mp ¼ 0:3mJ), and 0 (acan ¼ 5000 AU), respectively. The solid curves show the empirical fits.
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4.5. Geometric Interpretation

In this section we try to understand the relation between
Pfit and P Bt

2D using a geometric interpretation. We assume that
the probability Pfit is approximated by the ratio of cross sec-
tions � for collision, escape, and candidacy to the total cross
section:

P Bt ¼ �

�total

: ð12Þ

In i 6¼ 0 cases we define the total cross section as the cylindrical
area at ap through which planetesimals pass, which is estimated
as

�total ¼ 2�ap2ap sin i ¼ 4�a2
p sin i: ð13Þ

Using equation (12) and the Pfit obtained in xx 4.1–4.3, we
obtain �:

�col � 8 ; 10�6e�2 ap

AU

� �
mp

mJ

� �4=3

; ð14Þ

�esc � 5 ; 10�5 a

ap

� �3

a2
p (1� e)

mp

mJ

� �2

; ð15Þ

�can � 1:5 ; 10�4 a

ap

� �5

a2
p (1� e)2

mp

mJ

� �2
acan

ap

� ��1

: ð16Þ

In i ¼ 0 cases Pfit is approximately given by the ratio of twice
the impact parameter b to the length of the orbit of the planet:

P Bt
2D ¼ b

�ap
: ð17Þ

Fig. 9.—Probabilities Pesc for i ¼ 0 shown against a. Circles in all panels
indicate Pesc for e ¼ 0:7 in the standard case. Crosses in (a), (b), and (c) indi-
cate Pesc in the standard case for e ¼ 0:8 and cases 13 (ap ¼ 10 AU) and 19
(mp ¼ 0:3mJ), respectively. The solid lines show the empirical fits.

Fig. 8.—Probabilities Pcol for i ¼ 0 shown against a. Circles in all panels
indicate Pcol for e ¼ 0:5 in the standard case. Crosses in (a), (b), and (c) indicate
Pcol for e ¼ 0:7 in the standard case and cases 13 (ap ¼ 10 AU) and 19
(mp ¼ 0:3mJ), respectively. The solid lines show the empirical fits.
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Using equation (17) and P Bt
2D obtained in x 4.4, we obtain b:

bcol � 2:5 ; 10�3e�1 ap

AU

� �1=2
mp

mJ

� �2=3

; ð18Þ

besc � 6 ; 10�3 a

ap

� �3=2

(1� e)1=2ap
mp

mJ

� �
; ð19Þ

bcan � 9 ; 10�3 a

ap

� �7=2

(1� e)3=2ap
mp

mJ

� �
acan

ap

� ��1

: ð20Þ

The power-law index of bcol for mp, �col ¼ 2/3, reflects that
gravitational focusing is effective (e.g., Kokubo & Ida 1996).
The dependences of besc and bcan on mp are the same as that of
rg on mp.

From equations (14)–(16) and (18)–(20) we find the relations
� � �b2 for collision and escape and � � 2�bescbcan for candi-
dacy. These relations suggest that bcol, besc, and bcan can be
interpreted as the effective maximum impact parameters. The
cross sections for collision and escape, �col and �esc, are roughly
given by circular areas with radii of bcol and besc, respectively.
The cross section of candidacy is consistently approximated
as a narrow ring area with a width bcan and a radius besc just
outside of �esc. Note that the actual shape of � is not a circle or a
ring but rather a complicated figure. However, the geometric
interpretation with the effective impact parameters is almost
consistent with the numerical results in both the i 6¼ 0 and i ¼ 0
cases.

In equation (12) we assume �total includes �. However, the
width of the total cross section ap sin i decreases with i and
becomes smaller than the width of � (2b) for small i. Then the
behavior of P for i 6¼ 0 becomes similar to that for P Bt

2D rather
than for Pfit. We can roughly estimate the parameter ranges in
which P Bt

col and P Bt
esc are valid from the condition b � ap sin i,

which leads to

mp

mJ

� �
P 2 ; 102

e

0:5

� �3=2
ap

5 AU

� �3=4
sin i

sin 0:05

� �3=2
; ð21Þ

mp

mJ

� �
P 4

1� e

0:3

� �
sin i

sin 0:05

� �
; ð22Þ

where we use b ¼ �/�ð Þ1=2, which is about 50% smaller than the
value of b of equation (18) or (19). The criterion for P Bt

can to be
valid is besc þ bcan < ap sin i. This criterion reduces to the same
criterion as for P Bt

esc (eq. [22]) because bcanTbesc. However,
P Bt
can is more sensitive to the criterion than Pesc because �can

is the area outside of �esc. These criteria are all consistent with
the results of the numerical calculations, as we mention in
xx 4.1–4.3.

5. EFFICIENCIES

We calculate the efficiencies of collision, escape, and candi-
dacy from equation (2) and the numerical results for P. To obtain
realistic efficiencies we need to know the orbital distribution

Fig. 10.—Probabilities Pcan for i ¼ 0 shown against a. Circles in all panels indicate Pcan for e ¼ 0:7 and acan ¼ 3000 AU in the standard case. Crosses in (a), (b), (c),
and (d ) indicate Pesc in the standard case for e ¼ 0:8 and in cases 13 (ap ¼ 10 AU), 19 (mp ¼ 0:3mJ), and 0 (acan ¼ 5000 AU), respectively. The solid lines show the
empirical fits.
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of planetesimals around a planet during or after planet forma-
tion. However, this distribution is uncertain so far. In the present
paper, as the first step, we adopt simple disk models: (1) flat disk
(� ¼ 0), (2) standard disk (� ¼ �3/2), and (3) standard disk
with a solar system planet. In model 3 we consider the four giant
planets of the solar system.We use n1 ¼ 1 in the disk models for
simplicity. We also obtain empirical fits of the efficiency Kfit

from equation (2) and Pfit. The empirical fitsKfit are shown with
K in Figures 11–13. We plot K Bt

col
for 0:1 � e � 0:9, K Bt

esc for
e � 0:5, and K Bt

can for e � 0:4.

5.1. Flat Disk

Figure 11 shows K against e in the standard case � ¼ 0,
ain ¼ 0, and aout ¼ 1. The collision probability Kcol decreases
gradually with increasing e. On the other hand, for e � 0:4, Kesc

and Kcan increase monotonically with e. As we have already seen
in xx 4.2 and 4.3,Kesc andKcan are positive only for e � 0:4. The
relative magnitude between Kcol and Kesc or Kcan varies with e.
Only Kcol has a positive value for e � 0:3. For e � 0:5, Kesc is
larger than bothKcol andKcan, andKcan exceedsKcol for e � 0:8.
The dependences of K on i, mp, and acan are independent of
� and the same as for P.

The empirical formulaeKfit integrated over the orbit-crossing
region for � ¼ 0 are

K Bt
col � 9 ; 10�6e�2 (1� e)�1=2 � (1þ e)�1=2

h i

; sin�1 i
ap

AU

� ��1=2
mp

mJ

� �4=3

; ð23Þ

K Bt
esc � 7 ; 10�6(1� e)�5=2 sin�1 i

ap

AU

� �1=2
mp

mJ

� �2

; ð24Þ

K Bt
can � 1:4 ; 10�5(1� e)�7=2 sin�1 i

ap

AU

� �3=2
mp

mJ

� �2
acan

AU

� ��1

;

ð25Þ

where we neglect the terms of (1þ e) with power-law indices
smaller than �1

2
. These empirical fits are also plotted in Fig-

ure 11. The fit of K Bt
col shows good agreement with Kcol. The

differences are within �10% for all e. For e ¼ 0:5, K Bt
esc agrees

with Kesc within a factor of �3. For e � 0:6, K Bt
esc agrees with

Kesc within�70% error. The fit ofK Bt
can agrees withKcan within a

factor of �3 for e ¼ 0:4 and within �50% error for e � 0:5.
These errors ofK Bt

esc andK
Bt
can decrease with increasing e because

the regions where escapers and candidates appear overlap well
with the orbit-crossing region for large e, as shown in Figures 4
and 6.

We also compare K and Kfit in other cases and find that K is
well approximated by Kfit. Their errors are typically about the
same as for the standard case. In the worst cases Kfit agrees with
K within �50% for collision for 0:1 � e � 0:9 and within a
factor of �3 for escape for e � 0:5, except for case 16. In the
worst cases for candidacy K Bt

can agrees with K within a factor of
�5 for e ¼ 0:4 and �2 for e � 0:5, except for case 16.

The relativemagnitude ofK also varies with ap andmp. Using
equations (23)–(25) we can derive the dependences of the ratios
asKesc/Kcol / apm

2=3
p for e � 0:4 andKcan/Kcol / a2pm

2=3
p a�1

can for

Fig. 11.—Efficiencies Kcol (dashed line), Kesc (dotted line), and Kcan (solid
line) plotted against e in the standard case [(i; ap; mp; acan) ¼ (0:05; 5 AU; 1mJ;
3000 AU)] for � ¼ 0. The curves without symbols show the empirical fits.

Fig. 12.—Same as Fig. 11, but for � ¼ �3/2.

Fig. 13.—Efficiencies K Bt
col (dashed line), K Bt

esc (dotted line), and K Bt
can (solid

line) shown against e in the cases for Jupiter [(ap; mp) ¼ (5:2 AU; 0:95mJ);
circles], Saturn [(ap; mp) ¼ (9:6 AU; 0:29mJ); crosses], Uranus [(ap; mp) ¼
(19:2 AU; 0:044mJ); triangles], and Neptune [(ap; mp) ¼ (30:1 AU; 0:052mJ);
squares] for i ¼ 0:05 and acan ¼ 3000 AU.
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e � 0:5. These relations imply that planets with large semi-
major axes and/or large mass produce escapers and candidates
effectively compared to the production of colliders.

5.2. Standard Disk

Figure 12 shows K against e in the standard case and for
� ¼ �3/2, which is the standard value for protoplanetary disks
(Hayashi 1981). The integration range is from ain ¼ 0 to aout ¼ 1.
The dependences of Kcol, Kesc, and Kcan on e are stronger than
for the flat disk model. The relations among Kcol, Kesc , and Kcan

are almost the same as for the flat disk model. The efficiencies
Kesc and Kcan exceed Kcol at e ¼ 0:5 and e ¼ 0:9, respectively.

The empirical formulae Kfit for � ¼ �3/2 are

K Bt
col � 9 ; 10�6e�1 sin�1 i

ap

AU

� ��2
mp

mJ

� �4=3

; ð26Þ

K Bt
esc � 1:3 ; 10�5(1� e)�1 sin�1 i

ap

AU

� ��1
mp

mJ

� �2

; ð27Þ

K Bt
can � 1:9 ; 10�5(1� e)�2 sin�1 i

mp

mJ

� �2
acan

AU

� ��1

: ð28Þ

These empirical fits are plotted in Figure 12.
The fit of K Bt

col agrees well with Kcol within �10% error for
e � 0:6. For e � 0:7 the errors are larger and within�40%. The
fit of K Bt

esc agrees with Kesc within a factor of�2 for e ¼ 0:5 and
within �30% error for e � 0:5. The fit of K Bt

can agrees with Kcan

within a factor of �2 for e ¼ 0:4. For e � 0:5, K Bt
can and Kcan

show good agreement within �15% error. Compared with the
flat disk model, the errors between K and Kfit of escape and
candidacy are small. This is because the contributions of P at
large a, where the differences between P and Pfit are large, are
weakened for small �.

The efficiencies in other cases are also approximated by Kfit,
with errors similar to the standard case. In the worst cases Kfit

agrees withKwithin�50% error for collision for 0:1 � e � 0:9
and within a factor of �3 for escape for e � 0:5. In the worst
cases for candidacy, K Bt

can expresses Kcan within a factor of �4
for e ¼ 0:4 and �2 for e � 0:5.

5.3. Application to the Solar System

We apply the results of P to the solar system and compare the
K-value of the four giant planets, Jupiter, Saturn, Uranus, and
Neptune, using the empirical fitsK Bt

col,K
Bt
esc , andK

Bt
can. We use the

present values of ap and mp and assume the eccentricities of
the planets as ep ¼ 0.We adopt � ¼ �3/2, which corresponds to
the standard protoplanetary disk for the solar system. The in-
tegration range is from ain ¼ 0 to aout ¼ 1.

Figure 13 shows K Bt
col , K

Bt
esc , and K Bt

can for the giant planets
against e for i ¼ 0:05 and acan ¼ 3000 AU. Jupiter always has
the highest K fit because of having the largestmp. Among the four
planets, the inner planets have higher K Bt

col, and the massive
planets have higher K Bt

can. For escape, Uranus and Neptune have
almost the same values of K Bt

esc. The relative magnitudes be-
tweenK Bt

col andK
Bt
esc and those between K

Bt
esc and K

Bt
can do not vary

with the planets. All K Bt
esc values exceed K Bt

col and K Bt
can for

e � 0:5. Only the relative magnitudes between K Bt
col and K Bt

can

vary slightly with the planets. For Jupiter, Saturn, and Uranus
K Bt
can exceedsK

Bt
col for e ¼ 0:9. For Neptune K Bt

can exceedsK
Bt
col for

e � 0:8.
Next we consider the case in which i is proportional to the

reduced Hill radius of the planet: h ¼ rH/ap. For each planet we

set the inclination of the planetesimals to i ¼ h. This application
reflects that planetesimals around a planet are excited to the
degree that i / h (Ida & Makino 1993). Figure 14 shows K Bt

col ,

K Bt
esc
, and K Bt

can for the giant planets against e for i ¼ h and
acan ¼ 3000 AU. The relative importance of the planets in each
Kfit and the relation amongKfit values for a planet are almost the
same as for i ¼ 0:05. Compared to the case for i ¼ 0:05, Kfit

slightly decreases for Jupiter because for Jupiter i > 0:05. For
other planets, as i < 0:05, Kfit increases. In this model Jupiter
still has the highest Kfit, despite the disadvantage of having the
highest i among the four planets.
In the real solar system planets have finite ep; thus, the results

of circular restricted three-body formalism may not be directly
applicable. However, the ep values of the four giant planets are
small (ep ’ 0:05) and do not make any large differences in K.
We perform calculations in the standard case with ep ¼ 0:05
and find that the difference between K-values for ep ¼ 0 and
0.05 is less than 10% for collision and less than 3% for escape.
For candidacy the difference is typically within �5%, with a
maximum difference of �25%.

6. SUMMARY AND DISCUSSION

We performed numerical calculations of the first dynamical
stage of comet cloud formation, scattering of planetesimals by a
planet. The orbital evolution of planetesimals was investigated
using circular restricted three-body formalism. We considered
planets of mp ¼ 0:1 10ð ÞmJ and ap ¼ 1 30 AU and planetes-
imals of e ¼ 0:1 0:9 and i ¼ 0 0:1.
We obtained the probabilities P of collision with a planet, es-

cape from a planetary system, and candidacy for inclusion in a
comet cloud for a single encounter as functions of orbital pa-
rameters of planets and planetesimals. We found that a plane-
tesimal with an initial eccentricity of e k 0:4 can escape from
the planetary system or be a candidate for the comet cloud due
to scattering by a planet. The probability of any planet pro-
ducing escapers is always much higher than that of producing

Fig. 14.—Efficiencies K Bt
col (dashed line), K Bt

esc (dotted line), and K Bt
can (solid

line) shown against e in the cases for Jupiter [(i; ap; mp) ¼ (0:0683; 5:2 AU;
0:95mJ); circles], Saturn [(i; ap; mp) ¼ (0:0457; 9:6 AU; 0:29mJ); crosses],
Uranus [(i; ap; mp) ¼ (0:0244; 19:2 AU; 0:044mJ); triangles], and Neptune
[(i; ap; mp) ¼ (0:0258; 30:1 AU; 0:052mJ); squares] for acan ¼ 3000 AU.
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candidates, since the energy range of the comet cloud is narrow.
Furthermore, the production ratio of candidates to escapers is
independent of mp. We also derived simple empirical formulae
for these probabilities that are accurate enough to use for order-
of-magnitude estimation. Using the probabilities and assuming
the distribution of planetesimals, we obtained the efficiencies K
of planets for collision, escape, and candidacy.

We applied the results to the giant planets in the solar system
and the standard disk model for solar system formation. We
found that among the four giant planets, Jupiter is most re-
sponsible for producing candidates for elements of the Oort
Cloud insofar as the inclination of planetesimals is constant or
proportional to the reduced Hill radius of each planet.

Simulations in Dones et al. (2006) showed that the typical
comet in the Oort Cloud is a planetesimal originally from the
Uranus-Neptune region, placed in the Oort Cloud by Saturn.
Dones et al. (2006) calculated the efficiency 
 for each planet,
which is the ratio of the number of planetesimals remaining
in the Oort Cloud to that of planetesimals that had close en-
counters with the planet after 4 Gyr. The efficiencies for Jupiter
and Saturn are �2% and are about 1/10 of those for Uranus or
Neptune. They concluded that Jupiter and Saturn eject from the
solar system many planetesimals that had close encounters with
them and that their efficiencies for populating the Oort Cloud
are low compared to those for Uranus and Neptune. On the
other hand, what we evaluate as Pcan is the probability of the
formation of candidates from among all planetesimals with a
certain e and i and on crossing orbits with a planet, taking into

account not only close encounters with the planet but also dis-
tant encounters. Our results show that under the same condi-
tions for planetesimals, Jupiter has the highest Pcan among the
four planets, or the highest potential ability to form candidates.

In this paper we investigated the elementary process of scat-
tering of planetesimals by a planet and applied the results to
simple planetesimal disk models. In order to construct a more
realistic formation scenario of a comet cloud, we have to clarify
the number and orbital distributions of planetesimals around
planets during and just after planet formation. The distributions
are affected by the structure of planetary systems, the inter-
actions among planetesimals, and the existence of the gas disk.
By applying our results to the realistic distributions of plane-
tesimals, we will be able to discuss a more realistic scenario of
comet cloud formation.
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