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Abstract

We present the design of an analog circuit which solves linear programming (LP) or Quadratic Programming (QP)
problems. In particular, the steady-state circuit voltages are the components of the LP (QP) optimal solution. The
paper shows how to construct the circuit and provides a proof of equivalence between the circuit and the LP (QP)
problem. The proposed method is used to implement an LP-based Model Predictive Controller by using an analog
circuit. Simulative and experimental results show the effectiveness of the proposed approach.
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1. Introduction

In 2002, Bemporad, Morari, Dua, and Pistikopoulos
showed how to compute the solution to constrained finite-
time optimal control problems for discrete-time linear sys-
tems as a piecewise affine state-feedback law (Bemporad
et al., 2002b). Such a law is computed off-line by using
a multi-parametric programming solver which divides the
state space into polyhedral regions, and for each region
determines the linear gain and offset which produces the
optimal control action. This state-feedback law is often
referred to as the “explicit solution”. Since many con-
trol problems belong to this class, either in their natu-
ral form or after an approximation and abstraction step,
their solution has been studied for decades. However, until
that work, as there was no knowledge about the functional
form and structure of closed form solutions, computations
resorted to some approximation such as gridding or func-
tional interpolation.

Enlightened by that breakthrough, Morari’s research
group started developing a new theory for optimal control
of discrete-time linear systems, constrained linear systems,
and hybrid systems. The theory 1) unveils the existence
and the properties of the closed form solutions (Borrelli,
2003; Maeder et al., 2009; Borrelli et al., 2005; Grieder
et al., 2004; Bemporad et al., 2003; Morari et al., 2003;
Bemporad et al., 2002a), 2) explains the effect of uncer-
tainties on the control of constrained systems (Borrelli,
2003; Bemporad et al., 2003), 3) shows how to use linear
and nonlinear multiparametric-programming to compute
the closed forms solutions (Bemporad et al., 2002a; Bor-
relli et al., 2003; Bageshwar and Borrelli, 2009), 4) sheds
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light on the tight link between the desired optimality and
the robustness of closed-loop systems and what can actu-
ally be achieved on resource-constrained embedded control
hardware (in terms of CPU and storage) (Borrelli et al.,
2010, 2009). The theory also simplifies and unifies much of
the previous work for special classes of systems. In particu-
lar, it reduces to the well known Linear Quadratic Regula-
tor for unconstrained linear systems. As an example, now
we know the answer to the question “What is the solution
to an LQR problem if the system states and inputs are
constrained?”. In (Borrelli et al., 2005) it was shown that
the state feedback control law is continuous and piecewise
affine and that the value function is convex and continu-
ously differentiable. For hybrid systems, it was also shown
that the optimal control law is, in general, piecewise affine
over non-convex and disconnected sets. The class of hy-
brid systems for which these results apply is very large
including systems with both internal and/or controllable
switches (Borrelli et al., 2010).

These results have had important consequences for the
implementation of Model Predictive Control (MPC) laws.
Pre-computing offline the explicit piecewise affine feed-
back policy reduces the on-line computation for the reced-
ing horizon control law to a function evaluation, therefore
avoiding the on-line solution of a mathematical program as
it is done in Model Predictive Control. This research has
enlarged in a very significant way the scope of applicability
of Model Predictive Control to small-size /fast-sampled ap-
plications (Borrelli, 2003; Avni et al., 2006; Falcone et al.,
2007). Since then, Prof. Morari’s group and his collab-
orators have continued to push the capabilities of MPC
to faster processes. Recently, using the capabilities of field
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programmable gate array (FPGA) they have reached sam-
pling times below five microseconds for problems with tens
to a few hundreds of variables (Jerez et al., 2012; Mariéthoz
et al., 2009, 2012; Jerez et al., 2013).

To honor this fundamental work, we have chosen to
dedicate our original contribution to Professor Morari. In
this paper we prove that Model Predictive Control can be
implemented by using a simple analog circuit. We hope
that this discovery will significantly enlarge the scope of
applicability of Model Predictive Control. In fact, the
proposed approach and technology could enable the real-
time implementation of MPC controllers on the order of
nanoseconds with very small power consumption if a VLSI
(Very Large Scale Integrated) circuit technology is used.

Analog circuits for solving optimization problems have
been extensively studied in the past (Dennis, 1959; Tank
and Hopfield, 1986; Kennedy and Chua, 1988). Our re-
newed interests stem from MPC (Garcia et al., 1989; Mayne
et al., 2000). In MPC at each sampling time, starting at
the current state, an open-loop optimal control problem is
solved over a finite horizon. The optimal command signal
is applied to the process only during the following sampling
interval. At the next time step, a new optimal control
problem based on new measurements of the state is solved
over a shifted horizon. The optimal solution relies on a
dynamic model of the process, respects input and output
constraints, and minimizes a performance index. When
the model is linear and the performance index is based on
two-norm, one-norm or co-norm, the resulting optimiza-
tion problem can be cast as a linear program (LP) or a
quadratic program (QP), where the state enters the right
hand side (rhs) of the constraints.

We present the design of an analog circuit whose steady
state voltages are the LP/QP optimizers. Thevenin’s The-
orem is used to prove that the proposed design yields a
passive circuit. Passivity and KKT conditions of a tailored
Quadratic Program are used to prove that the analog cir-
cuit solves the associated LP or QP. The proposed analog
circuit can be used to repeatedly solve LPs or QPs with
varying rhs and therefore it is suited for a linear MPC
controller implementation. For some classes of applica-
tions the suggested implementation can be faster, cheaper
and consume less power than digital implementation. A
comparison to existing literature reveals that the proposed
circuit is simpler and faster than previously published de-
signs.

The paper is organized as follows. Existing literature
is discussed in Section 2. We show how to construct an
analog circuit from a given LP in Section 3. Section 4
proves the equivalence between the LP and the circuit.
Section 6 shows how to extend the LP results to solve
QP problems. Simulative and experimental results show
the effectiveness of the approach in Section 7. Concluding
remarks are presented in Section 8.

2. Previous Work on Analog Optimization

2.1. Optimization problems and electrical networks

Consider the linear programming (LP) problem

min TV (la)
V=[Vi,...,V,]T

8.t AeqV = beq (1b)

Aineqv S bineq (1C)

where [V1,...,V,] are the optimization variables, Aijeq
and Aqq are matrices, and ¢, beq and bipeq are column vec-
tors. The equality and inequality operators are element-
wise operators.

The monograph by J. Dennis (Dennis, 1959) presents
an analog electrical network for solving an LP (1). In
Dennis’s work, the primal and dual optimization variables
are represented by the circuit currents and voltages, re-
spectively. A basic version of Dennis’s circuit consists of
resistors, current sources, voltage sources, and diodes. In
this, circuit each element value of matrices Aipeq and Aeq
is equal to the number of wires that are connected to a
common node. Therefore, this circuit is limited to prob-
lems where the matrices Aineq and Aeq contain only small
integer values. An extended version of the circuit includes
a multiport DC-DC transformer and can represent arbi-
trary matrices Ajpeq and Aeq. Current distribution laws in
electrical networks (also known as minimum dissipation of
energy principle or Kirchoft’s laws) are used to prove that
the circuit converges to the solution of the optimization
problem. This work had limited practical impact due to
difficulties in implementing the circuit, and especially in
implementing the multiport DC-DC transformer.

In later work, Chua et al. (1982) showed a different
and more practical way to realize the multiport DC-DC
transformer using operational amplifiers. In subsequent
works, Chua (Kennedy and Chua, 1988; Chua and Lin,
1984) and Hopfield (Tank and Hopfield, 1986) proposed
circuits to solve non-linear optimization problems of the
form

min f(z)
s.t.gi(x) <0, j=1...m, (2)

where z € R” is the vector of optimization variables, f(z)
is the cost function, and g;(x) are the m constraint func-
tions. The LP (1) was solved as a special case of prob-
lem (2) (Kennedy and Chua, 1988; Tank and Hopfield,
1986). The circuits proposed by Chua, Hopfield, and coau-
thors model the Karush-Kuhn-Tucker (KKT) conditions
by representing primal variables as capacitor voltages and
dual variables as currents. The dual variables are driven
by the inequality constraint violations using high gain am-
plifiers. The circuit capacitors are charged with a current
proportional to the gradient of the Lagrangian of prob-



lem (2)
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where Béi is the capacitor voltage derivative and I; is

the current correspondlng to the j-th dual variable. The
derivatives g— and g’, are implemented by using combi-
nations of analog electrical devices (Jackson, 1960). When
the circuit reaches an equilibrium, the capacitor charge is
constant (‘99“ = 0) and Eq. (3) becomes one of the KKT
conditions. The authors prove that their circuit always
reaches an equilibrium point that satisfies the KKT condi-
tions. This is an elegant approach since the circuit can be
intuitively mapped to the KKT equations. However, the
time required for the capacitors to reach an equilibrium is
non-negligible. This might be the reason for the relatively
large settling time reported to be ”tens of milliseconds”
for those circuits in (Kennedy and Chua, 1988).

2.2. Applying analog circuits to MPC problems

The analog computing era declined before the widespread
use of Model Predictive Control. Quero, Camacho, and
Franquelo (1993) have been the first to study the imple-
mentation of analog MPC. They use the Hopfield circuit
proposed in (Tank and Hopfield, 1986) to implement an
MPC controller. The approach they propose is validated
with an experimental circuit which reaches the equilibrium
after a transient of 1.8 msec.

More recently in (Palusinski et al., 2001), fast ana-
log PI controllers are implemented on an Anadigm’s Field
Programmable Analog Array (FPAA) device (Anadigm,
2013) for an application involving a fast chemical microre-
actor. An FPAA is an integrated device containing config-
urable analog blocks and configurable block interconnec-
tions. The analog circuit designed in (Palusinski et al.,
2001) has a computation time that is faster than that of
a digital controller implementing the PI controller. The
article briefly proposes to use an FPAA for MPC without
specifying details. To the best of the authors knowledge,
no further work has been published in this direction.

3. LP Analog Circuit

Without loss of generality, we assume that Ajneq, Aeq
and ¢ have non-negative entries. Any LP (1) can be trans-
formed into this form by introducing an auxiliary vector
V as follows:

T
s.t. ALV + ALV = beq
AlJIrlqu + Alneqv < blneq

V+V=0

Figure 1: Equality enforcing circuit consisting of n resistors
(R1...Rn), a negative resistance, and a reference voltage.

Figure 2: A node with n connected wires.

where Aineq, Aeq, and c are split into positive and negative
parts (Aineq = Affeq = Aineqr Aeq = Ady — Agq and ¢ =
¢t —c7).

In the beginning of this section, we present the basic
building blocks which will be later used to create a circuit
that solves problem (1). The first basic block enforces
equality constraints of the form (1b). The second building
block enforces inequality constraints of the form (1c). The
last basic block implements the cost function.

3.1. Equality constraint
Consider the circuit depicted in Fig. 1. V} is the poten-
tial of node k, Ry is the resistance between node k£ and the

common node « with potential U, E—i— is a negative

resistance, and =2 is a constant voltage source.

Xk my
Proposition 1 (Equality constraint circuit).
in Fig. 1 enforces the equality constraint
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Proof. Consider the circuit depicted in Fig. 2. In this cir-
cuit, n wires are connected to a common node. We call
this common node «, its potential U, and the current that
exits this node I. Kirchhoff’s current law (KCL) implies

The circuit

=b. (5)

Va

n

- Vi —U
;Ikzz Rk :Iv

k=1

(6)

where I is the current through branch k, and Ry is the
resistance between node k£ and node o. Eq. (6) can be
written as an equality constraint on potentials Vy,

n V n 1
kz::R—_I+U;R—k. (7)



Figure 3: Inequality enforcing circuit.

If the right hand side (rhs) of (7) is set to any desired
value b, then (7) enforces an equality constraint on a linear
combination of Vj. The voltage U is set to

1 b
Y1 m k-1 R

The rhs in (8) is implemented by a negative resistance

of ———1— and a constant voltage source of —t—r.
k=1 Ry k=1 Ry

Eq. (8) together with (7) yield the desired (5). Therefore,
the circuit shown in Fig. 1 enforces (5). O

Note that the negative resistance — in the cir-

_ 1
> wy
cuit in Fig. 1 can be realized by using an operational am-
plifier (Chen, 2002, pp. 395-397).

3.2. Inequality constraint

Consider the circuit shown in Fig. 3. Similarly to the
equality constraint circuit, n wires are connected to a com-
mon node a.. ’s potential is U and the current exiting this
node is I. An ideal diode connects node « to node 3. The
potential of node 3 is U’.

Proposition 2 (Inequality constraint circuit). The circuit

in Fig. 8 enforces the inequality constraint

Wi

1 1
—_— ... = . <b.
IR o)
Vi

Proof. Kirchhoff’s current law (KCL) implies (6) as in the
previous case. The diode enforces U’ > U. In Fig. 3, the
voltage U’ can be computed as follows

-1
=1 Ry

Eq. (6) and U < U’ yield
n Vk n , n 1
U — =b 11
S I UY S0 o

k=1
which can be compactly rewritten as (9).
circuit shown in Fig. 3 enforces (9).

Therefore, the

O

U I cost

Figure 4: Cost circuit.

The diode in Fig. 3 enforces

1>0,
H(U-U")=

(12a)
(12Db)

By using (10) and rearranging its terms, (12b) can be
rewritten as:

"1
I((%R—JU—HI):O. (13)

Eq. (13) will be used later in Section 4 to characterize the
LP circuit.

3.3. Cost function

Consider the circuit in Fig. 4. In this circuit the poten-
tial of node « is equal to Ugest and the current that exits
the node is I.ost. From (7) we have

1
T E é
V — Lcost + cost — R - ' (14)

where ¢ = [1/Ry ... 1/R,)T, V =[Vi ... V,]T and J is
the cost function. This part of the circuit implements the
minimization of the cost function. A thorough explanation
of the cost circuit requires the equations of the whole LP
circuit which will be presented in Section 4.2. Here we
present a brief intuitive interpretation.

Later we will show that the LP circuit is passive. This
implies that when U.qg is set to a low value, the voltages
Vi are driven in a direction that minimizes the current
I.ost- Consequently, the cost J is decreased by decreasing
Ucost-

3.4. Connecting the basic circuits

This section presents how to construct the circuit that

solves a general LP. We construct the conductance matrix
G € RimH+1)xn aq

A cr et
G:[A}: fea | (1)
ineq

and denote Gj; as the 4, j element of G. For a given LP (1),
the R;; resistor is defined as

Rij = N, (16)

j i=1,..
Gy !
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Figure 5: Electric circuit solving an LP. Vertical wires are variable
nodes with potentials Vj ... V). Black dots represent resistances that
connects vertical and horizontal wires. Horizontal wires are cost or
constraint nodes. Each horizontal wire is connected to a ground
via a negative resistance, a constant voltage source and a diode for
inequalities nodes. The topmost horizontal wire is the cost circuit
which is connected to a constant voltage source.
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Figure 6: Compact representation of a resistor.

R

where the first row of G (corresponding to ¢’') is indexed
by i = 0.

Consider the circuit shown in Fig. 5. The circuit is
shown using a compact notation where each resistor R;;
is represented by a dot, vertical wires represent variable
nodes with potentials V; ...V, and horizontal wires rep-
resent constraint nodes. The compact representation of a
resistor through the dot symbol is clarified in Fig. 6. If
G = 0, then no resistor is present at the corresponding
dot.

The LP circuit is constructed by connecting the nodes
associated with the variables Vi ...V, to all three types of
the basic circuits: equality, inequality and cost. We will
refer to such nodes as wvariable nodes. Each row of the
circuit in Fig. 5 is one of the basic circuits presented in
Sections 3.1, 3.2 and 3.3. We claim that, if Uqg is “small
enough”, then the values of the potentials V3 ...V, in this
circuit are a solution of (1). This claim is proven in the
next section.

Remark 1. Note that one can easily change the rhs of
equality constraints (5) or/and inequality constrains (9) to
a different value b by simply using a voltage source equal
to b/sr_, 7, This allows one to solve parametric prob-
lems by simply changing the value of the external voltage
sources.

The circuit as shown in Fig. 5 contains no dynamic
elements such as capacitors or inductors. Therefore, the
time required to reach steady-state is governed by the par-
asitic effects (e.g. wires inductance and capacitance) and
by the properties of the elements used to realize negative

resistance (usually opamp) and diode. Hence, a good elec-
tronic design can achieve solution times on the order of
these parasitic effects. Indeed, our preliminary results of
ongoing work on VLSI implementation indicate that time
constants can be as low as a few nanoseconds.

4. Steady-State Analysis of the LP Circuit

Consider the LP circuit in Fig. 5 with R;; defined by
Egs. (15)-(16). In this section we show that there exists
a range of Ucost values such that the LP circuit in Fig. 5
solves the optimization problem (1). In particular, the
steady-state circuit voltages are the components of an LP
optimal solution. First, we derive the steady state equa-
tions of the electric circuit and then we show the equiva-
lence.

4.1. Steady state solution

Consider the circuit in Fig. 5. Let U = [Uy,...,Uy]T
be the voltages of the constraint nodes as shown on Fig. 5.
By applying the KCL (Kirchhoff’s current law) to every
variable node with potential Vi, ..., V,,, we obtain

GO,j(Ucost - V]) + ZGl’J(Ul — ‘/J) = 0, ] = 1, -]
i=1
(17)
which can be rewritten in the matrix form
T
C1 . Cp, Ucost m .
All . Aln Ul (Zi:o Gz,l)vl
Aml Amn Um (Ei:O Gim,)vn
(18)
Eq. (18) can be compactly written as
Ueost + ATU = diag(cT +1TA)V, (19)

where m is the number of equality and inequality con-
straints, 1 is a vector of ones, and diag(z) is a diagonal
matrix with x on its diagonal.

Next, we apply KCL on all nodes with potentials [Ucost,
Ui,...,Upn] to obtain

n

Z Cj(Ucost - ‘/j) — lcost (20)
j=1

n

Glj(UZ—VJ) :Ii, 1= 1,...,m, (21)

J=1



which can be written in the matrix form

C1 . Cp,
%
A . A _1
Aml Amn ‘/n

Ucost ;?:1 Cj
Ui Av [ Loost ]
. + ;

Um Z?:l Amx]
(22)

where I = [I; ... I,,]. Eq. (22) can be compactly rewritten
as

CTV = 1TCUcost + Teost
AV = diag (17AT) U + I

(23a)
(23Db)

The equality voltage regulator law (8) and the inequal-
ity law (10) can be compactly written as

diag (17 AL) Ueq = beq — Ieq (24a)
diag (17 Al..) Uineq < bineq — Lineq- (24b)
By substituting (24) into (23b), we obtain
AeqV = beq (25a)
AineqV < bineq- (25b)

Substitution of (23b) for inequalities to the diode con-
straint (13) yields

[Aineqv - bineq]i [Iineq]i = 07 Vi € Ia (26)

where 7 is the set of all inequality constraints.
We collect (19), (23), (25), and (12a) into one set of
equations which characterize the circuit

AV = diag (1TAT)U + I (27a)
Ueost + ATU = diag(c? +1TA)V (27b)
AcqV = beq (27¢)
AineqV < bineq (27d)
Tineg =0 (27e)
[AineqV — bined); [fineqli = 0,Vi € T (27f)

)

CTV = 1TCUCoSt + Icost7 (27g

where U, I, I.ost and V' are the unknowns. The voltage
Ucost of the cost node is set externally.

4.2. Equivalence of the optimization problem and the elec-
tric circuit

We consider the following assumptions.

Assumption 1. The LP (1) is feasible and the feasible
set is bounded.

Assumption 2. The dual of LP (1) is feasible and the
set of dual optimal solutions is bounded.

Assumption 3. In the LP (1), G is non-negative, 17G >
0 and 1TGT > 0.

Theorem 1 (LP circuit equivalence). Let Assumptions 1-
3 hold. Then, there exists U™, such that a solution V*
to (27) is also an optimizer of the LP (1) for all Ugpst <
Ussst-

Theorem 1 will be proven in the following way: first we
claim that the Eqgs. (27a)-(27f) have a solution when the
cost function is not present (¢ = 0); second, we show that
there exists Ut such that any solution to (27) is also an
LP solution; third, we show that for all Ut < USHY any
solution to (27) is also an LP solution.

As explained earlier in this paper, the assumption on
the non-negativity of G in Theorem 1 is not restrictive.
Also, 177G > 0 and 17GT > 0 are always satisfied for LP
problems without zero rows or zero columns.

In Theorem 1, we require that the sets of primal opti-
mal and dual optimal solutions are bounded. This can be
guaranteed if the primal feasible set is bounded and linear
independence constraint qualification (LICQ) (Hestenes,
1966, p. 29) holds.

Remark 2. In Theorem 1, we require the LP to be pri-
mal and dual feasible. This requirement may be relaxed by
using a different LP formulation, such as the big-M two-
phase simplex method (Bertsimas and Tsitsiklis, 1997, p.
117) or a homogeneous self-dual problem (Ye et al., 1994).

4.3. Proof of Theorem 1

Consider an electric circuit with constraint sub circuits
and no cost sub circuit. Such an electric circuit is charac-
terized by Egs. (27a)-(27f) with ¢ = 0.

Lemma 1 (Existence of solution to a zero-cost circuit).
Let Assumption 1 hold. Assume that A is non-negative,
17A > 0 and 1T AT > 0. Then, the Egs. (27a)-(27f) have
a solution when ¢ = 0.

Proof. First we rearrange (27a)-(27f). Eq. (27a) can be
split into equality and inequality parts
Acq = diag (1T AL)) Ueq + Ieq (28)
Aineq = diag (1TA;1;]eq) Uineq + Iineq- (29)

Eq. (27b) can be rewritten as

Al Ueq + Af}

ineq

Uineq = diag (].TA) V. (30)



Therefore, (27a)-(27f) can be written as

AeqV = diag (17 AL) Ueq + Ieq (31a)
AineqV = diag (1T Al,) Uineq + Jineq (31b)
Al Ueq + Al oqUineq = diag (17 A) V (31c)
AcqV = beq (31d)
AineqV < bineq (31e)
Tineq > 0 (31f)
(AineqV = bineq); Lineq; = 0, Vi € . (31g)

Next, consider the following quadratic program (QP)
w Lvrov
min —
Vo2

8.t AeqV = beq
Ainqu S bineqa

(32a)
(32b)

From Assumption 1, Problem (32) has a finite solution for
any ) because the feasibility domain is bounded and not
empty. The value of @) will be selected later. We use this
problem to find a solution to (27a)-(27f). The KKT condi-
tions are necessary optimality conditions for problems with
linear constraints (Bazaraa et al., 2006, Theorem 5.1.3).
Therefore, there exist V*, u*, A* which satisfy the KKT
conditions

Al + AL N +QVF =0 (33a)
AegV* = beg (33b)
Ainqu* S bineq (33(3)
A >0 (33d)
(Aineqv* - bineq)i)\: = 0, 1€ I, (336)

where p* and \* are the dual variables of the QP (32).
We choose Q, Ugy, Uleqs 1oq and I, as described by
the following equations.

Q = diag (17 4) — AT, diag (174%) 7" Auq

— AL, diag (17AL.) " Aineq (34a)

2y =diag (1T AL) p* (34D)
Uz, = diag (1TAL) ™' AegV* — p* (34¢)
Ioq =diag (1T AL ) A (34d)
Ufoeg = ding (17 AL, ) ™ AnegV* — A, (34e)

Note that the rhs of Eqs. (34) consists of quantities one
can compute. Note that the matrices diag (17 Af,,,) and
diag (1TAij;leq) are invertible and positive from the as-

sumptions of Lemma 1. Eqs. (34) are combined with (33)

to obtain
AeqV* = diag (1T AL) U, + I, (35a)
AineqV* = diag (17 AlL..) Uheq + Lieq (35b)
AL Uz + Al Utheq = diag (1T A) V* (35¢)
Aeqv* = beq (35(1)
Aineqv* < bineq (356)
Iheq >0 (35f)
(Aineqv* - bineq)iIineq: = 07 1€ 1. (35g)

In particular, substitution of (34b) into (34c) and of (34d)

into (34e) yields Egs. (35a) and (35b) respectively; sub-
stitution of (34a), (34b) and (34d) into (33a) yields (35¢);
substitution of (34d) into (33d) and into (33e) yields (35f)
and (35g) respectively.

In conclusion, Eqgs. (35) are Egs. (31) evaluated at V*,
U*, and I* defined as above. Therefore, there exist V*,
U*, and I'* that solve (27a)-(27f) when ¢ = 0. O

Our next goal is to show that there exists a Ugost such
that the circuit solution is also a solution to the LP (1). To
show this we make use of the LP dual problem (Bertsimas
and Tsitsiklis, 1997)

max bT'A (36a)

) T AT _
st [AL Al A = ¢ (36D)
[0 Ijz)] A >0, (36c)

where |7/ is an identity matrix of size equal to the number
of inequality constraints. We create the following feasibil-
ity problem

min 0 (37a)
S.6. AeqV = begs AineqV < Dineq (37h)
[qu Aij;leq])\ = [0 I|I|} A>0 (37C)
TV AHIN+INA_ =0, A+ A =0, (37d)

where by and b_ are the absolute values of the positive
and the negative components of b respectively, and A_
equals —A. Note that in Eq. (37d) all coefficients are non-
negative, and that (37d) is equivalent to ¢cI'V = bTA. All
feasible points of problem (37) are primal (1) and dual (36)
optimal solutions (Bertsimas and Tsitsiklis, 1997).

Remark 3. From the Assumption 8 and from the struc-
ture of (37d), it follows that the matriz of equality and in-
equality constraints has non-negative coefficients and non-
zero rows and columns.

Problem (37) is solved by the circuit shown in Fig. 7.
The circuit contains two parts: the primal circuit at the
bottom and the dual circuit at the top. Primal and dual
circuits have the form described in Fig. 5 and consist of
equality and inequality sub circuits, corresponding to pri-
mal and dual constraints, respectively. Note that the cost



DM\~ —»
q [O[m] FDO—'MMH
Dual N
q AT p—qu.-“—p
A —p
CT
\ . Wi
\ bT
[0
<A e—— 3
4 Primal
b b rima
Ik
Vi Vo

Figure 7: Circuit implementing the primal-dual feasibility prob-
lem (37). Primal and dual parts are connected via the zero duality
gap constraint. For compactness, by and b_ are represented as b and
A_ is part of A.

circuit is not present in the primal and the dual circuits.
Instead, the primal and dual circuits are connected by an
equality sub circuit that corresponds to the zero duality
gap constraint (37d).

Proposition 3. Let Assumptions 1-8 hold. The circuit in
Fig. 7 admits a solution. Moreover, at any circuit solution,

the voltages V* of the variable nodes are a solution to the
original LP (1).

Proof. The circuit in Fig. 7 consists only of equality and in-
equality sub circuits. As shown in sections 3.1 and 3.2, the
variable node voltages must satisfy the associated equality
or inequality constraints and thus must satisfy Eqgs. (37).
The feasible set of problem (37) is the set of all primal
optimal and dual optimal variables of problem (1). This
feasible set is bounded by Assumptions 1-2 . This fact
and the results from Remark 3 imply that all the assump-
tions of Lemma 1 are satisfied. We conclude that the cir-
cuit admits a solution. Moreover, every solution must be
a solution of the original LP (1) because it satisfies si-
multaneously dual and primal problems with zero duality
gap (Bertsimas and Tsitsiklis, 1997). O

Note that the circuit in Fig. 7 is not a practical way
to implement an LP solver. In fact, the matrix A, and
vectors ¢ and b appear in two places and a small mismatch
can lead to an infeasible problem. Moreover, the ability of
easily modifying the LP rhs is lost (see Remark 1). In fact,
the components of the rhs vector b also appear as resistors
in the zero duality gap constraint.

In the circuit shown in Fig. 7, the dual and the pri-
mal circuits are connected with a single wire. We denote
by Ui the voltage of this connection when the circuit

cost
settles.

Lemma 2 (Existence of Uit ). Let Assumptions 1-3

hold. Consider the circuit in Fig. 5 and its correspond-

Cn

Figure 8: Subnetwork that connects the cost node and node j, when
the remaining resistors are assumed to be zero.

ing Egs. (27). A solution V* to (27) with Uegpst = U™ is
an optimizer of the LP (1).

Proof. If a voltage equals to UL is applied externally to
the wire that connects the primal and the dual parts (at
point « in Fig. 7), we can remove the dual circuit without
affecting the primal one. Therefore, the circuit in Fig. 5
admits the same solution as the primal circuit in Fig. 7. O

To complete the proof of Theorem 1 we need to show
that for any voltage Uecost < USE, the circuit will con-
tinue to yield the optimal solution. Assume that Ucest iS
perturbed by AU, from the value UST. We denote per-
turbed values of variable voltages V' as AV and perturbed
values of the cost current .o as Al.qst. Next, we examine
the Thevenin equivalent resistance (Chen, 2004) as seen
from the cost node. Refer to Fig. 8 showing a subnetwork
connecting a cost node and an arbitrary node j. We want
to compute a lower bound on the equivalent resistance as
seen from the cost node. To this aim, we conservatively
assume that all other positive resistors in the network are
zero, i.e. Ry = 0,Vk,ls.t. k# j. In this scenario, all the
variable nodes have the same potential that is equal to the
potential U;. This implies that the total resistance Riotal
which can be seen from the cost node is greater than or
equal to all the cost resistances in parallel. Therefore we
have:

1

Rtotal 2 ﬁ (38)
=1 "7

From (27g), it follows that

CTAV = (Z Ci) A[]cos,t + AICOSt- (39)
i=1
Using the total equivalent resistance we know that
Achost
Algost = ———. 40
¢ Rtotal ( )
Combination of (39), (40) and (38) yields
AV - 1
frng CZ‘ — Z 0. 41
AUcost =1 Rtotal ( )



Eq. (41) states that the change in cost value must have the
same sign as the change in AU¢qst. Therefore, when Uecost
is decreased the cost must decrease or stay the same. How-
ever, the cost cannot decrease, since it is already optimal.
Therefore the cost must remain constant, and the circuit
holds the solution to the problem (1) for any Ueos < USTL.
This result completes the proof of Theorem 1.

Remark 4 (UZit computation). Consider the rhs vector
b of constraints (1). If b is contained in a polytope ©, the
value of U™ needs to be low enough to yield a correct so-

lution for any b € ©. A lower bound to USH(b) for any
b € © can be computed in many ways. A simple way is to
solve for U,yst for all vertices of © and choose the mini-
mum. This approach becomes intractable for large © and

more efficient methods are the subject of ongoing research.

5. Dynamic Analysis of the LP Circuit

In the previous section, we have shown that an equi-
librium of the circuit in Fig. 5 is a solution to the LP
problem (1). The next step is to analyze the stability of
the equilibrium points under the presence of parasitic dy-
namic effects. This investigation is the subject of current
ongoing research. Next we present two critical aspects
which help understanding the dynamic properties of the
proposed circuit.

5.1. Clircuit passivity

We are interested in showing that the general circuit
in Fig. 5 is passive. This important property has two in-
teresting consequences. First, one can study convergence
and stability properties of the proposed circuit by using ex-
isting results on passive (or dissipative) systems (Heemels
et al., 1998) (this is a topic of ongoing research work). Sec-
ond, one can observe an interesting link between convexity
of the original problem and passivity of the resulting cir-
cuit. In fact, a non-convex QP circuit designed by using
the approach presented in this paper would not be passive.

We examine an N-port resistor network which includes
all positive and negative resistors of the original circuit
shown in Fig. 5 and ignores the diodes and the constant
voltage sources. The resulting network is shown in Fig. 9.

Proposition 4 (Network non-negativity). The resistance
network in Fig. 9 is equivalent to a resistance network with
non-negative resistors.

Proof. Our goal is to obtain a lower bound of an equiv-
alent resistance between any two ports. From Fig. 9 we
see that a sub-network that connects two ports consists of
two negative resistances — one for each port, and a mesh
of positive resistors between them. We want to find an
equivalent resistance that exists according to Thevenin’s
theorem (Chen, 2004). Let U; and U; be the two nodes in
question. Next, motivated by a fact that replacement of
any of the positive resistances with a zero resistance may

Us o Ry Ro,n

SR A SR S
Uy o a0 g
A W W G
U, ol R Bna ]

Figure 9: N-port resistor network with ports U;. All R; ; are positive
resistances, all Ry are negative resistances.

Figure 10: Subnetwork that connects nodes ¢ and j, assuming that
all other resistors are zero.

only reduce the total equivalent resistance, we make a con-
servative assumption that all the resistors in this network,
excluding resistors directly connected to negative resistors
of the U; and U; nodes, are zero, thus Ry ; = 0,Vk, [ s.t.
k # i,7. In this case, all variable nodes have the same
potential. This sub-network is illustrated in Fig. 10. The
equivalent resistance of this network is zero since, accord-
ing to (8), the negative resistance is constructed to be
equal to the negative of the parallel combination of the
other node resistances. Therefore, the equivalent resis-
tance between any two ports is at least zero. O

5.2. Parasitic Effects

The network in Fig. 11 is a modification of the LP
circuit in Fig. 5 when the effect of parasitic wire capac-

ROn

i SR N
Ry

4+— - N ¢ -

Figure 11: LP Analog Circuit with Parasitic Capacitance



itances are included in the model. The network has ca-
pacitors connected to all constraint nodes. The capac-
itors represent parasitic capacitance present in any real
electric circuit. The circuit in Fig. 11 can be seen as a
switched linear system where the diode states define the
system mode. The negative resistances present in the cir-
cuit can lead to circuit instability (Heemels et al., 2002).
In particular, if the negative resistor has an infinite band-
width, this circuit can be shown to be unstable. In prac-
tice, the time constants of the negative resistors are limited
and can be seen as tuning variables. One can use existing
hybrid system theory and tools to design a piece-wise lin-
ear stabilizing controller where the unknowns are the time
constants of the circuit implementing the negative resis-
tances. In particular, since the approach of this paper is
suitable for “small” optimization problems, computational
methods for testing the stability of a hybrid system can
be effective in this application. Useful approaches include
the search for piecewise quadratic Lyapunov functions (De-
Carlo et al., 2000; Pettersson and Lennartson, 1996, 1999),
multiple Lyapunov functions (Branicky, 1998), or stabiliz-
ing controllers designed with the help of mixed integer op-
timization (Borrelli, 2003). Discovering simple heuristics
for tuning the time constants of the negative resistors for
the class of circuits presented in this paper is a topic of
ongoing research.

6. Quadratic Programming Circuit

In this section we show how to use the results pre-
sented in the previous sections to solve Quadratic Pro-
grams (QPs). We consider the strictly convex QP

: 1 T T
min §V QV+d'V
s.t. AeqV = begq (42)
Aineqv S Emeqa

satisfying the following assumptions.
Assumption 4. The QP (42) is feasible.

Assumption 5. The matrices fleq,flmeq and d in the
QP (42) are non-negative.

Assumption 6. The matriz Q) in the QP (42) belongs to
the set of all symmetric positive definite strictly diagonally

dominant matrices with negative off-diagonal terms, i.e.,
Q € Q where

Q 2{Q:(Q=QN)ANQ=0)A(Qi> > Q)
3,370

A\ (Q” <0 fO’I‘ 7 7& ])} (43)

Any strictly positive QP with a strictly diagonally dom-
inant quadratic cost can be written in the form (42) satis-
fying Assumptions 5-6. However the transformation might
not be unique.
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The next theorem presents the main result of this sec-
tion.

Theorem 2 (QP circuit equivalence). Consider the QP (42)
and let Assumptions 4-6 hold. There exist Acq, beq, Ainegs
bineq such that the steady-state voltages V* of the circuit
in Fig. 5 solving (27) with ¢ = 0 are the optimizer of the
QP (42).

Theorem 2 will be proven in three steps. In the first
step, we consider the LP circuit of the previous section
with a zero cost function. We recall Lemma 1 and show
that it solves a QP with a positive semi-definite cost ma-
trix Q4 = diag(17A4) — AT diag (1TAT)71 A. In the sec-
ond step, we rewrite the difference between VZ'Q 5V and
the cost in problem (42) as a sum of quadratic and linear
terms. In the third step, we show how to construct A from
A such that Q4 contains these additional quadratic and
linear terms.

6.1. Proof of Theorem 2
In Lemma 1, it was shown that the solution to Egs. (27)
when ¢ = 0 is equivalent to the solution of the QP

R S
m‘}n §V QAV

s.t. AoqV = beq (44)
Ainqu S bineq7
Q4 =diag(1TA) — A" diag (17AT) ' A (45)

Next we prove that @ 4 is positive semi-definite.

Lemma 3. Let A € R™*™ and ¢ € R™ be non-negative,
17A >0, and 17 AT > 0. Then the matriz

Q4 = diag(c” +17A) — AT diag (1TAT)_1 A
1s positive semi-definite.

Proof. From the definition of Q4 (46), the diagonal ele-
ment in row j of Q4 is

QAjj :Cj‘f'ZAij_ZM

ZkAik
ZCj+ZA¢j<1— )

Zk Aik
The diagonal element @ 4 ;; is non-negative, since A is non-
AU
k

Ay < 1. The row sum of all off-diagonal

(46)

(47)

negative and
elements is

Aij A

2 Qup=2 ) =g (48)
ey Ligj i ek

The difference between the j-th diagonal element and the

sum of all the off-diagonal elements of row j is

Ay Ay Ay
i+ 5 A (1_ i ) _ Aig sl
_ Aij Doz A _
_cj+;A” (1_ZkAik_ S ) SO (49)



If ¢ > 0, the matrix Q4 is strictly diagonally dominant.
If ¢ > 0, the matrix Q4 is diagonally dominant. The
matrix @ 4 has non-negative main diagonal elements (47).
Therefore, @ 4 is positive definite when ¢ > 0 or positive
semi-definite for ¢ > 0. O

Consider the QP (42). Since Q # Q7 and d # 0, the
circuit in Fig. 5 with Aeq = Aeq, beq = Beq, Aineq = flineq,
bineq = bineq does not solve the QP (42). In the next step,
we rewrite the QP cost matrices Q and d in a special form.
The form will be used later in the third step to design the
circuit which solves the QP.

Proposition 5. Consider the cost J = %VTQV +dTV
of the QP (42) and let Assumptions 4-6 hold. Let Q; =
diag(c?” + 17 A) — AT diag (1T;1T)_1 A. Then there exist

scalars B> 0, a;; > 0 and r; fori,j =1,...,n such that
Lor T
BI=5VT Qi+ AQV +BATV,  (50)
where
AQ e Q, (51)
N N )
AQE Y i AQY+ ) anAQ", (52)
i,j=1, i#j i=1
N
i=1

R1 the matriz AQY with i # j has all zero elements
with the exception of two diagonal elements (i,1) and
(7,7) equal to 1 and two off-diagonal elements (i, j)
and (4,1) equal to —1,

R2 the matriz AQ™ has all zero elements with the ex-
ception of 1 at position (i,1),

R3 the vector Ad® has all zero elements with the excep-
tion of 1 at the i-th position.

Proof. Consider the QP (42) and the matrices Q5 > 0
and Q € Q7. Define AQ = 8Q — Q5. We prove (51) by
finding a scalar 8 “large enough” such that AQ = fQ—Q 3
and AQ € Q7. Such a scalar exists since @ is strictly
diagonally dominant by the Assumption 6. Note that the
minimizer of 8J = 3 (VT QV + d"V) is the same as of .J.

It is immediate to see that AQ" and AQ" with prop-
erties R1 and R2 can generate any matrix in the set Q.
This proves (52), R1, R2 with a;; > 0. The i-th non-zero
element of Ad in Eq. (53) is equal to —ay;r;, where ay; > 0.
In order to satisfy (50) we set r; = —8di/a;,. O

The third and last step consists in proving how to mod-
ify the original circuit so that AQ and Bd” as defined by
Eq. (52) and (53) can be obtained.
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Let the problem (1) be augmented with a redundant
constraint

a’V < o0, (54)

wherea? > 0isa non-negative row vector. This constraint
has no influence on the feasible set since it is redundant.
Define

A2 { et ] . (55)
From (46), it follows that
T
, aa
Qa = Q5+ diag(a) — T (56)

If a has only two non-zero entries a; and aj, then Q4 is
the sum of the quadratic term @) 5 arising from the orig-
inal constraints A and the matrix a;; AQY. a;;AQ"Y has
all zero elements with the exception of two diagonal ele-
.. .. a;a; .
ments (4,7) and (4, ) equal to arte; and two off-diagonal
.. . . a;a;
elements (4, 7) and (j,7) equal to e
adding a redundant constraint in the circuit with only two
non-zero entries a; and a;, one can modify the elements

(i,1), (i,7), (4,7) and (7, j) of the quadratic cost as

In conclusion, by

Qar = Qi+ ai;AQY, i #j (57a)
aiQ;

i =——2>0. 57b

g a; +a; ( )

where AQ% has the property R1 in Proposition 5. The
redundant constraint is implemented by connecting each
variable node V; with resistor 1/a; to a common node. Since
the constraint is always inactive, the diode is always in
non-conducting mode. Therefore, there is no need to in-
clude the diode and the negative resistance in the circuit.

We are left to show that we can modify the circuit
to obtain terms of the type a; AQY in (52) and ay;r; Ad®
n (53). We augment the unknown vector V' with an addi-
tional constant variable V,, 41 = r;

V&V, 7], (58)
and a redundant constraint

aTV' < o0, (59)
where a = [0,...,0,a;,0,...,0,a;] is a n+ 1 dimensional

vector of all zeros with the exception of «y; at positions i
and n + 1. Then,

1 1 1
§V/TQA'V/ = §VTQAV + gaii(‘/; —ri)?

1 1 1
:§VTQAV + 50411‘/1'2 —agiriVi + 57’3

(60)

In conclusion, by adding a redundant constraint of the
type Vi + ayiri, the cost V/ TQ 4 V' becomes

1
§V/TQA/V/

1 iy , 1
= §VT (Qa + @i AQ™) V — ayri Ad'V + 57'1'27 (61)



where Ad? and AQ¥ have the properties R2-R3 in Propo-
sition 5.

In conclusion, one one can add a number of redundant
rows a” to the original matrix of equality and inequality
constraints A and add constant voltage sources r; so that
any AQ and Bd” defined by Eqs. (52) and (53) can be
obtained. This completes the proof of Theorem 2.

Remark 5. If the matriz Q in (42) is not diagonally dom-
inant, the diagonal of matriz AQ might have negative val-
ues. This leads to negative resistors R = 1/2a,;. Although
this can be implemented, the negative resistance in the cir-
cuit may lead to a violation of the dissipative property of
the network. This is a topic of current research.

7. Simulations and Experiments

This section presents three examples where the ap-
proach proposed in this paper has been successfully ap-
plied. In the first example, a QP is solved by the proposed
electrical circuit and simulated by the SPICE (Nagel and
Pederson, 1973) simulator. In the second example, an ana-
log LP is used to control a linear system by using Model
Predictive Control. In the third example an experiment
is conducted by realizing the circuit for a small LP with
standard electronic components.

7.1. Quadratic Programming

We demonstrate the method and explore its limits by
solving the problem QPCBLEND from the Maros and
Meszaros QP problem set (Maros and Mészéros, 1999).
The original problem has 83 variables, 43 equality con-
straints, and 114 inequality constraints. After translation
to the all-positive form and the addition of constant vari-
ables (see Sections 3 and 6) the problem has 169 vari-
ables, 126 equality constraints, and 114 inequality con-
straints. The circuit that solves this problem was con-
structed with non-ideal components, including parasitic
capacitance of 10fF that roughly corresponds to typical
VLSI CMOS analog design and an operational amplifier
with gain-bandwidth product (GBW) of 10GHz.

The convergence of the electric circuit is shown in Fig. 12.
The circuit converges to a solution that is slightly different
from the optimum because non-ideal elements are used. As
can be seen in the figure, the steady-state error between
the circuit cost and the optimal one J,,; — J is in the order
of 1073, Similarly the steady-state norm of the solution
error || X,p: — X || in in the order of 1072, There is a small
constraint violation (|| AX —b||s = 9.3x 10~%) since the op-
erational amplifiers have finite gain and require non-zero
violation to generate voltage. As expected, if higher gain
(HG) operational amplifiers are used (GBW of 100GHz),
the infeasibility and the optimal cost error decrease.

The circuit transient can be partitioned into two phases.
During the first 1000ns (or first 100ns for the high gain
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Figure 12: Solution of problem QPCBLEND. The upper plot shows
the circuit voltages corresponding to the problem unknowns as a
function of time. The lower plot shows the error between the circuit
cost and the optimal one, and the norm of the solution error as
a function of time. Two type of operational amplifiers are tested:
nominal ones and the high-gain ones (denoted as g circuit).

circuit), rapid convergence to a solution close to the op-
timal one can be observed. Afterwards, the circuit con-
tinues to improve the solution with a smaller change in
the cost value. This behavior suggests that there are two
main circuit modes - fast modes are associated to com-
ponents which move in the direction of the cost gradient,
slow modes are associated to voltages quasi-orthogonal to
the cost gradient. The fast modes converge rapidly and
provide a solution close to the optimum while the slow
modes gradually improve the solution over a longer time
period.

7.2. MPC example

This example demonstrates the implementation of a
model predictive controller with an LP analog circuit. For
this example, we work with the dynamical system ‘é—f =
—x + u, where z is the system state and wu is the input.
We want z to follow a given reference trajectory while sat-
isfying input constraints. The finite time optimal control

problem at time ¢ is formulated as

N
1) — Tret( 62
o min ; |2(2) = res (1)] (62a)
Tiy1 = X4 + (ui - {EZ‘)(S, i=0,...,N (62b)
—15<u; <15,7=0,...,N (62(3)
xo = x(t), (62d)

where N is the prediction horizon, x,.¢(¢) is the reference
trajectory at step 7, 0 is the sampling time, and z(t) is the
initial state at time ¢. Only the first input, wug, is applied
at each time step t.

With N = 16, the LP in (62) has 96 variables, 63 equal-
ity constraints, and 49 inequality constraints. An electric
circuit that implements the system dynamics together with
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Figure 13: Example of MPC implementation. Solid lines represent
the nominal controller and dashed lines represent the controller im-
plemented with random 1% error of analog devices.

the circuit that implements the MPC controller were con-
structed and simulated using SPICE. The voltage value
representing the system state was measured and enforced
on the xg node of the LP. The optimal input value ug was
injected as input to the simulated system dynamics. Note
that in this setup there is no sample and hold. Rather, the
two circuits continuously interact with each other. Fig. 13
shows the closed loop simulations results. Notice the pre-
dictive behavior of the closed loop control input and the
satisfaction of the system constraints.

In order to demonstrate system performance for im-
perfect analog devices, another simulation result with 1%
random Gaussian error in the values of the resistors is pre-
sented on the same Fig. 13. There is no significant change
in system behavior.

7.3. Hardware implementation example

We implemented a small LP using standard electron-
ics components. The same problem was realized by Hop-
field (Tank and Hopfield, 1986) and Chua (Kennedy and
Chua, 1988). The LP is defined as follows

min ¢ [z; 2o]"
xT1,T2
35 5 35
s.t. To%1 22 < o 2h +x2 <5
—x1 <5, T2 <D (63)

where ¢ is a cost vector that is varied to get different so-
lution points. The circuit was realized using resistors of
1% accuracy, operational amplifiers (OP27) for the nega-
tive resistance, and a comparator (LM311) with a switch
(DG201) for implementing functionality of an ideal diode.

Various values for the cost function ¢ and test results
are summarized in Table 1. Table 1 shows that the ex-
perimental results are accurate up to 0.5%. The circuit
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Table 1: Experimental and theoretical results (in parenthesis) for LP
solution.

cost direction  x1 (exact)  x2 (exact)
11 4.996 (5.0)  4.99 (5.0)
-11 7.002 (7.0)  5.005 (5.0)
1-1 7.012 (-7.0)  -4.98 (-5.0)
10 6.976 (7.0)  0.005 (0.0)

reaches an equilibrium 6 ps after the cost voltage was ap-
plied. The convergence time is governed by a slew rate of
the OP27 that is limited to 2.8 V/us.

8. Conclusion

We presented the design of an electric analog circuit
able to solve feasible Linear and Quadratic Programs. The
method is used to implement and solve MPC based on
linear programming. We presented simulation and experi-
mental results demonstrating the effectiveness of the pro-
posed method.

The reported LP solution speed of 6 us is faster than
any result that was previously reported in the literature,
and may be significantly decreased further by selecting
faster components or implementing the design using faster
technology, such as a custom VLSI design or FPAA device.

Future research directions have interesting challenges
in both theory and implementation. The theoretical as-
pects include analog complexity theory and the study of
the dynamic circuit behavior using the theory of Linear
Complementary systems (Heemels et al., 1998). The im-
plementation aspects include solutions to the optimal cir-
cuit design, implementation using VLSI technologies, and
application to real-world problems.
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