1		
2		
3 4	1	Science-based decision-making on complex issues: Marcellus shale
4 5	2	gas hydrofracking and New York City water supply
6	2	gas nyuron acking and ivew rork city water suppry
7		
8	3	Timothy T. Eaton
9		
10 11	4	School of Earth and Environmental Sciences
12		
13	5	Queens College - City University of New York
14		
15	6	65-30 Kissena Blvd.
16 17		
18	7	Flushing, NY 11367 U.S.A.
19		
20	8	Phone: 718 997-3327
21		
22	9	Fax: 718 997-3299
23 24		
24	10	Timothy.Eaton@qc.cuny.edu
26		
27	11	Abstract
28		
29 30		
31	12	Complex scientific and non-scientific considerations are central to the
32		
33	13	pending decisions about "hydrofracking" or high volume hydraulic
34	14	fracturing (HVHF) to exploit unconventional natural gas resources
35	15	worldwide. While incipient plans are being made internationally for major
36 37	16	shale reservoirs, production and technology are most advanced in the
38	17	United States, particularly in Texas and Pennsylvania, with a pending
39	18	decision in New York state whether to proceed. In contrast to the narrow
40	19	scientific and technical debate to date, focused on either greenhouse gas
41		
42 43	20	emissions or water resources, toxicology and land use in the watersheds
44	21	that supply drinking water to New York City (NYC), I review the scientific
45	22	and technical aspects in combination with global climate change and other
46	23	critical issues in energy tradeoffs, economics and political regulation to
47	24	evaluate the major liabilities and benefits. Although potential benefits of
48 49	25	Marcellus natural gas exploitation are large for transition to a clean energy
49 50	25 26	economy, at present the regulatory framework in New York State is
51		
52	27	inadequate to prevent potentially irreversible threats to the local
53	28	environment and New York City water supply. Major investments in state
54 55		1
55 56		1
57		
58		
59		
60 61		
61 62		
63		
64		

1				
2				
3	29		and federal regulatory enforcement will be required to avoid these	
4 5	30		environmental consequences, and a ban on drilling within the NYC water	
6	31		supply watersheds is appropriate, even if more highly regulated Marcellus	
7	32		gas production is eventually permitted elsewhere in New York state.	
8 9				
10	22			Formatted: Font: Not Bold
11	33		Keywords: hydrofracking, energy, fossil fuel; unconventional; natural	
12	34		gas; shale; water resources; environment; economics; regulation	
13 14				
15	35		Key Points:	
16				
17				
18 19	36	•	Previous analyses have taken too narrow a perspective on the risks and	
20	37		benefits of hydrofracking or HVHF in New York state, with implications	
21				
22 23	38		for unconventional natural gas production elsewhere around the world	
23	39	•	Benefits of HVHF natural gas production for reducing dependence on even	
25	57	·	benefits of fivini hatural gas production for reducing dependence on even	
26	40		more damaging coal-fired electrical power generation are great but so are	
27 28	41		and a sublic back lisbilities	
29	41		environmental and public health liabilities	
30	42	•	Protecting watersheds for NYC and other major municipality water supply	
31				
32 33	43		is paramount but strengthening of federal and state regulatory oversight is	
34	44		needed for reducing potential adverse impacts of HVHF elsewhere in NY	
35				
36 37	45		state	
38				
39	46			
40				
41 42				
43	47	1.	Introduction	
44	10			
45 46	48		There is an urgent need to reduce the current global energy dependence on	
40 47	49	fossil	fuels, because of the risks of rising greenhouse gas (GHG) emissions	
48				
49	50	driving	g global climate change (IPCC, 2007), and because most conventional oil	
50 51	51	and ga	s reserves may no longer be reliably supplied due to political instability.	
52		-		
53	52	New u	nconventional discoveries have dramatically expanded estimates of natural	
54				
55 56			2	
57				
58				
59 60				
60 61				
62				
63				
64				

53	gas reserves (US DOE, 2009; IEA, 2011; US EIA, 2012) and natural gas is a
54	preferred fuel for energy-efficient electricity production because it is cleaner-
55	burning compared to coal (Hultman et al. 2011). Recent discovery of
56	unconventional gas in the Marcellus shale in the northern Appalachian mountai
57	of the US provides a potential new energy source close to major mid-Atlantic
58	urban centers. Therefore, many have advocated a greater use of natural gas, as
59	"bridge" fuel towards a renewable energy future (e.g. IPCC, 2007; Moniz et al.,
50	2010; Jenner and Lamadrid, 2012) despite controversy over the economics
51	(Hughes, 2011; Brooks, 2012) and life-cycle GHG costs (Burnham et al., 2012;
52	O'Sullivan and Paltsev, 2012) of unconventional gas compared to other energy
63	options.
64	Unconventional gas production from shales like the Marcellus Formatio
65	in the eastern United States (Soeder and Kappel, 2009; Kerr, 2010; Kargbo et a
66	2010; Lee et al., 2011) raises important questions about scientific decisionmaki
67	environmental protection, public health and water resources (US GAO, 2012).
58	For this reason, in New York State, the governor has imposed a de-facto
69	moratorium on the method for gas production: "hydrofracking" or high-volume
70	hydraulic fracturing (HVHF), pending completion of further environmental and
71	public health studies. An ongoing state regulatory process has resulted in a public
72	document, the draft supplemental generic environmental impact study (dSGEIS
73	available at http://www.dec.ny.gov/energy/58440.html), which is currently
74	undergoing review by the New York State Departmental of Environmental
75	Conservation (DEC). In contrast to a point-by-point evaluation of that lengthy
76	draft dSGEIS, this paper focuses on the interaction among scientific and technic
77	issues of local environmental protection and other relevant spheres of concern t

1		
2		
3 4	78	humankind such as energy policy, land use, economics, regulation, politics and
5 6	79	ultimately global climate change. These interactions really determine how to
7	80	prioritize risks for health and wellbeing of affected populations. Formal risk
8 9	81	assessment is premature without analysis of such interactions and initial
10 11	82	screening of risk (AEA Technology 2012). This work therefore involves more the
12 13	83	problem formulation of risk as opposed to formal risk assessment (US EPA, 2003;
14		
15 16	84	US NRC, 2008).
17 18	85	Public controversy over the hydraulic fracturing methods necessary for
19 20	86	unconventional gas production has stimulated numerous highly focused and
21		conflicting contributions in the literature on narrow technical issues (Schon 2011;
22 23	87	
24 25	88	Pyron 2011; Osborn et al. 2011; Howarth et al., 2011; Warner et al., 2012;
26 27	89	O'Sullivan and Paltsev, 2012). While clarity on narrow issues is important, a sole
28	90	focus on scientific and technical aspects is unlikely to have prevented such recent
29 30	91	environmental catastrophes as the Fukushima Daiichi nuclear plant
31 32	92	explosions/tsunami disaster in Japan or the Deep Horizon oil-well blowout in the
33	93	Gulf of Mexico. A better analogy to potential unforeseen impacts of Marcellus
34 35		
36 37	94	natural gas production might be the slower-developing but even more disastrous
38 39	95	epidemic of arsenic poisoning due to widespread consumption of contaminated
40	96	groundwater in Bangladesh (Dhar et al., 1997). These unforeseen catastrophes
41 42	97	result not just from scientific uncertainty but more importantly from an avoidable
43 44	98	reactive cascade of events driven by economic and political choices.
45 46		
47	99	While some have touched on broader considerations concerning Marcellus
48 49	100	shale gas production (Howarth and Ingraffea, 2011; Engelder, 2011),
50 51	101	scientifically-based decisionmaking needs to explicitly account for non-scientific
52 53	102	issues related to human activities. Despite general studies of the intersection
54		
55 56		4
57		
58 59		
60		
61		
62 63		
64		
65		

1		
2 3	103	between energy use and water resources (Harte and El-Gasseir 1978; Harte 1983;
4 5	104	Gleick 1994, Jenner and Lamadrid, 2012), there are few pertinent tradeoff
6 7	105	analyses in specific situations (Rahm and Riha 2012; Stephenson et al., 2012).
8 9	106	Scientists have particular responsibilities (Hansen 2007, Maxim and van der
10 11	107	Sluijs, 2011) to help develop timely, systematic approaches that consider
12 13	107	overlapping scientific, technical, environmental, sociological, economic and
14 15	100	political considerations, evaluate their relative importance for the issue at hand,
16 17	110	and thereby formulate recommendations for policy decisionmaking.
18 19	110	and thereby formulate recommendations for poncy decisionmaking.
20 21	111	The novel aspect of this review is that it combines an analysis of the
21 22 23	112	scientific and technical aspects of hydraulic fracturing to produce natural gas from
24	113	the Marcellus formation in New York state compared to the risks of endangering
25 26	114	the New York City (NYC) water supply (Figure 1), while also considering the
27 28	115	broader impacts on global climate change and even more critical issues regarding
29 30	116	energy tradeoffs, economics and political regulation. Because of its similarity to
31 32	117	larger and equally time-sensitive natural resource issues that require policy
33 34	118	responses, like global climate change, decisions about Marcellus shale gas drilling
35 36	119	have much larger implications beyond the U.S. Mid-Atlantic region. Although
37 38	120	the United States is currently the only country with widespread unconventional
39 40	121	natural gas production using hydraulic fracturing, many countries are thought to
41 42	122	have significant unconventional natural gas potential (Rogers 2011), and concerns
43 44	123	have been expressed by the European Union about the potential environmental
45 46	124	and human health risks of such production (AEA Technology 2012).
47 48	125	Starting with a narrow perspective on the scientific (hydrological and
49 50		chemical) and technical aspects of water resources and natural gas drilling in the
51 52	126	
53 54	127	Marcellus shale, the underlying land-disturbance and geological factors are
55 56		5
57 58		
59 60		
61 62		
63 64		
65		

1		
2		
3 4	128	analyzed, then the broader energy and economic aspects, followed by the
5	129	regulatory and ultimately political foundations of this issue. The intent is to
7 8	130	develop a proactive framework for rational, timely decision-making by weighing
9 10	131	relative merits in the face of incomplete information, and seek a broader
11 12	132	perspective on common ground for consensus in the case of Marcellus shale
13 14 15	133	drilling in and near the watersheds that provide New York City water supply.
16 17 18	134	2. Hydrological and chemical aspects
19 20	135	2.1 Protection of the New York City water supply
21 22 23	136	The almost nine million residents of New York City have been supplied
23 24 25	137	since 1915 with drinking water from the Catskill-Delaware watersheds west of the
26 27	138	Hudson River, which directly overlie the northeastern corner (about 4100 km^2 or
28 29	139	8.5%) of the Marcellus shale subcrop that extends from the Appalachians north
30 31	140	across the southern tier of New York State. Land surface runoff from these
32 33	141	watersheds drains into several reservoirs from which water is transported via
34 35	142	aqueducts and tunnels to the city (Figure 1). New York City has the largest
36 37	143	unfiltered water supply (NYC DEP, 2010) among United States large cities, most
38 39 40	144	of which operate expensive water filtration and treatment facilities.
41 42	145	Over the last couple decades, New York City Department of
43 44	146	Environmental Protection (NYC DEP) has demonstrated every five years that the
45 46	147	system meets strict criteria according to the US Environmental Protection Agency
47 48	148	(US EPA) Surface Water Treatment Rule, thereby enabling a federal Filtration
49 50	149	Avoidance Determination (FAD) (NYC DEP, 2010). To accomplish this, the
51 52	150	NYC DEP is pursuing an aggressive preventive campaign of subsidies for
53 54 55	151	agricultural best management practices (BMPs), in collaboration with large and
56 57		
58		
59 60		
61		
62		
63		

152	small landowners, to maintain contaminants such as excess coliforms, pathogens,
153	turbidity and nutrients considerably below federally-mandated levels (NYC DEP,
154	2010). Water quality is carefully managed in all watersheds, and protection
155	efforts in the largest and westernmost Cannonsville watershed have been topics of
156	research and modeling (Bryant et al., 2008, Rao et al. 2009).
157	
158	2.2 New water resources threats
159	In these watersheds supplying New York City potable water, drilling for
160	Marcellus shale gas development presents additional threats to water resources,
161	which the current BMPs cannot mitigate. Extracting natural gas from shale (Kerr
162	2010; Lee et al., 2011) involves the latest drilling industry techniques of
163	horizontal directional drilling and high-volume hydraulic fracturing (HVHF,
164	hydrofracturing or "hydrofracking") (US GAO, 2012; Kargbo et al., 2010; Bybee
165	2007). These techniques use 7500-38,000 m^3 of water per well (Kargbo et al.
166	2010; US DOE-NETL 2010) and various chemical additives (Waxman et al.
167	2011) injected at high pressures to open and force sand into fractures in the rock,
168	enabling release of gas. Although the Marcellus shale lies hundreds to thousands
169	of meters below land surface, these drilling activities present a threat to both
170	groundwater and surface water resources.
171	2.3 Well drilling process
172	The well-drilling process itself, developed from oil and mineral
173	exploration, uses a clay slurry as lubricant. The base fluid can be water, oil, or a
174	synthetic such as vegetable esters or olefins (Sadiq et al., 2003). Although water-
175	based fluids (WBF) are more environmentally benign, oil-based fluids (OBF) or
	· · · · · · · · · · · · · · · · · · ·

1		
1 2		
3 4	176	synthetic-based fluids (SBF) are often preferable in shales because they are more
5 6	177	stable, less reactive and support the borehole better. OBF-saturated rock
7 8	178	fragments, or cuttings, removed from the borehole during drilling can be a
9 10	179	significant source of contaminants to the environment because they do not
11	180	degrade readily (Sadiq et al., 2003). Few studies have evaluated relative merits
12 13	181	and risks of these various fluids and rock cuttings, however the high levels of
14 15	182	natural radioactivity in cuttings from some Marcellus shale well borings have
16 17 18	183	raised concern (Kargbo et al., 2010, Lee et al., 2011).
19 20	184	Clear evidence for past contamination by drilling fluids is slim (Kargbo et
21 22	185	al., 2010; US EPA 2011), but natural gas that seeps into shallow groundwater
23 24	186	presents an explosion risk if it degasses into confined areas such as basements.
25 26	187	Although methane, the major component of natural gas, occurs naturally in
27 28	188	shallow groundwater (Molofsky et al., 2011) in northern Pennsylvania and
29 30	189	southern New York, controversy surrounds the role of gas drilling in shallow
31 32	190	aquifer contamination. Careful geochemical analysis, and methane and strontium
33 34	191	isotopic signatures (Osborn et al., 2011; Warner et al. 2012) have now shown that
35 36	192	some methane and groundwater salinization in shallow drinking water wells is
37 38	193	attributable to natural upward seepage of natural gas and brine, respectively, from
39 40	194	reservoirs like the Marcellus formation. This has important implications for large-
41 42	195	scale development of natural gas drilling using thousands of boreholes reaching
43 44	196	depths of over a mile below land surface, as described later.
45 46		
47 48	197	2.4 Surface water impacts
49 50	198	The greater threat appears to be to surface water because of local water
51 52	199	demand and wastewater disposal, although groundwater concerns are revisited
53		
54 55		8
56		
57 58		
58 59		
60		
61 62		
62 63		
64		
65		

6	E
ю	С

1		
2		
3 4	200	later in conjunction with bedrock integrity and well abandonment issues. There is
5 6	201	also a need at land surface for effective management and safe disposal of the tens
7 8	202	of thousands of cubic meters of water and additives (sand and chemicals) needed
9 10	203	per well for hydrofracturing. The final environmental impact assessment
11 12	204	commissioned by the New York City Department of Environmental Protection
13 14	205	(Hazen and Sawyer, 2009) assumes a full build-out of up to 6000 hydrofractured
14 15 16	206	Marcellus shale gas wells in the NYC water supply watersheds and presents a
17	207	comprehensive evaluation of the environmental risks, the most important of which
18 19	208	are addressed here.
20 21		
22 23	209	Although few have examined water usage impacts of shale-gas drilling
24 25	210	(O'Shea, 2011; Rahm and Riha 2012), natural gas production from shales
25 26 27	211	elsewhere, using similar drilling methods, provides examples of likely impacts on
28	212	surface water availability. Permitting requests of up to $2.5 \times 10^5 \text{ m}^3$ of water per
29 30	213	year over 10 years have been reported for the Barnett shale in Texas (Rahm,
31 32	214	2011). After initial hydrofracturing, wells decline rapidly in gas output after the
33 34	215	first year or two, and repeated hydrofracturing and infill drilling is used to
35 36	216	maximize ultimate recovery (as is now happening in Texas), which could increase
37 38	217	water demand (US DOE-NETL 2010). More comprehensive analyses (Elcock,
39 40	218	2010) indicate that increased exploitation of unconventional energy resources like
41 42	219	gas, and their use for electrical power generation will require significant growth in
43 44	220	U.S. freshwater use.
45 46	221	For example, in the Susquehanna River basin, overlying the Marcellus in
47 48	221	western NY state (Figure 1), a recent analysis (Rahm and Riha 2012) suggested
49 50		
51 52	223	that surface water availability in all but the largest rivers, and effective treatment
53 54	224	capacity is inadequate to support the drilling of hundreds of gas production wells
55		9
56 57		
58		
59 60		
61		
62 63		
64		
65		

-		
1 2		
3 4	225	per year. In the NYC supply watersheds, projected diversions of water needed for
5	226	hydrofracturing a maximum build-out of wells could range from 0.8 to up to 1.5
7 8	227	$x10^7 \text{ m}^3$ per year of additional demand (Hazen and Sawyer, 2009). The higher
9 10	228	level of diversion represents 1000x the amount anticipated to require significant
11 12	229	expansion of NYC water supply storage for maintaining supply safety (Flexible
13 14	230	Flow Management Program, 2008). Alternatively, groundwater withdrawals to
15 16	231	supply such hydrofracturing would deplete shallow aquifers and baseflow that
17 18	232	sustains current streamflow, also adversely affecting watershed storage.
19 20	233	Water quality impacts from natural gas exploitation depend on the
21	224	constituents of produced mastemator from drilling experisions (Fakhry'l Desi et al
22 23	234	constituents of produced wastewater from drilling operations (Fakhru'l-Razi et al.,
24 25	235	2009), which include both additives (Waxman et al., 2011; Aminto and Olson
26 27	236	2012) and natural contaminants such as minerals and radionuclides in the
28 29	237	Marcellus (Kargbo et al., 2010; Lee et al., 2011). As with coalbed methane
30 31	238	(CBM) extraction (Clarke 1996; Healy et al., 2008), produced waste-water poses
32 33	239	the most important environmental risks, often having total dissolved solids (TDS)
34 35	240	concentrations in the tens to hundreds of thousands of mg/L (US GAO, 2012). Of
36 37	241	the total volumes of water needed for hydrofracturing the Marcellus shale, gas
38 39	242	production causes 10-40% return flow up the borehole (Gregory et al., 2011;
40 41	243	Hazen and Sawyer, 2009) although an increasing proportion of this produced
42 43	244	water is now recycled (US GAO, 2012). Recycling or disposal of the remaining
44	245	waste brines will likely require dilution and treatment because deep reinjection, a
45 46 47	246	common method in oilfields, is more expensive.
48 49	247	Industry accounts of hydrofracturing de-emphasize the amount of chemical
50 51	248	additives, many of which are carcinogenic, as a proportion of hydrofracturing
52 53	249	water (1-2% by volume). However, over the 20 year timeframe projected for the
54 55		10
56 57		
58		
59		
60 61		
62		
63		
64 65		

1		
2		
3 4	250	development of Marcellus shale gas drilling, the total mass of chemical additives
5 6	251	(not including sand proppant) amounts to several hundred tons per day, and over
7 8	252	500 tons per day if repeated hydrofracturing is used to delay inevitable well
9 10	253	production declines (Hazen and Sawyer, 2009). In addition to diesel fuel, until
11 12	254	recently used in hydrofracturing (Kargbo et al., 2010), other less-well-known
13	255	hydrocarbon additives are hazardous to human and environmental health
14 15	256	(Waxman et al. 2011; Aminto and Olson 2012). These include biocides
16 17	257	(Struchtemeyer et al. 2012), endocrine-disrupting compounds, mutagens,
18 19	258	teratogens and other toxins that present human health risks at very low dosages
20 21	259	with long-term exposure (Hazen and Sawyer, 2009). The mere introduction and
22 23	260	usage of hundreds of tons per day, over decades, of such toxic chemical additives
24 25	261	in watersheds that provide drinking water to millions of New York City residents,
26 27	262	is a significant cause of concern.
28 29		
30	263	Although hydrofracturing fluids can be highly variable in their
31 32	264	composition depending on the geology and fracturing outcome desired, most of
33 34	265	these additives are unregulated with regard to drinking water standards and do not
35 36	266	have maximum contaminant levels (MCLs) established by federal (US EPA) or
37 38	267	state (NYS Dept of Health) authorities. A recent modeling study (Aminto and
39 40	268	Olson 2012) of a hypothetical spill into air, water and soil of additives used in
41 42	269	Pennsylvania Marcellus hydrofracturing has shown that resulting concentrations
43 44	270	in a receiving surface water body exceed the 5 $\mu g/L$ MCL standard for many
45 46	271	organic compounds in New York state. Furthermore, the environmental impact
47 48	272	study commissioned by the NYC Dept of Environmental Protection (Hazen and
49 50	273	Sawyer, 2009) presents two dilution scenarios in which acute spills of
51 52	274	hydrofracturing chemicals from a dozen wells or less could threaten the volumes
53 54		
55 56		11
57 58		
59 60		
61 62		
63		
64 65		

275	of water contained in several major reservoirs (assumed partial mixing, reservoirs
276	at low levels). Resulting exceedances of the US EPA MCL in those reservoirs
277	highlights the severe risk posed by large-scale Marcellus shale gas exploitation.
278	The risk is likely even greater, and more insidious, of numerous small site spills
279	which go undetected and eventually enter drinking water reservoirs, with
280	irreversible consequences. Aggressive enforcement of BMPs for pollution
281	prevention, stormwater control, waste minimization and handling could reduce,
282	but never eliminate such risk.
283	
205	
284	3. Land-disturbance, and geologic factors
285	The expansion of similar unconventional natural gas drilling in other areas
286	of the United States has been dramatic (Figure 2) in the last decade. While future
287	growth is difficult to predict (recent production drilling in the Barnett shale has
288	since lagged due to declines in natural gas prices (Rogers, 2011)), projected
289	expansion of the Marcellus shale drilling from neighboring Pennsylvania into
290	New York is likely to follow similar trends, starting from the date that HVHF
291	permits are issued. To compensate for the different regional extents of the shales
292	in the locations illustrated, the data (adapted from Hazen and Sawyer 2009) have
293	been normalized for well density per 2600 km^2 (1000 mi^2). However, even this
294	data reduction cannot fully account for evolution in well densities as natural gas
295	fields are developed, because future well siting and infill development depends on
296	production records of existing wells. Nevertheless, since exponential trends
297	cannot be sustained, applying a logistic function fitted to existing data for the
298	much smaller Barnett Formation in Texas, but offset in time, suggests that
	12

1		
2 3	299	extremely rapid development can be expected in the Marcellus in New York State
4		
5 6	300	for at least 6-8 years from initiation.
7 8	201	
9	301	3.1 Land use changes
10 11	302	Such large-scale exploitation of natural gas resources from the underlying
12 13	303	Marcellus shale would necessarily fragment the largely rural, forested and
14 15	304	agricultural landscape near the NYC water supply watersheds. Of immediate
16 17	305	concern are land use changes such as the construction of roads, well-pads and
18 19	306	pipelines that accompany intensive natural gas drilling. While the impact of each
20 21	307	individual well drilling operation is relatively minor, the cumulative impact of
22 23	308	thousands of wells scattered across the watershed threatens the quality of runoff to
24 25	309	streams and water supply reservoirs over time (Mitchell and Casman, 2011).
26 27	310	Experience in other shale-gas-producing areas shows that a density of 3.5 or more
28 29	311	wells per km ² can be anticipated in highly productive areas for fully developed
30 31	312	gas fields (Hazen and Sawyer, 2009; US DOE NETL 2010), although these
32 33	313	densities have not been reached to date in most unconventional fields (Figure 2).
34 35	314	Multiple directional wells are expected to be drilled from each wellpad for natural
36 37	315	gas production in the Marcellus shale. Each wellpad is likely to have a footprint
38 39	316	of about 2.8 ha., part of which will remain in operation for the well's productive
40 41	317	life of up to 20 years.
42 43		
44	318	Industrial operation involving heavy truck traffic requires a compacted
45 46	319	gravel substrate, leading to increased stormwater runoff and erosion potential
47 48	320	(Hazen and Sawyer, 2009). Each well is estimated to require 900 to 1300 truck
49 50	321	access trips, up to 6600 for multiple horizontal well pads (NTC, 2009), resulting
51 52	322	in tens to hundreds of thousands of additional truck trips for many wells over a
53 54		
55		13
56 57		
58		
59 60		
61		
62 63		
64		
65		

1		
2		
3 4	323	large area. In Wyoming, Huntington and Ksaibati (2009) showed that county
5 6	324	roads suffered severe damage from heavy truck traffic associated with well
7 8	325	drilling, with one half of road repairs concentrated on only 15% of the roads.
9	326	These impacts in a semiarid environment likely underestimate the damage and
10 11	327	repair costs necessary for a more humid climate like New York.
12 13		
14 15	328	3.2 Aquifer, well and bedrock integrity
16 17	329	Contamination of shallow aquifers, used for individual home water supply
18 19	330	in rural areas, could result from either infiltration of wastewater (Healy et al.,
20 21	331	2008) or subsurface leakage of drilling fluids or natural gas through or along drill
22 23	332	casings (ODNR, 2008; US EPA 2011). Standard techniques in well drilling, such
24 25	333	as cementing casing pipe, are increasingly scrutinized (Ladva et al., 2005) since
26 27	334	effective seals may not be achieved in many cases (Harrison, 1985; US EPA,
28 29	335	2011). Although casing defects and the subsurface migration of natural gas
30 31	336	through fractures are rare, the consequences can be catastrophic, resulting in
32		
33 34	337	surface explosions over 11 km away from a leaking deep gas storage well in
35 36	338	Kansas in 2001 (Nissen et al. 2004a, 2004b; Watney et al. 2003). Regulatory
37 38	339	oversight of natural gas and oil-well seals has lagged the proliferation of well
39	340	borings in the 20th century, such that even in a highly regulated operation in
40 41	341	Alberta, Canada, up to 10% of existing wells have been found to have inadequate
42 43	342	seals, though more recent failure rates are down to 2% (Watson and Bachu,
44 45	343	2009).
46 47		
48	344	The geology underlying the NYC water supply watersheds (Hazen and
49 50	345	Sawyer, 2009; US DOE NETL 2010), consists of thin surficial deposits and
51 52	346	Devonian-age sedimentary rocks (sandstone, shale, siltstone and limestone) that
53		
54 55		14
56		
57 58		
59		
60		
61 62		
63		
64		
65		

1347include the Marcellus shale. Although conventional hydrogeologic analyses348assume extremely slow flow rates through these rocks based on equivalent porous349medium assumptions (ICF International, 2009), more sophisticated detailed9350studies (e.g., Runkel et al., 2006) show that even non-karstic sedimentary rocks10351(sandstone and shale) contain significant brittle fractures, which allow faster12352preferential flowpaths along bedding-planes over distances of kilometers. While13353solute transport is typically slower than pressurized gas flow in such fractures,16354both are highly unpredictable and essentially undetectable, barring major events.18355The limited flow between deep and shallow formations that has already been20356shown using isotope tracers (Warner at al., 2012) can be locally enhanced by23357interconnection of existing preferential flowpaths by well drilling and24358hydrofracturing, which destabilize existing hydraulic gradients by changing25359pressure regimes.26360Understanding of flow and leakage through such heterogeneous connected
4311Include the functions state. Function of the function of
6349medium assumptions (ICF International, 2009), more sophisticated detailed9350studies (e.g., Runkel et al., 2006) show that even non-karstic sedimentary rocks10351(sandstone and shale) contain significant brittle fractures, which allow faster12352preferential flowpaths along bedding-planes over distances of kilometers. While14353solute transport is typically slower than pressurized gas flow in such fractures,16354both are highly unpredictable and essentially undetectable, barring major events.18355The limited flow between deep and shallow formations that has already been20356shown using isotope tracers (Warner at al., 2012) can be locally enhanced by23357interconnection of existing preferential flowpaths by well drilling and24358hydrofracturing, which destabilize existing hydraulic gradients by changing26359pressure regimes.
7349medium assumptions (ICF International, 2009), more sophisticated detailed9350studies (e.g., Runkel et al., 2006) show that even non-karstic sedimentary rocks10351(sandstone and shale) contain significant brittle fractures, which allow faster12352preferential flowpaths along bedding-planes over distances of kilometers. While14353solute transport is typically slower than pressurized gas flow in such fractures,16354both are highly unpredictable and essentially undetectable, barring major events.19355The limited flow between deep and shallow formations that has already been20356shown using isotope tracers (Warner at al., 2012) can be locally enhanced by23357interconnection of existing preferential flowpaths by well drilling and24358hydrofracturing, which destabilize existing hydraulic gradients by changing26359pressure regimes.
9350studies (e.g., Runkel et al., 2006) show that even non-karstic sedimentary rocks10351(sandstone and shale) contain significant brittle fractures, which allow faster12351(sandstone and shale) contain significant brittle fractures, which allow faster13352preferential flowpaths along bedding-planes over distances of kilometers. While14353solute transport is typically slower than pressurized gas flow in such fractures,16354both are highly unpredictable and essentially undetectable, barring major events.18355The limited flow between deep and shallow formations that has already been20356shown using isotope tracers (Warner at al., 2012) can be locally enhanced by21356shown using preferential flowpaths by well drilling and24358hydrofracturing, which destabilize existing hydraulic gradients by changing26359pressure regimes.
11351(sandstone and shale) contain significant brittle fractures, which allow faster12352preferential flowpaths along bedding-planes over distances of kilometers. While14353solute transport is typically slower than pressurized gas flow in such fractures,16354both are highly unpredictable and essentially undetectable, barring major events.18355The limited flow between deep and shallow formations that has already been20356shown using isotope tracers (Warner at al., 2012) can be locally enhanced by21356shown using preferential flowpaths by well drilling and23357interconnection of existing preferential flowpaths by well drilling and24358hydrofracturing, which destabilize existing hydraulic gradients by changing26359pressure regimes.
13352preferential flowpaths along bedding-planes over distances of kilometers. While14353solute transport is typically slower than pressurized gas flow in such fractures,16353both are highly unpredictable and essentially undetectable, barring major events.18355The limited flow between deep and shallow formations that has already been20356shown using isotope tracers (Warner at al., 2012) can be locally enhanced by21356shown using isotope tracers (Warner at al., 2012) can be locally enhanced by23357interconnection of existing preferential flowpaths by well drilling and24358hydrofracturing, which destabilize existing hydraulic gradients by changing26359pressure regimes.
15353solute transport is typically slower than pressurized gas flow in such fractures,16354both are highly unpredictable and essentially undetectable, barring major events.18355The limited flow between deep and shallow formations that has already been20356shown using isotope tracers (Warner at al., 2012) can be locally enhanced by21356shown using isotope tracers (Warner at al., 2012) can be locally enhanced by23357interconnection of existing preferential flowpaths by well drilling and24358hydrofracturing, which destabilize existing hydraulic gradients by changing26359pressure regimes.292920
17354both are highly unpredictable and essentially undetectable, barring major events.18355The limited flow between deep and shallow formations that has already been20356shown using isotope tracers (Warner at al., 2012) can be locally enhanced by21356shown using isotope tracers (Warner at al., 2012) can be locally enhanced by23357interconnection of existing preferential flowpaths by well drilling and24358hydrofracturing, which destabilize existing hydraulic gradients by changing26359pressure regimes.292920
19355The limited flow between deep and shallow formations that has already been20356shown using isotope tracers (Warner at al., 2012) can be locally enhanced by21356shown using isotope tracers (Warner at al., 2012) can be locally enhanced by23357interconnection of existing preferential flowpaths by well drilling and242535825358hydrofracturing, which destabilize existing hydraulic gradients by changing2627359282929
21356shown using isotope tracers (Warner at al., 2012) can be locally enhanced by22357interconnection of existing preferential flowpaths by well drilling and24358hydrofracturing, which destabilize existing hydraulic gradients by changing26359pressure regimes.282920
 357 interconnection of existing preferential flowpaths by well drilling and 358 hydrofracturing, which destabilize existing hydraulic gradients by changing 359 pressure regimes. 28 29
 358 hydrofracturing, which destabilize existing hydraulic gradients by changing a b b c c c d <lid< li=""> d d d d d d<</lid<>
 27 359 pressure regimes. 28 29
29
30 360 Understanding of flow and leakage through such heterogeneous connected
31
32 361 fracture networks even in sedimentary rock requires new paradigms (Eaton, 2006,
 33 34 362 and references therein), and is at the forefront of hydrogeologic research
 35 36 363 especially for purposes of geological carbon sequestration (DOE NETL, 2010).
3738 364 Considerable information on brittle fault structures and linear features extending
3940 365 laterally for kilometers and vertically for thousands of meters has been
4142366documented by engineering studies for the emplacement of the current water
4344367367supply tunnels (Figure 1) that transport water outside the watersheds to New York
4546368City (Hazen and Sawyer, 2009). The NYS DEC dSGEIS study anticipates buffer
 47 48 369 zones between sensitive resources or infrastructure and permitted natural gas
4950370drilling locations, but the widths of those buffer zones (100s of m) are well short
5152371of the known lengths of many mapped linear fault features.
53 54
55 15 56
57
58 59 60

372	The New York City DEP has expressed concern about possible impacts on
373	this tunnel infrastructure from extensive hydrofracturing in close proximity
374	(Hazen and Sawyer, 2009). A major issue is that the tunnels extend up to 8 km
5	outside the hydrographic boundaries of the watersheds (Figure 1) and therefore
76	are not entirely included in the currently proposed protected area described in the
377	NYS DEC dSGEIS. These bedrock water tunnels lie 100-300 m below grade
378	(well below the water table), are concrete-lined, and have served well for decades,
379	but are designed to retain transported potable water, not resist external
380	overpressures. In fact, existing chronic leakage through tunnel liner cracks
81	indicates they would be vulnerable to additional damage from changing external
382	stresses, accumulation of explosive natural gas in access and maintenance
383	infrastructure and even fracture-flow contamination at occasional low operating
384	pressures (atmospheric) due to groundwater inflow (Hazen and Sawyer 2009).
385	
386	4. Energy and economic aspects
387	
	Analysis of possible impacts of Marcellus shale gas drilling must consider
	Analysis of possible impacts of Marcellus shale gas drilling must consider the resulting tradeoffs in the larger context of global climate change driven by
388	the resulting tradeoffs in the larger context of global climate change driven by
388 389	the resulting tradeoffs in the larger context of global climate change driven by
388 389 390	the resulting tradeoffs in the larger context of global climate change driven by fossil fuel GHG emissions. Specifically, compared to current domination of coal- fired electrical generation in the United States, what are the environmental
388 389 390 391	the resulting tradeoffs in the larger context of global climate change driven by fossil fuel GHG emissions. Specifically, compared to current domination of coal- fired electrical generation in the United States, what are the environmental
388 389 390 391 392	the resulting tradeoffs in the larger context of global climate change driven by fossil fuel GHG emissions. Specifically, compared to current domination of coal- fired electrical generation in the United States, what are the environmental consequences that may be avoided by a potential substitution with natural gas? In
388 389 390 391 392 393	the resulting tradeoffs in the larger context of global climate change driven by fossil fuel GHG emissions. Specifically, compared to current domination of coal- fired electrical generation in the United States, what are the environmental consequences that may be avoided by a potential substitution with natural gas? In fact, a recent study (Lu et al. 2012) has shown that such substitution has already
388 389 390 391 392 393 394	the resulting tradeoffs in the larger context of global climate change driven by fossil fuel GHG emissions. Specifically, compared to current domination of coal- fired electrical generation in the United States, what are the environmental consequences that may be avoided by a potential substitution with natural gas? In fact, a recent study (Lu et al. 2012) has shown that such substitution has already contributed to a reduction in CO ₂ emissions from US electrical generation from
 388 389 390 391 392 393 394 395 	the resulting tradeoffs in the larger context of global climate change driven by fossil fuel GHG emissions. Specifically, compared to current domination of coal- fired electrical generation in the United States, what are the environmental consequences that may be avoided by a potential substitution with natural gas? In fact, a recent study (Lu et al. 2012) has shown that such substitution has already contributed to a reduction in CO ₂ emissions from US electrical generation from 2008 to 2009. Potential economic and environmental benefits of natural gas drilling, representing a desirable transition to a cleaner energy economy, need to
388 389 390 391 392 393 394 395	the resulting tradeoffs in the larger context of global climate change driven by fossil fuel GHG emissions. Specifically, compared to current domination of coal- fired electrical generation in the United States, what are the environmental consequences that may be avoided by a potential substitution with natural gas? In fact, a recent study (Lu et al. 2012) has shown that such substitution has already contributed to a reduction in CO_2 emissions from US electrical generation from 2008 to 2009. Potential economic and environmental benefits of natural gas drilling, representing a desirable transition to a cleaner energy economy, need to be weighed against the economic and environmental costs, that are not necessarily
 388 389 390 391 392 393 394 395 396 	the resulting tradeoffs in the larger context of global climate change driven by fossil fuel GHG emissions. Specifically, compared to current domination of coal- fired electrical generation in the United States, what are the environmental consequences that may be avoided by a potential substitution with natural gas? In fact, a recent study (Lu et al. 2012) has shown that such substitution has already contributed to a reduction in CO_2 emissions from US electrical generation from 2008 to 2009. Potential economic and environmental benefits of natural gas

397 limited to New York state.

4.1 Global greenhouse gas (GHG) emissions

400	Closure of coal-fired power plants and their substitution by higher
401	efficiency, lower-emission electrical generation, like using natural gas, has been
402	identified as one of the principal options to reduce greenhouse gas (GHG)
403	emissions (Pacala and Socolow, 2004). Other than natural gas, there is no other
404	readily deployable energy generation technology that provides the necessary
405	replacement base load to balance the intermittency of renewable energy
406	generation like wind. Therefore, increased natural gas production from the
407	Marcellus would be beneficial in this regard. But economic and cleaner energy
408	benefits of natural gas may be illusory if only GHG emissions at the point of
409	combustion are considered (Hughes 2011). Furthermore, natural gas consists of
410	mostly methane, a more powerful driver of global climate change than carbon
411	dioxide (Howarth et al., 2011, Shindell et al. 2009).
412	Due to poor regulation, production and pipeline transportation of natural
413	gas causes numerous unaccounted-for sources of GHG emissions to the
414	atmosphere, the magnitude of which is under debate (Howarth et al. 2011;
415	O'Sullivan and Paltsev 2012). Unconventional gas exploitation causes methane
416	emissions from the wellhead during and after the drilling is completed, and while
417	the gas is processed and transported. These fugitive methane emissions are poorly
418	constrained (US EPA, 2010), but could conservatively amount to up to 7.9% of
419	lifecycle well production (Howarth et al., 2011). While modeling studies of GHG
420	emissions from shale gas production with differing assumptions are proliferating

421	(e.g. Jiang et al. 2011; Weber and Clavin 2012), there is a shortage of actual field
422	studies. However, recent work (Petron et al., 2012), focusing on VOCs and
423	methane from a natural gas field in Colorado, showed that the uncertainty of and
424	actual GHG emissions percentages are higher than many assumed values in the
425	models, and closer to those of Howarth et al. (2011).
426	
427	4.2 Substitution for coal, and public health impacts
428	Many existing "lifecycle" analyses in the debate over the environmental
429	impact of natural gas do not take into account the default (current) GHG
430	emissions of coal-fired generation (Weber and Clavin, 2012), and others do not
431	evaluate environmental impact other than GHG emissions (Howarth et al., 2011;
432	Hultman et al. 2011; Burnham et al., 2012) in their assessment of different fuels
433	for electrical generation. However, non-GHG impacts dominate current U.S.
434	electricity production, almost half of which is generated using coal, and 34% of
435	that capacity is from plants more than 40 years old, with little to no modern
436	pollution controls, such as scrubbers or other technology (Hughes, 2011). Many
437	existing "lifecycle" analyses focusing on GHG impacts are therefore too narrow
438	for comparison of tradeoffs related to increased Marcellus shale gas production.
439	In fact, in contrast to natural gas production, most "externalities" or
440	environmental damages from coal-fired electricity are not related to climate
441	change (Levy et al., 2009; US NRC, 2009; Epstein et al., 2011). These impacts
442	are largely due to air pollution from sulfates and other particulates and related
443	cumulative public health consequences. Others are related to water
444	contamination due to coal sludge storage accidents, and ecological and economic
	18

1		
2		
3 4	445	costs (including opportunity costs) of land transformation due to mountain-top
5 6	446	removal (MTR) in Appalachia (Epstein et al., 2011). Estimates of non-climate-
7 8	447	related total hidden annual costs of coal for electrical generation range from \$62
9 10	448	billion (US NRC, 2009) to \$281 billion (Epstein et al., 2009). The total hidden
10 11 12	449	cost (environmental and health) damage from the most polluting coal-fired
13	450	electrical generation plants is estimated to be seven times as much as the damage
14 15	451	from the most polluting natural gas-fired electrical generation plants (US NRC,
16 17	452	2009). US national net impacts from substitution of natural gas for coal in
18 19	453	electrical production are likely to be positive due to reduction of coal-related
20 21	454	externalities along with GHG emissions, however the full economics of the global
22 23 24	455	climate change problem (Goodstein, 2011) are beyond the scope of this work.
25 26	456	Nevertheless, a more-straightforward assessment of economic costs of
27 28	457	shale gas exploitation is possible based simply on potential health impacts, and
29 30	458	effects on local populations in New York. Air quality has deteriorated in the
31 32	459	United States where natural gas resources are currently being exploited (Kargbo et
33 34	460	al., 2010, Petron et al. 2012). Public health impacts in Colorado and Pennsylvania
35 36	461	have been estimated (Colorado School of Public Health, 2011; Lauver, 2011;
37 38	462	McKenzie et al. 2012). The leading air-quality risk to public health in Colorado is
39 40	463	increased subchronic exposures to airborne hydrocarbon carcinogens and
41 42	464	increased cumulative cancer risks for those residing within 0.8 km (0.5 mile) of
43 44	465	gas-producing wells compared to those living farther away (McKenzie et al.,
45 46	466	2012). Other impacts considered in the Colorado public health study (Colorado
47 48	467	School of Public Health, 2011) and elsewhere (Lauver, 2012) involve particulates,
49 50	468	degradation of water quality, light pollution, and industrial noise from drilling and
51 52	469	compressor stations. These health impacts are clearly potentially severe for
53 54		
55 56		19
57		
58 59		
60 61		
62 63		
64		
65		

1		
2 3	470	residents of New York state where Marcellus drilling may be permitted, and
4 5	471	would need to be substantially mitigated.
6 7	472	
8	472	
9 10	172	
11	473	4.3. Economic impacts and tradeoffs in New York State
12 13	474	The tradeoffs between who benefits and who is adversely affected by
14 15	475	natural gas drilling, what size these populations are and where they are located,
16 17	476	are relevant here. Conventional environmental economics methods (willingness
18 19	477	to pay, choice experiments, contingent valuation or analytical hierarchy processes)
20	478	
21 22	4/8	for assessing risks and costs of natural resources degradation (Martin-Ortega and
23 24	479	Berbel, 2010) suffer from incomplete information (Konishi and Coggins, 2008)
25	480	and depend on polling the inhabitants of the landscape affected. Further issues
26 27	481	for such local market-based, cost-benefit analysis are that widely accepted
28 29	482	watershed protection methods such as the US EPA total maximum daily load
30 31	483	(TMDL) approach simply do not produce positive benefit-cost ratios (e.g.
32 33	484	Borisova et al., 2008), and most studies do not consider spatial heterogeneity
34		
35 36	485	(populations not inhabiting the areas in question) (Brouwer et al., 2010). Such
37	486	environmental economics methods are impractical in the case of Marcellus shale
38 39	487	drilling and the New York City water supply because the benefits and costs accrue
40 41	488	at least in part to different populations.
42 43		
44	489	Even so, natural gas drilling has been promoted, in industry-sponsored
45 46	490	economic impact reports, as either an economic boon to the state and struggling
47 48	491	communities in rural areas (see Kinnaman, 2012 and references therein), or
49	492	alternatively a threat to the current tourism-based economy in rural counties
50 51		
52 53	493	(Rumbach, 2011). Detailed analysis of these dueling economic impact
54		
55 56		20
57		
58 59		
60		
61 62		
63		
64		

1		
2		
3 4	494	perspectives is beyond the scope of this work, but many of their assumptions and
5 6	495	economic modeling procedures have been questioned (Kinnaman, 2012). What is
7 8	496	clear is that lower natural gas prices due to increased production from the
9 10	497	Marcellus will benefit electricity consumers and many others by reducing the
11	498	percentage of power produced from coal-fired plants and associated externalities.
12 13	499	The difference between the shorter term (10-20 years) of the "boom" type
14 15	500	economic development benefits associated with natural gas production and the
16 17	501	eventual long-term costs of the permanent transformation of the landscape would
18 19	502	depend on the economic discount rate used (Goodstein 2011).
20 21		
22 23	503	However, considering the relative populations concerned who stand to
24 25	504	benefit or suffer adverse consequences provides a baseline for comparison. The
26 27	505	southern tier New York state counties along the Pennsylvania border (Figure 1)
28 29	506	have a population of less than 700,000, many of whom would benefit from
30	507	royalties due to leasing of mineral rights to natural gas producers (Kargbo et al.,
31 32	508	2010). This population could suffer health-related impacts from proximity to the
33 34	509	gas-producing wells and economic impacts from landscape transformation.
35 36	510	Compared to this are the costs and public health consequences of potential
37 38	511	degradation of a public water supply for a much larger population (almost 9
39 40	512	million) in New York City. Currently, New York City taxpayers invest a modest
41 42	513	US\$3 million/yr to support conservation practices in the Cannonsville watershed
43 44	514	(Bryant et al., 2008), and about US\$50 million/yr for the combined watershed
45 46	515	protection program. However, if the US EPA rescinds its filtration avoidance
47 48	516	determination (FAD), the alternative costs of water filtration and treatment for
49 50	517	New York City have been estimated in the billions of US\$ (Bryant et al., 2008),
51 52	518	largely for the construction and operation of the facilities needed.
53 54		
55		21
56 57		
58 59		
60 61		
62 63		
64 65		

1 2		
3 4	519	
5 6 7	520	5. Regulatory and political aspects
8 9	521	Finally, the ultimate consideration when assessing a scientific and
10 11	522	technical issue with major public policy implications is the political and
12 13	523	regulatory landscape. Experts tend to view the scientific and technical aspects in
14 15	524	isolation, whereas the success of public policy decisions about these issues can
16 17	525	depend more on politics. Despite solidifying scientific consensus (IPCC, 2007)
18 19	526	on the need for GHG emissions reduction, and widespread international
20 21	527	ratification of the 1997 Kyoto Protocol, the unwillingness of the United States to
22 23	528	ratify and the collapse of the former Soviet Union and Eastern European industrial
24 25	529	production have probably had more impact on GHG emission trends over the last
26 27	530	20 years. Recent attempts in the field of uncertainty analysis to address this
28 29	531	dilemma have called for scientific knowledge that is used in political
30 31	532	decisionmaking to be placed in the proper socio-political context to be relevant
32 33	533	(Maxim and van der Sluijs, 2011), and such is the intent of this work.
34 35		
36 37	534	5.1 Federal regulatory gaps
38 39	535	There are numerous exemptions and limitations in federal environmental
40 41	536	legislation and US EPA authority to regulate unconventional natural gas drilling
42 43	537	(Wiseman, 2012; US GAO, 2012). Of the eight major pieces of legislation (Safe
44 45	538	Drinking Water Act - SDWA; Clean Water Act - CWA; Clean Air Act - CAA;
46 47	539	Resource Conservation and Recovery Act - RCRA; Comprehensive
48 49	540	Environmental Response, Compensation and Liability Act - CERCLA;
50 51	541	Emergency Planning and Community Right-to-Know Act - EPCRA; Toxic
52 53	542	Substances Control Act - TSCA; and Federal Insecticide, Fungicide and
54 55		22
56 57		
58 59		
60 61		
62 63		
64 65		

1		
2 3	543	Rodenticide Act - FIFRA), the first six have important exemptions related to oil
4 5	544	and natural gas development.
б	577	
7 8	545	The most important exemptions to these laws were created by the 2005
9 10	546	Energy Policy Act, by which hydraulic fracturing is specifically exempted from
11 12	547	regulation under the SDWA Underground Injection Control program, except if
13 14	548	diesel fuel is injected (US GAO, 2012; Wiseman, 2012). Under the CWA,
15 16	549	pollutant discharges from industrial sites and wastewater treatment facilities are
17 18	550	regulated, however oil and gas production well sites are exempted from National
19 20	551	Pollutant Discharge Elimination System (NPDES) permitting. The CAA exempts
21 22	552	certain naturally-occurring hydrocarbon mixtures from air quality regulation and
23 24	553	prohibits aggregating emissions from multiple well sites, pipelines or pumping
25 26	554	stations, hence no oil and gas wells have been regulated as air pollutant sources to
27 28	555	date (US GAO, 2012).
29 30		
31 32	556	The US EPA issued a controversial determination in 1988 that oil and gas
33	557	development waste are not covered under RCRA, governing hazardous solid
34 35	558	waste, but the agency retains "imminent and substantial endangerment"
36 37	559	authorization to intervene. It is clear that these major gaps and exemptions
38 39	560	hinder federal oversight of environmental protection in the case of hydraulic
40 41	561	fracturing, and legislation (the FRAC Act) to close the CWA exemptions has been
42 43	562	introduced in Congress (Rahm, 2011), but not yet passed. Due to the limitations
44 45	563	in federal legislation, the primary responsibility for enforcement of environmental
46 47	564	regulation of oil and gas production has rested at the state level, in particular
48 49	565	where states have been delegated responsibility ("primacy") to enforce federal
50 51	566	law.
52		
53 54		
55		23
56		
57		

1	
2 3 567 4	5.2 State regulatory authority and experience
5 6 568	The considerable differences in state authority, regulatory structure and
7 8 569	history of oil and gas exploration make comparisons among states' levels of
9 L0 570	regulatory effectiveness very difficult. Several recent studies have analyzed
11 12 571	various aspects of regulatory experience, focusing on Pennsylvania (Mitchell and
13 14 572	Casman, 2011), Texas (Rahm, 2011) and a comparison of these and several other
.5 .6 573	states (Wiseman, 2012). Over the period 2008-2011, Pennsylvania and Texas,
.7 .8 574	both with long histories of oil and gas exploration, provide a comparison between
.9 20 575	a state with fairly aggressive enforcement (PA) leading to the largest number of
21 22 576	violations of state environmental or oil and gas laws (Wiseman, 2012); and a state
23 24 577	(TX) with a very "oil and gas-friendly" regulatory environment and looser
25 26 578	enforcement (Rahm, 2011).
27	
9 579	One concern that emerges is that oil and gas production operational
0 580 1	methods developed under less restrictive state regulatory structures (Texas) are
2 581 3	inconsistent with prevailing regulation (Pennsylvania) that is being established by
4 582 5	states with higher environmental protection standards. Another is that
6 583 7	technological innovations and economic incentives that do not currently include
38 584 39	the costs of environmental protection are now driving the boom in unconventional
.0 585	natural gas production. Gas well productivity is declining, and unconventional
2 586	natural gas is now being produced at a loss, given that the marginal cost of
4 587	production is much higher than world gas prices (Rogers, 2011; Hughes, 2011).
6 588 17	Current regulatory authority and environmental protection have not been able to
18 589 19	keep up with the economic drivers of unconventional gas production where it is
50 590	now occurring in the United States. These regulatory shortfalls are manifest
52 591 53	especially in the areas of well plugging or sealing and in the ability of states to
54 55	24
56 57	24
58	
59	
50 51	

592 field sufficent inspectors for oversight.

5.3 State regulatory shortfalls

594	At the end of their economically useful life, wells in oil and natural gas
595	fields must be properly sealed with cement to close direct pathways between the
596	reservoir and the surface, or even shallow groundwater, to avoid environmental
597	damage as detailed previously. Many of the hundreds of thousands of wells
598	estimated to have been drilled over the last century in Pennsylvania and New
599	York have not been adequately plugged (Crain 1969), in part because modern
600	record-keeping and verification of well sealing only began in the 1980s. While
601	more modern oil and gas fields in Alberta (Watson and Bachu 2009) have such
602	records numbering in the hundreds of thousands, older oil and gas provinces in
603	Pennsylvania and New York where wells were drilled to 2000 ft depth or more
604	(Hartnagel and Russell 1925; Van Tyne 1998) only have records of tens of
605	thousands of wells (NYSDEC regulates approximately 40,000 known wells, most
606	of which are not sealed, but operational or on "inactive status"). The mismatch in
607	numbers corresponds to numerous leaking "legacy wells" whose location is often
608	unknown (Watson and Bachu, 2009; Mitchell and Casman, 2011).
609	While enforcement has undoubtedly improved, the economic incentives
610	that led to this poor regulatory compliance still exist. As natural gas wells decline

611 in production after the first couple years, they are generally transferred from the

613 landowners. Furthermore, many wells are put on "inactive status" or otherwise
614 escape regulatory oversight when operators default. Costs of proper well sealing,
615 which ranges from \$100,000 to \$700,000 per well, are thereby avoided because

original gas producers to smaller entities, either other gas producers or even

1		
2		
3 4	616	minimum federal and state bonding levels are generally inadequate and
5	617	reclamation costs are often deferred for decades (Mitchell and Casman, 2011).
б	017	
7	(10	
8 9	618	The other major concern is the need for adequate field-based monitoring
10	619	and inspections by regulatory personnel to ensure compliance with environmental
11		
12	620	standards. Beyond the gaps in federal legislation and the historical development
13 14	621	of the oil and gas industry, the states' regulatory framework has often been
15		
16	622	reactive and inadequate to prevent violations, notably in Pennsylvania (Rahm,
17 18	623	2011). Some of the reasons for this ineffectiveness include lack of state funding
19	020	
20	624	(Mitchell and Casman, 2012), inefficient organization or incompleteness of
21	625	records (Wiseman, 2012), fragmentation of environmental regulation authority
22 23	025	records (wiseman, 2012), magnemation of environmental regulation autionty
24	626	and an anti-regulatory political climate (Rahm, 2011). For example, prior to the
25	607	annuth in uncommentional and drilling in Demonstruction it uses estimated that due
26 27	627	growth in unconventional gas drilling in Pennsylvania, it was estimated that due
28	628	to inadequate funding rates, it would require 160 years to plug known existing
29	(20)	
30 31	629	"orphan" wells (Mitchell and Casman, 2012). Furthermore, in Texas, for natural
32	630	gas extraction from the Barnett shale, violations recorded declined in 2009-2011
33		
34	631	from the rates in 2008, apparently because the Texas Railroad Commission
35 36	632	regulator suffered personnel losses due to a hiring freeze (Wiseman, 2012).
37		
38		
39 40	633	6. Discussion
40 41		
42	634	To evaluate these major scientific and technical issues, the related
43	635	geological, land use, economic and energy aspects, as well as the regulatory and
44 45		
46	636	political context of the Marcellus shale gas exploitation and the New York City
47	637	water supply, a framework for decisionmaking is needed. Consider the
48 49	057	water suppry, a namework for decisioninaking is needed. Consider the
50	638	semiquantitative interplay of three general domains originally identified by
51	639	Rogers (2011): geology; technology; and regulatory and public acceptance. A
52 52	057	Rogers (2011). geology, technology, and regulatory and public acceptance. The
53 54		
55		26
56		
57 58		
59		
60		
61 62		
62 63		
64		
65		

1		
1 2		
3 4	640	Venn-type graphical approach used in pharmacology and bioinformatics (Ruskey
5	641	et al., 2006; Chen and Boutros, 2011) allows plotting the overlap of these three
7 8	642	areas to analyze common ground for decisionmaking. It is useful to consider
9	643	Venn diagram circles overlaid on a triaxial plot (Figure 3) to constrain relative
10 11	644	size, corresponding to domain possibility, and proximity to origin, corresponding
12 13	645	to how well the possibility is put into practice for that domain. An arbitrary scale
14 15	646	on the axes represents increasing implementation toward the origin in an abstract
16 17	647	"decision-space". Since perfect implementation (concentric circles at origin) is
18 19	648	unattainable, the centers of the circles, for which the relative size needs to be
20 21	649	determined, plot at different locations on the three axes.
22 23		
24 25	650	
26 27	651	6.1 Triaxial Venn diagram logic and analysis
28 29	001	
30 31	652	A convenient starting point is the known geographical setting of the
32 33	653	Marcellus shale, the northeastern end of which underlies the southern tier of New
34 35	654	York state (Figure 1). From a geological perspective, all of the Marcellus shale is
36	655	potentially a source of natural gas, but only a subset (unknown until sufficient
37 38	656	wells have been drilled) of that area will be the most highly productive.
39 40	657	Extraction of natural gas from such shales was not even technologically viable
41 42	658	until recent decades with the advent of hydraulic fracturing, and depth, thickness
43 44	659	and organic content are still limiting factors. Therefore, the size of the circle
45 46	660	representing technology is necessarily smaller than the circle representing
47 48	661	geology, analogous to the difference between reserve and resource of any fossil
49 50	662	fuel.
51 52	662	The development of hydroxile functions has a based the electric f
53 54	663	The development of hydraulic fracturing has enlarged the circle of
55 56		27
57		
58 59		
60 61		
62		
63 64		
65		

1		
2 3	664	technological viability and moved it closer to the center, enabling considerable
4 5	665	overlap with the area of geological resource. Similarly, United States' energy
6 7	666	needs and growth of natural gas production have enlarged the circle of regulatory
8 9	667	and public acceptance and moved it closer to the center, enabling overlap with the
10 11	668	other two circles. It is clear, however, that the circle of regulatory and public
12 13	669	acceptance is the smallest of the three, and the challenge is to identify what is the
14 15	670	overlap of the three circles, what lies inside and outside, and what might be
16 17	671	necessary to maximize the size of the intersecting common ground for publicly
18 19	672	acceptable Marcellus shale gas drilling.
20 21	673	
22 23		
24 25	674	6.2 Application to decisionmaking about hydraulic fracturing in
26 27	675	New York state
28 29	676	The dramatic expansion of drilling for natural gas in the Marcellus shale
30 31	677	indicates that there is considerable growing overlap of technology and geology
32 33	678	due to rapidly advancing technological innovation in the drilling industry,
34 35	679	however this may be counterbalanced by economic considerations such as low
36 37	680	natural gas prices. The trend of the much smaller overlap for regulatory and
38 39	681	public acceptance in New York state is not as evident due to the continuing
40 41	682	controversy in the scientific literature and public media over the environmental
42 43	683	impact. In any event, a careful weighing of the different merits and liabilities
44 45	684	described earlier is necessary for expansion of the area of regulatory and public
46 47	685	acceptance. The major pros and cons are summarized in Table 1, taking into
48 49	686	account a broader range of issues than are commonly discussed.
50 51	687	A key consideration must be that the geographical area occupied by the
52 53		
54	688	watersheds supplying municipal water to New York City is less than 10% of the
55 56		28
57 58		
59 60		
61 62		
63 64		
65		

1		
1 2		
3 4	689	area of the Marcellus underlying New York state. A reasonable first step in
5 6	690	decisionmaking would therefore be to recognize that for the NYC watersheds
7	691	overlying the Marcellus, the risks clearly outweigh any merits, and that the de-
8 9	692	facto moratorium on drilling within a generous buffer setback of those watersheds
10 11	693	and associated infrastructure (water supply tunnels), be formalized into a ban.
12 13	694	This would include directional drilling from areas outside those buffer zones, and
14 15	695	accept that the NYC watersheds lie permanently outside the circle of regulatory
16 17	696	and public acceptance for Marcellus drilling (Figure 3).
18		
19 20	697	Beyond the boundaries of the buffer setbacks around the NYC water
21 22	698	supply watersheds and infrastructure, the situation is less clear-cut. The benefits
23 24	699	of increased natural gas use from the Marcellus shale (Table 1) are potentially
25 26	700	great for transition to cleaner energy if the liabilities could be substantially
27 28	701	reduced. Much of the environmental impact from Marcellus shale drilling is due
29 30	702	to regulatory lapses, either at the federal or state level. This suggests that
31 32	703	considerable strengthening of state and federal regulatory oversight is a possible
33 34	704	avenue for reducing the environmental liability. In other words, enhancing
35 36	705	oversight could enlarge the circle of regulatory and public acceptance (Figure 3)
37	706	in New York state and move it down the axis of increasing implementation to
38 39	707	expand the area of overlap or common ground for publicly acceptable HVHF.
40 41		expand the area of overlap of common ground for publicly acceptable if vinty.
42 43	708	
44 45	709	6.3 Regulatory enhancement recommendations
46 47		
48 49	710	Federal oversight is increasing with the US EPA promulgation in 2012 of
50	711	the final rules on GHG reporting by operators of petroleum and natural gas
51 52	712	systems, with a minimum facility threshold of 25,000 metric tons carbon dioxide
53 54		
55		29
56 57		
58		
59 60		
61		
62		
63 64		
64 65		

1		
2 3	713	equivalent (CO ₂ e) per year
4 5	714	(http://www.epa.gov/ghgreporting/reporters/subpart/w.html). Furthermore, the
6 7	715	US EPA is tightening New Source Review (Bushnell and Wolfram 2012)
8 9	716	requirements for airborne emission standards for the oil and gas sector
10		
11 12	717	(http://www.epa.gov/airquality/oilandgas/pdfs/20120418rtc.pdf), regulations due
13 14	718	to be in place by 2015, barring potential litigation. An obvious next step would
15 16	719	be for the U.S. Congress to close the gaps in federal law (CWA, SDWA, CAA,
17 18	720	RCRA, CERCLA, EPCRA) that have long exempted the oil and gas industry from
19 20	721	national environmental protection legislation (US GAO, 2012; Wiseman, 2012).
21	722	However, such an outcome is uncertain due to the current ideological deadlock in
22 23	723	the U.S. Congress.
24 25		
26 27	724	State regulatory oversight in New York, as proposed in the draft
28 29	725	supplemental generic environmental impact study (dSGEIS) currently undergoing
30 31	726	review by the NYS Dept of Environmental Conservation, is more rigorous than in
32	727	many other states, particularly with respect to mandated buffer zones for natural
33 34	728	gas infrastructure from natural resources (Wiseman, 2012) and requirements for
35 36	729	closed-tank systems for wastewater capture in most cases. However, budget
37 38	730	reductions at both the U.S. state and federal levels have thinned out regulatory
39 40	731	personnel ranks below the minimum needed for current enforcement
41 42	732	responsibilities. In 2010, the head of New York State DEC was dismissed
43 44	733	following the release of an internal memo that documented a 21% reduction in
45 46	734	workforce since 2008, and warned that fewer staff will be available for oversight
47	735	of Marcellus natural gas drilling. Over the last 3 years, Pennsylvania, with several
48 49	736	hundred inspectors, has been unable to effectively prevent serious violations
50 51		(Wiseman, 2011; Rahm, 2011), so it is unlikely that New York, with a widely
52 53	737	(wiseman, 2011; Ranni, 2011), so it is unifiery that New Tork, with a widery
54 55		30
56 57		
58		
59 60		
61 62		
63 64		
65		

1		
2		
3 4	738	reported number of inspectors less than 20 in 2012, will be able to enforce
5 6	739	effective regulations, no matter how rigorous they are. The major step to build
7 8	740	public confidence that regulation will be able to reduce the environmental
9 10	741	liabilities (Table 1) is to hire and train skilled regulatory inspection staff in the
11	742	thousands, as is currently the case in major gas-producing states like Michigan
12 13	743	and Texas (Wiseman, 2011).
14 15		
16 17	744	While it is technically feasible to mitigate much of this environmental
18 19	745	impact of expanded Marcellus gas drilling in New York State, market forces will
20 21	746	cause natural gas companies to avoid the responsibility and costs of such
22	747	mitigation (Mitchell and Casman, 2011). Many technologies exist for treatment
23 24	748	of produced water (Fakhru'l-Razi et al., 2009; Gregory et al. 2011), and New
25 26	749	York state regulations should mandate such treatment and a 90% minimum for
27 28	750	recycling instead of simply encouraging such practices. Recently reported
29 30	751	alternatives to massive water usage and wastewater generation include
31 32	752	hydrofracturing using liquid petroleum gas and liquid CO ₂ (Kargbo et al., 2010),
33 34	753	which could be strongly encouraged. While limits on gas venting and flaring,
35 36	754	reduced emissions completions (REC) to minimize gas well GHG emissions, and
37 38	755	restrictions on diesel engines are proposed as part of the revised NY state
39	756	dSGEIS, more is needed to ensure necessary environmental protection. For
40 41		
42 43	757	example, requiring gas distribution lines to be in place upon well completion
44 45	758	would allow a ban on all venting and flaring except in case of emergency, and
46 47	759	onsite engines could be required to operate with a 20% minimum percentage of
48 49	760	biodiesel or compressed natural gas (CNG), limits that would increase in 5 year
50	761	increments.
51 52	762	A serious concern remains about proper well construction and sealing or
53 54		
55 56		31
57 58		
59		
60 61		
62 63		
64		
65		

1		
2 3	762	alussian Outside the NWC undershede to the most (Figure 1), the counties along
4	763	plugging. Outside the NYC watersheds to the west (Figure 1), the counties along
5 6	764	the Pennsylvania state line (the "Southern Tier") account for over 77% of oil and
7 8	765	natural gas wells registered in New York State, and are likely to be centers of
9 10	766	Marcellus shale gas production. According to a recent survey of public records,
11 12	767	most (89%) depleted oil and gas wells in New York state have not been
13 14	768	adequately plugged or sealed over the last 25 years, leaving tens of thousands as
15 16	769	potential conduits for contamination, most of which have unknown locations.
17 18 19	770	Current proposed regulations (revised dSGEIS) require Marcellus well drilling
20	771	permit applicants to identify non-producing or abandoned (sealed) wells within
21 22	772	one mile of the proposed drilling location for HVHF, however it is not clear if this
23 24	773	entails locating all previously unknown or improperly sealed wells that may pose
25 26	774	a catastrophic environmental protection risk during new well drilling. Mitigating
27 28	775	the rare but very real hazards posed by such historical wells would require
29 30 31	776	substantially strengthened regulatory oversight.
32 33	777	Fortunately, New York State has a strong tradition of environmental
34 35	778	protection of part of the NYC watersheds in question, which is off-limits to
36 37	779	development in perpetuity in the Catskill State Forest Preserve (Figure 1). The
38 39	780	Catskill State Forest includes private land within a boundary known as the "blue
40 41	781	line", which encompasses an area occupying effectively the southeastern half of
42 43	782	the New York City water supply watersheds. Current regulatory proposals
44 45	783	anticipate including all watersheds or major aquifer areas that supply major
46 47	784	municipalities like NYC, which are already partially protected by other City-
48 49	785	owned property or conservation easements, in the area prohibited to HVHF
50 51	786	drilling (Figure 1). It would also be important to prohibit deep directional
52	787	drilling underneath those areas (from surface locations outside) and to increase
53 54		
55 56		32
57		
58 59		
60 61		
62		

1		
2 3	788	necessary setbacks to that protected area and associated water supply
4 5		
5 6	789	infrastructure (currently proposed to be only ~1200 m).
7 8	790	
9 10		
11	791	7. Conclusions
12 13	792	Even if consensus can be achieved on the scientific and technical issues
14 15	793	outlined earlier, gas production from the Marcellus shale is so economically
16 17	794	important that the New York State governor and legislature will ultimately decide
18 19	795	whether and how to allow such natural resource development to proceed. The
20 21	796	nature of political decision-making is primarily non-scientific, and as in recent
22 23	797	integrated water management (Kragt et al., 2009), other interdisciplinary factors
24 25	798	enter into consideration and may even trump science-based analysis. Avoiding
26 27	799	this outcome can be accomplished by maintaining the present moratorium while
28 29	800	addressing the broader issues described in this work.
30	000	
31 32	801	It may never be possible to quantify all of the costs and benefits associated
33 34	802	with the prospect of natural gas drilling in and near the watersheds that supply
35 36	803	New York City with drinking water. However, while potential benefits may be
37 38	804	great in the context of future energy policy towards a low-carbon economy,
39 40	805	liabilities are also very significant and could outweigh benefits (Table 1).
41 42	806	Whether benefits of Marcellus shale gas drilling exceed liabilities thus depends on
43 44	807	enforcement of strong environmental regulations to minimize liabilities and
45 46	808	achieve greater public acceptance of HVHF in New York State (Figure 3). In the
47 48	809	current political and regulatory climate, it remains unclear whether this can be
49 50	810	accomplished. Specific recommendations from this analysis for New York State
51 52	811	to obtain greater public acceptance and environmental protection include:
53 54		
55		33
56 57		
58 59		
60		
61 62		
63 64		
65		

010	
812	• Immediate hiring and training of sufficient NYS DEC
813	inspectors (1000+) and increasing agency funding for
814	monitoring eventual HVHF and gas pipeline operations in
815	NY state
816	• Permanent banning of HVHF within NYC and other major
817	municipal water supply watersheds, including a 5000 m
818	buffer zone from associated infrastructure (water supply
819	tunnels) and watershed perimeter, and prohibiting deep
820	directional drilling underneath such watersheds or major
821	aquifers.
822	• Mandating a minimum of 90% produced water recycling,
823	minimum 20% biodiesel or CNG for all drilling site and
824	truck operations, banning gas venting or flaring except in
825	case of emergency, mandating immediate connection to gas
826	distribution lines.
827	Without significant investment in state and federal regulatory enforcement,
828	the intense scrutiny of thousands of gas wells necessary to avoid incremental
829	degradation of watershed protection or shallow groundwater will not be possible.
830	However, recent developments provide grounds for guarded optimism. The
831	history of mineral exploitation in the United States is one of dramatic reduction of
832	adverse environmental consequences of mining operations. 19th century
833	practices resulted in acid mine drainage and numerous Superfund site designations
834	in Colorado and other western states, but 21st century mine reclamation with
835	sufficient regulatory oversight has avoided environmental degradation in several
836	U.S. states and Canada.
	34
	 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835

-			
1 2			
2 3 4	837	In this situation involving politics, economics, geology, hydrology and	
5	838	water quality, the usual methods of risk assessment may not provide useful	
7 8	839	answers (Hattis and Goble, 2003) and the "precautionary principle" may be the	
9 10	840	best benchmark for decision-making (Stayner et al., 2002). Maintaining the	
11 12	841	current New York State moratorium on hydrofracturing of horizontal wells seem	S
13 14	842	a prudent step in light of the legislative uncertainty. It is likely that HVHF will b	e
15 16	843	highly regulated and eventually permitted in the remaining 90%+ of the Marcellu	IS
17 18	844	shale subcrop across the southern tier of New York. Time will tell whether the	
19 20	845	potential liabilities or benefits (Table 1) of natural gas exploitation from the	
21 22	846	Marcellus shale will be realized.	
23 24	847		
25	848	Acknowledgements: The assistance of Alan Mason in helping to draft an earlier version	
26	849	of this work is greatly appreciated. The comments of four anonymous reviewers also	
27 28	850	were helpful in improving the manuscript.	
29		were neipiur in improving the manuscript.	
30 31	851		
32 33	852		
34 35	853		
36	854		
37 38	855		
39 40	856		
41 42	857		
43 44	858		
45 46	859		
47 48	860		
49 50	861		
51 52	862		
53 54			
54			35
56		-	5
57			
58			
59			
60			
61 62			
63			
64			

Table 1. Considerations for assessing environmental impact of Marcellus shale

865 gas drilling in New York State

	Major Liabilities		Major Benefits
2.	Major Liabilities Degradation of watershed and groundwater protection • US EPA FAD may not be renewed, requiring NYC water supply filtration • Long-term increase in chronic contamination of NYC and other water supply, requiring increased storage, health degradation of NY residents Industrial infrastructure degradation of rural landscape • Loss of recreational tourism and resulting local and state revenue • Fragmentation of wildlife habitat by roads and pipelines		 Major Benefits Substitution for coal in electricity generation Less particulate air emissions, lower health impacts Enables phase-out of coal to combat climate change Reduction of mountaintop removal for coal mining Transition fuel to carbon- constrained economy Lower natural gas prices speed rather than slow closing obsolete coal power plants Enhance baseload electrical generation capability substituting for intermittent sources (e.g. wind, solar)
	 GHG emissions reduction efforts Fugitive emissions may result in increased global warming potential 	3.	Proximity of energy source for electrical generation to the urban centers of the NE United States • Avoids natural gas supply bottleneck due to imports and
4.	 Local pollution of air by VOCs/ozone precursors Long-term health effects on local populations Reduction of regional air quality 	4.	 long-distance transportation costs Lower costs for locally- produced gas, electricity Local economic investment in upstate NY
5.	 Local pollution and depletion of streams Long-term health effects on local populations Ecological impact of increased pollution on local wildlife 		 Employment year-round in contrast to current seasonal tourism Per-capita revenue for local landowners from mineral leasing
866			
867			
868			
			36

1			
2			
3	869		
4 5			
6	870	Figure Captions	
7	070	i gui e cupitons	
8	871		
9	071		
10	872	Figure 1. Location of the watersheds (inset) that supply drinking water to New	
11 12			
13	873	York City (adapted from NYC DEP) in relation to the subcrop of the Marcellus	
14	874	Formation (USGS); heavy line indicates eastern boundary of Marcellus shale	
15	875	subcrop (Milici and Swezey, 2006). Contours in regional map indicate shale	
16 17	876	thickness; dashed lighter line on inset indicates boundary of Catskill Forest	
18	877	Reserve (NYS DEC).	
19	077	Reserve (IVIS DEC).	
20	878	Figure 2. History and projected growth of U.S. unconventional natural gas	
21			
22 23	879	development in different shale formations. Curves are a logistic function fitted to	
24	880	data from the Barnett Formation in Texas, showing expected trends for other	
25	881	production areas, including the Marcellus shale in New York State (data from	
26	882	Hazen and Sawyer (2009))	
27	883		
28 29			
30	884	Figure 3. Conceptual triaxial Venn diagram showing common ground among	
31	885	domains of geology, technology, and public and regulatory acceptance for HVHF	
32	886	in New York State. Axes show increased implementation towards origin.	
33 34	887	Vertical hachures show present limited acceptance of Marcellus HVHF, angled	
35	888		
36		hachures show possible future consensus if regulatory and public acceptance	
37	889	domain can be expanded and moved inward along implementation axis.	
38 39			
40	890		
41	0.01	P (
42	891	References	
43			
44 45	892	AEA Technology. Support to the identification of potential risks for the	
46	893	environment and human health arising from hydrocarbons operations	
47			
48	894	involving hydraulic fracturing in Europe. Report AEA/R/ED57281 for	
49 50	895	European Commission DG Environment 2012; Available at	
51	896	http://ec.europa.eu/environment/integration/energy/pdf/fracking%20study.	
52	897	pdf [Accessed March 2013]	
53			
54			
55 56		37	
57			
58			
59			
60			
61 62			
62 63			
64			
65			

1		
2 3	000	
3 4	898	Aminto A, Olson MS. Four-compartment partition model of hazardout
5	899	components in hydraulic fractureing fluid additives. Journal of Natural
6 7	900	Gas Science and Engineering 2012; 7:16-21,
8	901	doi:10.1016/j.jngse.2012.03.0006
9 10	902	Borisova T, Collins A, D'Souza G, Benson M, Wolfe ML, Benham B. A benefit-
11	903	cost analysis of total maximum daily load implementation. Journal of the
12 13	904	American Water Resources Association (JAWRA) 2008; 44(4):1009-
14	905	1023, doi:10.1111/j.1752-1688.2008.00216.x
15 16	906	Brooks A. Optimistic NPC report could point US energy strategy in wrong
17	907	direction, Energy Strategy Reviews 2012; 1:57-61
18	908	doi:10.1016/j.esr.2011.11.002
19 20	909	Brouwer R, Martin-Ortega J, Berbel J. Spatial preference heterogeneity: a choice
21	910	experiment, Land Economics 2010; 86(3): 552-568
22 23	911	Bryant RB, Veith TL, Kleinman PJA, Gburek WJ. Cannonsville Reservoir and
24	912	Town Brook watersheds: documenting conservation efforts to protect New
25 26	913	York City's drinking water. Journal of Soil and Water Conservation 2008;
27	914	63(6): 339-344
28 29	915	Burnham A, Han J, Clark CE, Wang M, Dunn JB, Palou-Rivera I. Life-cycle
30	916	greenhouse gas emissions of shale gas, natural gas, coal and petroleum,
31 32	917	Environmental Science and Technology 2012; 46:619-627
33	918	dx.doi.org/10.1021/es201942m
34	919	Bushnell JB, Wolfram CD. Enforcement of vintage differentiated regulations: the
35 36	920	case of new source review. Journal of Environmental Economics and
37	921	Management 2012; 64: 137-152,
38 39	922	http://dx.doi.org/10.1016/j.jeem.2012.01.006
40	923	Bybee K. Optimizing completion strategies for fracture initiation in Barnett Shale
41 42	924	horizontal wells, Highlights of Ketter AA, Daniels JL, Heinze JR, Waters
43	925	G, SPE paper 103232. Journal of Petroleum Technology 2007; 59(3): 45-
44 45	926	46
46	927	Chen H, Boutros PC. VennDiagram: a package for the generation of highly-
47 48	928	customizable Venn and Euler diagrams in R. BMC Bioinformatics 2011;
49	929	12:35, http://www.biomedcentral.com/1471-2105/12/35
50 51		
52		
53 54		
55		38
56 57		
57 58		
59		
60 61		
62		
63 64		
65		

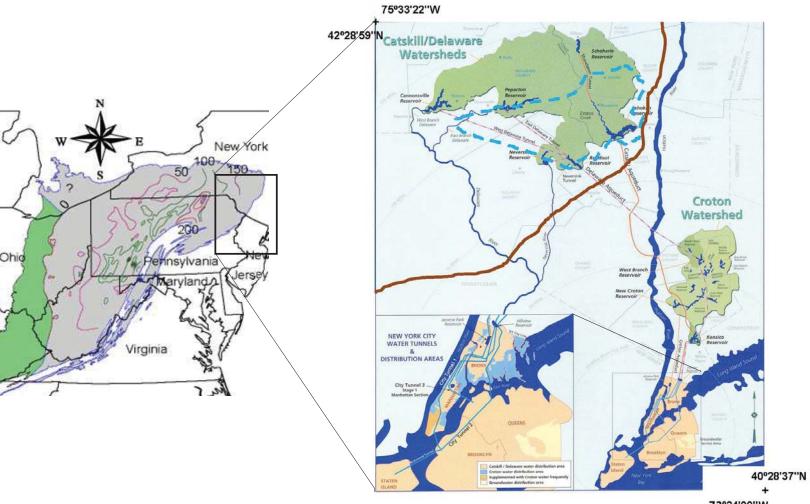
1		
2		
3 4	930	Clarke LB. Environmental aspects of coalbed methane extraction, with emphasis
5	931	on water treatment and disposal. Transactions of the Institution of Mining
6 7	932	and Metallurgy Section A Mining industry 1996; 105: A105-A113
8	933	Colorado School of Public Health. Battlement Mesa Health Impact Assessment
9	934	(2nd and final draft) and Environmental Health and Monitoring Study,
10 11	935	Garfield Co. Colorado 2011; Available at http://www.garfield-
12	936	county.com/environmental-health/battlement-mesa-health-impact-
13 14	937	assessment-draft2.aspx. [Accessed January 2013]
15	938	Crain LJ. Groundwater pollution from natural gas and oil production in New
16 17	939	York, New York Water Resources Commission Report of Investigation
18	940	RI-5, 1969; prepared by USGS in cooperation with NY State Health Dept.
19 20	941	15 p.
20	942	Dhar RK, Biswas BK, Samanta G, Mandal BK, Chakraborti D, Roy S, Khan AW,
22	943	Ahmed SA, Hadi SA. Groundwater arsenic calamity in Bangladesh.
23 24	944	Current Science 1997; 73(1): 48-59
25	945	Eaton TT. On the importance of geological heterogeneity for flow simulation.
26 27	946	Sedimentary Geology 2006; 184(3-4): 187-201
28	947	Elcock D. Future U.S. Water Consumption: The Role of Energy Production.
29 30	948	Journal of the American Water Resources Association (JAWRA) 2010;
31	949	46(3): 447-460, doi:10.1111/j.1752-1688.2009.00413.x
32 33	950	Engelder T. Comment: Should fracking stop? - No, it's too valuable. Nature 2011;
34	951	477: 271-75
35 36	952	Epstein PR, Buonocore JJ, Eckerle K, Hendryx M, Stout III BM, Heinberg R et
37	953	al., Full cost accounting for the life cycle of coal. Annals of the New York
38 39	954	Academy of Sciences 2011; 1219:73-98. doi: 10.1111/j.1749-
40	955	6632.2010.05890.x
41 42	956	
43	957	ZZ. Review of technologies for oil and gas produced water treatment.
44 45	958	Journal of Hazardous Materials 2009; 170 : 530-551,
46	959	doi:10.1016/j.jhazmat.2009.05.044
47 48	960	Flexible Flow Management Program. Agreement of the Parties to the 1954 U.S.
48 49	961	Supreme Court Decree, Effective June 1, 2012. Available at
50	962	http://water.usgs.gov/osw/odrm/documents/FFMP_FINAL.pdf. [Accessed
51 52	963	January 2013]
53	705	January 2015]
54 55		39
56		
57 58		
59		
60 61		
62		
63 64		
65		

1		
2 3	964	Goodstein E. Reconciling the science and economics of climate change, Climatic
4	965	Change 2011; 106: 661-5, doi:10.1007/s10584-011-0039-3
5 6	966	Gleick PH. Water and Energy. Annual Reviews of Energy and the Environment
7 8	967	1994; 19: 267-299
8 9	968	Gregory KB, Vidic RD, Dzombak DA. Water management challenges associated
10 11	969	with the production of shale gas by hydraulic fracturing. Elements 2011;
12	970	7:181-1886, DOI: 10.2113/gselements.7.3.181
13 14	971	Hansen JE. Scientific reticence and sea-level rise. Environmental Research
15	972	Letters 2007; 2 doi:10.1088/1748-9326/2/2/024002
16 17	973	Harrison SS. Contamination of aquifers by overpressuring the annulus of oil and
18	974	gas wells. Ground Water 1985; 23(3): 317-324
19 20	975	Hartnagel CA, Russell WL. The oil fields of New York State. AAPG Bulletin
21	976	1925; 9(4): 798
22 23	977	Harte J. Water constraints on energy development: a framework for analysis.
24	978	Water Resources Bulletin 1983; 19(1): 51-57
25 26	979	Harte J, El-Gasseir M. Energy and water. Science 1978; 199: 623-634
27	980	Hattis D, Goble R. The Red Book, risk assessment and policy analysis: the road
28 29	981	not taken. Human and Ecological Risk Assessment 2003; 9: 1297-1306.
30	982	doi: 10.1080/10807030390240319
31 32	983	Hazen and Sawyer. Final impact assessment report: Impact assessment of natural
33	984	gas production in the New York City water supply watershed. report
34 35	985	commissioned by the New York City Dept of Environmental Protection
36	986	2009; Available at http://www.nyc.gov/html/dep/html/press_releases/09-
37 38	987	15pr.shtml [Accessed January 2013]
39	988	Healy RW, Rice CA, Bartos TT, McKinley MP. Infiltration from an
40 41	989	impoundment for coal-bed natural gas, Powder River Basin, Wyoming:
42	990	Evolution of water and sediment chemistry. Water Resources Research
43 44	991	2008; 44(6): Article Number W06424
45	992	Howarth RW, Santoro R, Ingraffea A . Methane and the greenhouse-gas
46 47	993	footprint of natural gas from shale formations - a letter. Climatic Change
48	994	2011; 106:679-690. doi:10.1007/s10584-011-0061-5
49 50	995	Howarth RW, Ingraffea A. Comment: Should fracking stop? - Yes, it's too high
51	996	risk. Nature 2011; 477: 271-73
52 53		
54		
55 56		40
57		
58 59		
60		
61 62		
63		
64 65		

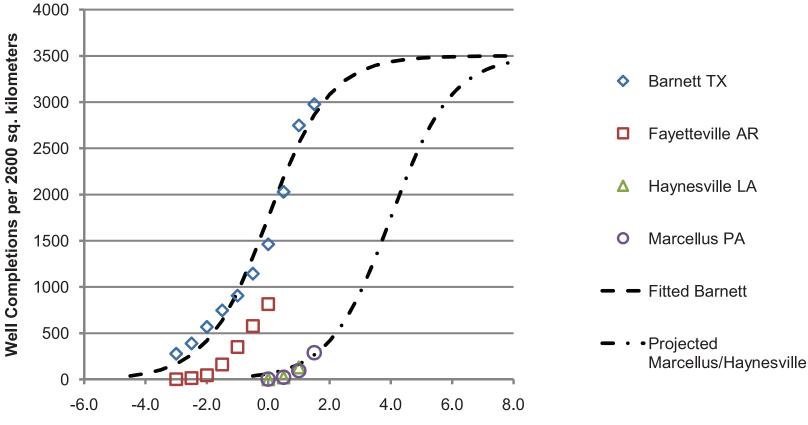
1		
2 3	997	Hughes JD. Will Natural Gas Fuel America in the 21st Century? Post Carbon
4	997 998	Institute; 2011. Available at http://www.postcarbon.org/report/331901-
5 6		
7	999	report-will-natural-gas-fuel-america [Accessed January 2013]
8 9	1000	Hultman NE, Rebois D, Scholten M, Ramig C. The greenhouse gas impact of
10	1001	unconventional gas for electricity generation. Environmental Research
11	1002	Letters 2011; 6 (4):1-9, doi:10.1088/1748-9326/6/4/044008
12 13	1003	Huntington G, Ksaibati K. Method for assessing heavy traffic impacts on gravel
14	1004	roads serving oil and gas-drilling operations. Transportation Research
15 16	1005	Record: Journal of the Transportation Research Board 2009; No.2101: 17-
17	1006	24
18 19	1007	ICF International. Technical assistance for the Draft Supplemental Generic EIS:
20	1008	Oil, Gas and Solution Mining Regulatory Program - Well Permit Issuance
21 22	1009	for Horizontal Drilling and High-Volume Hydraulic Fracturing to Develop
23	1010	the Marcellus Shale and Other Low Permeability Gas Reservoirs -
24 25	1011	Agreement No. 9679, 2009. report to the New York State Energy Energy
26	1012	Research and Development Authority. Available at
27	1013	www.nyserda.ny.gov/~/Publications/Research-and-Development-
28 29	1014	Technical-Reports/Other-Technical-
30	1015	Reports/~/media/Files/Publications/NYSERDA/ng/icf-task-1.ashx.
31 32	1016	[Accessed January 2013]
33	1017	IEA. World Energy Outlook 2011. Paris: International Energy
34 35	1018	Agency; 2011. Available at http://www.worldenergyoutlook.org/
36	1019	[Accessed January 2013].
37 38	1020	IPCC. Climate Change 2007: Synthesis Report. Contribution of Working Groups
39	1021	I, II, and III to the Fourth Assessment Report of the Intergovernmental
40 41	1022	Panel on Climate Change (Core Writing Team: Pachauri RK, Reisinger A
42	1023	(eds.)). IPCC, Geneva, Switzerland; 2007.
43 44	1024	Jenner S, Lamadrid AJ. Shale gas vs. coal: Policy implications from
44	1025	environmental impact comparisons of shale gas, conventional gas, and
46	1026	coal on air, water and land in the United States. Energy Policy 2012;
47 48	1027	http://dx.doi.org/10.1016/j.enpol.2012.11.010
49	1028	Jiang M, Griffin WM, Hendrickson G, Jaramillo P, VanBriesen J, Venkatesh A.
50 51	1029	Life cycle greenhouse gas emissions of Marcellus shale gas.
52	1030	Environmental Research Letters 2011; 6 (3), 1-9, doi:10.1088/1748-
53 54		
55		41
56 57		
58		
59 60		
61		
62 62		
63 64		

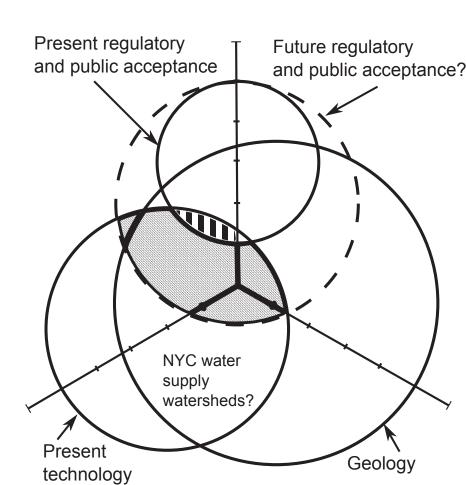
1		
2 3	1031	9326/6/3/034014Kargbo DM, Wilhelm RG, Campbell DJ. Natural gas
4 5	1032	plays in the Marcellus Shale: challenges and potential opportunities.
6	1033	Environmental Science and Technology 2010; 44: 5679-5684
7 8	1034	Kerr RA. Natural gas from shale bursts onto the scene. Science 2010; 328: 1624-
9	1035	1626
10 11	1036	Kinnaman TC. The economic impact of shale gas extraction: a review of existing
12	1037	studies. Ecological Economics 2011; 70: 1243-1249.
13 14	1038	doi:10.1016/j.ecolecon.2011.02.005
15	1039	Konishi Y, Coggins JS. Environmental risk and welfare valuation under imperfect
16 17	1040	information. Resource and Energy Economics 2008; 30: 150-169,
18	1041	doi:10.1016/j.reseneeco.2007.05.002
19 20	1042	Kragt ME, Newham LTH, Bennett J, Jakeman AJ. An integrated approach to
20	1043	linking economic valuation and catchment modeling. Environmental
22	1044	Modeling and Software 2011; 26: 92-102.
23 24	1045	doi:10.1016/j.envsoft.2010.04.002
25	1046	Ladva HKJ, Craster B, Jones TGJ, Goldsmith G, Scott D. The cement-to-
26 27	1047	formation interface in zonal isolation. SPE Drilling and Completion 2005;
28	1048	20(3): 186-197
29 30	1049	Lauver LS. Environmental health advocacy: an overview of natural gas drilling in
31	1050	Northeast Pennsylvania and implications for pediatric nursing. Journal of
32 33	1051	Pediatric Nursing 2012; 27: 383-389, doi:10.1016/j.pedn.2011.07.012
34	1052	Lee DS, Herman JD, Elsworth D, Kim HT, Lee HS. A critical evaluation of
35 36	1053	unconventional gas recovery from the Marcellus shale, northeastern
37	1054	United States. KSCE Journal of Civil Engineering 2011; 15(4): 679-687
38 39	1055	Levy JI, Baxter LK, Schwartz J. Uncertainty and variability in health-related
40	1056	damages from coal-fired power plants in the United States. Risk Analysis
41 42	1057	2009; 29: 7. DOI: 10.1111/j.1539-6924.2009.01227.x
43	1058	Lu X, Salovaara J, McElroy MB. Implications of the Recent Reductions in
44 45	1059	Natural Gas Prices for Emissions of CO2 from the US Power Sector.
46	1060	Environmental Science and Technology 2012; 46(5): 3014-3021,
47 48	1061	dx.doi.org/10.1021/es203750k
49	1062	Martin-Ortega J, Berbel J. Using multi-criteria analysis to explore non-market
50 51	1063	monetary values of water quality changes in the context of the Water
52		
53 54		
55		42
56 57		
58		
59 60		
61		
62 63		
63 64		

1		
2		
3 4	1064	Framework Directive. Science of the Total Environment 2010; 408: 3990-
5	1065	3997, doi:10.1016/j.scitotenv.2010.03.048
6 7	1066	Maxim L, van der Sluijs JP. Quality in environmental science for policy:
8	1067	assessing uncertainty as a component of policy analysis. Environmental
9	1068	Science 2011; 14: 482-492, doi:10.1016/j.envsci.2011.01.003
10 11	1069	McKenzie LM, Witter RZ, Newman LS, Adgate JL. Human health risk
12	1070	assessment of air emissions from development of unconventional natural
13 14	1071	gas resources. Science of the Total Environment 2012; 79-87.
15	1072	doi:10.1016/j.scitotenv.2012.02.018
16 17	1073	Milici R, Swezey C. Assessment of Appalachian Basin oil and gas resources:
18	1074	Devonian shale - Middle and Upper Paleozoic Total Petroleum System.
19	1075	2006. U.S. Geological Survey Open-File Report 2006-1237. Available at
20 21	1076	http://pubs.usgs.gov/of/2006/1237/. [Accessed August 2011]
22	1077	Mitchell AL, Casman EA. Economic incentives and regulatory framework for
23 24	1078	shale gas well site reclamation in Pennsylvania. Environmental Science
25	1070	and Technology 2011; 45: 9506-9514, dx.doi.org/10.1021/es2021796
26 27	1075	Molofsky, L., Connor, J., Wylie, A., Wagner, T. Methane in Pennsylvania water
28	1080	
29		wells unrelated to Marcellus shale fracturing. Oil and Gas Journal 2011;
30 31	1082	109(49):54
32	1083	Moniz EJ, Jacoby HD, Meggs AJM. The Future of Natural Gas - Interim Report.
33 34	1084	Massachusetts Institute of Technology, Cambridge, MA: MIT Energy
35	1085	Initiative. Available at http://mitei.mit.edu/publications/reports-studies.
36	1086	[Accessed January 2013]
37 38	1087	Nissen SE, Watney WL, Xia J. High-resolution seismic detection of shallow
39	1088	natural gas beneath Hutchinson, Kansas. Environmental Geosciences
40 41	1089	2004a; 11(3): 129-142
42	1090	Nissen SE, Watney WL, Bhattacharya S, Byrnes AP, Young D. Geologic factors
43 44	1091	controlling natural gas distribution related to the January 2001 gas
45	1092	explosions in Hutchinson, Kansas. Kansas Geological Survey 2004b;
46 47	1093	Open-File Report 2004-21, Available at
47 48	1094	http://www.kgs.ku.edu/PRS/publication/2004/AAPG/NG_Migration/P1-
49	1095	02.html [Accessed January 2013]
50 51	1096	NTC. Impacts on Community Character of Horizontal Drilling and High Volume
52	1097	Hydraulic Fracturing in Marcellus Shale and Other LowPermeability Gas
53 54		
55		43
56 57		
57 58		
59		
60 61		
62		
63 64		
<u> </u>		


1		
2 3	1098	Reservoirs. revised 1/2011, report commissioned by New York State
4 5	1099	Energy Research and Development Authority. 2009. Available at
6	1100	http://www.nyserda.ny.gov/en/Publications/NYSERDA-General-
7	1101	Reports/~/media/Files/Publications/NYSERDA/ng/ntc.ashx [Accessed
8 9	1102	January 2013]
10	1103	NYC DEP. Filtration avoidance annual report for the period January 1 through
11 12	1104	December 31, 2009. New York City Department of Environmental
13 14	1105	Protection; 2010
14 15	1106	http://www.nyc.gov/html/dep/pdf/2009 bws fad annual.pdf. [Accessed
16	1107	January 2013]
17 18	1108	ODNR. Report on the investigation of the natural gas invasion of aquifers in
19	1109	Bainbridge Township of Geauga County, Ohio. Ohio Department of
20 21	1110	Natural Resources Division of Mineral Resources Management 2008.
22	1111	Available at http://www.dnr.state.oh.us/Portals/11/bainbridge/report.pdf.
23 24	1112	[Accessed January 2013]
25	1112	Osborn SG, Vengosh A, Warner NR, Jackson RB. Methane contamination of
26 27	1113	drinking water accompanying gas-well drilling and hydraulic fracturing.
28	1114	Proceedings of the National Academies of Science 2011; 108 (20): 8172-
29 30	1115	8176 - www.pnas.org/cgi/doi/10.1073/pnas.1100682108.
31	1110	O'Shea, KJ. A conceptual review of water extraction requirements associated
32		
33 34	1118	with shale gas activities in New Brunswick. Atlantic Geology 2011; 47:34
35	1119	O'Sullivan F, Paltsev S. Shale gas production: potential versus actual greenhouse
36 37	1120	gas emissions, Environmental Research Letters 2012; 7: doi:10.1088/1748-
38	1121	9326/7/4/044030
39 40	1122	Pacala S, Socolow R. Stabilization wedges: Solving the climate problem for the
41	1123	next 50 years with current technologies. Science 2004; 305: 968-972
42 43	1124	Petron G, Frost G, Miller BR, Hirsch AI, Montzka SA, Karion A, et al.
44	1125	Hydrocarbon emissions characterization in the Colorado front range: a
45 46	1126	pilot study. Journal of Geophysical Research 2012; 117: D04304,
40	1127	http://dx.doi.org/ 10.1029/2011JD016360.
48	1128	Pyron AJ. Marcellus shale gas, hydrogeology, and the truth. Oil and Gas Journal
49 50	1129	2011; 109(13): 60-7
51	1130	Rahm D. Regulating hydraulic fracturing in shale gas plays: the case of Texas.
52 53	1131	Energy Policy 2011; 39: 2974-2981. doi:10.1016/j.enpol.2011.03.009
54		
55 56		44
57		
58 59		
59 60		
61 62		
62 63		
64		

1		
2 3	1132	Rahm BG, Riha SJ. Toward strategic management of shale gas development:
4	1132	Regional, collective impacts on water resources. Environmental Science &
5 6	1134	Policy 2012; 17: 12-23
7	1135	Rao NS, Easton ZM, Schneiderman EM, Zion MS, Steenhuis DTS. Modeling
8 9	1136	watershed-scale effectiveness of agricultural best management practices to
10	1137	reduce phosphorus loading. Journal of Environmental Management 2009;:
11 12	1137	1385-1395
13	1130	Rogers H. Shale gas - the unfolding story, Oxford Review of Economic Policy
14 15	1140	2011; 27(1):117-143, doi: 10.1093/oxrep/grr004
16	1140	Rumbach A. Natural Gas Drilling in the Marcellus Shale: Potential Impacts
17 18	1142	on the Tourism Economy of the Southern Tier. Technical Report. Southern
19	1142	Tier Central Regional Planning & Development Board. 2011. Available at
20 21	1143	http://www.stcplanning.org/usr/Program_Areas/Energy/Naturalgas_Resou
22	1144	rces/STC_RumbachMarcellusTourismFinal.pdf. [Accessed January 2013]
23 24	1145	Runkel AC, Tipping RG, Alexander Jr EC, Alexander SC. Hydrostratigraphic
24 25	1140	characterization of intergranular and secondary porosity in part of the
26	1147	
27 28		Cambrian sandstone aquifer system of the cratonic interior of North
29	1149	America: improving predictability of hydrogeologic properties.
30 31	1150	Sedimentary Geology 2006; 184(3-4): 281-304
32	1151	Ruskey F, Savage CD, Wagon S. The search for simple symmetric Venn
33 34	1152	diagrams. Notices of the AMS 2006; 53(11): 1304-1311.
35	1153	Sadiq R, Husain T, Veitch B, Bose N. Evaluation of generic types of drilling fluid
36 37	1154	using a risk-based analytic hierarchy process. Environmental
38	1155	Management 2003; 32(6): 778-787
39 40	1156	Schon S. Letter: Hydraulic fracturing not responsible for methane migration.
41	1157	Proceedings of the National Academy of Sciences 2011; 108:37
12 12	1158	www.pnas.org/cgi/doi/10.1073/pnas.1107960108
43 44	1159	Shindell DT, Faluvegi G, Koch DM, Schmidt GA, Unger N, Bauer SE. Improved
45	1160	attribution of climate forcing to emissions. Science 2009; 326: 716-718
46 47	1161	Soeder DJ, Kappel WM. Water resources and natural gas production from the
48	1162	Marcellus Shale, U.S. Geological Survey Fact Sheet 2009-303; 2009
49 50	1163	Stayner L, Toraason M, Hattis D. Risk assessment at the crossroads of the 21st
51	1164	century: opportunities and challenges for research. Human and Ecological
52 53	1165	Risk Assessment 2002; 8(6): 1195-1202
54		
55 56		45
57		
58 59		
60		
61 62		
63		


1		
2 3	1166	Stephenson E, Doukas A, Shaw K. "Greenwashing gas: might a 'transition fuel'
4	1160	label legitimize carbon-intensive natural gas development?" Energy Policy
5 6	1167	2012; 452-459 http://dx.doi.org/10.1016/j.enpol.2012.04.010
7	1168	Struchtemeyer CG, Morrison MD, Elshahed MS. A critical assessment of the
8 9		-
10	1170	efficacy of biocides used during the hydraulic fracturing process in shale
11	1171	natural gas wells. International Biodeterioration & Biodegradation 2012;
12 13	1172	71: 15-21
14	1173	US DOE. Modern shale gas development in the United States: A Primer, Office of
15 16	1174	Fossil Energy and National Energy Technology Laboratory Report, United
17	1175	States Department of Energy; 2009. Available at:
18 19	1176	http://www.fossil.energy.gov/programs/oilgas/publications/naturalgas_gen
20	1177	eral/Shale_Gas_Primer_2009.pdf [Accessed January 2013].
21	1178	US DOE-NETL. Impact of the Marcellus Shale gas play on current and future
22 23	1179	CCS activities. United States Dept of Energy National Energy
24	1180	Technology Laboratory report, 2010; Available at
25 26	1181	www.netl.doe.gov/technologies/carbon_seq/refshelf/Marcellus_CCS.pdf
27	1182	[Accessed January 2013]
28 29	1183	US EIA, Annual Energy Outlook 2012 Early Release Overview, Washington, DC:
30	1184	Energy Information Administration, United States Department of Energy;
31 32	1185	2012, Available at: http://www.eia.gov/forecasts/aeo/er/index.cfm
32 33	1186	[Accessed January 2013].
34	1187	US EPA. Investigation of ground water contamination near Pavillion, Wyoming,
35 36	1188	U.S. Environmental Protection Agency draft report EPA 600/R-00/000,
37	1189	2011, Available at
38 39	1190	http://www.epa.gov/region8/superfund/wy/pavillion/index.html
40	1191	[Accessed January 2013]
41 42	1192	US EPA. Greenhouse Gas Emissions Reporting from the Petroleum and Natural
43	1193	Gas Industry. Background Technical Support Document. United States
44 45	1194	Environmental Protection Agency 2010, Available at
46	1195	http://www.epa.gov/ghgreporting/documents/pdf/2010/Subpart-
47	1195	W_TSD.pdf. [Accessed January 2013]
48 49	1190	US EPA. Framework for cumulative risk assessment, National Center for
50		
51 52	1198	Environmental Assessment. U.S. Environmental Protection Agency. 2003.
53	1199	EPA/600/P-02/001F. Washington DC.
54 55		46
56		40
57 59		
58 59		
60		
61 62		
63		
64		


1		
2 3	1200	US GAO. Unconventional oil and gas development: Key environmental and
4	1200	public health requirements. U.S. Government Accounting Office; 2012.
5 6	1201	Available at http://www.gao.gov/products/GAO-12-874 [Accessed
7	1202	January 2013]
8 9	1203	US NRC. Hidden Costs of Energy - Unpriced Consequences of Energy
10	1204	Production and Use. Expert consensus Report In Brief by the Committee
11 12	1205	on Health, Environment and other External Costs and Benefits of Energy
13	1200	Production and Consumption. National Academy of Sciences; 2009,
14 15	1207	Available at <u>http://dels.nas.edu/resources/static-assets/materials-based-on-</u>
16	1208	reports/reports-in-brief/hidden costs of energy Final.pdf. [Accessed
17 18	1209	January 2013]
19	1210	US NRC. Science and Decisions: Advancing Risk Assessment. report of the
20 21	1211	National Research Council. National Academies Press. 2008.
22	1212	
23		Washington, D.C. 421 p.
24 25	1214	Van Tyne AM. History of New York State oil fields. AAPG Bulletin 1998; 82(9):
26	1215	
27 28	1216	Warner NR, Jackson RB, Darrah TH, Osborn SG, Down A, Zhao K, White A,
29	1217	Vengosh A. Geochemical evidence for possible natural migration of
30 31	1218	Marcellus Formation brine to shallow aquifers in Pennsylvania.
32	1219	Proceedings of the National Academies of Science 2012; 109(30): 11961-
33 34	1220	11966, www.pnas.org/cgi/doi/10.1073/pnas.1121181109
35	1221	Watney WL, Nissen SE, Bhattacharya S, Young D. Evaluation of the Role of
36 37	1222	Evaporite Karst in the Hutchinson, Kansas Gas Explosions, January 17
38	1223	and 18, 2001. In Johnson, KS, Neal J T, editors. Evaporite
39	1224	karst and engineering/environmental problems in the United States:
40 41	1225	Oklahoma Geological Survey Circular 109; 2003 p.119-147.
42	1226	Watson TL, Bachu S. Evaluation of the potential for gas and CO ₂ leakage along
43 44	1227	wellbores. SPE Paper 106817. SPE Drilling and Completion 2009; 24(1).
45	1228	115-126
46 47	1229	Waxman HA, Markey EJ, DeGette D. Chemicals used in hydraulic fracturing.
48	1230	United States House of Representatives Committee on Energy and
49 50	1231	Commerce 2011; Available at
51	1232	http://democrats.energycommerce.house.gov [Accessed March 2013]
52 53		
54		
55		47
56 57		
58		
59 60		
61		
62 63		
64		

1		
2 3	1233	Weber CL, Clavin C. Life cycle carbon footprint of shale gas: review of evidence
4	1234	and implications. Environmental Science and Technology 2012; 46: 5688-
5 6	1235	5695. dx.doi.org/10.1021/es300375n
7 8	1236	Wiseman HJ, State Enforcement of Shale Gas Development Regulations,
8 9	1237	Including Hydraulic Fracturing. FSU College of Law 2012; Public Law
10	1238	Research Paper Forthcoming; Available at SSRN:
11 12	1239	http://ssrn.com/abstract=1992064 or
13 14	1240	http://dx.doi.org/10.2139/ssrn.1992064 [Accessed January 2013]
14 15	1241	
16 17	1242	
17 18	1243	
19 20	1244	
21		
22 23		
24		
25 26		
27		
28 29		
30		
31 32		
33		
34 35		
36		
37 38		
39		
40 41		
42		
43 44		
45		
46 47		
48		
49 50		
51		
52 53		
54		
55 56		48
57		
58 59		
60		
61 62		
63		
64		
65		

73º24'09''W

