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a b s t r a c t 

Costas loop is a classical phase-locked loop (PLL) based circuit for carrier recovery and signal demodula- 

tion. The PLL is an automatic control system that adjusts the phase of a local signal to match the phase 

of the input reference signal. This tutorial is devoted to the dynamic analysis of the Costas loop. In par- 

ticular the acquisition process is analyzed. Acquisition is most conveniently described by a number of 

frequency and time parameters such as lock-in range, lock-in time, pull-in range, pull-in time, and hold- 

in range. While for the classical PLL equations all these parameters have been derived (many of them are 

approximations, some even crude approximations), this has not yet been carried out for the Costas loop. 

It is the aim of this analysis to close this gap. The paper starts with an overview on mathematical and 

physical models (exact and simplified) of the different variants of the Costas loop. Then equations for the 

above mentioned key parameters are derived. Finally, the lock-in range of the Costas loop for the case 

where a lead-lag filter is used for the loop filter is analyzed. 

© 2016 International Federation of Automatic Control. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Costas loop is a classical phase-locked loop (PLL) based cir-

uit for carrier recovery and signal demodulation ( Costas, 1962;

aters, 1982 ). The PLL is an automatic control system, which is

esigned to generate an electrical signal (voltage), the frequency

f which is automatically tuned to the frequency of the input

reference) signal. Various PLL based circuits are widely used in

odern telecommunications, computer architectures, electrome- 

hanical systems (see, e.g. Best, 2007; Kobayashi, Hara, & Tanaka,

990; Lazzari, Parma, De Marco, & Bittanti, 2015 ). Nowadays among

he applications of Costas loop there are Global Positioning Sys-

ems (see, e.g., Kaplan & Hegarty, 2006 ), wireless communication

see, e. g., Rohde, Whitaker, & Bateman, 20 0 0 ) and others ( Bakshi

 Godse, 2010; Couch, 2007; Proakis & Salehi, 2008; Sidorkina,

izykh, Shakhtarin, & Shevtsev, 2016; Stephens, 2002 ). 

Dynamic behavior of the PLL and the Costas loop has

een described extensively in the literature ( Best, 2007; Best,

uznetsov, Leonov, Yuldashev, & Yuldashev, 2014; Bianchi, 2005;
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izzarri, Brambilla, & Gajani, 2012; Cahn, 1977; Gardner, 1979; Ka-

lan & Hegarty, 2006; Kuznetsov et al., 2014a; 2012; Kuznetsov,

eonov, Yuldashev, & Yuldashev, 2014d; Leonov, Kuznetsov, Yulda-

hev, & Yuldashev, 2015b; Rantzer, 2001; Rohde et al., 2000; Si-

on & Lindsey, 1977 ), and a number of key parameters has been

efined that describe its lock-in and lock-out characteristics. When

he PLL is initially out of lock, two different types of acquisition

rocesses can occur, either the so-called lock-in process or the so-

alled pull-in process. The first of those is a fast process, i.e. the

cquisition takes place within at most one beat note of the dif-

erence between reference frequency ω 1 and initial VCO (Voltage

ontrolled Oscillator) frequency ω 2 , cf. Fig. 1 for signal denota-

ions 1 . The frequency difference for which such a fast acquisition

rocess takes place corresponds to the lock-in range �ω L , and the

uration of the locking process is called lock time T L . When the

ifference between reference and VCO frequency is larger than the

ock-in range but less than the pull-in range �ω P , a slow acquisi-

ion process occurs. The time required to get acquisition is called

ull-in time T P . In case of the PLL all these acquisition parameters

an be approximated by characteristic parameters of the PLL, i.e.

rom natural frequency ω n and damping factor ζ . 
1 Non-sinusoidal signals in PLL-based circuits are considered in 

uznetsov, Leonov, Yuldashev, and Yuldashev (2011) ; Leonov, Kuznetsov, Yuldahsev, 

nd Yuldashev (2012) 
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sin(ω1t)

cos(ω2t)

Loop filter

Fig. 1. Block diagram of a PLL. 
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Fig. 2. Generation of the pre-envelope signal using Hilbert transformer. 
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2 Note that Assmptions 1–3 may not be valid and require rigorous justification 

( Best et al., 2015; Kuznetsov et al., 2015a ) 
To the authors knowledge such acquisition parameters have not

been analytically derived for the different types of Costas loops.

It seems that most authors only described the static properties of

the Costas loop such as the derivation of the phase error in the

locked state and the like. Based on methods developed earlier for

the PLL, the authors could now derive similar expressions for all

relevant acquisition parameters of the Costas loop. This enables the

designer to determine the lock-in and pull-in ranges, and to esti-

mate the duration of the corresponding processes. 

Because the systems considered are highly nonlinear, exact

computation of such parameters is very difficult or even impos-

sible. Therefore it is necessary to introduce a number of simplifi-

cations. This implies that the obtained results are only approxima-

tions, in some cases rather crude approximations. 

As will be shown in the following sections there are different

types of Costas loops. The first of these loops has been described

by J. Costas in 1956 ( Costas, 1956 ) and was primarily used to

demodulate amplitude-modulated signals with suppressed carrier

(DSB-AM). The same circuit was used later for the demodulation of

BPSK signals (binary phase shift keying) ( Proakis & Salehi, 2008 ).

With the advent of QPSK (quadrature phase shift keying) this

Costas loop was extended to demodulate QPSK signals as well.

These two types of Costas loop operated with real signals. In case

of BPSK, the input signal u 1 ( t ) is a sine carrier that was phase mod-

ulated by a binary signal, i.e. 

u 1 (t) = m 1 (t) sin (ω 1 t) , (1)

where ω 1 is the (radian) carrier frequency, and m 1 ( t ) can have two

different values, either +1 or −1 , or two arbitrary equal and op-

posite values + c and −c, where c can be any value. In the case of

QPSK, two quadrature carriers are modulated by two modulating

signals, i.e. 

u 1 (t) = m 1 (t) cos (ω 1 t) + m 2 (t) sin (ω 1 t) , (2)

where m 1 and m 2 can both have two equal and opposite values + c

and −c. It is obvious that in both cases the input signal is a real

quantity. In the following these two types of Costas loop will be

referred to as “conventional Costas loops”. 

Much later, Costas loops have been developed that operate not

on real signals, but on pre-envelope signals ( Tretter, 2007 ). These

types of Costas loops will be referred to as “modified Costas loop”

in the following sections. The block diagram shown in Fig. 2 ex-

plains how the pre-envelope signal is obtained. The real input sig-

nal u 1 ( t ) is applied to the input of a Hilbert transformer [2], [5].

The output of the Hilbert transformer ˆ u 1 (t) is considered as the

imaginary part of the pre-envelope signal, i.e the pre-envelope sig-

nal is obtained from 

u 

+ (t) = u 1 (t) + j ̂  u 1 (t) . 
1 
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he Costas loops operating with pre-envelope signals will be re-

erred to as “modified Costas loops”, cf. Sections 4 and 5 . 

Because there are different types of Costas loops the acquisi-

ion parameters must be derived separately for each of these types.

his will be performed in the following sections. In order to see

ow good or bad the obtained approximations are, we will develop

imulink models for different types of Costas loops and compare

he results of the simulation with those predicted by theory. 

.1. Classical mathematical models of the Costas loops 

.1.1. BPSK Costas loop 

The operation of the Costas loop is considered first in the

ocked state with zero phase difference (see Fig. 3 ), hence the fre-

uency of the carrier is identical with the frequency of the VCO. 

By (1) the input signal u 1 ( t ) is the product of a transferred

inary data and the harmonic carrier sin ( ωt ) with a high fre-

uency ω. Since the Costas loop is considered to be locked, the

CO orthogonal output signals are synchronized with the carrier

i.e. there is no phase difference between these signals). The in-

ut signal is multiplied (multiplier block ( �)) by the correspond-

ng VCO signal on the upper branch and by the VCO signal, shifted

y 90 °, on the lower branch. Therefore on the multipliers’ outputs

ne has I 1 (t) = m 1 (t) − m 1 (t) cos (2 ωt) , Q 1 (t) = m 1 (t) sin (2 ωt) . 

Consider the low-pass filters (LPF) operation. 

ssumption 1. Signals components, whose frequency is about

wice the carrier frequency, do not affect the synchronization of

he loop (since they are suppressed by the low-pass filters). 

ssumption 2. Initial states of the low-pass filters do not affect

he synchronization of the loop (since for the properly designed

lters, the impact of filter’s initial state on its output decays expo-

entially with time). 

ssumption 3. The data signal m 1 ( t ) does not affect the synchro-

ization of the loop. 

Assumptions 1 ,2 , and 3 together lead to the concept of so-

alled ideal low-pass filter . Ideal low-pass filter completely elim-

nates all frequencies above the cutoff frequency ( Assumption 1 )

nd passes all frequencies below cut-off frequency unchanged

 Assumptions 2,3 ). In the classic engineering theory of the Costas

oop it is assumed that the low-pass filters LPF are ideal low-pass

lters. 2 

Since in Fig. 3 the loop is in lock, i.e. the transient process is

ver and the synchronization is achieved, by Assumptions 1,2 , and

 for the outputs I 2 ( t ) and Q 2 ( t ) of the low-pass filters LPF one

as I 2 (t) = m 1 (t) , Q 2 (t) = 0 . Thus, the upper branch works as a

emodulator and the lower branch works as a phase-locked loop. 

Since after a transient process there is no phase difference, a

ontrol signal at the input of VCO, which is used for VCO frequency

djustment to the frequency of input carrier signal, has to be zero:

 d (t) = 0 . In the general case when the carrier frequency ω and a

ree-running frequency ω free of the VCO are different, after a tran-

ient processes the control signal at the input of VCO has to be

onzero constant: u d (t) = const, and a constant phase difference

e may remain. 

Consider the Costas loop before synchronization (see Fig. 4 ).

ere the phase difference with θe (t) = θ1 (t) − θ2 (t) varies over

ime, because the loop has not yet acquired lock (frequencies or

hases of the carrier and VCO are different). 
alysis of the Costas loop, Annual Reviews in Control (2016), 
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ud(t)

u1(t) = m1(t)sin(ωt)

data m(t)
2cos(ωt)

2sin(ωt)

I1(t) =m1(t)cos(0)-m1(t)cos(2ωt)

uf(t)

I2(t) =m1(t)

Q2(t) = 0Q1(t) =m1(t)sin(0)+m1(t)sin(2ωt)

LF

Fig. 3. Costas loop is locked (the case of equal phases of input carrier and free running VCO output): there is no phase difference. 

ud(t)≈0.5sin(2θe(t))

u1(t) = m(t)sin(θ1(t))

data m(t)
2cos(θ2(t))

2sin(θ2(t))

I1(t) = m1(t)(cos(θe(t))-cos(θ1(t)+θ2(t)))

Q1(t) =m1(t)(sin(θe(t))+sin(θ1(t)+θ2(t)))

uf(t)

I2(t)

Q2(t)

LF

Fig. 4. Costas loop is out of lock: there is time-varying phase difference. 
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Fig. 5. Phase model of Costas loop. 

Fig. 6. Linear model of Costas loop. 
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In this case, using Assumption 1 , the signals I 1 ( t ) and Q 1 ( t ) can

e approximated as 

I 1 (t) ≈ m 1 (t) cos (θe (t)) , Q 1 (t) ≈ m 1 (t) sin (θe (t)) . (3) 

pproximations (3) depend on the phase difference of signals,

.e. two multiplier blocks ( �) on the upper and lower branches

perate as phase detectors. The obtained expressions (3) with

 1 ( t ) ≡ 1 coincide with well-known (see, e.g., Best, 2007; Viterbi,

966 ) phase detector characteristic of the classic PLL with multi-

lier/mixer phase-detector for sinusoidal signals. 

By Assumptions 2 and 3 the low-pass filters outputs can be ap-

roximated as 

I 2 (t) ≈ m 1 (t) cos (θe (t)) , Q 2 (t) ≈ m 1 (t) sin (θe (t)) . (4) 

ince m 

2 
1 
(t) ≡ 1 , the input of the loop filter (LF) is as follows 

 d (t) = I 2 (t) Q 2 (t) ≈ ϕ(θe (t)) = 

m 1 (t) 2 

2 

sin (2 θe (t)) . (5)

uch an approximation is called a phase detector characteristic of

he Costas loop . 

Since an ideal low-pass filter is hardly realized, its use in the

athematical analysis requires additional justification. Thus, the

mpact of the low-pass filters on the lock acquisition process must

e studied rigorously. 

The relation between the input u d ( t ) and the output u f ( t ) of the

oop filter has the form 

˙ x = Ax + bu d (t) , u f (t) = c ∗x + hu d (t) , (6) 

here A is a constant matrix, the vector x ( t ) is the loop filter state,

, c are constant vectors, h is a number. The filter transfer function

as the form: 

(s ) = −c ∗(A − sI) −1 b + h. (7)

he control signal u f ( t ) is used to adjust the VCO frequency to the

requency of the input carrier signal 

˙ 
2 (t) = ω 2 (t) = ω free + K 0 u f (t) . (8)

ere ω free is the free-running frequency of the VCO and K 0 is the

CO gain. The solution of (6) with initial data x (0) (the loop filter

utput for the initial state x (0)) is as follows 

 f (t, x (0)) = α0 (t, x (0)) + 

t ∫ 
0 

γ (t − τ ) ϕ(τ )d τ + hu d (t) , (9) 
Please cite this article as: R.E. Best et al., Tutorial on dynamic an
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here γ (t − τ ) = c ∗e A (t−τ ) b + h is the impulse response of the

oop filter and α0 (t, x (0)) = c ∗e At x (0) is the zero input response of

he loop filter, i.e. when the input of the loop filter is zero. 

ssumption 4. (Analog of Assumption 2) . Zero input response of

oop filter α0 ( t, x (0)) does not affect the synchronization of the

oop (one of the reasons is that α0 ( t, x (0)) is an exponentially

amped function for a stable matrix A ). 

Consider a constant frequency of the input carrier: 

˙ 
1 (t) = ω 1 (t) ≡ ω 1 , (10)

nd introduce notation 

ω 0 = ω 1 − ω f ree . (11)

hen Assumption 4 allows one to obtain the classic mathematical

odel of PLL-based circuit in signal’s phase space (see Fig. 5 ): 

˙ θe = �ω 0 − K 0 

∫ t 

0 

γ (t − τ ) ϕ(θe (τ ))d τ − K 0 hϕ(θe (t)) . (12) 

For the locked state a linear PLL model can be derived, which is

hown in Fig. 6 . This model is useful for approximation of hold-in

ange. 

In the locked state both reference and VCO frequencies are ap-

roximately the same, hence the input of the lowpass filter is a
alysis of the Costas loop, Annual Reviews in Control (2016), 
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φ1(∆ω(t))

φ1(∆ω(t))

ud(t)

u1(t) = m1(t)sin(θ1(t))

2cos(θ2(t))

2sin(θ2(t))

I1(t) = m1(t)cos(θe(t))

Q1(t) =m1(t)sin(θe(t))

uf(t)

I2(t)

Q2(t)

LF

Fig. 7. Model of Costas loop with delays. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Model of the Costas loop with delays in complex exponent form. 
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very low frequency signal. Therefore the lowpass filter can be ig-

nored when setting up the linear model of the Costas loop. The

linear model is made up of three blocks, the phase detector PD,

the loop filter LF and the VCO. In digital Costas loops the VCO is

replaced by a DCO (digital controlled oscillator). This will be dis-

cussed in later sections. For these building blocks the transfer func-

tions are now defined as follows. 

Phase detector (PD). In the locked state, the phase error θ e is

very small so by (5) we can write 

u d (t) ≈ m 

2 
1 (t) θe = K d θe (13)

with K d called phase detector gain. 

H PD (s ) = 

U d (s ) 


e (s ) 
= K d . (14)

Note that the uppercase symbols are Laplace transforms of the

corresponding lower case signals. 

Loop filter (LF). For the loop filter we choose a PI (proportional

+ integral) filter whose transfer function has the from 

H LF (s ) = 

U f (s ) 

U d (s ) 
= 

1 + sτ2 

sτ1 

. (15)

This filter type is the preferred one because it offers superior per-

formance compared with lead-lag or lag filters. 

VCO . The transfer function of the VCO is given by 

H VCO (s ) = 


2 (s ) 

U f (s ) 
= 

K 0 

s 
(16)

where K 0 is called VCO gain. 

Consider another nonlinear model of Costas loop in Fig. 7 (delay

model). 

Here we use Assumptions 1–3 (initial states of filters are omit-

ted, double-frequency terms are completely filtered by LPFs, and

m 1 ( t ) doesn’t affect synchronization) and filters LPFs are replaced

by the corresponding phase-delay blocks ϕ 1 ( ˙ θe (t)) = ϕ 1 (�ω(t)) .

Outputs of low-pass filters are 

I 2 (t) = cos (θe (t) + ϕ 1 ( ˙ θe (t))) , 

Q 2 (t) = sin (θe (t) + ϕ 1 ( ˙ θe (t))) , 
(17)

where 

ϕ 1 (ω) = arg (H LPF ( jω)) . (18)

Then after multiplication of I 2 ( t ) and Q 2 ( t ) we have 

u d (t) = I 2 (t) Q 2 (t ) = 

1 

2 

sin (2 θe (t ) + 2 ϕ 1 ( ˙ θe (t))) (19)

and the output u f ( t ) of the loop filter (15) satisfies the following

equations 

˙ x = 

1 

2 

sin (2 θe (t) + 2 ϕ 1 ( ˙ θe (t))) , 

u f (t) = 

1 

τ
x + 

τ2 

2 τ
sin (2 θe (t) + 2 ϕ 1 ( ˙ θe (t))) . 

(20)
1 1 

Please cite this article as: R.E. Best et al., Tutorial on dynamic an
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quations of Costas loop in this case take the form: 

˙ x = 

1 

2 

sin (2 θe + 2 ϕ 1 ( ˙ θe )) , 

˙ θe = �ω 0 − K 0 

(
1 

τ1 

x + 

τ2 

2 τ1 

sin (2 θe + 2 ϕ 1 ( ˙ θe )) 
)
. 

(21)

or LPF transfer functions 

 LPF (s ) = 

1 

1 + s/ω 3 

(22)

hase shift is equal to ϕ 1 ( ˙ θe ) = − arctan ( ˙ θe /ω 3 ) . Therefore (21) is

qual to the following system 

˙ x = 

1 

2 

sin 

(
2 θe − 2 arctan ( ˙ θe /ω 3 ) 

)
, 

˙ θe = �ω 0 − K 0 

τ1 

x − K 0 τ2 

2 τ1 

sin 

(
2 θe − 2 arctan ( ˙ θe /ω 3 ) 

)
, 

(23)

here 

rctan ( ˙ θe /ω 3 ) ∈ (−π

2 

, 
π

2 

) 

 

Eq. (23) is hard to analyze both numerically and analytically,

owever this model is still useful. In the following discussion it is

sed to approximate pull-in range and pull-in time. For this pur-

ose we need to simplify delay model shown in Fig. 7 . Consider

lock diagram in Fig. 8 . 

The lowpass filters (LPF) used in both I an Q branches are as-

umed to be first order filters having transfer function (15) . As will

e demonstrated later the corner frequency of these filters must be

hosen such that the data signal I is recovered with sufficient ac-

uracy, i.e. the corner frequency ω 3 must be larger than the sym-

ol rate. Typically it is chosen twice the symbol rate, i.e. f 3 = 2 f S 
ith f S = symbol rate and f 3 = ω 3 / 2 π . The output signal I 1 of the

ultiplier in the I branch consists of two terms, one having the

um frequency ω 1 + ω 2 and one having the difference frequency

 1 − ω 2 . Because the sum frequency term will be suppressed by

he lowpass filter, only the difference term is considered. The same

olds true for signal Q 1 in the Q branch. It will show up that the

ange of difference frequencies is markedly below the corner fre-

uency ω 3 of the lowpass filter. Hence the filter gain will be nearly

 for the frequencies of interest. As will also be shown later the

hase at frequency �ω = ω 1 − ω 2 cannot be neglected. The low-

ass filter is therefore represented as a delay block whose trans-

er function has the value exp ( j ϕ 1 ), where ϕ 1 is the phase at fre-

uency �ω. The delayed signals I 2 and Q 2 are now multiplied by

he product block at the right in the block diagram. Consequently

he output signal u d ( t ) of this block will have a frequency of 2 �ω.

his signal is now applied to the input of the loop filter LF. Its

ransfer function has been defined in (15) . The corner frequency
alysis of the Costas loop, Annual Reviews in Control (2016), 

http://dx.doi.org/10.1016/j.arcontrol.2016.08.003


R.E. Best et al. / Annual Reviews in Control 0 0 0 (2016) 1–23 5 

ARTICLE IN PRESS 

JID: JARAP [m5G; September 12, 2016;10:56 ] 

Fig. 9. Modified model of Costas loop, reversed order of blocks. 

Fig. 10. Modified model of Costas loop, concatenated blocks. 

Fig. 11. Nonlinear model of Costas loop for computation of pull-in time. 
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Fig. 12. QPSK Costas loop after transient process. 
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f this filter is ω C = 1 /τ2 . Because the phase of the loop filter can-

ot be neglected, it is represented as a delay block characterized

y 

 LF (2�ω) = K H exp ( jϕ 2 ) , (24)

here ϕ 2 is the phase of the loop filter at frequency 2 �ω. 

The analysis of dynamic behavior becomes easier when the or-

er of some blocks in Fig. 8 is reversed (see Fig. 9 ), i.e. when we

ut the multiplying block before the lowpass filter. 

Because the frequency of signal u d ( t ) in Fig. 8 is twice the fre-

uency of the signals I 2 and Q 2 , the phase shift created by the low-

ass filter at frequency 2 �ω is now twice the phase shift at fre-

uency �ω. The LPF is therefore represented here by a delay block

aving transfer function exp (2 j ϕ 1 ). 

We can simplify the block diagram even more by concatenating

he lowpass filter and loop filter blocks. The resulting block delays

he phase by ϕ tot = 2 ϕ 1 + ϕ 2 . This is shown in Fig. 10 . The output

ignal u f ( t ) of this delay block now modulates the frequency gen-

rated by the VCO. 

To compute pull-in time we need to consider Costas loop model

n Fig. 5 with averaged signals of phase detector output u d and

lter output u f (see Fig. 11 ). 

The model is built from three blocks. The first of these is la-

eled “phase-frequency detector”. We have seen that in the locked

tate the output of the phase detector depends on the phase er-

or θ e . In the unlocked state, however, the average phase detector

utput signal u d is a function of frequency difference as will be

hown in next section ( Eq. (68) ), hence it is justified to call that

lock “phase-frequency detector”. As we will recognize the pull-in

rocess is a slow one, i.e. its frequency spectrum contains low fre-

uencies only that are below the corner frequency ω C of the loop

lter, cf. Eq. (15) . The loop filter can therefore be modeled as a
Please cite this article as: R.E. Best et al., Tutorial on dynamic an
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imple integrator with transfer function 

 LF (s ) ≈ 1 

sτ1 

. (25) 

herefore 

 f (t) = 

1 

τ1 

t ∫ 
0 

u d (τ ) dτ, (26) 

he frequency ω 2 of the VCO output signal is defined as 

 2 = ω f ree + K 0 u f , (27)

here ω free is the free running frequency and K 0 is the VCO gain.

ow we define the instantaneous frequency difference �ω as 

ω = ω 1 − ω 2 . (28)

ubstituting (11) and (28) into (27) finally yields 

ω = �ω 0 − K 0 u f . (29)

.1.2. QPSK Costas loop 

Consider QPSK Costas loop operation (see Fig. 12 ) for the sinu-

oidal carrier and VCO in lock state for the same initial frequencies

 1 = ω 2 = ω. 

By (2) , the input QPSK signal has the form 

m 1 (t) cos (ωt) + m 2 (t ) sin (ωt ) , 

here m 1 , 2 (t) = ±1 is the transmitted data, sin ( ωt ) and cos ( ωt )

re sinusoidal carriers, θ1 (t) = ωt is phase of input signal. The out-

uts of the VCO are 2cos ( ωt ) and 2sin ( ωt ). 

After multiplication of VCO signals and the input signal by mul-

iplier blocks ( �) on the upper I branch one has 

I 1 (t) = 2 cos (ωt) 
(

m 1 (t) cos (ωt) + m 2 (t) sin (ωt) 
)
. 

n the lower branch the output signal of VCO is multiplied by the

nput signal: 

Q 1 (t) = 2 sin (ωt) 
(

m 1 (t) cos (ωt) + m 2 (t) sin (ωt) 
)
. 

Here from an engineering point of view, the high-frequency

erms cos (2 ωt ) and sin (2 ωt ) are removed by ideal low-pass fil-

ers LPFs (see Assumption 1 in previews section). In this case, the

ignals I 2 ( t ) and Q 2 ( t ) on the upper and lower branches can be ap-

roximated as 

I 2 (t) ≈ m 1 (t) cos (0) + m 2 (t) sin (0) = m 1 (t) , 

Q 2 (t) ≈ −m 1 (t) sin (0) + m 2 (t) cos (0) = m 2 (t) . 
(30) 

Apart from considered case there are two possible cases: 1) the

requencies are different or 2) the frequencies are the same but

here is a constant phase difference. Consider Costas loop before
alysis of the Costas loop, Annual Reviews in Control (2016), 
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Σ

Fig. 13. QPSK Costas loop is out of lock, there is nonzero phase difference. 
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Fig. 15. Model of QPSK Costas loop with delays. 
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synchronization (see Fig. 13 ) in the case when the phase of the

input carrier θ1 ( t ) and the phase of VCO θ2 ( t ) are different: 

θe (t) = θ1 (t) − θ2 (t) �≡ const. (31)

In this case, using Assumption 1, the signals I 2 ( t ) and Q 2 ( t ) on

the upper and lower branches can be approximated as 

I 2 (t) ≈ m 1 (t) cos (θe (t)) + m 2 (t) sin (θe (t)) , 

Q 2 (t) ≈ −m 1 (t) sin (θe (t)) + m 2 (t) cos (θe (t)) . 
(32)

After the filtration, both signals, I 1 ( t ) and Q 1 ( t ), pass through

the limiters (sgn blocks). Then the outputs of the limiters

sign 

(
I 2 (t) 

)
and sign 

(
Q 2 (t) 

)
are multiplied with Q 2 ( t ) and I 2 ( t ), re-

spectively. By Assumption 2 and corresponding formula (32) , the

difference of these signals 

u d (t) = −Q 2 (t) sign 

(
I 2 (t) 

)
+ I 2 (t) sign 

(
Q 2 (t) 

)
(33)

can be approximated as 

u d (t) ≈ ϕ(θe (t)) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

2 m sin (θe (t)) , −π
4 

< θe (t) < 

π
4 
, 

−2 m cos (θe (t)) , π
4 

< θe (t) < 

3 π
4 

, 

−2 m sin (θe (t)) , 3 π
4 

< θe (t) < 

5 π
4 

, 

2 m cos (θe (t)) , 5 π
4 

< θe (t) < −π
4 
, 

(34)

with m = | m 1 | = | m 2 | . Here ϕ( θ e ( t )) is a piecewise-smooth func-

tion 

3 shown in Fig. 14 . 

The resulting signal ϕ( t ), after the filtration by the loop filter,

forms the control signal u f ( t ) for the VCO. 

To derive mathematical model in the signal space describing

physical model of QPSK Costas loop one takes into account (6) and
3 It should be noted, that function ϕ( θ e ( t )) depends on m 1, 2 at the points θe = 

± π
4 

, ± 3 π
4 

. 
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8) : 

˙ x 1 = A 1 x 1 + 2 b 1 cos (ω 1 t − θe ) 
(
m 1 (t) cos (ω 1 t) + m 2 (t) sin (ω 1 t) 

)
,

˙ x 2 = A 2 x 2 + 2 b 2 sin (ω 1 t − θe ) 
(
m 1 (t) cos (ω 1 t) + m 2 (t) sin (ω 1 t) 

)
,

˙ x = Ax + b( sign (c ∗2 x 2 )(c ∗1 x 1 ) − sign (c ∗1 x 1 )(c ∗2 x 2 )) , 

˙ θe = �ω 0 − K 0 (c ∗x ) − K 0 h 

(
sign (c ∗2 x 2 )(c ∗1 x 1 ) − sign (c ∗1 x 1 )(c ∗2 x 2 ) 

)
.

(35)

owever Eq. (35) are nonlinear and nonautonomous with discon-

inuous right-hand side, which are extremely hard to investigate.

herefore, the study of (35) is outside of the scope of this work. 

To derive linear model, we consider (34) and the correspond-

ng Fig. 14 . The curve looks like a “chopped” sine wave. The Costas

oop can get locked at four different values of θ e , i.e. with θe =
 , π/ 2 , π , or 3 π /2. To simplify the following analysis, we can de-

ne the phase error to be zero wherever the loop gets locked.

oreover, in the locked state the phase error is small, so we can

rite 

 d ≈ 2 mθe = K d θe , (36)

.e. the output signal of the sum block at the right of Fig. 13 is

onsidered to be the phase detector output signal u d . The phase

etector gain is then as follows 

 d = 2 m . (37)

t is easily seen that the linear model for the locked state is iden-

ical with that of the Costas loop for BPSK, cf. Fig. 6 . Because only

mall frequency differences are considered here, the lowpass filters

an be discarded. The transfer functions of the loop filter and the

CO are assumed to be the same as in the case of the Costas loop

or BPSK, hence these are given by Eqs. (15) and (16) . 

Similar to BPSK Costas loop, it is reasonable to consider delay

odel of QPSK Costas loop (see Fig. 15 ). 

Filters LPFs are replaced by the corresponding phase-delay

locks ϕ 1 (�ω) = arg (H LPF ( jω)) . The outputs of low-pass filters

ake the form 

I 2 (t) ≈ cos (θe (t) + ϕ 1 (�ω(t))) + sin (θe (t) + ϕ 1 (�ω(t))) , 

Q 2 (t) ≈ − sin (θe (t) + ϕ 1 (�ω(t)) + cos (θe (t) + ϕ 1 (�ω(t))) . 

(38)

hen u d ( t ) can be approximated as 

u d (t) ≈ ϕ(θe (t) + ϕ 1 (�ω(t))) = ⎧ ⎪ ⎨ 

⎪ ⎩ 

2 sin (θe (t) + ϕ 1 (�ω(t))) , −π
4 

< θe (t) + ϕ 1 (�ω(t)) < 

π
4 
, 

−2 cos (θe (t) + ϕ 1 (�ω(t))) , π
4 

< θe (t) + ϕ 1 (�ω(t)) < 

3 π
4 

, 

−2 sin (θe (t) + ϕ 1 (�ω(t))) , 3 π
4 

< θe (t) + ϕ 1 (�ω(t)) < 

5 π
4 

, 

2 cos (θe (t) + ϕ 1 (�ω(t))) , 5 π
4 

< θe (t) + ϕ 1 (�ω(t)) < −π
4 
.

(39)
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Fig. 16. Nonlinear model of the Costas loop for QPSK with delays in complex exponent form. 
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Fig. 17. Block diagram of modified Costas loop for BPSK. 
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Fig. 18. Representation of phasor u m ( t ) in the complex plane. 
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onsider the loop filter transfer function (15) . Equations of delay

odel of QPSK Costas loop in this case are the following 

˙ x = ϕ(θe (t) + ϕ 1 ( ˙ θe )) , 

˙ θe = �ω 0 − K 0 

(
1 

τ1 

x + 

τ2 

τ1 

ϕ(θe (t) + ϕ 1 ( ˙ θe )) 
)
. 

(40) 

The nonlinear model of the Costas loop for QPSK is developed

n the basis of the nonlinear model which derived for the Costas

oop for BPSK, cf. Fig. 10 . Here again the order of lowpass filters

nd the blocks shown at the right of Fig. 12 is reversed. This results

n the model shown in Fig. 16 a. 

In the block labeled “B” the function blocks at the right of

ig. 16 a have been integrated, cf. Fig. 16 b. The output signal u d of

lock B is the “chopped” sine wave as shown in Fig. 3.1 . Its fun-

amental frequency is 4 times the frequency difference ω 1 − ω 2 .

he lowpass filters and the loop filter have been concatenated in

he block labeled “LPF + LF” at the right of Fig. 16 a. Referring to

ig. 12 signals I 1 and Q 1 are passed through lowpass filters. As in

he case of the Costas loop for BPSK we assume here again that the

ifference frequency �ω is well below the corner frequency ω 3 of

he lowpass filters, hence the gain of the lowpass filters is nearly

 at ω = �ω. Because the phase shift must not be neglected, we

epresent the lowpass filter by a delay, i.e. its frequency response

t ω = �ω is as follows 

 LPF (�ω) = exp ( jϕ 1 ) , 

here ϕ 1 is the phase of the lowpass filter. Due to the arith-

etic operations in block “B” (cf. Fig. 16 ) the frequency of the

 d is quadrupled, which implies that the phase shift at frequency

 �ω becomes 4 ϕ 1 . The frequency response of the loop filter at

 = 4�ω is given by 

 LF (4�ω) = exp ( jϕ 2 ) , 

here ϕ 2 is the phase of the loop filter at frequency ω = 4�ω.

ence the cascade of lowpass filter and loop filter can be modeled

y the transfer function exp ( j[4 ϕ 1 + ϕ 2 ]) as shown in Fig. 16 a. 

.2. Mathematical models of modified Costas loops 

.2.1. Modified Costas loop for BPSK 

The block diagram of the modified Costas loop for BPSK is

hown in Fig. 17 . The input signal is given by 

 1 (t) = m 1 (t) cos (ω 1 t + θ1 ) , 
Please cite this article as: R.E. Best et al., Tutorial on dynamic an
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here θ1 is initial phase. The input signal is first converted into a

re-envelope signal, as explained in Section 1 . The output signal of

he Hilbert transformer is as follows 

ˆ 
 1 (t) = H[ m 1 (t) cos (ω 1 t + θ1 )] = m 1 (t) sin (ω 1 t + θ1 ) . 

Note that because the largest frequency of the spectrum of

he data signal m 1 ( t ) is much lower than the carrier frequency

 1 , the Hilbert transform of the product H[ m 1 (t) cos (ω 1 t + θ1 )]

quals m 1 (t) H[ cos (ω 1 t + θ1 )] [5]. The pre-envelope signal is ob-

ained now from 

 

+ 
1 (t) = u 1 (t) + j ̂  u (t) = m 1 (t) exp ( j[ ω 1 t + θ1 ]) . (41)

The exponential in Eq. (41) is referred to as a “complex car-

ier”. In Fig. 17 complex signals are shown as double lines. The

olid line represents the real part, the dotted line represents the

maginary part. To demodulate the BPSK signal, the pre-envelope

ignal is now multiplied with the output signal of the VCO, which

s here a complex carrier as well. The complex output signal of the

CO is defined as 

 2 (t) = exp (− j[ ω 2 t + θ2 ]) . (42)

In the locked state of the Costas loop both frequencies ω 1 and

 2 are equal, and we also have θ1 ≈ θ2 . Hence the output signal

f the multiplier M 1 is as follows 

 m 

(t) = m 1 (t) exp ( j[(ω 1 − ω 2 ) t + θ1 − θ2 ]) ≈ m 1 (t) , (43)

.e. the output of the multiplier is the demodulated data signal

 1 ( t ). To derive the linear model of this Costas loop, it is assumed

hat ω 1 = ω 2 and θ1 � = θ2 . The output signal of multiplier M 1 then

ecomes 

 m 

(t) = m 1 (t) exp ( j[ θ1 − θ2 ]) . (44)

This is a phasor having magnitude | m 1 ( t )| and phase θ1 − θ2 , as

hown in Fig. 18 . Two quantities are determined from the phase

f phasor u m 

( t ), i.e. the demodulated data signal I and the phase

rror θ e . The data signal is defined as 

 = sgn ( Re [ u m 

(t)]) , (45)
alysis of the Costas loop, Annual Reviews in Control (2016), 
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Fig. 19. Block diagram of modified Costas loop for QPSK. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20. Representation of phasor u m ( t ) in the complex plane. 
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i.e. when the phasor lies in quadrants I or IV, the data signal is

considered to be +1, and when the phasor is in quadrants II or III,

the data signal is considered to be -1. This means that I can be

either a phasor with phase 0 or a phasor with phase π . 

These two phasors are plotted as thick lines in Fig. 18 . 

The phase error θ e is now given by the difference of the phases

of phasor u m 

( t ) and phasor I , as shown in Fig. 18 , i.e. θ e is deter-

mined from 

θe = phase (u m 

(t) I) (46)

The product u m 

( t ) I is computed by multiplier M 2 in Fig. 18 . The

block labeled “Complex → mag, phase” is used to convert the com-

plex signal delivered by M 2 into magnitude and phase. The mag-

nitude is not used in this case, but only the phase. It follows from

Eq. (46) that the phase output of this block is the phase error θ e ,

hence the blocks M 1 , M 2 , sgn, and Complex → mag, phase repre-

sent a phase detector with gain K d = 1 . The phase output of block

Complex → mag, phase is therefore labeled u d . Fig. 6 shows the

complete linear model of the modified Costas loop for BPSK. The

transfer functions of the loop filter and VCO have been defined in

Eqs. (15) and (16) . Note that with this type of Costas loop there is

no additional lowpass filter, because the multiplication of the two

complex carriers (cf. Eq. (43) ) does not create the unwanted double

frequency component as found with the conventional Costas loops.

1.2.2. Modified Costas loop for QPSK 

Fig. 19 shows the block diagram of the modified Costas loop for

QPSK. 

The reference signal u 1 ( t ) is defined by 

u 1 (t) = m 1 (t) cos (ω 1 t + θ1 ) − m 2 (t) sin (ω 1 t + θ1 ) , (47)

The Hilbert transformed signal is then given by 

ˆ u 1 (t) = m 1 (t) sin (ω 1 + θ1 ) + m 2 (t) cos (ω 1 + θ1 ) (48)

and the pre-envelope signal then becomes 

u 

+ 
1 (t) = m 1 (t) cos (ω 1 t + θ1 ) − m 2 (t) sin (ω 1 t + θ1 )+ 

+ jm 1 (t) sin (ω 1 t + θ1 ) + jm 2 (t) cos (ω 1 t + θ1 ) . 
(49)

This can be rewritten as 

u 

+ 
1 (t) = (m 1 (t) + jm 2 (t))( cos [ ω 1 t + θ1 ] + j sin [ ω 1 t + θ1 ] = 

= (m 1 (t) + jm 2 (t)) exp ( j[ ω 1 t + θ1 ]) . 

(50)

Herein the term (m 1 (t) + jm 2 (t)) is complex envelope, and the

term exp ( jω 1 t + θ1 ) is complex carrier. The VCO generates another

complex carrier given by (42) . The multiplier M 1 creates signal

u m 

( t ) that is given by 

u m 

(t) = (m 1 (t) + j m 2 (t)) exp ( j [(ω 1 − ω 2 ) t + (θ1 − θ2 )]) . (51)

t  

Please cite this article as: R.E. Best et al., Tutorial on dynamic an
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When the loop has acquired lock, ω 1 = ω 2 , and θ1 ≈ θ2 , so we

ave 

 m 

( t ) ≈ ( m 1 ( t ) + jm 2 ( t ) ) , (52)

ence the output of M 1 is the complex envelope. In the locked

tate, the complex envelope can take four positions, as shown in

ig. 20 . When there is a phase error, u m 

( t ) deviates from the ideal

osition, as demonstrated in the figure. The phase error θ e then is

he angle between u m 

( t ) and the closest of the four possible posi-

ions. When u m 

( t ) is in quadrant I, e.g., phasor 1 + j is considered

s the estimate of the complex envelope. When u m 

( t ) is in quad-

ant II, the estimate of the complex envelope is −1 + j etc. The es-

imates I and Q are taken from the output of sgn blocks, cf. Fig. 19 .

he phase error is obtained from 

e = phase [ u m 

(t)(I − jQ )] (53)

here I − jQ is the conjugate of the complex envelope. Multiplier

 2 delivers the product u m 

(t)(I − jQ ) , and the block “Complex →
ag, phase” is used to compute the phase of this complex quan-

ity. Note that the magnitude is not required. The blocks M 1 , sgn,

nverter, M 2 , and Complex → mag, phase form a phase detector

aving gain K d = 1 . The phase output of block Complex → mag,

hase is therefore labeled u d . 

Fig. 6 shows the completed linear model of the modified Costas

oop for QPSK, which is the same as for BPSK. The transfer func-

ions of the loop filter and VCO have been defined in Eqs. (15) and

16) . 

.3. Definitions of hold-in range, lock-in range, pull-in range. 

In the classic books on phase-locked loops ( Gardner, 1966;

hakhgil’dyan & Lyakhovkin, 1966; Viterbi, 1966 ) such concepts

s hold-in, pull-in, lock-in, and other frequency ranges for which

LL can achieve lock were introduced. Usually in engineering lit-

rature nonrigorous definitions are given for these concepts. In

he following we introduce definitions, based on rigorous dis-

ussion in Kuznetsov, Leonov, Yuldashev, and Yuldashev (2015b) ;

eonov, Kuznetsov, Yuldashev, and Yuldashev (2015a) . 

Definition of hold-in range. The largest interval [0, �ω h ) of

requency deviations | �ω 0 |, such that the loop re-achieves locked

tate after small perturbations of the filters’ state, the phases and

requencies of VCO, and the input signals, is called a hold-in range

in general the stable equilibria can be considered as a multiple-

alued function, in which case the existence of its continuous sin-

levalue branch is required). This effect is also called steady-state

tability. In addition, for a frequency deviation within the hold-

n range, the loop in a locked state tracks small changes in in-

ut frequency, i.e. achieves a new locked state ( tracking process )

 Kuznetsov et al., 2015b; Leonov et al., 2015a ). 

Assume that the loop power supply is initially switched off and

hen at t = 0 the power is switched on, and assume that the initial
alysis of the Costas loop, Annual Reviews in Control (2016), 
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Fig. 2.1. Bode plot of magnitude of open loop gain G OL ( ω). 
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requency difference is sufficiently large. The loop may not lock

ithin one beat note, but the VCO frequency will be slowly tuned

oward the reference frequency (acquisition process). This effect

s also called a transient stability. The pull-in range is used to

ame such frequency deviations that make the acquisition process

ossible. 

Definition of pull-in range. The largest interval [0, �ω P ) of fre-

uency deviations | �ω 0 |, such that the loop achieves locked state

or any initial states (filters and initial phase of VCO), is called

 pull-in range ( Kuznetsov et al., 2015b; Leonov et al., 2015a ).

he largest frequency deviation �ω P is called a pull-in frequency

 Kuznetsov et al., 2015b; Leonov et al., 2015a ). 

Definition of lock-in range. Lock-in range is a largest interval

f frequency deviations | �ω 0 | ∈ [0, �ω L ) inside pull-in range, such

hat after an abrupt change of ω 1 within a lock-in range the PLL

eacquires lock without cycle slipping, if it is not interrupted. Here

ω L is called a lock-in frequency ( Kuznetsov et al., 2015b; Leonov

t al., 2015a ). 4 

Finally, our definitions give �lock-in ⊂�pull-in ⊂�hold-in , 

0 , �ω L ) ⊂ [0 , �ω P ) ⊂ [0 , �ω H ) , 

hich is in agreement with the classical consideration (see,

.g. Best, 1984 , p.34, Hsieh and Hung, 1996 , p.612, Best, 2007 ,

.61, Egan, 2007 , p.138, Kroupa, 2012 , p.258). 

. BPSK Costas loop 

.1. Lock-in range �ω L and lock time T L 

Recall linear model of Costas loop in phase space (see Fig. 6 ).

y (13) –(15) we can derive the open loop transfer function of the

ostas loop, which is defined by the ratio 
2 ( s )/ 
1 ( s ): 

 OL (s ) = K d 

K 0 

s 

1 + sτ2 

sτ1 

(54)

Fig. 2.1 shows a Bode plot of the magnitude of G OL . The plot

s characterized by the corner frequency ω C , which is defined by

 C = 1 /τ2 , and gain parameters K d and K 0 . At lower frequencies
4 The concept of the lock-in range was suggested by F. Gardner in 1966 

 Gardner, 1966 , p.40) and it is widely used nowadays (see, e.g. ( Best, 1984 , 

.34–35),( Wolaver, 1991 , p.161),( Hsieh and Hung, 1996 , p.612),( Irwin, 1997 , 

.532),( Craninckx and Steyaert, 1998 , p.25), ( Kihara, Ono, and Eskelinen, 2002 , 

.49),( Abramovitch, 2002 , p.4),( De Muer and Steyaert, 2003 , p.24),( Dyer, 2004 , 

.749),( Shu and Sanchez-Sinencio, 2005 , p.56),( Goldman, 2007 , p.112),( Best, 2007 , 

.61),( Egan, 2007 , p.138),( Baker, 2011 , p.576),( Kroupa, 2012 , p.258)). However later 

ardner noticed that the lock-in range definition lacks rigor and requires clarifica- 

ion ( Gardner, 1979 , p.70), ( Gardner, 2005 , p.187–188). Recently a rigorous definition 

as suggested in Kuznetsov et al. (2015b) ; Leonov et al. (2015a) . 
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he magnitude rolls off with a slope of – 40 dB/decade. At fre-

uency ω C the zero of the loop filter causes the magnitude to

hange its slope to – 20 dB/decade. To get a stable system, the

agnitude curve should cut the 0 dB line with a slope that is

arkedly less than – 40 dB/decade. Setting the parameters such

hat the gain is just 0 dB at frequency ω C provides a phase mar-

in of 45 degrees, which assures stability [2]. From the open loop

ransfer function we now can calculate the closed loop transfer

unction defined by 

 CL (s ) = 


2 (s ) 


1 (s ) 
. (55)

After some mathematical manipulations we get 

 CL (s ) = 

K 0 K d 
1+ sτ2 

sτ1 

s 2 + s K o K d τ2 

τ1 
+ 

K 0 K d 
τ1 

. (56)

t is natural to represent this transfer function in normalized form,

.e. 

 CS (s ) = 

2 sζω n + ω 

2 
n 

s 2 + 2 sζω n + ω 

2 
n 

(57) 

ith the substitutions 

 n = 

√ 

K 0 K d 

τ1 

, ζ = 

ω n τ2 

2 

, (58)

here ω n is called natural frequency and ζ is called damping fac-

or. The linear model enables us to derive simple approximations

or lock-in range �ω L and lock time T L . 

For the following analysis we assume that the loop is initially

ut of lock. The frequency of the input signal ( Fig. 4 ) is ω 1 , and the

requency of the VCO is ω 2 . The multiplier in the I branch there-

ore generates an output signal consisting of a sum frequency term

 1 + ω 2 and a difference frequency term ω 1 − ω 2 . The sum fre-

uency term is removed by the lowpass filter, and the frequency

f the difference term is assumed to be much below the corner

requency ω 3 of the lowpass filter, hence the action of this filter

an be neglected for this case. Under this condition the phase de-

ector output signal u d ( t ) will have the form (cf. Eqs. (19) and (13) )

 d (t) = 

K d 

2 

sin (2�ωt) (59) 

ith �ω = ω 1 − ω 2 . u d ( t ) is plotted in Fig. 2.2 , left trace. This sig-

al passes through the loop filter. In most cases the corner fre-

uency ω C = 1/τ2 is much lower than the lock-in range, hence we

an approximate its transfer function by 

 LF (ω) ≈ τ2 

τ1 

= K H . (60)

Let us define the gain of this filter at higher frequencies by

onstant K H . Now the output signal of the loop filter is a sine

ave having amplitude K d K H /2 as shown by the middle trace in

ig. 2.2 . Consequently the frequency of the VCO will be modulated

s shown in the right trace. The modulation amplitude is given by

 d K 0 K H /2. In this figure the reference frequency and the initial fre-

uency ω free of the VCO are plotted as horizontal lines. When ω 1 

nd ω free are such that the top of the sine wave just touches the

 1 line, the loop acquires lock suddenly, i.e. the lock-in range �ω L 

s nothing more than the modulation amplitude K d K 0 K H /2. Mak-

ng use of the substitutions (58) we finally get 

ω L = ζω n (61) 

Now the lock process is a damped oscillation whose frequency

s the natural frequency. Because the loop is assumed to lock

ithin at most one cycle of that frequency, the lock time can be

pproximated by the period of the natural frequency, i.e. we have

 L ≈ 2 π

ω n 
(62) 
alysis of the Costas loop, Annual Reviews in Control (2016), 
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Fig. 2.2. Lock-in range of Costas loop. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.3. Signals of the model in Fig. 10 . 

d

�  

�  
2.2. Pull-in range �ω P and pull-in time T P 

We have seen that all signals found in this block diagram are

sine functions, i.e. all of them seem to have zero average, hence do

not show any dc component. This would lead to the (erroneous)

conclusion that a pull-in process would not be possible. In reality

it will be recognized that some of the signals become asymmet-

rical, i.e. the duration of the positive half wave is different from

the duration of the negative one. This creates a nonzero dc com-

ponent, and under suitable conditions acquisition can be obtained.

We are therefore going to analyze the characteristics of the signals

in Fig. 10 . 

All considered signals are plotted in Fig. 2.3 . For signals I 1 and

Q 1 we obtain 

I 1 (t) = m 1 (t) cos (�ωt) 

Q 1 (t) = m 1 (t) sin (�ωt) 

The sum frequency terms are discarded because they are removed

by the lowpass filter. The signal u d ( t ) is the product of I 1 and Q 1

and is given by (59) . For small arguments 2 �ωt this can be written

as 

u d (t) = m 

2 
1 (t)�ωt = m 

2 
1 (t ) θe (t ) , 

where θe = �ωt . Because the phase detector gain is defined by 

u d (t) = K d θe (t) , 

we have K d = m 

2 
1 
. 

Next the loop filter output signal u f ( t ) is plotted. Its amplitude

is K H m 

2 
1 
/ 2 , and its phase is delayed by ϕ tot = 2 ϕ 1 + ϕ 2 . This sig-

nal modulates the frequency of the VCO as shown in the bottom

trace of Fig. 2.3 . The modulation amplitude is given by 
m 

2 
1 

K H K 0 
2 . In

order to get an estimate for the nonzero dc component of u d ( t )

we will have to analyze the asymmetry of the signal waveforms.

It will be shown that u d (the average of u d ( t )) is a function of fre-

quency difference �ω and phase ϕ tot . The analysis becomes easier

when we first calculate u d for some special values for ϕ tot , i.e. for

ϕ tot = 0 ; −π/ 2 ; and −π . Let us start with ϕ tot = 0 , cf. Fig. 2.4 . 

In Fig. 2.4 the waveforms for u d ( t ) and ω 2 ( t ) are shown. The

asymmetry of the signals is exaggerated in this plot. During the

positive half cycle (duration T 1 ) the average value of VCO output

frequency ω 2 ( t ) is increased, which means that the average differ-

ence frequency �ω( t ) is lowered. Consequently the duration of the

positive half wave becomes larger than half of a full cycle. During

the negative half cycle (duration T 2 ), however, the average value

of VCO output frequency ω 2 ( t ) is decreased, which means that the

average difference frequency �ω( t ) is increased. Consequently the

duration of the negative half wave becomes less than half of a full

cycle. Next we are going to calculate the average frequency differ-

ence in both half cycles. The average frequency difference during

half cycle T 1 is denoted �ω d+ , the average frequency difference
Please cite this article as: R.E. Best et al., Tutorial on dynamic an
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uring half cycle T 2 is denoted �ω d−. We get 

ω d+ = �ω − 2 

π

K 0 K d K H 

2 

, (63)

ω d− = �ω + 

2 K 0 K d K H 
. (64)
π 2 
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Fig. 2.4. Signals of the model in Fig. 10 for ϕ tot = 0 . 

Fig. 2.5. Signals of the model in Fig. 10 for ϕ tot = −π . 
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Fig. 2.6. Signals of the model in Fig. 10 for ϕ tot = −π/ 2 . 
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or the durations T 1 and T 2 we obtain after some manipulations

he following 

 1 ≈ π

2�ω 

(
1 + 

K 0 K d K H 

π�ω 

)
, (65) 

 2 ≈ π

2�ω 

(
1 − K 0 K d K H 

π�ω 

)
. (66) 

ow the average value u d can be calculated from 

 d (t) = 

K 0 K 

2 
d 

K H 

π2 �ω 

. (67) 

he average signal u d is seen to be inversely proportional to the

requency difference �ω. Because u d is positive, the instantaneous

requency ω 2 ( t ) is pulled in positive direction, i.e. versus ω 1 , which

eans that a pull-in process will take place. 

Next we are going to analyze the dependence of u d on phase

 tot . Let us consider now the case for ϕ tot = −π, cf. Fig. 2.5 .

e observe that in interval T 1 the instantaneous frequency ω 2 ( t )

s pulled in negative direction, hence the average difference fre-

uency �ω d+ becomes larger. Consequently interval T 1 becomes
Please cite this article as: R.E. Best et al., Tutorial on dynamic an
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horter. In interval T 2 , however, the reverse is true. Here the in-

tantaneous frequency T 1 is pulled in positive direction, hence the

verage �ω d− is reduced, and interval T 2 becomes longer. The av-

rage u d is now equal and opposite to the value of u d for ϕ tot = 0 .

ecause it is negative under this condition, a pull-in process can-

ot take place, because the frequency of the VCO is “pulled away”

n the wrong direction. 

Last we consider the case ϕ tot = −π/ 2 , cf. Fig. 2.6 . In the first

alf of interval T 1 the instantaneous frequency ω 2 ( t ) is decreased,

ut in the second half it is increased. Consequently the average

ifference frequency �ω d+ does not change its value during T 1 .

he same happens in interval T 2 . �ω d− does not change either,

nd u d remains 0. 

It is easy to demonstrate that u d varies with cos ( ϕ tot ), hence

e have 

 d (t) = 

K 0 K 

2 
d 

K H 

π2 �ω 

cos (ϕ tot ) , ϕ tot = 2 ϕ 1 + ϕ 2 . (68)

q. (68) tells us that the pull-in range is finite. The pull-in

ange can be found as the frequency difference for which phase

 tot = −π/ 2 . An equation for the pull-in range will be derived in

ection 2.2 . We also will have to find an equation for the pull-in

ime. The model shown in Fig. 11 will enable us to obtain a differ-

ntial equation for the average frequency difference �ω as a func-

ion of time. 

Recall equations of filter output (26) 

 f (t) = 

1 

τ1 

t ∫ 
0 

u d (τ ) dτ

nd frequency deviation (29) 

ω = �ω 0 − K 0 u f . 

qs. (68) , (26) , and (29) enable us to compute the three variables

 d , u f , and �ω as a function of time. This will be demonstrated in

ection 2.2 . 

The pull-in range can be computed using Eq. (68) . Lock can only

e obtained when the total phase shift ϕ tot is not more negative
alysis of the Costas loop, Annual Reviews in Control (2016), 
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Fig. 2.7. Bode plot of open loop transfer function of Costas loop. 
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than −π/ 2 . This leads to an equation of the form 

2 ϕ 1 (�ω p ) + ϕ 2 (2�ω p ) = −π/ 2 . (69)

According to Eqs. (15) and (22) ϕ 1 and ϕ 2 are given by 

ϕ 1 (ω) = −arctg (ω/ω 3 ) , 

ϕ 2 (ω) = −π/ 2 + arctg (ω/ω C ) 

with ω C = 1 /τ2 . Hence the pull-in range �ω P can be computed

from the transcendental equation 

2 arctg (�ω P /ω 3 ) = arctg (2�ω P /ω C ) . (70)

To solve this equation for �ω P we use the addition formula for

the tangent function 

tg (2 α) = 

2 tg α

1 − tg 2 α

and can replace 2arctg( �ω P / ω 3 ) by arctg 
2 

�ω P 
ω 3 

1 − �ω 2 
P 

ω 2 
3 

. Eq. (70) can now

be rewritten as arctg 
2 

�ω P 
ω 3 

1 − �ω 2 
P 

ω 2 
3 

= arctg 2 
�ω P 
ω C 

. 

When the arctg expressions on both sides of the equation are

equal, their arguments must also be identical, which leads to 

2�ω P 
ω 3 

1 − �ω 2 
P 

ω 2 
3 

= 2 

�ω P 

ω C 

. 

Hence we get for the pull-in range 

�ω P = ω 3 

√ 

ω 3 
ω C 

− 1 

ω 3 
ω C 

. (71)

Last, equation for the pull-in time T P will be derived. Eqs. (68) ,

(26) , and (29) describe the behavior of three building blocks in

Fig. 11 and enable us to compute three variables u d , u f , and �ω.

We only need to know the instantaneous �ω vs. time, hence we

eliminate u d and u f from Eqs. (26) and (29) and obtain the differ-

ential equation 

d 

dt 
�ωτ1 + 

1 

�ω 

K 

2 
0 K 

2 
d 

K H 

π2 
cos (ϕ tot ) = 0 . (72)

This differential equation is nonlinear, but the variables �ω and t

can be separated, which leads to an explicit solution. Putting all

terms containing �ω to the left side and performing an integra-

tion, we get 

τ1 π2 

K 

2 
0 

K 

2 
d 

K H 

�ω L ∫ 
�ω 0 

�ω 

cos (ϕ tot ) 
d �ω = −

T P ∫ 
0 

d t. (73)

The limits of integration are �ω 0 and �ω L on the left side, be-

cause the pull-in process starts with an initial frequency offset

�ω = �ω 0 and ends when �ω reaches the value �ω L , which is

the lock-in range. Following that instant a lock-in process will start.

The integration limits on the right side are 0 and T P , respectively,

which means that the pull-in process has duration T P , and after

that interval (fast) lock-in process starts. 

Performing the integration on the left imposes some consider-

able problems, when we remember that cos ( ϕ tot ) is given by 

cos (ϕ tot ) = cos (−2 arctg 
�ω 

ω 3 

− π

2 

+ arctg 
2�ω 

ω C 

) . 

Finding an explicit solution for the integral seems difficult if not

impossible, but the cos term can be drastically simplified. When

we plot cos ( ϕ tot ) vs. �ω we observe that within the range �ω 
L 
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 �ω < �ω 0 the term cos ( ϕ tot ) is an almost perfect straight line.

ence we can replace cos ( ϕ tot ) by 

os (ϕ tot ) ≈ 1 − �ω 

�ω P 

. 

nserting that substitution into Eq. (73) yields a rational function of

ω on the left side, which is easily integrated. After some mathe-

atical procedures we obtain for the pull-in time T P the following

 P = 

�ω P π2 τ1 

2 K 

2 
0 

K 

2 
d 

K H 

[ 
�ω P ln 

�ω P − �ω L 

�ω P − �ω 0 

− �ω 0 + �ω L 

] 
. (74)

aking use of Eqs. (58) and (60) we have 

 H = 

τ2 

τ1 

, ω 

2 
n = 

K 0 K d 

τ1 

, ζ = 

ω n τ2 

2 

. 

sing these substitutions Eq. (74) can be rewritten as 

 P = 

�ω P π2 

2 ζω 

3 
n 

[ 
�ω P ln 

�ω P − �ω L 

�ω P − �ω 0 

− �ω 0 + �ω L 

] 
. (75)

his equation is valid for initial frequency offsets in the range �ω L 

 �ω 0 < �ω P . For lower frequency offsets, a fast pull-in process

ill occur, and Eq. (62) should be used. 

.3. Numerical example 1: Designing an analog Costas loop for BPSK 

An analog Costas loop for BPSK shall be designed in this section.

t is assumed that a binary signal is modulated with a carrier. The

arrier frequency is set to 400 kHz, i.e. the Costas loop will op-

rate at a center frequency ω 0 = 2 π 40 0,0 0 0 = 2,512,0 0 0 rad s −1 .

he symbol rate is assumed to be f S = 10 0 , 0 0 0 symbols/s. Now

he parameters of the loop (such as time constants τ 1 and τ 2 , cor-

er frequencies ω C and ω 3 , and gain parameters such as K 0 , K d )

ust be determined. (Note that these parameters have been de-

ned in Eqs. (14 )–( 16) and (62) ). 

The modulation amplitude is set m 1 = 1 . According to

q. (13) the phase detector gain is then K d = 1 . It has proven ad-

antageous to determine the remaining parameters by using the

pen loop transfer function G OL ( s ) of the loop [2]. This is given by

 OL (s ) = 

K 0 K d 

s 

1 + s/ω c 

sτ1 

1 

1 + s/ω 3 

(76)

The magnitude | G OL ( ω)| (Bode diagram) is plotted in Fig. 2.7 .

he magnitude curve crosses the 0 dB line at the so called tran-

it frequency ω T . It is common practice to choose ω T to be about

(0 . 05 ω 0 . . . 0 . 1 ω 0 ) . Here we set ω T = 0 . 1 ω 0 , i.e. ω T = 251 , 200 rad

 

−1 . Furthermore we set corner frequency ω C = ω T . When doing

o, the slope of the asymptotic magnitude curve changes from –

0 dB/decade to – 20 dB/decade at ω = ω C . Under this condi-

ion the phase of G OL ( ω) is -135 ° at ω C . Consequently the phase

argin of the loop becomes 45 °, which provides sufficient stabil-

ty. According to Eq. (15) τ 2 becomes 4 μs . Next corner frequency

 will be determined. The corner frequency of the lowpass filter
3 
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Table 2.1 

Comparison of predicted and simulated results for the pull-in range. 

�f 0 (Hz) �ω 0 (rad s −1 ) T P (theory) ( μs) ( T P (simulation) ( μs) 

50 kHz 314,0 0 0 33 30 

70 kHz 439,0 0 0 78 85 

100 kHz 628,0 0 0 204 200 
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h

ust be chosen such that the demodulated data signal (i. e. the

utput of the lowpass filter in the I branch) is recovered with high

delity. To fulfill this requirement, ω 3 should be chosen as large

s possible. On the other hand, the lowpass filter should suppress

he double frequency component (here at about 800 kHz) suffi-

iently, which means that ω 3 should be markedly less than 2 ω 0 . It

s a good compromise to set corner frequency to twice the symbol

ate, i.e. ω 3 = 2 · 2 π · 10 0 , 0 0 0 = 1 , 256 , 0 0 0 rad s −1 . Last, remain-

ng parameters τ 1 and K 0 must be chosen. They have to be speci-

ed such that the open loop gain becomes 1 at frequency ω = ω C .

ccording to Eq. (76) we can set 

 OL (ω C ) = 1 ≈ K o K d 

ω 

2 
C 
τ1 

. (77)

ecause 2 parameters are still undetermined, one of those can be

hosen arbitrarily, hence we set τ1 = 20 μs. Finally from (77) we

et K 0 = 1 , 262 , 0 0 0 s −1 . 

The design of the Costas loop is completed now, and we can

ompute the most important loop parameters. For the natural fre-

uency and damping factor we get from (58) 

n = 251 , 0 0 0 rad s −1 ( f n = 40 kHz ) , 

ζ = 0 . 5 . 

rom (61) the lock-in range becomes 

ω L = 125 , 0 0 0 rad s (� f L = 20 kHz ) 

nd from (62) the lock time becomes 

 L = 25 μs . 

ext we want to compute the pull-in range. Eq. (71) yields 

ω P = 1 , 086 , 440 rad s 
−1 

(� f P = 173 kHz ) . 

.4. Numerical example 2: Designing a digital Costas loop for BPSK 

To convert the analog loop into a digital one, we first must

efine a suitable sampling frequency f samp (or sampling interval

 = 1 / f samp ). To satisfy the Nyquist theorem, the sampling fre-

uency must be higher than twice the highest frequency that ex-

sts in the loop. In our case the highest frequency is found at the

utput of the multipliers in the I and Q branches (cf. Fig. 4 ). The

um frequency term is about twice the center frequency, hence

 samp must be greater than 4 times the center frequency. A suitable

hoice would be f samp = 8 f 0 = 3 . 2 MHz. 

Next the transfer functions of the building block have to be con-

erted into discrete transfer functions, i.e. H ( s ) → H ( z ). For best

esults it is preferable to use the bilinear z transform. Given an

nalog transfer function H ( s ), it can be converted into a discrete

ransfer function H ( z ) by replacing s by 

 = 

2 

T 

1 − z −1 

1 + z −1 
. (78) 

ow the bilinear z transform has the property that the analog fre-

uency range from 0 . . . ∞ is compressed to the digital frequency

ange from 0 . . . f samp / 2 . To avoid undesired “shrinking” of the cor-

er frequencies ( ω C and ω 3 ), they must be “prewarped” accord-

ngly, i.e. we must set 

 C,p = 

2 

T 
tg 

ω C T 

2 

, (79) 

 3 ,p = 

2 

T 
tg 

ω 3 T 

2 

, (80) 

here ω C, p and ω 3, p are the prewarped corner frequencies. Now

e can apply the bilinear z transform to the transfer functions of
Please cite this article as: R.E. Best et al., Tutorial on dynamic an
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he lowpass filters (cf. Eq. (22) ) and of the loop filter (cf. Eq. (15) )

nd get 

 LPF (z) = 

[ 
1 + 

2 
ω 3 ,p T 

] 
+ 

[ 
1 − 2 

ω 3 ,p T 

] 
z −1 

1 + z −1 
, (81) 

 LF (z) = 

[ 
1 + 

2 
ω C,p T 

] 
+ 

[ 
1 − 2 

ω C,p T 

] 
z −1 

2 τ1 

T 
− 2 τ1 

T 
z −1 

. (82) 

ecause the VCO is a simple integrator, we can apply the discrete

 transform of an integrator, i.e. 

 VCO (z) = 

K 0 T 

1 − z −1 
. (83) 

he digital Costas loop is ready now for implementation. A

imulink model will be presented in Section 2.5 . 

.5. Simulating the digital Costas loop for BPSK 

A Simulink model of a Costas loop for BPSK is shown in Fig. 2.8 .

A data signal is created by a random number generator at the

eft in the block diagram. The other blocks are self explanatory.

he model is used now to check the validity of the approximations

ound for pull-in range and pull-in time. 

Eq. (71) predicts a pull-in range � f P = 173 kHz. The simulation

evealed a pull-in range of � f P = 133 kHz, which shows that the

heoretical result is a rather crude approximation. A series of other

imulation delivered results for the pull-in time �T P . The results

re listed in Table 2.1 . 

We note that the predicted and simulated parameters are in

ood agreement. 

.6. Remarks on simulation of BPSK Costas loop 

Note that a numerical simulation of various models of the same

ircuit can lead to essentially different results if the corresponding

athematical assumptions, used for the models construction, are

ot satisfied. Also the errors caused by numerical integration (e.g.

n MATLAB and SPICE) can lead to unreliable results ( Best et al.,

015; Bianchi, Kuznetsov, Leonov, Yuldashev, & Yuldashev, 2016b;

uznetsov et al., 2015a; 2014b ). The following examples demon-

trate some limitations of numerical approach on simple models. 

Next the following parameters are used in simulation: low-

ass filters transfer functions H l p f (s ) = 

2 
s/ω 3 +1 , ω 3 = 1 . 2566 · 10 6 

nd the corresponding parameters in system (6) are A 1 , 2 = −ω 3 ,

 1 , 2 = 1 , c 1 , 2 = ω 3 ; loop filter transfer function H l f (s ) = 

τ2 s +1 
τ1 s 

,

2 = 3 . 9789 · 10 −6 , τ1 = 2 · 10 −5 , and the corresponding parame-

ers in system (6) are A = 0 , b = 1 , c = 

1 
τ1 

, h = 

τ2 
τ1 

; carrier fre-

uency ω 1 = 2 · π · 40 0 0 0 0 ; VCO input gain L = 4 . 8 · 10 6 ; and car-

ier initial phase θ2 (0) = θ1 (0) = 0 . 

xample 1 (double frequency and averaging) . In Fig. 2.9 it is

hown that Assumption 1 may not be valid: mathematical model

n signal’s phase space (see Fig. 1 – black color) and physical model

see Fig. 4 and system (9) – red color) after transient processes

ave different phases in the locked states. 
alysis of the Costas loop, Annual Reviews in Control (2016), 
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Fig. 2.8. Simulink model of the digital Costas loop for BPSK. 
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Fig. 2.9. Low-pass filter outputs and phase difference for averaged model (black) and physical model (red) in Fig. 4 . (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 

Fig. 2.10. Filter outputs: default integration parameters in Simulink ‘max step size’ set to ‘auto’ (black curve); Parameters configured manually ‘max step size’ set to ‘1e-3’ 

(red curve). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Here VCO free-running frequency ω f ree = 2 · π · 40 0 0 0 0 −
60 0 0 0 0 ; initial states of filters are all zero: x (0) = x 1 (0) ≡ x 2 (0) =
0 . 

Example 2 (numerical integration parameters) . In Fig. 30 it is

shown that standard simulation of the loop may not be valid:

while the classic mathematical model in signal’s phase space

( Fig. 1 ), simulated in Simulink with predefined integration pa-

rameters: ’max step size’ set to ’1e-3’, is out of lock (black), the

same model simulated in Simulink with default integration param-

eters: ’max step size’ set to ’auto’, acquires lock (red). Here Matlab
Please cite this article as: R.E. Best et al., Tutorial on dynamic an
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hooses step from 5 · 10 −3 to 9 · 10 −2 ; for the fixed step 2 · 10 −2 the

odel acquires lock, for the fixed step 1 · 10 −2 the model doesn’t

cquire lock. 

Here the initial loop filter state output is x (0) = 0 . 0125 ; VCO

ree-running frequency ω f ree = 10 0 0 0 − 89 . 45 ; VCO input gain L =
0 0 0 ; initial phase shift θe (0) = −3 . 4035 . 

Consider now the corresponding phase portrait (see Fig. 2.11 ). 

Here the red trajectory tends to a stable equilibrium (red dot).

ower and higher black trajectories are stable and unstable limit

ycles, respectively. The blue trajectory tends to a stable periodic

rajectory (lower black periodic curve) and in this case the model
alysis of the Costas loop, Annual Reviews in Control (2016), 

http://dx.doi.org/10.1016/j.arcontrol.2016.08.003


R.E. Best et al. / Annual Reviews in Control 0 0 0 (2016) 1–23 15 

ARTICLE IN PRESS 

JID: JARAP [m5G; September 12, 2016;10:56 ] 

e

Fig. 2.11. Phase portrait: coexistence of stable and unstable periodic solutions. (For 

interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 

Fig. 3.1. Phase detector output signal u d as a function of phase error θ e . 
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ϕ

ϕ

oes not acquire lock. All trajectories between black trajectories

see green trajectory) tend to the stable lower black trajectory. 

If the gap between stable and unstable trajectories (black lines)

s smaller than the discretization step, the numerical procedure

ay slip through the stable trajectory (blue trajectory may step

ver the black and green lines and begins to be attracted to the

ed dot). In other words, the simulation may show that the Costas

oop acquires lock although in reality it does not happen. The con-

idered case corresponds to the coexisting attractors (one of which

s a hidden oscillation) and the bifurcation of birth of a semistable

rajectory ( Leonov & Kuznetsov, 2013 ). 

Note, that only trajectories (red) above the unstable limit cycle

s attracted to the equilibrium. Hence �ω = 89 . 45 does not belong

o the pull-in range. 

Corresponding limitations, caused by hidden oscillations, ap-

ear in simulation of various phase-locked loop (PLL) based sys-

ems ( Best et al., 2015; Bianchi et al., 2016a; Bianchi et al.,

016b; Kudryashova et al., 2014; Kuznetsov et al., 2014a; 2015a;

014b; Kuznetsov, Leonov, Yuldashev, & Yuldashev, 2014c; Leonov

 Kuznetsov, 2013; Leonov et al., 2015a ). 

. QPSK Costas loop 

.1. Lock-in range �ω L and lock time T L 

The open loop transfer function is identical with that of the

ostas loop for BPSK, cf. Eq. (54) and Fig. 2.1 . This holds true for

he closed loop transfer function, too, cf. Eqs. (56 )–( 58) . To deter-

ine the lock-in range, we assume that the loop is out of lock. Let

he reference frequency be ω 1 , and the initial VCO frequency ω free .

he difference frequency ω 1 − ω 2 is called �ω. When the loop has

ot acquired lock, the phase error θ e is a continuously rising func-

ion that increases towards infinity. The phase detector output sig-
Please cite this article as: R.E. Best et al., Tutorial on dynamic an
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al u d is then a chopped sine wave as depicted in Fig. 3.1 . The

undamental frequency of this signal is four times the difference

requency, i.e. 4 �ω. This signal is plotted once again in the left

race of Fig. 3.2 . The amplitude of this signal is K d / 
√ 

2 . Because for

he Costas loop for QPSK the phase detector gain is K d = 2 m, it is

qual to 
√ 

2 m. The fundamental frequency of u d is assumed to be

uch higher than the corner frequency ω C of the loop filter, hence

he transfer function of the loop filter can be approximated by 

 LF (s ) ≈ τ2 

τ1 

= K H . (84)

Hence the output signal of the loop filter u f has an amplitude

f K d K H / 
√ 

2 , cf. middle trace of Fig. 3.2 . This signal modulates the

utput frequency of the VCO, and the modulation amplitude is

iven by K d K H K 0 / 
√ 

2 , cf. right trace in Fig. 3.2 . It is easily seen that

he loop spontaneously locks when the peak of the ω 2 ( t ) waveform

ouches the ω 1 line, hence we have 

ω L = 

K 0 K d K H √ 

2 

. (85) 

Making use of Eqs. (58) and (84) this can be rewritten as 

ω L = 

√ 

2 ζω n . (86) 

Because the transient response of the loop is a damped oscilla-

ion whose frequency is ω n , the loop will lock in at most one cycle

f ω n , and we get for the lock time 

 L ≈ 2 π

ω n 
. (87) 

.2. Pull-in range and pull-in time for QPSK 

Consider the simplified nonlinear model of QPSK Costas loop, cf

ection 1.1.2 . Let us define the total phase by ϕ tot = 4 ϕ 1 + ϕ 2 . Next

e are computing the average phase detector output signal u d as

 function of frequency difference and phase. First we calculate u d 
or the special case ϕ tot = 0 . As shown in the right trace in Fig. 3.3

uring interval T 1 the average frequency ω 2 is increased, hence the

verage difference �ω becomes smaller. During next half cycle T 2 
he reverse is true: the average difference �ω becomes greater,

ence for ϕ tot = 0 T 1 is longer than T 2 . The modulating signal is

herefore asymmetric, and because also u d ( t ) (left trace) is asym-

etric its average u d becomes nonzero and positive. This asymme- 

ry has been shown exaggerated in Fig. 3.3 . 

Using the same mathematical procedure as for BPSK Costas

oop, the average u d signal is given by 

 d = 

0 . 373 

2 K 

2 
d 

K H 

�ω 

cos (4 ϕ 1 [�ω] + ϕ 2 [4�ω]) . (88)

As in case of the Costas loop for BPSK, here again

q. (88) shows us that the pull-in range is finite. The pull-in range

s the frequency difference for which phase ϕ tot = −π/ 2 . An equa-

ion for the pull-in range will be derived here. We also have to find

n equation for the pull-in time. To derive the pull-in process, we

ill use the same nonlinear model as used for the Costas loop for

PSK, cf. Fig. 11 . The transfer functions for the loop filter and for

he VCO have been given in Eqs. (26) and (29) , respectively. 

The pull-in range can be computed using Eq. (88) . Lock can only

e obtained when the total phase shift is not more negative than

π/ 2 . This leads to an equation of the form 

 ϕ 1 (�ω p ) + ϕ 2 (4�ω p ) = −π/ 2 . (89)

According to Eqs. (15) and (22) ϕ 1 and ϕ 2 are given by 

 1 (ω) = −arctg (ω/ω 3 ) , 

 2 (ω) = −π/ 2 + arctg (ω/ω C ) 
alysis of the Costas loop, Annual Reviews in Control (2016), 
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Fig. 3.2. Signals u d ( t ), u f ( t ), and ω 2 ( t ) during the pull-in process. 

Fig. 3.3. Signals of the Costas loop for QPSK in the unlocked state. 
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with ω C = 1 /τ2 . Hence the pull-in range �ω P can be computed

from the transcendental equation 

4 arctg (�ω P /ω 3 ) = arctg (4�ω p /ω C ) . (90)

Using the addition theorem of the tangent function 

tg ( 4 α) = 

(
1 − tg 2 α

)
4 tg α

1 − 6 tg 2 α + tg 4 α
, 

the term 4arctg( �ω p / ω 3 ) can be replaced by

arctg 

[
1 −

(
�ω p 
ω 3 

)2 
]

4 
ω p 
ω 3 

1 −6 

(
�ω p 
ω 3 

)2 
+ 
(

�ω p 
ω 3 

)4 . 

Eq. (90) then takes form 

arctg 

[
1 −

(
�ω p 
ω 3 

)2 
]

4 

ω p 
ω 3 

1 − 6 

(
�ω p 
ω 3 

)2 

+ 

(
�ω p 
ω 3 

)4 
= arctg 

4�ω p 

ω C 

. 

When the arctg expressions on both sides are equal, the argu-

ments must be identical as well, hence we get [
1 −

(
�ω p 
ω 3 

)2 
]

4 

ω p 
ω 3 

1 − 6 

(
�ω p 
ω 3 

)2 

+ 

(
�ω p 
ω 3 

)4 
= 

4�ω p 

ω C 

. 

Solving for �ω P yields 

�ω p = ω 3 

√ 

6 − ω C 
ω 3 

−
√ [

6 − ω C 
ω 3 

]2 − 4 

(
1 − ω C 

ω 3 

)
2 

. (91)

Last, equation for the pull-in time T P will be derived. Based on

the nonlinear model shown in Fig. 11 and in Eqs. (26) , (29) , and

(88) we can create a differential equation for the instantaneous
Please cite this article as: R.E. Best et al., Tutorial on dynamic an
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ifference frequency �ω as a function of time. For this type of

ostas loop the differential equation has the form 

d 

dt 
�ωτ1 + 

cos ϕ tot 

�ω 

0 . 373 

2 K 

2 
0 K 

2 
d K H = 0 

ith 

os ϕ tot = −4 arctg 
�ω 

ω 3 

− π

2 

+ arctg �ω ω c . 

lso here the cos term can be replaced by 

os ϕ tot ≈= 1 − �ω 

�ω P 

nd, using similar procedures as in previews section, we get for the

ull-in time 

 P ≈ �ω P 

0 . 278 ζω 

3 
n 

[ 
�ω P ln 

�ω P − �ω L 

�ω P − �ω 0 

− �ω 0 + �ω L 

] 
, (92)

hich again is valid for initial frequency offsets in the range �ω L 

 �ω 0 < �ω P . For lower frequency offsets, a fast pull-in process

ill occur, and Eq. (87) should be used. 

.3. Numerical example: Designing a digital Costas loop for QPSK 

A digital Costas loop for QPSK shall be designed in this section.

t is assumed that two binary signals ( I and Q ) are modulated with

 quadrature carrier (cosine and sine carrier). The carrier frequency

s set to 400 kHz, i.e. the Costas loop will operate at a center

requency ω 0 = 2 π 40 0,0 0 0 = 2,512,0 0 0 rad s −1 . The symbol rate

s assumed to be f S = 10 0,0 0 0 symbols/s. Now the parameters of

he loop (such as time constants τ 1 and τ 2 , corner frequencies ω C 

nd ω 3 , and gain parameters such as K 0 , K d ) must be determined.

Note that these parameters have been defined in Eqs. (14 )–( 16)

nd (62) ). It is possible to use the same parameters as for digital
alysis of the Costas loop, Annual Reviews in Control (2016), 
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Fig. 3.4. Simulink model of the digital Costas loop for QPSK. 
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Table 3.1 

Comparison of predicted and simulated results for the pull-in range. 

�f 0 (Hz) �ω 0 (rad s −1 ) T P (theory) ( μs) ( T P (simulation) ( μs) 

40 kHz 251,200 14 35 

50 kHz 314,0 0 0 37 40 

60 kHz 376,800 86 70 
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PSK, i.e. 

m 1 ≡ m 2 ≡ 1 , 

K d = 2 , 

G OL (s ) = 

K 0 K d 

s 

1 + s/ω C 

sτ1 

1 

1 + s/ω 3 

, 

ω T = 251 , 200 , 

τ2 = 4 μs , 

ω 3 = 2 ∗ 2 π ∗ 10 0 , 0 0 0 = 1 , 256 , 0 0 0 , 

τ1 = 20 μ s , 

K 0 = 631 , 0 0 0 s −1 , 

ω n = 251 , 0 0 0 rad /s ( f n = 40 kHz ) 

ζ = 0 . 5 , 

�ω L = 177 , 483 rad s (� f L = 20 kHz ) . 

(93) 

From (86) the lock-in range becomes 

ω L = 177 , 483 rad s (� f L = 20 kHz ) 

nd from (87) the lock time becomes 

 L = 25 μs . 

Next we want to compute the pull-in range. Eq. (91) yields

f P = 73 kHz ) . In Section 3.4 we will simulate this Costas loop

nd compare the results of the simulation with the predicted ones.

In digital domain f samp = 8 and f 0 = 3 . 2 MHz . Transfer func-

ions H LPF ( z ), H VCO and H LF ( z ) are defined in (81) –(83) . A Simulink

odel will be presented in Section 3.4 . 

.4. Simulating the digital Costas loop for QPSK 

A Simulink model of a Costas loop for QPSK is shown in Fig. 3.4 .

Two data signals ( I and Q ) is created by random number gen-

rators at the left of the block diagram. The other blocks are self

xplanatory. The model is used now to check the validity of the

pproximations found for pull-in range and pull-in time. 

Eq. (91) predicts a pull-in range �f P = 73 kHz. The simulations

eveals a value of 62 kHz. A series of other simulations delivered

esults for the pull-in time �T P . The results are listed in Table 3.1 . 

At higher frequency offsets the results of the simulation are in

ood agreement with the predicted ones. The pull-in time for an

nitial frequency offset of 40 kHz is too low, however, but it should
Please cite this article as: R.E. Best et al., Tutorial on dynamic an
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e noted that the lock time T L is about 25 μs , and the total pull-in

ime cannot be less than the lock time. 

.5. Remarks on simulation of QPSK Costas loop 

Similar problems to BPSK Costas loop simulation also exist for

PSK. Different mathematical models can give qualitatively differ-

nt results, which shows the importance of analytical methods in

tudying QPSK Costas loops. 

. Modified Costas loop for BPSK 

.1. Lock-in range �ω L and lock time T L 

From the model of Fig. 6 with K d = 1 the open loop transfer

unction is determined as 

 OL (s ) = 

K 0 

s 

1 + sτ2 

sτ1 

. (94)

Since open loop transfer function of Modified Costas loop is

ffectively the same as (54) , linear analysis is the same as for

PSK Costas loop. Therefore transfer function in normalized form

s equal to 

 CS (s ) = 

2 sζω n + ω 

2 
n 

s 2 + 2 cζω n + ω 

2 
n 

, 

here 

 n = 

√ 

K 0 

τ1 

, ζ = 

ω n τ2 

2 

. (95)

ere ω n is natural frequency and ζ is damping factor. 

For the following analysis we assume that the loop is initially

ut of lock. The frequency of the reference signal ( Fig. 17 ) is ω 1 ,

nd the frequency of the VCO is ω 2 . The output signal of multiplier

 is then a phasor rotating with angular velocity �ω = ω − ω .
1 1 2 

alysis of the Costas loop, Annual Reviews in Control (2016), 
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Fig. 4.1. Signals u d , u f , and ω 2 during the lock process. 

Fig. 4.2. Pull-in process of the modified Costas loop for BPSK. 
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Consequently the phase output of block “Complex → mag, phase”

is a sawtooth signal having amplitude ( π /2) K d and fundamental

frequency 2 �ω, as shown in the left trace of Fig. 4.1 . Because 2 �ω
is usually much higher than the corner frequency ω C of the loop

filter, the transfer function of the loop filter at higher frequencies

can be approximated again by 

H LF (ω) ≈ τ2 

τ1 

= K H . 

The output signal u f of the loop filter is a sawtooth signal and

has amplitude ( π /2) K d K H , as shown in the middle trace of the

Fig. 4.1 . This signal modulates the frequency ω 2 generated by the

VCO. The modulation amplitude is given by ( π /2) K d K H K 0 , cf.

right trace. The Costas loop spontaneously acquires lock when the

peak of the ω 2 waveform touches the ω 1 line, hence we have 

�ω L = 

π

2 

K d K 0 K H = 

π

2 

K d K 0 
τ2 

τ1 

. 

Making use of the substitutions Eq. (95) this can be rewritten

as 

�ω L = πζω n . (96)

Because the lock process is a damped oscillation having frequency

ω n the lock time can be approximated by one cycle of this oscilla-

tion, i.e. 

T L ≈ 2 π

ω n 
. (97)

4.2. Pull-in range and pull-in time of the modified Costas loop for 

BPSK 

Assume that the loop is not yet locked, and �ω = ω 1 − ω 2 . As

shown in Section 4.1 (cf. also Fig. 4.1 ) u d is a sawtooth signal hav-

ing frequency 2 �ω, cf. left trace in Fig. 4.2 . As will be explained

in short, this signal is asymmetrical, i.e. the duration of the posi-

tive wave T 1 is not identical with the duration T 2 of the negative.

The middle trace shows the output signal of the loop filter, and the

right trace shows the modulation of the VCO output frequency ω 2 .

From this waveform it is seen that during T 1 the average frequency

difference �ω becomes smaller, but during interval T 2 it becomes

larger. Consequently the duration of T 1 is longer than the duration

of T , and the average of signal u is nonzero and positive. Using
2 d 

Please cite this article as: R.E. Best et al., Tutorial on dynamic an
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he same mathematical procedure as in previews sections, the av-

rage u d can be computed from 

 d = 

π2 K d K 0 K H 

8�ω 

. (98)

Because this type of Costas loop does not require an additional

owpass filter, the u d signal is not shifted in phase, and therefore

here is no cos term in Eq. (98) . This implies that there is no po-

arity reversal in the function u d (�ω) , hence the pull-in range be-

omes theoretically infinite. Of course, in a real circuit the pull-in

ange will be limited by the frequency range of the VCO is ca-

able to generate. When the center frequency f 0 of the loop is

0 MHz, for example, and when the VCO can create frequencies

n the range from 0 . . . 20 MHz, then the maximum pull-in range

f P is 10 MHz, i. e. �ω P = 6 . 28 · 10 6 rad / s. 

As seen in the last section, the pull-in range of this type of

ostas loop can be arbitrarily large. Using the same model as for

PSK Costas loop (see Fig. 11 ), we can derive an equation for the

ull-in time: 

 P ≈ 2 

π2 

�ω 

2 
0 

ζω 

3 
n 

. (99)

.3. Designing a digital modified Costas loop for BPSK 

The following design is based on the method we already used

n Section 2.3 . It is assumed that a binary signal I is modu-

ated onto a carrier. The carrier frequency is set to 400 kHz,

.e. the Costas loop will operate at a center frequency ω 0 = 2 π
0 0,0 0 0 = 2,512,0 0 0 rad s −1 . The symbol rate is assumed to be

f S = 10 0 , 0 0 0 symbols / s. Now the parameters of the loop (such as

ime constants τ 1 and τ 2 , corner frequency ω C , and gain parame-

ers such as K 0 , K d ) must be determined. (Note that these parame-

ers have been defined in Eqs. (14 )–( 16) , and (62) ). 

It has been shown in Section 4.1 that for this type of Costas

oop K d = 1 . The modulation amplitudes m 1 and m 2 are set to 1. It

as proven advantageous to determine the remaining parameters

y using the open loop transfer function G OL ( s ) of the loop, which

s given here by (94) . The magnitude of G OL ( ω) has been shown in

ig. 2.1 . As already explained in Section 2.3 the magnitude curve
alysis of the Costas loop, Annual Reviews in Control (2016), 
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Fig. 4.3. Simulink model of the modified Costas loop for BPSK. 

Table 4.1 

Comparison of predicted and simulated results for the pull-in range. 

�f 0 (Hz) �ω 0 (rad s −1 ) T P (theory) ( μs) ( T P (simulation) ( μs) 

50 kHz 314,200 2 .5 20 

100 kHz 628,0 0 0 10 20 

200 kHz 1,256,0 0 0 40 50 
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Fig. 4.4. Obtaining the phase error signal from multiplier M 2 . 
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o

rosses the 0 dB line at the transit frequency ω T . As in the case of

he conventional Costas loop for BPSK/QPSK, we again set 

ω T = 0 . 1 ω 0 , 

ω T = 251 , 200 rad s −1 , 

G OL (ω) = −135 

◦, 

τ2 = 4 μs , 

τ1 = 20 μs , 

K 0 = 1 , 262 , 0 0 0 s −1 . 

(100) 

For the natural frequency and damping factor we get from

q. (58) 

ω n = 251 , 0 0 0 rad s −1 ( f n = 40 kHz ) 

ζ = 0 . 5 . 
(101) 

From (95) lock-in range is as of 

ω L = 394 , 0 0 0 rad s , � f L = 62 . 7 kHz , T L = 25 μs . (102)

As done in Section 2.4 a suitable sampling frequency f samp must

e chosen for z -domain. As shown previously f samp must be greater

han 4 times the center frequency of the Costas loop. Therefore

f samp = 8 , f 0 = 3 . 2 MHz. The transfer functions of the loop filter

nd VCO are the same as (82) and (83) . 

The digital Costas loop is ready now for implementation. A

imulink model will be presented in Section 4.4 . 

.4. Simulating the modified digital Costas loop for BPSK 

Fig. 4.3 shows the Simulink model of the Costas loop. Table 4.1

ists a number of results for the pull-in time T P . 

The predictions for � f 0 = 50 kHz and 100 kHz are too low. As

lready mentioned in Section 3.4 the pull-in time cannot be lower

han the lock time, and the latter is estimated ≈ 25 μs. The simu-

ation results for these two difference frequencies are around 20 μs,

hich roughly corresponds to the lock time. The simulation result
Please cite this article as: R.E. Best et al., Tutorial on dynamic an
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or a frequency difference of 200 kHz comes close to the predicted

alue. 

.5. Pull-in time for an alternative structure of the modified Costas 

oop for BPSK 

As demonstrated in Fig. 17 the phase error signal u d was ob-

ained from the phase output of block “Complex → mag, phase”.

he phase of the complex input signal to this block can be ob-

ained from the arc tg function. This imposes no problem when a

rocessor is available. This is the case in most digital implementa-

ions of the Costas loop. As an alternative a phase error signal can

lso be obtained directly from the imaginary part of multiplier M 2 ;

his is shown in Fig. 4.4 . 

It is easily seen that here u d is given by 

 d = m (t) sin (θe ) . 

The blocks shown in Fig. 4.4 therefore represent a phase de-

ector having gain K d = m . In the cases when m � = 1 this must be

aken in account when specifying the open loop transfer function,

f. Section 4.3 . For this design the pull-in time of the loop is given

y 

 p ≈ π2 

16 

�ω 

2 
0 

ζω 

3 
n 

. 

.6. A note on the design of Hilbert transformers 

Hilbert transformers used in the system of Fig. 17 are imple-

ented in most cases by digital filters. In this application the max-

mum frequency in the spectrum of the modulating signal m 1 ( t )

s much lower than the carrier frequency f 1 . Under this condition

he Hilbert transformer can be replaced by a simple delay block.

ll we have to do is to shift the input signal u 1 ( t ) by one quar-

er of a period of the carrier. When the sampling frequency f S is

 times the carrier frequency f 1 , we would shift the input signal

y n /4 samples. This implies that n must be an integer multiple

f 4. 
alysis of the Costas loop, Annual Reviews in Control (2016), 
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Fig. 5.1. Bode plot of magnitude of open loop gain G OL ( ω) for QPSK. 
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5. Modified Costas loop for QPSK 

5.1. Lock-in range �ω L and lock time T L 

From the model of Fig. 6 the open loop transfer function is de-

termined as 

G OL ( s ) = 

K 0 

s 

1 + sτ2 

sτ1 

, (103)

as explained in Section 1.2.2 . 

Fig. 5.1 shows a Bode plot of the magnitude of G OL . The plot

is characterized by the corner frequency ω C , which is defined by

ω C = 1 /τ2 and gain parameters K d and K 0 . At lower frequencies the

magnitude rolls off with a slope of – 40 dB/decade. At frequency

ω C the zero of the loop filter causes the magnitude to change its

slope to – 20 dB/decade. To get a stable system, the magnitude

curve should cut the 0 dB line with a slope that is markedly less

than – 40 dB/decade. Setting the parameters such that the gain is

just 0 dB at frequency ω C provides a phase margin of 45 °, which

assures stability [2]. From the open loop transfer function we now

can calculate the closed loop transfer function defined by 

G CL (s ) = 


2 (s ) 


1 (s ) 
. 

After some mathematical manipulations we get 

G CL (s ) = 

K 0 K d 
1+ sτ2 

sτ1 

s 2 + s K 0 K d τ2 

τ1 
+ 

K 0 K d 
τ1 

. 

It is naturally to represent this transfer function in normalized

form, i.e. 

G CS (s ) = 

2 sζω n + ω 

2 
n 

s 2 + 2 sζω n + ω 

2 
n 

with the substitutions 

ω n = 

√ 

K 0 K d 

τ1 

, ζ = 

ω n τ2 

2 

, (104)

where ω n is called natural frequency and ζ is called damping fac-

tor. The linear model enables us to derive simple expressions for

lock-in range �ω L and lock time T L . 

For the following analysis we assume that the loop is initially

out of lock. The frequency of the reference signal ( Fig. 19 ) is ω 1 ,

and the frequency of the VCO is ω 2 . The output signal of multiplier

M 1 is then a phasor rotating with angular velocity �ω = ω 1 − ω 2 .

Consequently the phase output of block “Complex → mag, phase is

a sawtooth signal having amplitude ( π /4) K d and fundamental fre-

quency 4 �ω, as shown in the left trace of Fig. 5.2 . Because 4 �ω
is usually much higher than the corner frequency ω C of the loop

filter, the transfer function of the loop filter at higher frequencies
Please cite this article as: R.E. Best et al., Tutorial on dynamic an
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an be approximated again by 

 LF (ω) ≈ τ2 

τ1 

= K H . 

The output signal u f of the loop filter is a sawtooth signal as

ell and has amplitude ( π /4) K d K H , as shown in the middle trace

f the figure. This signal modulates the frequency ω 2 generated by

he VCO. The modulation amplitude is given by ( π /4) K d K H K 0 , cf.

ight trace. The Costas loop spontaneously acquires lock when the

eak of the ω 2 waveform touches the ω 1 line, hence we have 

ω L = 

π

4 

K d K 0 K H = 

π

4 

K d K 0 
τ2 

τ1 

. (105)

Making use of the substitutions Eq. (95) , this can be rewritten

s 

ω L = 

π

2 

ζω n . (106)

Because the lock process is a damped oscillation having fre-

uency ω n , the lock time can be approximated by one cycle of this

scillation, i.e. 

 L ≈ 2 π

ω n 
. (107)

.2. Pull-in range and pull-in time of the modified Costas loop for 

PSK 

Assume that the loop is not yet locked, and that the difference

etween reference frequency ω 1 and VCO output frequency ω 2 is

ω = ω 1 − ω 2 . As shown in Section 5.1 (cf. also Fig. 5.2 ) u d is a

awtooth signal having frequency 4 �ω, cf. left trace in Fig. 5.3 . 

As will be explained in short, this signal is asymmetrical, i.e. the

uration of the positive wave T 1 is not identical with the duration

 2 of the negative one. The middle trace shows the output signal

f the loop filter, and the right trace shows the modulation of the

CO output frequency ω 2 . From this waveform it is seen that dur-

ng T 1 the average frequency difference �ω becomes smaller, but

uring interval T 2 it becomes larger. Consequently the duration of

 1 is longer than the duration of T 2 , and the average of signal u d is

onzero and positive. Using the same mathematical procedure as

n Sections 2.3 and 3.3 the average u d can be computed from 

 d = 

π2 K 

2 
d 

K 0 K H 

64�ω 

. (108)

Because this type of Costas loop does not require an additional

owpass filter, the u d signal is not shifted in phase, and therefore

here is no cos term in Eq. (108) . This implies that there is no

olarity reversal in the function u d (�ω) , hence the pull-in range

ecomes theoretically infinite. Of course, in a real circuit the pull-

n range will be limited by the frequency range of the VCO is ca-

able to generate. When the center frequency f 0 of the loop is

0 MHz, for example, and when the VCO can create frequencies

n the range from 0 . . . 20 MHz, then the maximum pull-in range

f P is 10 MHz, i. e. �ω P = 6 . 28 · 10 6 rads −1 . 

As seen in the last section, the pull-in range of this type of

ostas loop can be arbitrarily large. Using nonlinear model (11) we

an derive an equation for the pull-in range: 

ω p ≈ 16 

π2 

�ω 

2 
0 

ζω 

3 
n 

. (109)

.3. Designing a digital modified Costas loop for QPSK 

The following design is based on the method we already used

n Section 4.3 . It is assumed that two binary signals ( I and Q ) are

odulated onto a quadrature carrier (cosine and sine carrier). The
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Fig. 5.2. Signals u d , u f , and ω 2 during the lock process. 

Fig. 5.3. Pull-in process of the modified Costas loop for QPSK. 

Table 5.1 

Comparison of predicted and simulated results for the pull-in range. 

�f 0 (Hz) �ω 0 (rad s −1 ) T P (theory) ( μs) ( T P (simulation) ( μs) 

50 kHz 314,200 20 20 

100 kHz 628,0 0 0 81 80 

200 kHz 1,256,0 0 0 327 300 
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arrier frequency is set to 400 kHz, i.e. the Costas loop will op-

rate at a center frequency ω 0 = 2 π40 0 , 0 0 0 = 2 , 512 , 0 0 0 rad s −1 .

he symbol rate is assumed to be f S = 10 0 , 0 0 0 symbols /s . Now

he parameters of the loop (such as time constants τ 1 and τ 2 , cor-

er frequency ω C , and gain parameters such as K 0 , K d ) must be

etermined. (Note that these parameters have been defined in Eqs.

14 )–( 16) , and (62) ). 

It has been shown in previews sections that for this type of

ostas loop K d = 1 . The modulation amplitudes m 1 and m 2 are set

o 1. It was proven advantageous to determine the remaining pa-

ameters by using the open loop transfer function G OL ( s ) of the

oop, which is given here by (103) . The magnitude of G OL ( ω) has

een shown in Fig. 5.1 . As already explained in Section 2.3 the

agnitude curve crosses the 0 dB line at the transit frequency ω T .

e again set parameters as in (100), (101) and (102) . A Simulink

odel will be presented in Section 5.4 . 

.4. Simulating the digital Costas loop for QPSK 

Fig. 5.4 shows the Simulink model of the Costas loop. Table 5.1

ists a number of results for the pull-in time T P . 

The predictions come very close to the results obtained from

he simulation. 

.5. An alternative structure of the modified Costas loop for BPSK 

As demonstrated in Fig. 19 the phase error signal u d was ob-

ained from the phase output of block “Complex → mag, phase”.

he phase of the complex input signal to this block can be ob-

ained from the arctg function. This imposes no problem when a
Please cite this article as: R.E. Best et al., Tutorial on dynamic an
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rocessor is available. This is the case in most digital implementa-

ions of the Costas loop. As an alternative a phase error signal can

lso be obtained directly from the imaginary part of multiplier M 2 ;

his is shown in Fig. 5.5 . 

It is easily seen that here u d is given by 

 d = 2 m sin (θe ) . 

The blocks shown in Fig. 5.5 therefore represent a phase de-

ector having gain K d = 2 m . This must be taken in account when

pecifying the open loop transfer function, cf. Section 5.3 . For this

esign the pull-in time of the loop is given by 

 p ≈
1 . 78�ω 

2 
0 

ζω 

3 
n 

. 
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ppendix A 

1. Hold-in range for lead-lag filter 

One needs to be cautious using model in Fig. 5 even for calcu-

ating hold-in range for BPSK Costas. Consider an example: Costas

oop with lead-lag loop filter 

F (s ) = 

1 + sτ2 

1 + sτ1 

, τ1 > τ2 > 0 

(110) 

nd low-pass filters LPFs 

H LPF (s ) = 

1 

1 + 

s 
ω 3 

, ω 3 > 0 . (111) 

In locked state phase error θ e satisfies 

�ω 

K 0 K d 

= 

sin (2 θe ) 

2 

, (112) 
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Fig. 5.4. Simulink model of the modified Costas loop for QPSK. 

Fig. 5.5. Obtaining the phase error signal from multiplier M 2 . 
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therefore we get a bound for the hold-in range 

| �ω 0 | < 

K 0 K d 

2 

. (113)

In order to find hold-in range we need to find poles of the closed-

loop transfer function (roots of the characteristic polynomial) for

the linearized model (small-signal model) of the system in Fig. 4 .

Open-loop transfer function is as follows 

G OL = 

K 0 K d 

s 

1 + sτ2 

1 + sτ1 

1 

1 + 

s 
ω 3 

cos (2 θeq ) 

2 

(114)

1 

2 

(1 + τ2 s ) K 0 K d cos (2 θeq ) + s (1 + 

s 

ω 3 

)(1 + τ1 s ) . (115)

Phase error θ eq corresponds to hold-in range (see (112) ) if all roots

of the polynomial (115) have negative real parts (i.e. polynomial

(115) is stable). Applying Routh-Hurwitz criterion to study stability

of the polynomial, we get that for the following parameters 

ω 3 ≥ τ1 − τ2 

τ1 τ2 

, (116)

polynomial (115) is stable for all | �ω 0 | < 

K 0 K d 
8 . However, if 

ω 3 < 

τ1 − τ2 

τ1 τ2 
(117)

the following condition is necessary for stability: 

cos (2 θeq ) < 

2 

K 0 K 

( −1 − ω 3 τ1 

−τ1 + τ2 + ω 3 τ1 τ2 

)
. (118)
d 
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hen, taking into account static phase error in Eq. (112) , we get

ifferent hold-in ranges for different values of ω 3 
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4 

√ 

1 −
(

2 

K 0 K d 

( −1 − ω 3 τ1 

−τ1 + τ2 + ω 3 τ1 τ2 

))2 

< | �ω 0 | < 

K 0 K d 

4 

, 

if ω 3 < 

τ1 − τ2 

τ1 τ2 

, | 2 

K 0 K d 

( −1 − ω 3 τ1 

−τ1 + τ2 + ω 3 τ1 τ2 

)
| <

| �ω 0 | < 

K 0 K d 

4 

, if ω 3 < 

τ1 − τ2 

τ1 τ2 

, | 2 

K 0 K d 

( −1 − ω 3 τ1 

−τ1 + τ2 + ω 3 τ1 τ2 

)
| 

| �ω 0 | < 

K 0 K d 

4 

, if ω 3 ≥ τ1 − τ2 

τ1 τ2 

. 

(119)
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