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Abstract

It is well-known that reordering techniques applied to sparse matrices are common strategies to
improve the performance of sparse matrix operations, and particularly, the sparse matrix vector
multiplication (SpMV) on CPUs.

In this paper, we have evaluated some of the most successful reordering techniques on two
different GPUs. In addition, in our study a number of sparse matrix storage formats were con-
sidered. Executions for both single and double precision arithmetics were also performed.

We have found that SpMV is very sensitive to the application of reordering techniques on
GPUs. In particular, several characteristics of the reordered matrices that have a big impact on
the SpMV performance have been detected. In most of the cases, reordered matrices outperform
the original ones, showing noticeable speedups up to 2.6×. We have also observed that there is
no one storage format preferred over the others.
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1. Introduction

Sparse matrix-vector product (SpMV) is one of the most important computational kernels
in scientific and engineering applications. It is notorious for sustaining low fractions of peak
performance (typically, about 10%) on modern CPUs. The most important factors affecting the
SpMV performance are the memory bandwidth limitation and the high cache-miss rate caused
by the irregular and indirect memory access patterns.

On the other hand, since the arrival of the general-purpose graphics processing units (GPUs)
to the HPC world many researchers are paying attention to these throughput-oriented manycore
processors. GPUs are well-known because of their peak performance and high memory band-
width. These facts make these systems good candidates for executing the SpMV efficiently.
However, the irregular access patterns performed by SpMV are still a challenge for optimization.

Many strategies have been proposed to deal with the SpMV optimization. One of the most
successful solutions are the reordering techniques. Note that in some cases the main goal of these
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techniques was different than the optimization of the sparse algebra operation. Reordering tech-
niques evaluate the sparsity pattern of the matrix to find an appropriate permutation of rows and
columns that improves the SpMV performance. To the best of our knowledge, these techniques
have not been tested and discussed on GPUs.

In this paper, we have evaluated on two different GPUs (Tesla C1060 and M2050) some of the
most successful reordering techniques. Four different sparse matrix storage formats (CSR, ELL,
HYB and BELLPACK) have been considered using both single and double precision floating-
point arithmetic. We have found that SpMV is very sensitive to the application of reordering
techniques on GPUs. In particular, several characteristics of the reordered matrices that have a
big impact on the SpMV performance have been detected. In most of the cases, reordered ma-
trices outperform the original ones, showing speedups up to 2.6×. Moreover, we have detected
that there is no one storage format prevailing over the others, which does not agree with the
observations by Bell and Garland [5]. They found that HYB format is generally the fastest for a
broad set of unstructured matrices, and from our experiments we can not state that.

The paper is structured as follows: Section 2 discusses previous work on SpMV optimization.
Section 3 presents an overview of the reordering techniques and storage formats considered in
this work. An explanation of the main characteristics of the SpMV kernels for GPUs is also
provided. This section ends with a description of the hardware platform and matrix testbed used
in the tests. Section 4 shows the performance evaluation results on both GPUs. The paper finishes
with the main conclusions extracted from the work.

2. Related Work

Many works dealing with the optimization of the sparse matrix-vector product can be found in
the literature. Most of these previous works try to optimize the performance of this computational
kernel when executing on CPUs, and even some of them study the performance of SpMV when
applying reordering techniques like those we are dealing with here. There also exist some works
that try to optimize SpMV computations on GPUs, but it has not come to our notice any study
about the benefits of applying these reordering techniques when executing SpMV on GPUs.

Techniques for increasing the SpMV performance can be mainly divided into two groups:
data reordering and code restructuring techniques. Standard reordering techniques are considered
classical methods for the SpMV optimization. The most used techniques are the bandwidth
reduction algorithms, which derive from the Cuthill-McKee algorithm [10]. It has also been
demonstrated the benefits of using minimum degree-based heuristics (such as the approximate
minimum degree algorithm [1]) on multicore processors [19]. Oliker et al. [17] show the benefits
that are offered by the application of some of these reordering algorithms to sparse codes when
executed on different multiprocessor architectures. Coutinho et al. [9] perform a comparison of
different data reordering algorithms for the SpMV in edge-based unstructured grid computations.
However, they only focus on serial executions.

Techniques based on restructuring the code, like blocking or tiling, have been successfully
applied to different irregular codes such as the product of a sparse matrix by a dense matrix [12,
16] and stationary iterative methods [22]. Im et al. [13] propose register and cache blocking
as optimization techniques for the SpMV. In [7], a performance model for the blocked SpMV
is presented, which allows to pick in nearly all cases the actual optimal blocksize. Vuduc et
al. [24] extend the notion of blocking in order to exploit variable block shapes by decomposing
the original matrix to a proper sum of submatrices storing each submatrix in a variation of the
blocked CSR format. In a recent work [14], a comparative study of different blocking storage
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techniques for sparse matrices on several multicore platforms is performed. Finally, Belgin et
al. [3] introduce a representation for sparse matrices based on the observation that many matrices
can be divided into blocks that share a small number of different patterns. The goal is to reduce
the SpMV memory bandwidth requirements by reducing the index overhead.

Though in this work we have not considered code restructuring techniques, some authors
have demonstrated that both groups of techniques are complementary. In particular, Toledo [23]
evaluates different standard reordering techniques and combines them with blocking, showing
that SpMV performance increases significantly depending on the size and sparseness of the con-
sidered matrix. Pinar and Heath [20] introduce a reordering technique that favors the creation of
dense blocks on the pattern of the sparse matrix, and in this way the efficiency of the blocking
technique proposed by Toledo is increased. Moreover, a comparison between their reordering
technique and some standard reordering techniques is carried out. In another work [18] a re-
ordering of the sparse matrix in combination with blocking techniques was successfully applied
to the SpMV. This technique was evaluated on different uniprocessors and on distributed memory
multiprocessors.

All of this previous works are related to the execution of SpMV on CPUs, but there are also
some works focused on optimizing the performance on GPUs. One of the first papers about
this issue was published by Bolz et al. obtaining promising results [6]. Sengupta et al. [21]
developed more generic approaches using parallel scan primitives but that implementation was
not as efficient as CPU codes at that time.

More recently, researchers have demonstrated that GPUs can execute this operation more
efficiently than CPUs. In contrast with dense matrix operations (often limited by floating point
throughput), sparse matrix operations typically have a much less regular memory access pat-
tern and consequently are generally bandwidth limited. In [4], Bell and Garland demonstrate
that despite the irregularity of the SpMV computation, it can be mapped successfully onto the
fine-grained parallel architecture employed by the GPU. In that work they are able to harness a
large fraction of the available memory bandwidth. They compare GPU SpMV results with the
performance on a variety of multicore architectures obtained by Williams et al. [25], showing
that GPUs offer better performance than multicores. Baskaran and Bordawekar [2] presented
the key architectural optimizations that have to be addressed in GPUs for efficient executions:
exploiting synchronization-free parallelism, optimizing thread mapping, aligning global memory
accesses and exploiting data reuse. Evaluation of their optimizations shows that they are in par
with NVIDIA’s SpMV library.

As we stated above, reordering techniques could also be combined with blocking or tiling
techniques to obtain better performance. This approach was used by Choi et al. [8] on GPUs. Au-
thors propose a blocked ELLPACK (BELLPACK) implementation which achieves results among
the best published thus far. However, a meticulous choice of data structure tuning parameters is
required to make blocking techniques practical. In the same paper, authors present a performance
autotuning model that tries to simplify this task.

3. Experimental Conditions

In this section the experimental conditions to evaluate the benefits of applying the reordering
techniques for optimizing the SpMV are established.
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3.1. Reordering Techniques
Reordering techniques have been a successful approach to improve the performance of the

sparse matrix-vector multiplication (see Section 2). These techniques evaluate the sparsity pat-
tern of the matrix to find an appropriate permutation of rows and columns of the original matrix.
In some cases the main goal of these techniques was different than the optimization of the sparse
algebra operation. For example, the main goal of the Cuthill-McKee ordering is to modify the
sparsity pattern of the considered matrix with the aim of reducing its bandwidth [10]. Later
works demonstrate that applying this reordering technique also increases the performance of the
sparse matrix-vector product [20, 23]. This kind of techniques has obtained good results on dif-
ferent architectures, from monoprocessors to the newest multicore systems. However, until now,
reordering techniques have not been evaluated on GPUs.

In this work some of the most successful reordering techniques for improving the perfor-
mance of the SpMV have been considered. A brief description of them is provided next:

• Approximate Minimum Degree (AMD) [1]: The objective of this algorithm is to find a
permutation of the original matrix that reduces the fill-in when a Cholesky factorization is
performed.

• Distance function [19]: The goal of this technique is to increase the grouping of nonzero
elements in the sparse matrix pattern that characterizes the irregular accesses and, as a
consequence, increasing the locality in the execution of the SpMV code. This algorithm
allows to permute individual rows/columns of the original matrix or sets of consecutive
rows/columns. Depending on the choice we denote the technique as D or Dset respectively.

• Reverse Cuthill-McKee (RCM) [10]: As we have indicated previously, the goal of this tech-
nique is to reduce the bandwidth of the original matrix. Reverse Cuthill-McKee algorithm
is the same algorithm as the original one but with the resulting index numbers reversed.

• METIS library [15]: It is considered a standard in terms of graph partitioning and reorder-
ing. The reordering technique included in the library computes fill-reducing orderings
using a particular implementation of the nested dissection algorithm. In particular, we
have used the onmetis program. This technique can only be applied to matrices with
symmetric pattern.

Figure 1 shows, just for illustrative purposes, the appearance of one matrix from our testbed
after applying the reordering techniques enumerated above.

3.2. Sparse Matrix Formats
For a sparse matrix, substantial memory requirement reductions can be obtained by storing

only the nonzero entries. There exist many different storage formats, being ones more appro-
priate than others for a particular sparse matrix depending on the number and distribution of its
nonzeros. These formats differ in terms of the amount of storage required, the accessing meth-
ods, and their adaptability to different applications or parallel architectures such as GPUs. Some
of these formats are only well suited for matrices with a particular sparsity pattern like the diag-
onal format (DIA), other ones support efficient modification but not efficient matrix operations
like for example the coordinate format (COO), and so on. In this work, we will mainly focus on
those formats that are suitable for matrices with arbitrary structure and, at the same time, efficient
for matrix operations. More precisely, we have considered the compressed row storage (CSR),
ELLPACK (ELL), hybrid (HYB) and BELLPACK formats [4, 8]:
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(a) (b) (c)

(d) (e) (f)

Figure 1: Example of reordered matrices using different techniques: (a) original matrix (garon2), and matrices after
applying (b) AMD, (c) D, (d) Dset, (e) RCM and (f) METIS.

• Compressed Sparse Row (CSR): It is a general-purpose sparse matrix format. No as-
sumptions are needed about the sparsity structure of the matrix. CSR allocates subse-
quent nonzeros in each row in contiguous memory positions and stores column indices
and nonzero entries in two arrays, indices and values respectively. Besides, it needs an-
other array of pointers that indicates the offset for each row. This format is efficient for
arithmetic operations, row slicing, and matrix-vector products. Figure 2 illustrates an ex-
ample of the CSR representation.

• ELLPACK (ELL): This storage scheme compresses the original sparse n×m matrix in a
dense n× k matrix, where k is the maximum number of nonzeros per row of the original
matrix. It also needs another n× k array of indices which stores the position (column) of
each nonzero in the original matrix. This format can not be considered a general-purpose
matrix format because it needs that the number of nonzeros in each row do not vary greatly
through all the rows. In other case, a lot of storage space will be wasted and also the
computational efficiency will decrease. However, it is suitable for a reasonable variety
of matrices and the performance results it produces are generally good, so we decided to
include it here. ELL representation of an example matrix is shown in Figure 2.

• Hybrid (HYB): This is a combination of two storage formats: COO and ELL. It tries to
combine the computation efficiency of ELL with the simplicity and generality of COO
(that stores row and column indices explicitly). The majority of the matrix entries are
stored in ELL format, and those rows with a substantially different number of nonzeros
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Figure 2: CSR and ELL sparse matrix storage formats.

are stored in COO format. As we will see, this scheme yields good performance results
for the majority of sparse matrices we have tested.

• Blocked ELLPACK (BELLPACK): This format tries to adapt classical ELL to store r × c
dense subblocks in order to save storage and flops, wasted in ELL because of the excessive
zero-padding. A BELLPACK matrix is constructed from a n × m input matrix A. This
matrix is firstly reorganized into a new matrix, A′, stored using r × c dense subblocks.
Then the block-rows are sorted in descending order of number of blocks per row, resulting
in another matrix A′′. Finally, the rows of A′′ are partitioned into n/R non-overlapping
submatrices, each of size R×m/c. Each submatrix is then stored in ELL or BELLPACK
format. Complete details about BELLPACK implementation can be found in [8].

3.3. Sparse Matrix-Vector Multiplication (SpMV)

Sparse matrix-vector multiplication (SpMV) is one the most important operations in scien-
tific computing, mainly because iterative procedures for solving large linear systems (y=A×x)
usually requires hundreds of iterations involving matrix-vector products to reach convergence.
Due to this fact, there has been quite a lot of works trying to optimize this operation both in the
realm of CPUs and also in the parallel world of GPUs. One of the latest and more productive
efforts in this direction has been a library for SpMV operation that NVIDIA released recently
and it is described in [4]. In that paper the authors comment the implementation details of the
kernels used for different storage formats, and they also do the corresponding performance tests.
This library supports DIA, ELL, CSR, COO, HYB and packet formats. We have used this li-
brary in order to evaluate the reordering techniques. Note that not all the supported kernels were
considered in the results section. We have focused on those having a good compromise between
generality and performance (that is, ELL, CSR and HYB formats). Moreover, we mentioned
in the previous section another storage format, BELLPACK. This format is not included in the
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GPU NVIDIA Tesla C1060 NVIDIA Tesla M2050
CPU 2 × Intel Xeon Quad-core E5520
Memory 6 × 2 GB DDR3-1333
OS Ubuntu 9.10 Ubuntu 10.04 LTS
CUDA version 3.0 3.2
Host Compiler gcc 4.3.4 gcc 4.4.3

Table 1: Test platforms specifications.

NVIDIA library. It was developed by Choi et al. [8], and we have used their implementation of
the SpMV in our tests.

The ELL kernel uses one thread per matrix row to parallelize the computation and benefits
from full coalescing when accessing the sparse matrix. It is usually a good performer when the
matrix fulfills the requirements commented in the previous section. CSR kernel is implemented
in two different ways, one called CSR scalar and other named CSR vector. As the ELL ker-
nel, CSR scalar uses one thread per row but its memory access pattern prevents it from taking
advantage of the GPU coalescing feature, which usually leads to a decrease in performance.
CSR vector kernel differs from the other two kernels, and assigns one warp per matrix row. This
permits the kernel to access the CSR structure contiguously but usually not in an aligned way,
which implies partial coalescing. Even so, performance of the CSR vector kernel in our tests is
always superior to that of the CSR scalar one, so from now on when we mention the CSR kernel
we will refer to the CSR vector kernel. The HYB kernel is a combination of ELL and COO
kernels (one thread per row and full coalescing in both cases). Because most nonzeros usually
belong to the ELL portion, performance of the HYB kernel will often be similar to that of the
ELL kernel. Further details about the implementation of each kernel can be found in [4]. Finally,
BELLPACK, as the ELL kernel, benefits from full coalescing, and though its improvements over
ELL apply only to matrices that have small dense block sub-structures, it has proved to be a good
performer in most of the cases, and even the best for some of them. However, it is necessary to
say that the optimal parameters for the blocking process (r, c) and the optimal number of threads
per block had to be found by exhaustive search. Further details about the implementation of this
kernel can be found in [8].

Besides, as Bell and Garland state in their work, most of the SpMV kernels can benefit from
using the texture cache present on all CUDA-capable devices. In this way, using this cache to
access the x vector often improves performance considerably. In our tests, using the texture
cache always led to a better result than the correspondent non-cache kernel, so the results shown
in this paper are always related to the utilization of this texture cache.

3.4. Hardware Platform and Matrix Testbed

Experiments were performed on two similar platforms, but with different GPUs. Both plat-
forms were equipped with 12GB RAM and two Intel Xeon E5520 (Nehalem). Besides, one of
the platforms was equipped with a NVIDIA Tesla C1060 and the other one with a NVIDIA Tesla
M2050 (Fermi architecture). Table 1 summarizes the main characteristics of the test platforms.
SpMV codes were compiled with NVIDIA CUDA compiler (nvcc) and the options indicated
in the library documentation: -arch=sm 13 (for the GT200 architecture) and -arch=sm 20
(for the Fermi architecture), with the optimization flag -O3.
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Matrix rows (n) nnz Matrix rows (n) nnz
1 av41092∗ 41092 1683902 16 nd3k 9000 3279690
2 bcsstm36 23052 320606 17 net25 9520 401200
3 crystk03 24696 1751178 18 nmos3 18588 386594
4 e40r0100∗ 17281 553562 19 pct20stif 52329 2698463
5 F2 71505 5294285 20 psmigr 1∗ 3140 543162
6 fp∗ 7548 848553 21 rajat15 37261 443573
7 garon2 13535 390607 22 ship 001 34920 4644230
8 gupta2 62064 4248286 23 sme3Da∗ 12504 874887
9 gyro k 17361 1021159 24 sme3Dc∗ 42930 3148656
10 lhr10∗ 10672 232633 25 sparsine 50000 1548988
11 li 22695 1350309 26 syn12000a∗ 12000 1436806
12 msc10848 10848 1229778 27 tandem vtx 18454 253350
13 Na5 5832 305630 28 thread 29736 4470048
14 nc5 19652 1499816 29 TSOPF FS b300 56814 8767466
15 ncvxbqp1 50000 349968 30 tsyl201 20685 2454957

Table 2: Matrix benchmark suite. Matrices with an asterisk have a non-symmetric sparsity pattern.

As matrix test set we have selected thirty square sparse matrices from different real applica-
tions (structural problems, circuit and n-body simulations, linear programming, ...) that represent
a variety of nonzero patterns. For example, there are banded matrices, non-banded matrices with
regular structure, non-symmetric matrices, etc. All these matrices are from the University of
Florida Sparse Matrix Collection (UFL) [11]. Table 2 summarizes the features of the matrices.
nnz is the number of nonzeros.

4. Experimental Evaluation

Performance results of the SpMV are shown and discussed next. We have compared the
performance obtained by the original matrices (without reordering) with respect to the reordered
ones using the four storage formats considered (CSR, ELL, HYB and BELLPACK). Note that
METIS reordering technique can only be applied to matrices with a symmetric pattern (see Table
2).

Results for a particular matrix are displayed in the figures only if the original performance
differs from the obtained by any of its reorderings in more than 1%. We report performance in
terms of GFLOPS. Note that the cost of transferring the matrix between the host memory and
the device memory is not included. Tests using single (32 bits) and double precision (64 bits)
floating-point arithmetic have been carried out.

Performance results obtained on the Tesla C1060 are discussed in Section 4.1, while the
ones obtained with the Fermi GPU (Tesla M2050) are shown in Section 4.2. It is worth to
mention that the results with Tesla M2050 were obtained without ECC and with a 48KB L1
cache configuration. Finally, a comparison between both GPUs is shown in Section 4.3.

4.1. Tesla C1060

4.1.1. Single Precision Case
Figure 3 reports the SpMV performance results considering CSR storage format. The fact

that results for 20 matrices (66% of the total) are displayed in the figure points out that perfor-
mance using this format is very sensitive to the application of reordering techniques. In most
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Figure 3: Performance of the reordered matrices using CSR format (single precision) on the Tesla C1060.

3 4 7 10 11 14 15 16 18 25 27 28 30
0

2

4

6

8

10

12

14

16

18

Matrix ID

P
e
rf

o
rm

a
n

c
e
 (

G
F

L
O

P
S

)

Original

AMD

D
D

set

RCM

METIS

Figure 4: Performance of the reordered matrices using ELL format (single precision) on the Tesla C1060.
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Figure 5: Performance of the reordered matrices using HYB format (single precision) on the Tesla C1060.
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Figure 6: Performance of the reordered matrices using BELLPACK format (single precision) on the Tesla C1060.
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Matrix ID Original AMD D Dset RCM METIS

1 6.40 H 6.37 H 6.62 C 6.37 C 6.34 H -
2 6.10 H 6.95 B 7.28 B 7.04 B 6.97 B 6.31 B

3 25.72 B 19.61 B 23.43 B 22.22 B 23.14 B 17.87 B

4 11.31 B 10.78 B 12.96 B 12.47 B 9.77 B -
5 15.76 B 15.43 B 16.26 B 16.26 B 15.21 B 13.81 B

6 8.60 C 8.31 C 8.69 C 8.69 C 7.80 C -
7 9.62 B 10.19 B 12.45 B 11.17 B 11.00 B 10.67 B

8 8.50 H 8.61 H 8.46 H 8.36 H 8.61 H 8.50 H

9 8.41 H 8.68 H 8.61 H 8.65 H 8.55 H 8.69 H

10 7.99 B 6.22 B 6.60 B 7.79 B 5.25 B -
11 9.55 E 8.88 E 10.63 B 11.39 B 9.13 E 9.48 E

12 8.34 C 8.83 C 8.80 C 8.66 C 8.58 C 8.59 C

13 6.25 C 6.17 C 6.57 C 6.29 C 6.45 C 6.34 C

14 8.37 E 9.62 E 11.99 E 11.73 E 9.75 E 9.21 E

15 7.79 E 9.93 E 10.02 H 10.03 E 10.14 E 9.78 H

16 12.74 B 12.84 B 13.07 B 13.49 B 10.34 B 10.68 B

17 6.57 C 6.71 C 6.73 C 6.71 C 6.66 C 6.58 C

18 8.88 E 11.05 B 13.06 B 11.21 B 12.37 B 10.99 B

19 16.23 B 15.73 B 16.61 B 15.95 B 15.78 B 14.49 B

20 6.91 C 6.53 C 6.69 C 6.87 C 6.87 C -
21 4.67 H 4.74 H 4.76 H 4.69 H 4.61 H 4.78 H

22 17.17 B 17.71 B 18.39 B 18.33 B 17.91 B 16.17 B

23 6.94 H 8.02 C 8.02 H 8.00 C 8.23 H -
24 7.63 H 10.58 H 14.05 B 9.79 H 12.06 B -
25 6.21 B 6.45 B 7.53 E 7.85 E 10.48 E 6.77 E

26 6.32 B 7.08 B 8.93 C 7.18 B 7.84 C -
27 6.03 E 6.49 E 6.52 E 6.51 E 6.04 E 6.23 E

28 19.73 B 18.88 B 20.02 B 20.33 B 19.21 B 16.16 B

29 9.95 H 9.64 H 9.93 H 9.93 H 9.90 H 9.64 H

30 20.92 B 20.36 B 21.81 B 22.68 B 20.28 B 18.07 B

Table 3: Summary of the best single precision performance results (in GFLOPS) on the Tesla C1060. Subscripts show
the corresponding storage format: C (CSR), E (ELL), H (HYB) and B (BELLPACK).

of the cases, reordered matrices outperform the original ones. Worst behavior is observed for
AMD reorderings, which even then increase the performance in 60% of the cases (18 matrices).
Best results are observed for the reorderings of matrices 23, 24, 25 and 26. This is caused by an
increase in the clustering of the nonzeros within each row of the reordered matrices with respect
to the original ones, which will lead to access to closer elements of the vector when the SpMV
operation is performed, improving the spatial locality. Note that speedups up to 2.6× (matrix 26
and D reordering) are reached. The worst case corresponds to matrix 2, where some reordering
degrades the original matrix performance about 9%. Average performance improvement ranges
from 1.5% using METIS to 6.4% when D is considered.

Results considering ELL format are displayed in Figure 4. This format is only efficient when
the maximum number of nonzeros per row does not substantially differ from the average (see
Section 3.2). This is the case of the thirteen matrices in the figure. As when using CSR format,
reordered techniques have an impact on the SpMV performance. We have observed for this
format that a bandwidth reduction in the matrices has a big influence on the performance, which
is the case of reorderings of matrices 14, 15, 18 and 25. Noticeable speedups are observed such
as 1.7× for matrix 25 and RCM reordering. Best overall behavior is obtained by Dset technique,
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improving on average the performance above 9%. Degradations are always lower than 4%.
Figure 5 shows the results obtained using the HYB kernel. Behavior is similar to that found

for CSR and ELL formats in the sense that reorderings improve the performance of the original
matrices in most of the cases. We must emphasize that RCM, which corresponds to the worst
case, increases the performance of 19 matrices, that is, 63% of the testbed. On the other hand,
HYB format is a combination of ELL and COO formats. Assuming that most nonzeros belong
to the ELL portion [3], this is the reason why a bandwidth reduction has also a big impact on the
performance with the HYB format (see matrices 14, 15, 18, 23, 24 and 25). Moreover, speedups
higher than 1.5× were reached, which is the case of matrices 24 and 25. It is worth to mention
that average improvements vary from 1.4% (METIS) to 6.8% (D).

Some observations were made when comparing the best performance obtained by each ma-
trix and reordering considering only the formats considered by Bell and Garland [5] (CSR, ELL
and HYB). There is no one format prevailing over the others. For example, considering the orig-
inal matrices, HYB is the best in 12 cases (40% of the total), while ELL and CSR dominate
on 9 matrices each one (30% of the total). This behavior is also found for the reorderings. It
does not agree with the observations by Bell and Garland [5]. They found that HYB format is
generally the fastest for a broad set of unstructured matrices, and from our experiments we can
not state that. This observation was also found with double precision arithmetic, and in the tests
performed on the Tesla M2050 (see Section 4.2).

Figure 6 displays the performance observed when considering the BELLPACK format. This
is the storage format for which reordering techniques have the most influence. This is caused by
a limitation in the BELLPACK format: it can only be successfully applied to matrices that have
small dense block sub-structures [8]. Therefore, modifying the sparsity pattern of the original
matrices will influence very much the efficiency of this approach. According to the results,
several conclusions can be made. First, the higher performance is always obtain by FEM matrices
with dense block sub-structures. For example, original matrices 3, 28 and 30 achieve 25.7, 19.7
and 20.9 GFLOPS respectively. This observation agrees with the results in [8]. Secondly, D
and Dset obtain the best results overall. This behavior was expected because the goal of this
reordering technique is to increase the grouping of nonzero elements in the sparse matrix pattern,
which will favor the creation of small dense sub-blocks. In a previous work [18] the authors
demonstrate this fact by means of the combination of reordering and register blocking techniques
on different multiprocessors. In particular, the average improvement using D and Dset reorderings
is 14% and 10.2% respectively, reaching speedups up to 2.2× (matrix 24). And finally, we
have observed that METIS is specially inefficient with this format as it is shown by the average
degradation of 8% in the performance. Results point out that the typical arrow-shaped matrices
generated by METIS (see Figure 1(f)) does not contain small dense sub-blocks.

In order to summarize the observations, Table 3 contains the best performance obtained for
each matrix and reordering technique considering all the storage formats. Subscripts show which
storage format performs better. According to these results several conclusions can be made.
First, BELLPACK is the best storage format in about 40% of the matrices. Note that we have
only considered the best block size in order to apply this format.

Secondly, we have observed that for some matrices (1, 2, 11, 15, 18, 23, 24 and 26), a dif-
ferent storage format is preferred by some of the reorderings with respect to the original matrix.
For example, AMD and Dset reorderings of matrix 23 obtain their best performance with CSR,
while the original matrix uses the HYB format. It illustrates the difficulty to choice some storage
format as the best solution.

And finally, it is noticeable that only for 4 matrices no optimizations were achieved. Note
12
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Figure 7: Performance of the reordered matrices using CSR format (double precision) on the Tesla C1060.

that, for example, D reorderings outperform 25 original matrices. This demonstrates that reorder-
ing techniques have a big impact on the SpMV performance on GPUs. Speedups reach values up
to 1.8× (matrix 24) or 1.7× (matrix 25). In particular, the overall average improvement is 1%,
9.8%, 6.9%, 3.3% and -5.6% for AMD, D, Dset, RCM and METIS respectively. Note that METIS
degrades the SpMV performance with respect to original matrices. This is caused by the bad
behavior when considering the BELLPACK format.

4.1.2. Double Precision Case
Next we present the results obtained when considering double precision floating-point arith-

metic. Figure 7 displays the performance achieved using the CSR format. Note that perfor-
mance with double precision is always lower than the obtained with single precision arithmetic.
For example, considering original matrices, average performance using single precision is 10.2
GFLOPS, while with double is 6.7 GFLOPS. This behavior was observed for all the matrices
and storage formats.

In this case, as it was expected, reordering techniques have also a big influence on the SpMV
performance. Note that even in the worst case, which corresponds to D, reorderings beat 19
original matrices (63% of the testbed). Best results are obtained by reorderings (matrices 24, 25
and 26) that increase the clustering of the nonzeros within each row of the matrix, improving
the spatial locality in the accesses to the vector when the SpMV is performed. Speedups reach
values up to 2.6× (matrix 26 and D). Average improvements range from 3.7% (METIS) to 8.2%
(D), which are actually higher than those observed using single precision (see previous section).

Performance evaluation of the reordering techniques using ELL is shown in Figure 8. ELL
storage format is only efficient for the thirteen matrices in the graph, in the same way as when

13



3 4 7 10 11 14 15 16 18 25 27 28 30
0

1

2

3

4

5

6

7

8

9

10

11

Matrix ID

P
e
rf

o
rm

a
n

c
e
 (

G
F

L
O

P
S

)

Original

AMD

D
D

set

RCM

METIS

Figure 8: Performance of the reordered matrices using ELL format (double precision) on the Tesla C1060.
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Figure 9: Performance of the reordered matrices using HYB format (double precision) on the Tesla C1060.
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Figure 10: Performance of the reordered matrices using BELLPACK format (double precision) on the Tesla C1060.

using single precision arithmetic (Figure 4). We have also observed for double precision that a
bandwidth reduction in the matrices is the most important factor that influences the performance.
Noticeable improvements are observed with speedups exceeding 1.4× (matrices 15 and 25).
Degradations are always lower than 4%. Average improvements vary from 5.1% (AMD) to 8.3%
(Dset). It is noticeable that the average improvement of AMD reorderings increases from 3% in
single precision to 7.4% with 64-bits arithmetic.

Figure 9 displays the results using the HYB format. In most of the cases, reordered matrices
outperform the original ones. Note that the behavior of the reorderings with ELL and HYB
formats (see Figure 8) is, as it was expected, very similar. This is the case, for example, of
matrices 3, 16, 25 and 30. The best average improvement is obtained by D reordering technique
(as in single precision), increasing performance about 6% with respect to the original matrices.
Worst case corresponds to METIS, which average improvement reaches 3.1%. Some important
speedups are achieved such as 1.4× with matrix 15.

The performance evaluation results when considering the BELLPACK format (Figure 10)
confirm the observations obtained with single-precision arithmetic. First, the higher performance
is always obtain by FEM matrices with dense block sub-structures. For example, original matri-
ces 3, 28 and 30 achieve 13.2, 13.1 and 13.9 GFLOPS respectively. Secondly, D and Dset obtain
the best results overall. In particular, the average improvement using D and Dset reorderings is
17% and 9.8% respectively, reaching speedups up to 2.2× (matrix 24). And finally, we have
also observed that METIS is specially inefficient with this format as it is shown by the average
degradation of about 11% in the performance.

As a summary we have included the best double precision performance results obtained for
each matrix and reordering technique considering the four storage formats, CSR, ELL, HYB and

15



Matrix ID Original AMD D Dset RCM METIS

1 3.95 C 3.95 C 4.30 C 4.17 C 3.92 C -
2 3.99 B 4.68 B 4.94 B 4.88 B 4.72 B 4.33 B

3 13.24 B 11.66 B 14.54 B 13.86 B 13.37 B 10.55 E

4 7.26 B 7.09 B 8.31 B 8.05 B 6.30 B -
5 8.81 B 7.69 H 8.33 B 8.34 B 7.69 H 7.65 H

6 6.62 C 5.84 C 6.38 C 6.34 C 5.36 C -
7 6.33 E 6.68 E 8.18 B 6.88 B 7.19 B 6.95 B

8 5.30 H 5.36 H 5.26 H 5.23 H 5.36 H 5.26 H

9 5.80 H 5.79 H 5.81 H 5.83 H 5.84 H 5.97 H

10 5.82 B 4.40 B 4.56 B 5.68 B 3.59 B -
11 6.24 E 6.23 E 7.28 B 7.30 B 6.30 E 6.54 E

12 6.59 C 6.81 C 6.99 C 6.69 C 6.79 C 7.14 C

13 4.52 C 4.07 C 4.35 C 4.44 C 4.29 C 4.27 C

14 6.84 E 7.34 E 8.35 E 8.17 E 7.30 E 7.12 E

15 4.69 E 6.40 H 6.60 E 6.65 E 6.73 H 6.41 H

16 9.68 B 8.31 C 9.82 B 8.84 B 8.36 C 8.27 C

17 3.95 C 4.35 C 4.15 C 4.32 C 4.35 C 4.41 C

18 5.94 E 7.46 B 8.57 B 6.89 E 8.61 B 7.29 B

19 8.56 B 8.11 B 8.54 B 8.23 B 8.09 H 7.96 H

20 5.09 C 5.89 C 4.67 C 6.02 C 5.12 C -
21 3.38 H 3.47 H 3.44 H 3.39 H 3.37 H 3.51 H

22 10.85 B 11.22 B 11.84 B 11.26 B 10.99 B 10.02 B

23 5.10 C 6.10 C 5.83 C 5.80 C 5.84 H -
24 5.60 H 7.26 H 7.53 H 6.48 H 7.56 H -
25 4.29 H 4.52 E 4.61 H 4.90 E 6.30 E 4.93 H

26 4.86 H 5.85 C 7.15 C 5.76 C 6.13 C -
27 4.25 E 4.51 E 4.31 E 4.40 E 4.12 E 4.21 E

28 13.07 B 11.52 B 13.40 B 13.10 B 13.13 B 9.62 B

29 6.20 C 6.67 C 6.37 C 6.37 C 5.92 H 6.69 C

30 13.92 B 12.71 B 14.09 B 15.15 B 13.02 B 11.66 B

Table 4: Summary of the best double precision performance results (in GFLOPS) on the Tesla C1060. Subscripts show
the corresponding storage format: C (CSR), E (ELL), H (HYB) and B (BELLPACK).

BELLPACK in Table 4.
It is worth to mention that there is not one storage format preferred over the others. However,

CSR and BELLPACK formats are the best choices in about 30% of the cases respectively. Also
note that different storage formats are preferred by some of the reorderings with respect to the
original matrix. This is the case, for example, of matrices 5, 7, 15, 25, 26 and 29.

Moreover, we have detected some matrices for which their best performance is obtained
with different storage formats in case of considering single or double precision arithmetic. For
example, the original matrix 1 reaches its best performance using HYB and CSR for single and
double case respectively.

On the other hand, there are only 5 matrices (16.7% of the testbed) for which no improve-
ments were observed. Important speedups has been found. For example, speedups for matrices
15, 18, 25 and 26 exceed 1.4×. Overall average improvement is 0.8%, 8.9%, 6.3%, 2.5% and
-3.6% for AMD, D, Dset, RCM and METIS respectively. These results show a slightly worse behav-
ior with respect to the single precision tests. Note that METIS degrades the SpMV performance
with respect to original matrices caused by the results when considering the BELLPACK format.
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Figure 11: Performance of the reordered matrices using CSR format (single precision) on the Tesla M2050.

4.2. Tesla M2050 (Fermi architecture)

4.2.1. Single Precision Case
Figure 11 displays the SpMV performance results considering CSR storage format. In most

of the cases, reordered matrices outperform the original ones. We must highlight that D and Dset

reorderings increase the performance of 24 and 25 original matrices of the testbed. Best results
are observed for those reorderings whose nonzeros are located in closer positions within each
row. This grouping will lead to access to closer elements of the vector when the SpMV operation
is performed, improving the spatial locality. This is the case of the reorderings of matrices 12,
23, 24 and 26. Note that speedups up to 2.4× (matrix 26 and D reordering) are reached. Average
performance improvement ranges from 0.9% using METIS to 10.8% when D is considered.

Results considering ELL format are shown in Figure 12. Note that this format is only efficient
when the maximum number of nonzeros per row does not substantially differ from the average
(see Section 3.2). We have observed for this format that a bandwidth reduction in the matrices
has a big impact on the performance. For example, reorderings of matrix 25 reach speedups up
to 1.9×. Best overall behavior is obtained by D and RCM techniques, improving on average the
performance about 11%.

Figure 13 shows the results obtained using the HYB kernel. Behavior is similar to that found
for CSR and ELL formats in the sense that reorderings improve the performance of the original
matrices in most of the cases. As we have noted previously, HYB format is a combination of
ELL and COO formats. Assuming that most nonzeros belong to the ELL portion [3], this is
the reason why a bandwidth reduction has also a big impact on the performance with the HYB
format. Speedups higher than 1.4× were reached (matrix 24), with average improvements that
vary from 1% (METIS) to 6.4% (D).

Finally, the results considering the BELLPACK format are displayed in Figure 14. These
results agree with the observations obtained when using the Tesla C1060 as test platform. First,
the higher performance is always obtain by FEM matrices with dense block sub-structures. This
is the case of the original matrices 3, 28 and 30, whose SpMV performance is 40.1, 33.7 and 35.9

17



3 4 7 10 11 14 15 16 18 25 27 28 30
0

2

4

6

8

10

12

14

16

18

20

Matrix ID

P
e
rf

o
rm

a
n

c
e
 (

G
F

L
O

P
S

)

Original

AMD

D

D
set

RCM

METIS

Figure 12: Performance of the reordered matrices using ELL format (single precision) on the Tesla M2050.
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Figure 13: Performance of the reordered matrices using HYB format (single precision) on the Tesla M2050.
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Figure 14: Performance of the reordered matrices using BELLPACK format (single precision) on the Tesla M2050.

GFLOPS respectively. Secondly, D and Dset obtain the best results overall. We must take into
account that the goal of this reordering technique is to increase the grouping of nonzero elements
in the sparse matrix pattern that characterizes the accesses of the SpMV operation [19]. In par-
ticular, the average improvement using D and Dset reorderings is 13.4% and 8.4% respectively,
reaching speedups up to 2.6× (matrix 24). And finally, we have observed that AMD and METIS
are specially inefficient with this format as it is shown by the average degradation of about 10%
and 19% in the performance respectively. We have detected that AMD and METIS reorderings
break the small dense sub-blocks of the original FEM matrices. This is the case of matrices 3, 5,
11, 28 and 30.

Table 5 contains the best performance obtained for each matrix and reordering technique con-
sidering all the storage formats. Subscripts show which storage format performs better. We must
highlight that there are only 2 matrices for which reorderings do not improve their performance.
It is specially relevant the results obtained by D and Dset, improving the performance of more
than 80% of the testbed. In most of the cases the highest performance is achieved considering
CSR or BELLPACK, which coincide with the best formats for D and Dset reorderings. Notice-
able speedups have been observed. We must emphasize the cases of matrices 24 and 26, with
speedups up to 2.2× and 2.1× respectively.

Overall average improvement is -5%, 12.3%, 8.7%, 2.7% and -12.5% for AMD, D, Dset, RCM
and METIS respectively. Note that AMD and METIS reorderings reduce the average performance
with respect to the original matrices. In both cases the problem was the performance using
BELLPACK format. As we have commented above, we have detected that AMD and METIS
reorderings break the small dense sub-blocks of the original FEM matrices. This is the case of
matrices 3, 5, 11, 28 and 30 (see Figure 14 and Table 5).

4.2.2. Double Precision Case
Next the performance evalaution results when considering double precision floating-point

arithmetic are introduced. We must highlight that the behavior observed for all the storage for-
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Figure 15: Performance of the reordered matrices using CSR format (double precision) on the Tesla M2050.
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Figure 16: Performance of the reordered matrices using ELL format (double precision) on the Tesla M2050.
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Figure 17: Performance of the reordered matrices using HYB format (double precision) on the Tesla M2050.
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Figure 18: Performance of the reordered matrices using BELLPACK format (double precision) on the Tesla M2050.
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Matrix ID Original AMD D Dset RCM METIS

1 8.17 C 8.20 C 8.18 C 8.11 C 8.22 C -
2 6.56 B 7.25 B 8.27 B 8.60 B 7.42 B 6.72 B

3 40.06 B 26.16 B 39.44 B 39.71 B 38.81 B 23.53 B

4 13.63 B 13.27 B 16.08 B 15.41 B 11.50 B -
5 27.48 B 21.65 B 27.84 B 27.82 B 21.65 B 19.79 B

6 14.45 C 14.78 C 15.81 C 15.81 C 14.13 C -
7 11.77 B 11.30 B 14.47 B 13.31 B 13.00 B 12.18 B

8 11.33 C 10.33 C 11.05 C 12.11 C 10.75 C 10.79 C

9 10.25 C 10.41 C 10.91 C 10.79 C 10.51 C 10.13 C

10 8.14 B 6.53 B 6.80 B 8.44 B 5.67 E -
11 13.87 B 10.65 B 15.13 B 16.06 B 13.66 E 10.62 C

12 14.14 C 15.92 C 16.33 C 16.01 C 15.48 C 15.13 C

13 8.51 C 7.93 C 9.03 C 8.95 C 7.97 C 8.01 C

14 11.14 E 14.64 E 18.73 E 18.54 E 15.51 E 13.91 E

15 11.82 B 12.83 B 14.87 E 14.75 E 14.54 E 13.22 E

16 23.67 C 23.29 C 23.54 C 23.05 C 22.81 C 22.04 C

17 7.05 C 8.06 C 7.31 C 7.34 C 7.47 C 7.85 C

18 13.77 E 14.22 B 16.28 B 14.36 E 16.25 B 14.44 B

19 19.30 B 19.41 B 21.31 B 19.92 B 19.53 B 17.01 B

20 13.33 C 14.32 C 14.66 C 13.56 C 14.14 C -
21 3.81 H 3.92 H 3.94 H 3.96 H 3.75 H 3.94 H

22 22.07 B 22.40 B 25.00 B 23.41 B 24.02 B 20.36 B

23 8.49 C 11.39 C 12.11 C 10.44 C 11.41 C -
24 8.50 C 11.50 C 18.91 B 10.91 B 13.29 B -
25 8.53 B 8.53 B 10.10 B 10.40 B 13.52 B 8.97 B

26 8.06 B 9.77 B 16.75 C 8.75 B 11.75 C -
27 9.03 E 9.13 E 9.52 E 9.46 E 9.39 B 9.06 E

28 33.75 B 24.87 B 34.23 B 34.58 B 33.90 B 22.41 B

29 17.08 C 17.40 C 19.43 C 19.40 C 16.94 C 19.84 C

30 35.89 B 28.87 B 32.22 B 38.27 B 28.58 B 25.83 B

Table 5: Summary of the best single precision performance results (in GFLOPS) on the Tesla M2050. Subscripts show
the corresponding storage format: C (CSR), E (ELL), H (HYB) and B (BELLPACK).

mats agrees with the conclusions and observations explained above for single precision.
Figure 15 displays the performance achieved using the CSR format. In most of the cases,

reordered matrices outperform the original ones. For example, D and Dset reorderings increase
the performance of 20 matrices of the testbed. Best results are again observed for those reorder-
ings whose nonzeros are located in closer positions within each row (matrices 12, 23, 24 and 26).
Speedups up to 2× (matrix 26 and D reordering) are reached. Average performance improvement
ranges from 0.5% using METIS to 7.2% when D is considered.

ELL format results are shown in Figure 16. A bandwidth reduction in the matrices when
using this format has a big influence on the SpMV performance. For example, reorderings of
matrix 25 reach speedups up to 1.6×. As we expect, according to the previous results, the best
overall behavior is obtained by D and RCM techniques, improving on average the performance
9.5% and 7% respectively.

Figure 17 shows the results obtained using the HYB kernel. Because HYB format is a combi-
nation of ELL and COO formats, a bandwidth reduction has also a big impact on the performance
with this format. Speedups higher than 1.4× were reached (matrix 24), with average improve-
ments that vary from 0.9% (METIS) to 7.2% (D).
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Matrix ID Original AMD D Dset RCM METIS

1 6.99 C 6.99 C 6.63 C 6.49 C 7.00 C -
2 5.81 B 6.54 B 6.98 B 6.95 B 6.55 B 6.03 B

3 21.24 B 16.93 B 20.60 B 20.71 B 20.09 B 14.95 B

4 10.58 B 10.67 B 12.40 B 11.83 B 9.47 B -
5 18.00 B 14.57 B 17.86 B 17.80 B 14.50 B 13.17 B

6 11.28 C 11.63 C 11.71 C 11.70 C 11.15 C -
7 10.09 E 9.36 B 12.13 B 11.03 B 10.95 B 10.13 B

8 9.04 C 8.22 C 9.01 C 9.73 C 8.91 C 8.78 C

9 8.58 C 8.37 C 8.46 C 8.41 C 8.41 C 8.31 C

10 7.41 B 6.06 B 6.20 B 7.81 B 5.12 B -
11 9.49 B 8.81 B 10.89 B 11.13 B 8.76 E 8.51 C

12 11.35 C 11.98 C 11.84 C 11.70 C 11.90 C 11.89 C

13 6.96 C 6.78 C 7.04 C 6.97 C 6.76 C 6.85 C

14 9.01 E 9.48 E 12.04 B 10.63 E 9.75 E 9.54 E

15 7.01 B 9.28 B 11.01 E 10.89 E 10.47 E 9.55 E

16 16.36 B 15.72 C 16.24 B 15.79 C 15.01 C 14.66 C

17 6.10 C 6.34 C 6.25 C 6.10 C 6.47 C 6.13 C

18 9.79 E 10.09 B 11.96 B 10.87 E 11.79 B 10.61 B

19 14.64 B 14.59 B 15.63 B 14.92 B 14.53 B 12.85 B

20 9.40 C 9.79 C 10.41 C 9.64 C 9.44 C -
21 3.19 H 3.35 H 3.41 H 3.42 H 3.01 H 3.43 H

22 16.01 B 16.40 B 17.77 B 17.43 B 17.21 B 14.98 B

23 7.16 C 8.88 C 9.01 C 8.81 C 8.81 C -
24 7.09 C 9.32 C 13.55 B 8.83 B 10.64 B -
25 6.66 B 6.84 B 7.99 B 7.38 E 9.44 E 7.16 B

26 6.50 B 8.09 C 11.71 C 7.75 B 8.86 C -
27 5.89 E 5.95 E 6.40 E 6.32 E 6.16 E 5.98 E

28 19.56 B 16.46 B 19.78 B 19.70 B 19.50 B 14.31 B

29 12.11 C 12.48 C 13.70 C 13.67 C 11.85 C 14.13 C

30 22.74 B 18.03 B 20.43 B 24.32 B 18.10 B 17.45 B

Table 6: Summary of the best double precision performance results (in GFLOPS) on the Tesla M2050. Subscripts show
the corresponding storage format: C (CSR), E (ELL), H (HYB) and B (BELLPACK).

Finally, the results considering the BELLPACK format are displayed in Figure 18. These
results agree with the observations obtained previously. That is, first, the higher performance
is always obtain by FEM matrices with dense block sub-structures (original matrices 3, 28 and
30). Secondly, D and Dset obtain the best results overall. In particular, the average improvement
using D and Dset is 14.1% and 9% respectively, reaching speedups up to 2.2× (matrix 24). And
finally, we have also observed that AMD and METIS are specially inefficient with this format as it
is shown by the average degradation of about 6% and 15% in the performance respectively. We
have detected that AMD and METIS reorderings break the small dense sub-blocks of the original
FEM matrices (matrices 3, 5, 11, 28 and 30).

In order to summarize the results, Table 6 shows the best performance obtained for each
matrix and reordering technique considering all the storage formats. Results are very similar to
those obtained with single precision arithmetic.

There are only 4 matrices for which reorderings do not improve their performance. In par-
ticular, we must emphasize the results obtained by D and Dset, whose reorderings outperform 22
and 24 original matrices of the testbed respectively. Note that in most of the cases the highest
performance is achieved considering CSR or BELLPACK, which coincide with the best formats
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Figure 19: Performance comparison between GPUs (in GFLOPS): Tesla C1060 and Tesla M2050 (Fermi architecture).
On the left single-precision performance, on the right double-precision results.

for D and Dset. Speedups up to 1.9× have been reached (matrix 24).
Overall average improvement is -2.5%, 10.4%, 7.2%, 1.5% and -8.1% for AMD, D, Dset,

RCM and METIS respectively. AMD and METIS reorderings reduce the average performance with
respect to the original matrices. In both cases the problem was that these reorderings break the
small dense sub-blocks of the original FEM matrices, degrading the performance when using the
BELLPACK format (see results of matrices 3, 5, 11, 28 and 30).

4.3. Comparison between GPUs

Finally, a comparison between the performance results obtained using both GPUs (Tesla
C1060 and M2050) is presented. For illustrative purposes Figure 19 only shows the average
performance obtained by the original matrices and the D reorderings. Focusing on single preci-
sion results, we have detected that speedups always higher than 1.4× are reached using the Tesla
M2050 with respect to the C1060. However, there are small differences in the performance when
the HYB storage format is considered. We think that this is caused by the performance of the
COO parts of the matrices that use this format. Note that HYB is a combination of ELL and
COO formats (see Section 3.2).

The same trend is observed when using double precision arithmetic. In this case, the differ-
ences in the performance of both GPUs increase. For example, the performance of the original
matrices with CSR on the Tesla M2050 is 1.6× the one measured on the C1060.

5. Conclusions

In this paper we have explored the performance optimization of the SpMV on two different
GPUs using reordering techniques. With this objective some of the most successful reordering
techniques have been considered. Until now these techniques have been only tested on CPUs.
Moreover, four different sparse matrix storage formats have been analyzed using both single and
double precision floating-point arithmetic.

According to the performance evaluation results several conclusions can be made. First, we
have detected that reordering techniques have a big impact on the SpMV performance using
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GPUs. Considering CSR format, we have observed that the best results are always obtained by
reorderings whose patterns show a higher level of clustering of the nonzeros within each row with
respect to the original matrices. This fact will lead to access to closer elements of the vector when
the SpMV operation is performed, improving the spatial locality. With ELL and HYB formats
the most important factor that influences the SpMV performance is a bandwidth reduction in the
matrices. Note that ELL format is only efficient when the maximum number of nonzeros per
row does not substantially differ from the average. BELLPACK is the storage format for which
reordering techniques have the most influence. This is caused by a limitation in the BELLPACK
format: it can only be successfully applied to matrices that have small dense block sub-structures.
D and Dset reorderings are the best choices when considering this format. This behavior was
expected because the goal of this reordering technique is to increase the grouping of nonzero
elements in the sparse matrix pattern, which will favor the creation of small dense sub-blocks.
On the other hand, we have observed that METIS is specially inefficient with this format. Results
point out that the typical arrow-shaped matrices generated by METIS break the small dense sub-
blocks of the original FEM matrices.

Secondly, considering only the formats studied by Bell and Garland [5] (CSR, ELL and
HYB), we have detected that there is no one storage format prevailing over the others. How-
ever, they found that HYB format is generally the fastest format for a broad set of unstructured
matrices, and from our experiments on both GPUs we can not state that. If we consider the
best performance obtained for each matrix and reordering technique considering all the stor-
age formats (including BELLPACK), in most of the cases the highest performance is achieved
considering CSR or BELLPACK.

Thirdly, there is no a reordering technique that in most of the cases performs better than the
others. However, D and Dset show clearly the best overall behavior. For example, consider-
ing single-precision arithmetic, D reorderings improve on average the SpMV performance of the
original matrices a 9.8% and 12.3% on the Tesla systems C1060 and M2050 respectively. Notice-
able speedups up to 2.6× are reached. We must emphasize that reordered matrices outperform
the original ones in most of the cases.

And finally, focusing on the average SpMV performance, we have detected that speedups
always higher than 1.4× are reached using the Tesla M2050 with respect to the C1060. However,
there are small differences in the performance when the HYB storage format is considered. We
think that this is caused by the performance of the COO parts of the matrices that use this format.

As final remark we can state that reordering techniques are advisable in order to improve the
performance of the SpMV operation on GPUs.
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