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Costas loop is a classical phase-locked loop (PLL) based circuit for carrier recovery and signal demodula-
tion. The PLL is an automatic control system that adjusts the phase of a local signal to match the phase
of the input reference signal. This tutorial is devoted to the dynamic analysis of the Costas loop. In par-
ticular the acquisition process is analyzed. Acquisition is most conveniently described by a number of
frequency and time parameters such as lock-in range, lock-in time, pull-in range, pull-in time, and hold-
in range. While for the classical PLL equations all these parameters have been derived (many of them are
approximations, some even crude approximations), this has not yet been carried out for the Costas loop.
It is the aim of this analysis to close this gap. The paper starts with an overview on mathematical and
physical models (exact and simplified) of the different variants of the Costas loop. Then equations for the
above mentioned key parameters are derived. Finally, the lock-in range of the Costas loop for the case
where a lead-lag filter is used for the loop filter is analyzed.
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1. Introduction

Costas loop is a classical phase-locked loop (PLL) based cir-
cuit for carrier recovery and signal demodulation (Costas, 1962;
Waters, 1982). The PLL is an automatic control system, which is
designed to generate an electrical signal (voltage), the frequency
of which is automatically tuned to the frequency of the input
(reference) signal. Various PLL based circuits are widely used in
modern telecommunications, computer architectures, electrome-
chanical systems (see, e.g. Best, 2007; Kobayashi, Hara, & Tanaka,
1990; Lazzari, Parma, De Marco, & Bittanti, 2015). Nowadays among
the applications of Costas loop there are Global Positioning Sys-
tems (see, e.g., Kaplan & Hegarty, 2006), wireless communication
(see, e. g., Rohde, Whitaker, & Bateman, 2000) and others (Bakshi
& Godse, 2010; Couch, 2007; Proakis & Salehi, 2008; Sidorkina,
Sizykh, Shakhtarin, & Shevtsev, 2016; Stephens, 2002).

Dynamic behavior of the PLL and the Costas loop has
been described extensively in the literature (Best, 2007; Best,
Kuznetsov, Leonov, Yuldashev, & Yuldashev, 2014; Bianchi, 2005;
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Bizzarri, Brambilla, & Gajani, 2012; Cahn, 1977; Gardner, 1979; Ka-
plan & Hegarty, 2006; Kuznetsov et al., 2014a; 2012; Kuznetsov,
Leonov, Yuldashev, & Yuldashev, 2014d; Leonov, Kuznetsov, Yulda-
shev, & Yuldashev, 2015b; Rantzer, 2001; Rohde et al., 2000; Si-
mon & Lindsey, 1977), and a number of key parameters has been
defined that describe its lock-in and lock-out characteristics. When
the PLL is initially out of lock, two different types of acquisition
processes can occur, either the so-called lock-in process or the so-
called pull-in process. The first of those is a fast process, i.e. the
acquisition takes place within at most one beat note of the dif-
ference between reference frequency w; and initial VCO (Voltage
Controlled Oscillator) frequency w,, cf. Fig. 1 for signal denota-
tions'. The frequency difference for which such a fast acquisition
process takes place corresponds to the lock-in range Aw;, and the
duration of the locking process is called lock time T;. When the
difference between reference and VCO frequency is larger than the
lock-in range but less than the pull-in range Awp, a slow acquisi-
tion process occurs. The time required to get acquisition is called
pull-in time Tp. In case of the PLL all these acquisition parameters
can be approximated by characteristic parameters of the PLL, i.e.
from natural frequency w, and damping factor ¢.

! Non-sinusoidal ~ signals in PLL-based circuits are considered in
Kuznetsov, Leonov, Yuldashev, and Yuldashev (2011); Leonov, Kuznetsov, Yuldahsev,
and Yuldashev (2012)
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in(o t u, u The Costas loops operating with pre-envelope signals will be re-
sin(®,) — PD Loop filter ferred to as “modified Costas loops”, cf. Sections 4 and 5.
Because there are different types of Costas loops the acquisi-
cos(,1) tion parameters must be derived separately for each of these types.
Veo This will be performed in the following sections. In order to see

Fig. 1. Block diagram of a PLL.

L> Hilbert

Fig. 2. Generation of the pre-envelope signal using Hilbert transformer.

To the authors knowledge such acquisition parameters have not
been analytically derived for the different types of Costas loops.
It seems that most authors only described the static properties of
the Costas loop such as the derivation of the phase error in the
locked state and the like. Based on methods developed earlier for
the PLL, the authors could now derive similar expressions for all
relevant acquisition parameters of the Costas loop. This enables the
designer to determine the lock-in and pull-in ranges, and to esti-
mate the duration of the corresponding processes.

Because the systems considered are highly nonlinear, exact
computation of such parameters is very difficult or even impos-
sible. Therefore it is necessary to introduce a number of simplifi-
cations. This implies that the obtained results are only approxima-
tions, in some cases rather crude approximations.

As will be shown in the following sections there are different
types of Costas loops. The first of these loops has been described
by J. Costas in 1956 (Costas, 1956) and was primarily used to
demodulate amplitude-modulated signals with suppressed carrier
(DSB-AM). The same circuit was used later for the demodulation of
BPSK signals (binary phase shift keying) (Proakis & Salehi, 2008).
With the advent of QPSK (quadrature phase shift keying) this
Costas loop was extended to demodulate QPSK signals as well.
These two types of Costas loop operated with real signals. In case
of BPSK, the input signal u(t) is a sine carrier that was phase mod-
ulated by a binary signal, i.e.

up (t) = my(t) sin(wt), (m

where w4 is the (radian) carrier frequency, and my(t) can have two
different values, either +1 or —1, or two arbitrary equal and op-
posite values +c and —c, where ¢ can be any value. In the case of
QPSK, two quadrature carriers are modulated by two modulating
signals, i.e.

Uy (t) = my(t) cos(wit) + my(t) sin(wit), (2)

where m; and m, can both have two equal and opposite values +c
and —c. It is obvious that in both cases the input signal is a real
quantity. In the following these two types of Costas loop will be
referred to as “conventional Costas loops”.

Much later, Costas loops have been developed that operate not
on real signals, but on pre-envelope signals (Tretter, 2007). These
types of Costas loops will be referred to as “modified Costas loop”
in the following sections. The block diagram shown in Fig. 2 ex-
plains how the pre-envelope signal is obtained. The real input sig-
nal uq(t) is applied to the input of a Hilbert transformer [2], [5].
The output of the Hilbert transformer i (t) is considered as the
imaginary part of the pre-envelope signal, i.e the pre-envelope sig-
nal is obtained from

uy () = up (t) + jip ().

how good or bad the obtained approximations are, we will develop
Simulink models for different types of Costas loops and compare
the results of the simulation with those predicted by theory.

1.1. Classical mathematical models of the Costas loops

1.1.1. BPSK Costas loop

The operation of the Costas loop is considered first in the
locked state with zero phase difference (see Fig. 3), hence the fre-
quency of the carrier is identical with the frequency of the VCO.

By (1) the input signal uq(t) is the product of a transferred
binary data and the harmonic carrier sin(wt) with a high fre-
quency w. Since the Costas loop is considered to be locked, the
VCO orthogonal output signals are synchronized with the carrier
(i.e. there is no phase difference between these signals). The in-
put signal is multiplied (multiplier block (®)) by the correspond-
ing VCO signal on the upper branch and by the VCO signal, shifted
by 90°, on the lower branch. Therefore on the multipliers’ outputs
one has 1 (t) = mq(t) —mq(t) cosRwt), Q1 (t) = my(t) sin(Qwt).

Consider the low-pass filters (LPF) operation.

Assumption 1. Signals components, whose frequency is about
twice the carrier frequency, do not affect the synchronization of
the loop (since they are suppressed by the low-pass filters).

Assumption 2. Initial states of the low-pass filters do not affect
the synchronization of the loop (since for the properly designed
filters, the impact of filter’s initial state on its output decays expo-
nentially with time).

Assumption 3. The data signal m;(t) does not affect the synchro-
nization of the loop.

Assumptions 1 ,2, and 3 together lead to the concept of so-
called ideal low-pass filter. Ideal low-pass filter completely elim-
inates all frequencies above the cutoff frequency (Assumption 1)
and passes all frequencies below cut-off frequency unchanged
(Assumptions 2,3). In the classic engineering theory of the Costas
loop it is assumed that the low-pass filters LPF are ideal low-pass
filters.2

Since in Fig. 3 the loop is in lock, i.e. the transient process is
over and the synchronization is achieved, by Assumptions 1,2, and
3 for the outputs I,(t) and Q,(t) of the low-pass filters LPF one
has L (t) = mq(t), Qy(t) =0. Thus, the upper branch works as a
demodulator and the lower branch works as a phase-locked loop.

Since after a transient process there is no phase difference, a
control signal at the input of VCO, which is used for VCO frequency
adjustment to the frequency of input carrier signal, has to be zero:
ugy(t) = 0. In the general case when the carrier frequency @ and a
free-running frequency wp,, of the VCO are different, after a tran-
sient processes the control signal at the input of VCO has to be
nonzero constant: u,(t) = const, and a constant phase difference
6 may remain.

Consider the Costas loop before synchronization (see Fig. 4).
Here the phase difference with 6,(t) = 60;(t) — 6,(t) varies over
time, because the loop has not yet acquired lock (frequencies or
phases of the carrier and VCO are different).

2 Note that Assmptions 1-3 may not be valid and require rigorous justification
(Best et al., 2015; Kuznetsov et al., 2015a)
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Y \XJ | LPF [ 1
= 2sin(wt) u(t)=0 — u (=0
datam() |_ [ L Seosten) VCO El
x Mo

carrier \N\N\N\NN/

A\
X Q,(t) =m,()sin(0)+m, (t)sin(2et) &l Q=0

Fig. 3. Costas loop is locked (the case of equal phases of input carrier and free running VCO output): there is no phase difference.

u,(t) = m(t)sin(0 (1))

1,(1) = m, (1)(cos(0,(1))-cos(®, (1)+6,(1))

L(®)

u,(t)~0.5sin(20 (1))

X
v Y
_ 2sin(0,(t)) u(t)
) VCO
ata m(t) |—|:|— 2c0s(0,(1)

carrier \ A\ N\ NN\ )(\

Q,(®)

Q,(t) =m, (t)(sin(0 (1)) +sin(0 (1)+0,(t)))

Fig. 4. Costas loop is out of lock: there is time-varying phase difference.

In this case, using Assumption 1, the signals I1(t) and Q(t) can
be approximated as

() ~ my(t) cos(Be(t)),  Qq(t) ~ my(t) sin(fe(t)). (3)

Approximations (3) depend on the phase difference of signals,
i.e. two multiplier blocks (®) on the upper and lower branches
operate as phase detectors. The obtained expressions (3) with
mq(t) = 1 coincide with well-known (see, e.g., Best, 2007; Viterbi,
1966) phase detector characteristic of the classic PLL with multi-
plier/mixer phase-detector for sinusoidal signals.

By Assumptions 2 and 3 the low-pass filters outputs can be ap-
proximated as

L(t) =~ my(t) cos(Be(t)), Qa(t) ~my(t)sin(fe(t)). (4)

Since m% (t) =1, the input of the loop filter (LF) is as follows

2
ug(t) = L(H)Q(t) ~ p(fe(t)) = mlét)

Such an approximation is called a phase detector characteristic of
the Costas loop.

Since an ideal low-pass filter is hardly realized, its use in the
mathematical analysis requires additional justification. Thus, the
impact of the low-pass filters on the lock acquisition process must
be studied rigorously.

The relation between the input u,4(t) and the output uft) of the
loop filter has the form

sin(26.(t)). (5)

X =Ax+buy(t), usp(t) = c*x+ huy(t), (6)

where A is a constant matrix, the vector x(t) is the loop filter state,
b, c are constant vectors, h is a number. The filter transfer function
has the form:

H(s) = —c*(A—sI)"'b+h. (7)

The control signal ugt) is used to adjust the VCO frequency to the
frequency of the input carrier signal

éZ(t):wZ(t):wfree+K0uf(t)~ (8)

Here wy, is the free-running frequency of the VCO and Kj is the
VCO gain. The solution of (6) with initial data x(0) (the loop filter
output for the initial state x(0)) is as follows

ugp(t, x(0)) = ao(t, x(0)) + g y (t = D)e(r)dT + hug (), (9)

Fig. 5. Phase model of Costas loop.

Fig. 6. Linear model of Costas loop.

where y(t —1) =c*eACTb+h is the impulse response of the
loop filter and g (t, x(0)) = c*eAx(0) is the zero input response of
the loop filter, i.e. when the input of the loop filter is zero.

Assumption 4. (Analog of Assumption 2). Zero input response of
loop filter ag(t, x(0)) does not affect the synchronization of the
loop (one of the reasons is that og(t, x(0)) is an exponentially
damped function for a stable matrix A).

Consider a constant frequency of the input carrier:
01 (t) = 1 (t) = w1, (10)
and introduce notation
Awy = W1 — Ofree. (11)

Then Assumption 4 allows one to obtain the classic mathematical
model of PLL-based circuit in signal’s phase space (see Fig. 5):

b= don Ko [ (= Dp@(0))dT — Ko hp@e().  (12)

For the locked state a linear PLL model can be derived, which is
shown in Fig. 6. This model is useful for approximation of hold-in
range.

In the locked state both reference and VCO frequencies are ap-
proximately the same, hence the input of the lowpass filter is a

http://dx.doi.org/10.1016/j.arcontrol.2016.08.003
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2sin(0,(t)) ut)
VCO

2c0s(0,(t)
x\
Q,(t) =m,(t)sin(6 (1))

Fig. 7. Model of Costas loop with delays.

very low frequency signal. Therefore the lowpass filter can be ig-
nored when setting up the linear model of the Costas loop. The
linear model is made up of three blocks, the phase detector PD,
the loop filter LF and the VCO. In digital Costas loops the VCO is
replaced by a DCO (digital controlled oscillator). This will be dis-
cussed in later sections. For these building blocks the transfer func-
tions are now defined as follows.

Phase detector (PD). In the locked state, the phase error 6, is
very small so by (5) we can write

ug(t) ~ m% (£)0e = K40, (13)
with Ky called phase detector gain.

Ug(s) _
BOc(s)

Note that the uppercase symbols are Laplace transforms of the
corresponding lower case signals.

Loop filter (LF). For the loop filter we choose a PI (proportional
+ integral) filter whose transfer function has the from

Hpp(s) =

K;. (14)

Uf(S) _ 1457,
Ug(s) st~
This filter type is the preferred one because it offers superior per-

formance compared with lead-lag or lag filters.
VCO. The transfer function of the VCO is given by

@2(5) . Koy
Uf(S) - ?

Hir(s) =

(15)

Hyco(s) =

(16)

where Kj is called VCO gain.

Consider another nonlinear model of Costas loop in Fig. 7 (delay
model).

Here we use Assumptions 1-3 (initial states of filters are omit-
ted, double-frequency terms are completely filtered by LPFs, and
my(t) doesn’t affect synchronization) and filters LPFs are replaced
by the corresponding phase-delay blocks ¢q(6e(t)) = @1 (Aw(t)).
Outputs of low-pass filters are

L(t) = cos(Be(t) + 1 (Be(1))),

. (17)
Qa(t) = sin(be (£) + @1 (e (1)),
where
¢1(w) = arg(Hypr (jw)). (18)
Then after multiplication of I,(t) and Q,(t) we have
g (6) = H(OQ(0) = 5 SIN20e(0) + 201 (Be(0))) (19)

and the output ug(t) of the loop filter (15) satisfies the following
equations

%= 2 5in(20e(0) + 201 (Be())).
. (20)

5m sin(20e(t) + 21 (Be(1))).

1
t) = —
ug(t) z_]x+

LPF
m,sinm,t I . I,
o—e—{ X } 14
J e
2sinm,t
Ug ) Uy
vco K.e 92 (x
! \J
2cosm,t LF
@ ej(D1
Q1 QZ

LPF

Fig. 8. Model of the Costas loop with delays in complex exponent form.

Equations of Costas loop in this case take the form:

X = % sin(20, + 2¢1 (fe)).

) 1 . ' (21)
6, = Awy — 1<0(7x + 2 §in(20, + 20, (ee))).
T1 21
For LPF transfer functions
1
Hipr (s) = m (22)

phase shift is equal to ¢, (Be) = —arctan(ée/a)3). Therefore (21) is
equal to the following system

1. .
%= 5 sin (26, — 2 arctan(6e/w3)).

. K() Ko'[z . 5
Oe = Awg — ;x ST sin (296 -2 arctan(@e/a)3)),

(23)

where

arctan(6e/ws) € (—%, %)

Eq. (23) is hard to analyze both numerically and analytically,
however this model is still useful. In the following discussion it is
used to approximate pull-in range and pull-in time. For this pur-
pose we need to simplify delay model shown in Fig. 7. Consider
block diagram in Fig. 8.

The lowpass filters (LPF) used in both I an Q branches are as-
sumed to be first order filters having transfer function (15). As will
be demonstrated later the corner frequency of these filters must be
chosen such that the data signal I is recovered with sufficient ac-
curacy, i.e. the corner frequency w3 must be larger than the sym-
bol rate. Typically it is chosen twice the symbol rate, i.e. f3 = 2fs
with fg = symbol rate and f3 = w3/2m. The output signal I; of the
multiplier in the I branch consists of two terms, one having the
sum frequency w; + w, and one having the difference frequency
w1 — w,. Because the sum frequency term will be suppressed by
the lowpass filter, only the difference term is considered. The same
holds true for signal Qq in the Q branch. It will show up that the
range of difference frequencies is markedly below the corner fre-
quency w3 of the lowpass filter. Hence the filter gain will be nearly
1 for the frequencies of interest. As will also be shown later the
phase at frequency Aw = w; — w, cannot be neglected. The low-
pass filter is therefore represented as a delay block whose trans-
fer function has the value exp (j¢1), where ¢ is the phase at fre-
quency Aw. The delayed signals I, and Q, are now multiplied by
the product block at the right in the block diagram. Consequently
the output signal uy(t) of this block will have a frequency of 2Aw.
This signal is now applied to the input of the loop filter LF. Its
transfer function has been defined in (15). The corner frequency
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. LPF m (t)cos(wr)+m,(f)sin(w?)
m,sina, t /2 Y )
o—— X X j2¢, I(z L(n)
= Oal N T e
A

Us

VCO F.el02

O,

Fig. 9. Modified model of Costas loop, reversed order of blocks.

m,sin ot I,

s ¢ D
X X

Uq . Ug
Kyed@orte)

2sinw,t
2cos m,t VCO

A® Uy us

PD LF

VCO

Fig. 11. Nonlinear model of Costas loop for computation of pull-in time.

of this filter is wc = 1/71,. Because the phase of the loop filter can-
not be neglected, it is represented as a delay block characterized
by

Hir (2Aw) = Ky exp(jg2), (24)

where ¢-, is the phase of the loop filter at frequency 2Aw.

The analysis of dynamic behavior becomes easier when the or-
der of some blocks in Fig. 8 is reversed (see Fig. 9), i.e. when we
put the multiplying block before the lowpass filter.

Because the frequency of signal uy(t) in Fig. 8 is twice the fre-
quency of the signals I, and Q,, the phase shift created by the low-
pass filter at frequency 2Aw is now twice the phase shift at fre-
quency Aw. The LPF is therefore represented here by a delay block
having transfer function exp (2jg1).

We can simplify the block diagram even more by concatenating
the lowpass filter and loop filter blocks. The resulting block delays
the phase by @ror = 2¢01 + 5. This is shown in Fig. 10. The output
signal ug(t) of this delay block now modulates the frequency gen-
erated by the VCO.

To compute pull-in time we need to consider Costas loop model
in Fig. 5 with averaged signals of phase detector output u,; and
filter output uy (see Fig. 11).

The model is built from three blocks. The first of these is la-
beled “phase-frequency detector”. We have seen that in the locked
state the output of the phase detector depends on the phase er-
ror f.. In the unlocked state, however, the average phase detector
output signal u; is a function of frequency difference as will be
shown in next section (Eq. (68)), hence it is justified to call that
block “phase-frequency detector”. As we will recognize the pull-in
process is a slow one, i.e. its frequency spectrum contains low fre-
quencies only that are below the corner frequency wc of the loop
filter, cf. Eq. (15). The loop filter can therefore be modeled as a

m,(f)

my(1)

O e | 223

2cos(wf)

2sin(w?)

Fig. 12. QPSK Costas loop after transient process.

simple integrator with transfer function

1
Hip(s) ~ sy (25)
Therefore
1 t
0y = - [ uaor. (26)
1
0

The frequency w, of the VCO output signal is defined as
Wy = Wfree + KOLva (27)

where wj, is the free running frequency and Ky is the VCO gain.
Now we define the instantaneous frequency difference Aw as

Aw = w1 — ws. (28)
Substituting (11) and (28) into (27) finally yields
Aw = Awy — Koly. (29)

1.1.2. QPSK Costas loop

Consider QPSK Costas loop operation (see Fig. 12) for the sinu-
soidal carrier and VCO in lock state for the same initial frequencies
w1 =Wy = .

By (2), the input QPSK signal has the form

my (t) cos(wt) + my(t) sin(wt),

where mj ,(t) = +1 is the transmitted data, sin(wt) and cos(wt)
are sinusoidal carriers, 67 (t) = wt is phase of input signal. The out-
puts of the VCO are 2cos (wt) and 2sin (wt).

After multiplication of VCO signals and the input signal by mul-
tiplier blocks (®) on the upper I branch one has

L (t) = 2 cos(wt) (m1 (t) cos(wt) +my(t) sin(a)t)).

On the lower branch the output signal of VCO is multiplied by the
input signal:

Qi (t) =2 sin(wt)<m1 (t) cos(et) + my (t) sin(cot)).

Here from an engineering point of view, the high-frequency
terms cos (2wt) and sin(2wt) are removed by ideal low-pass fil-
ters LPFs (see Assumption 1 in previews section). In this case, the
signals I,(t) and Q,(t) on the upper and lower branches can be ap-
proximated as

L(t) = my(t) cos(0) + my(t) sin(0) = my(t),
Qa2 (t) ~ —my(t) sin(0) + my(t) cos(0) = my(t).

Apart from considered case there are two possible cases: 1) the
frequencies are different or 2) the frequencies are the same but
there is a constant phase difference. Consider Costas loop before

(30)
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Fig. 13. QPSK Costas loop is out of lock, there is nonzero phase difference.

o0) r

05

Fig. 14. ¢(6.) .

synchronization (see Fig. 13) in the case when the phase of the
input carrier 6(t) and the phase of VCO 0,(t) are different:

Be(t) = 01 (t) — O, (t) # const. (31)

In this case, using Assumption 1, the signals I(t) and Qy(t) on
the upper and lower branches can be approximated as

L(t) ~ my(t) cos(Be(t)) + my(t) sin(Ge(t)),
Qa(t) & —my () sin(Be (t)) + my(t) cos(Be ().

After the filtration, both signals, I;(t) and Qq(t), pass through
the limiters (sgn blocks). Then the outputs of the limiters
sign (Iy(t)) and sign (Qz(t)) are multiplied with Q,(t) and I(t), re-
spectively. By Assumption 2 and corresponding formula (32), the
difference of these signals

ug(6) = —Qa () sign (1, (1)) + L (©) sign (Q(0) (33)

can be approximated as

(32)

2msin(6,(t)), —4 < 0:() < %,
—2mcos(Be(t)), % <6e(t) <3,
—2msin(@e(t)), 3F <6.(t) < 2F,
2mcos (6. (t)), T < Be(t) < —Z,

(34)

Uug(t) ~ @(0e(t)) =

with m = |mq| = |m;|. Here ¢(60.(t)) is a piecewise-smooth func-
tion® shown in Fig. 14.

The resulting signal ¢(t), after the filtration by the loop filter,
forms the control signal ugt) for the VCO.

To derive mathematical model in the signal space describing
physical model of QPSK Costas loop one takes into account (6) and

3 It should be noted, that function ¢(6.(t)) depends on my , at the points 6, =
4T 437
5+

m (H)cos(0 (£))+m,(1)sin(6 (7))

L(z L(1)
R () 0,(Ao(t) 2—»

Q,()

,(Aa(®) %
0,(1)
2sin(0,(1))

Fig. 15. Model of QPSK Costas loop with delays.

(8):

X1 = A1xq + 2by cos(wt — Ge) (M (t) cos(wyt) + my (t) sin(wst)),

Xy = Agxy + 2by sin(wit — Ge) (M (t) cos(wit) + my (t) sin(wst)),

X = Ax + b(sign(c5x,) (€1x1) — sign(cix1) (c5x2)),

0o = Awp — Ko(c*x) — Koh('sign(csx;) (cix1) — sign(cix) (c3x2)).
(35)

However Eq. (35) are nonlinear and nonautonomous with discon-
tinuous right-hand side, which are extremely hard to investigate.
Therefore, the study of (35) is outside of the scope of this work.

To derive linear model, we consider (34) and the correspond-
ing Fig. 14. The curve looks like a “chopped” sine wave. The Costas
loop can get locked at four different values of 6. , i.e. with 6, =
0,7 /2, m, or 37 /2. To simplify the following analysis, we can de-
fine the phase error to be zero wherever the loop gets locked.
Moreover, in the locked state the phase error is small, so we can
write

Ug ~ 2m99 = Kdeg, (36)

i.e. the output signal of the sum block at the right of Fig. 13 is
considered to be the phase detector output signal u,. The phase
detector gain is then as follows

K;=2m. (37)

It is easily seen that the linear model for the locked state is iden-
tical with that of the Costas loop for BPSK, cf. Fig. 6. Because only
small frequency differences are considered here, the lowpass filters
can be discarded. The transfer functions of the loop filter and the
VCO are assumed to be the same as in the case of the Costas loop
for BPSK, hence these are given by Eqs. (15) and (16).

Similar to BPSK Costas loop, it is reasonable to consider delay
model of QPSK Costas loop (see Fig. 15).

Filters LPFs are replaced by the corresponding phase-delay
blocks ¢1(Aw) = arg(Hypr(jw)). The outputs of low-pass filters
take the form

I (t) ~ cos(Be (t) + 1 (Aw(t))) + sin(e (t) + 1 (Aw(t))).
Q2 (t) ~ —sin(Be (t) + @1 (Aw(t)) + cos(0e(t) + @1 (Aw(t))).
(38)

Then u,4(t) can be approximated as

ug(t) ~ @ 0e(t) + 1 (Aw(t))) =
2sin(0e (1) + 1 (Aw(t))), -7 <0e() + 1 (Aw(t)) < 7.
—2c0s(e(t) + 1 (AD(1))), & <e(t) + g1 (Aw(t)) < 3L,
=25in(0e(t) + 1 (Aw(t))), 3 < 0e(t) + ¢1(Aw(t)) < 2L,
2¢0s(0e(t) + pr(Aw(1)), 3 < 6e(t) + 91 (Aw(t)) < -7
(39)
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Fig. 16. Nonlinear model of the Costas loop for QPSK with delays in complex exponent form.
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Fig. 17. Block diagram of modified Costas loop for BPSK.

Consider the loop filter transfer function (15). Equations of delay
model of QPSK Costas loop in this case are the following

X =@ (0e(t) + 01(6e)),

) 1 T - (40)
b = Awn — Ko X+ Zp(6u(0) + 91 (6))-
T1 T1

The nonlinear model of the Costas loop for QPSK is developed
on the basis of the nonlinear model which derived for the Costas
loop for BPSK, cf. Fig. 10. Here again the order of lowpass filters
and the blocks shown at the right of Fig. 12 is reversed. This results
in the model shown in Fig. 16a.

In the block labeled “B” the function blocks at the right of
Fig. 16a have been integrated, cf. Fig. 16b. The output signal uy; of
block B is the “chopped” sine wave as shown in Fig. 3.1. Its fun-
damental frequency is 4 times the frequency difference w; — w,.
The lowpass filters and the loop filter have been concatenated in
the block labeled “LPF + LF” at the right of Fig. 16a. Referring to
Fig. 12 signals I; and Q; are passed through lowpass filters. As in
the case of the Costas loop for BPSK we assume here again that the
difference frequency Aw is well below the corner frequency ws of
the lowpass filters, hence the gain of the lowpass filters is nearly
1 at w = Aw. Because the phase shift must not be neglected, we
represent the lowpass filter by a delay, i.e. its frequency response
at w = Aw is as follows

Hipr (Aw) = exp(jg1),

where ¢; is the phase of the lowpass filter. Due to the arith-
metic operations in block “B” (cf. Fig. 16) the frequency of the
ug4 is quadrupled, which implies that the phase shift at frequency
4Aw becomes 4¢;. The frequency response of the loop filter at
w =4Aw is given by

Hir (4Aw) = exp(je2).

where ¢, is the phase of the loop filter at frequency w = 4Aw.
Hence the cascade of lowpass filter and loop filter can be modeled
by the transfer function exp(j[4¢;1 + ¢2]) as shown in Fig. 16a.

1.2. Mathematical models of modified Costas loops

1.2.1. Modified Costas loop for BPSK
The block diagram of the modified Costas loop for BPSK is
shown in Fig. 17. The input signal is given by

up (t) = my(t) cos(wit + 61),

I o,<0

I e>0

IVe<o

Fig. 18. Representation of phasor un(t) in the complex plane.

where 6 is initial phase. The input signal is first converted into a
pre-envelope signal, as explained in Section 1. The output signal of
the Hilbert transformer is as follows

lj] (t) = H[m1 (t) COS(CO]I' + 91)] =1y (l’) sin(a)1t + 9])

Note that because the largest frequency of the spectrum of
the data signal mq(t) is much lower than the carrier frequency
w1, the Hilbert transform of the product H[mq(t) cos(wt + 67)]
equals mq (t)H[cos(wqt +6;1)] [5]. The pre-envelope signal is ob-
tained now from

uy (6) = ug (6) + ju(t) = my (t) exp(jlort + 61]). (41)

The exponential in Eq. (41) is referred to as a “complex car-
rier”. In Fig. 17 complex signals are shown as double lines. The
solid line represents the real part, the dotted line represents the
imaginary part. To demodulate the BPSK signal, the pre-envelope
signal is now multiplied with the output signal of the VCO, which
is here a complex carrier as well. The complex output signal of the
VCO is defined as

Uy (t) = exp(—jlwat + 62]). (42)

In the locked state of the Costas loop both frequencies w; and
w, are equal, and we also have 6; ~ 6,. Hence the output signal
of the multiplier M; is as follows

um(t) = my (t) exp(jl (w1 — w2)t + 61 — 62]) ~ my (1), (43)

i.e. the output of the multiplier is the demodulated data signal
my(t). To derive the linear model of this Costas loop, it is assumed
that wy = w, and 6 # 6,. The output signal of multiplier M; then
becomes

um(t) = my (t) exp(jl6r — 62]).

This is a phasor having magnitude |m;(t)| and phase 6; — 6,, as
shown in Fig. 18. Two quantities are determined from the phase
of phasor up(t), i.e. the demodulated data signal I and the phase
error 6. The data signal is defined as

I = sgn(Re[un (t)]),

(44)

(45)

http://dx.doi.org/10.1016/j.arcontrol.2016.08.003
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Fig. 19. Block diagram of modified Costas loop for QPSK.

i.e. when the phasor lies in quadrants I or IV, the data signal is
considered to be +1, and when the phasor is in quadrants II or III,
the data signal is considered to be -1. This means that I can be
either a phasor with phase 0 or a phasor with phase .

These two phasors are plotted as thick lines in Fig. 18.

The phase error 6, is now given by the difference of the phases
of phasor up(t) and phasor I, as shown in Fig. 18, i.e. 6, is deter-
mined from

0. = phase(um (t)I) (46)

The product un,(t)I is computed by multiplier M, in Fig. 18. The
block labeled “Complex — mag, phase” is used to convert the com-
plex signal delivered by M, into magnitude and phase. The mag-
nitude is not used in this case, but only the phase. It follows from
Eq. (46) that the phase output of this block is the phase error 6,
hence the blocks M;, M,, sgn, and Complex — mag, phase repre-
sent a phase detector with gain K; = 1. The phase output of block
Complex — mag, phase is therefore labeled uy. Fig. 6 shows the
complete linear model of the modified Costas loop for BPSK. The
transfer functions of the loop filter and VCO have been defined in
Egs. (15) and (16). Note that with this type of Costas loop there is
no additional lowpass filter, because the multiplication of the two
complex carriers (cf. Eq. (43)) does not create the unwanted double
frequency component as found with the conventional Costas loops.

1.2.2. Modified Costas loop for QPSK

Fig. 19 shows the block diagram of the modified Costas loop for
QPSK.

The reference signal u;(t) is defined by

up(t) = my(t) cos(wit +601) —my(t) sin(wqt + 6y), (47)
The Hilbert transformed signal is then given by

11 (t) = my (t) sin(wq + 671) + my(t) cos(wy + 61) (48)
and the pre-envelope signal then becomes

uf (t) =my(t) cos(wit + 6;) — my(t) sin(wt + 61)+

+ jmy(t) sin(wit + 601) + jmy(t) cos(wqt + 64). (49)
This can be rewritten as
uy (6) = (my(t) + jma(t))(cos[wit 4 61] + jsin[wnt + 6] =
= (my(t) + jmy(t)) exp(jlwit + 01]).
(50)

Herein the term (m;(t) + jmy(t)) is complex envelope, and the
term exp(jw t + 0;) is complex carrier. The VCO generates another
complex carrier given by (42). The multiplier M; creates signal
um(t) that is given by

Um (t) = (my(t) + jmy (1)) exp(jl(wr — @)t + (61 — 62)]).  (51)

Fig. 20. Representation of phasor uy(t) in the complex plane.

When the loop has acquired lock, w; = w,, and 01 ~ 65, so we
have

Um(t) ~ (my (t) + jma(t)). (52)

hence the output of M; is the complex envelope. In the locked
state, the complex envelope can take four positions, as shown in
Fig. 20. When there is a phase error, un(t) deviates from the ideal
position, as demonstrated in the figure. The phase error 0. then is
the angle between un,(t) and the closest of the four possible posi-
tions. When up(t) is in quadrant I, e.g., phasor 1+ j is considered
as the estimate of the complex envelope. When up,(t) is in quad-
rant II, the estimate of the complex envelope is —1 + j etc. The es-
timates I and Q are taken from the output of sgn blocks, cf. Fig. 19.
The phase error is obtained from

0. = phase[um (t)(I - jQ)] (53)

where [ — jQ is the conjugate of the complex envelope. Multiplier
M, delivers the product un,(t)(I — jQ), and the block “Complex —
mag, phase” is used to compute the phase of this complex quan-
tity. Note that the magnitude is not required. The blocks My, sgn,
Inverter, M, and Complex — mag, phase form a phase detector
having gain K; = 1. The phase output of block Complex — mag,
phase is therefore labeled ug.

Fig. 6 shows the completed linear model of the modified Costas
loop for QPSK, which is the same as for BPSK. The transfer func-
tions of the loop filter and VCO have been defined in Egs. (15) and
(16).

1.3. Definitions of hold-in range, lock-in range, pull-in range.

In the classic books on phase-locked loops (Gardner, 1966;
Shakhgil'dyan & Lyakhovkin, 1966; Viterbi, 1966) such concepts
as hold-in, pull-in, lock-in, and other frequency ranges for which
PLL can achieve lock were introduced. Usually in engineering lit-
erature nonrigorous definitions are given for these concepts. In
the following we introduce definitions, based on rigorous dis-
cussion in Kuznetsov, Leonov, Yuldashev, and Yuldashev (2015b);
Leonov, Kuznetsov, Yuldashev, and Yuldashev (2015a).

Definition of hold-in range. The largest interval [0, Aw}) of
frequency deviations |Awy|, such that the loop re-achieves locked
state after small perturbations of the filters’ state, the phases and
frequencies of VCO, and the input signals, is called a hold-in range
(in general the stable equilibria can be considered as a multiple-
valued function, in which case the existence of its continuous sin-
glevalue branch is required). This effect is also called steady-state
stability. In addition, for a frequency deviation within the hold-
in range, the loop in a locked state tracks small changes in in-
put frequency, i.e. achieves a new locked state (tracking process)
(Kuznetsov et al., 2015b; Leonov et al., 2015a).

Assume that the loop power supply is initially switched off and
then at t = 0 the power is switched on, and assume that the initial

http://dx.doi.org/10.1016/j.arcontrol.2016.08.003
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Fig. 2.1. Bode plot of magnitude of open loop gain Go,(w).

frequency difference is sufficiently large. The loop may not lock
within one beat note, but the VCO frequency will be slowly tuned
toward the reference frequency (acquisition process). This effect
is also called a transient stability. The pull-in range is used to
name such frequency deviations that make the acquisition process
possible.

Definition of pull-in range. The largest interval [0, Awp) of fre-
quency deviations |Awyg|, such that the loop achieves locked state
for any initial states (filters and initial phase of VCO), is called
a pull-in range (Kuznetsov et al., 2015b; Leonov et al., 2015a).
The largest frequency deviation Awp is called a pull-in frequency
(Kuznetsov et al., 2015b; Leonov et al., 2015a).

Definition of lock-in range. Lock-in range is a largest interval
of frequency deviations |Awg| € [0, Awy) inside pull-in range, such
that after an abrupt change of w; within a lock-in range the PLL
reacquires lock without cycle slipping, if it is not interrupted. Here
Awy is called a lock-in frequency (Kuznetsov et al., 2015b; Leonov
et al., 2015a).4

Finally, our definitions give Q2jo¢icin € Lpuit-in € Lhold-in»

[0, Awy) C [0, Awp) C [0, Awy),

which is in agreement with the classical consideration (see,
e.g. Best, 1984, p.34,Hsieh and Hung, 1996, p.612,Best, 2007,
p.61,Egan, 2007, p.138,Kroupa, 2012, p.258).

2. BPSK Costas loop
2.1. Lock-in range Aw; and lock time T,

Recall linear model of Costas loop in phase space (see Fig. 6).
By (13)-(15) we can derive the open loop transfer function of the
Costas loop, which is defined by the ratio ®,(s)/®4(s):

Ko 1+5s1,

Go(s) = Kd? e

(54)

Fig. 2.1 shows a Bode plot of the magnitude of Ggy;. The plot
is characterized by the corner frequency w¢, which is defined by
wc =1/15, and gain parameters K; and Ky. At lower frequencies

4 The concept of the lock-in range was suggested by F. Gardner in 1966
(Gardner, 1966, p.40) and it is widely used nowadays (see, e.g. (Best, 1984,
p.34-35),(Wolaver, 1991, p.161),(Hsieh and Hung, 1996, p.612),(Irwin, 1997,
p.532),(Craninckx and Steyaert, 1998, p.25), (Kihara, Ono, and Eskelinen, 2002,
p.49),(Abramovitch, 2002, p.4),(De Muer and Steyaert, 2003, p.24),Dyer, 2004,
p.749),(Shu and Sanchez-Sinencio, 2005, p.56),(Goldman, 2007, p.112),(Best, 2007,
p.61),(Egan, 2007, p.138),(Baker, 2011, p.576),(Kroupa, 2012, p.258)). However later
Gardner noticed that the lock-in range definition lacks rigor and requires clarifica-
tion (Gardner, 1979, p.70), (Gardner, 2005, p.187-188). Recently a rigorous definition
was suggested in Kuznetsov et al. (2015b); Leonov et al. (2015a).

the magnitude rolls off with a slope of - 40 dB/decade. At fre-
quency wc the zero of the loop filter causes the magnitude to
change its slope to - 20 dB/decade. To get a stable system, the
magnitude curve should cut the 0 dB line with a slope that is
markedly less than - 40 dB/decade. Setting the parameters such
that the gain is just 0 dB at frequency wc provides a phase mar-
gin of 45 degrees, which assures stability [2]. From the open loop
transfer function we now can calculate the closed loop transfer
function defined by

O (s)
Ger(s) = SHOR (55)
After some mathematical manipulations we get
KoKy 152
Gau(s) = gt (56)

2 KoKyta | KoKy *
S“4+S T + o

It is natural to represent this transfer function in normalized form,
i.e.
2s¢ wp + w?

Ges(§) = ——— " — 57
cs(s) 71 250an 1 @ (57)
with the substitutions
K()Kd wnTy
= [—< = , 58
Wn o ¢ 2 (58)

where w;, is called natural frequency and ¢ is called damping fac-
tor. The linear model enables us to derive simple approximations
for lock-in range Aw; and lock time T;.

For the following analysis we assume that the loop is initially
out of lock. The frequency of the input signal (Fig. 4) is wq, and the
frequency of the VCO is w,. The multiplier in the I branch there-
fore generates an output signal consisting of a sum frequency term
w1 +w, and a difference frequency term w; — ;. The sum fre-
quency term is removed by the lowpass filter, and the frequency
of the difference term is assumed to be much below the corner
frequency w3 of the lowpass filter, hence the action of this filter
can be neglected for this case. Under this condition the phase de-
tector output signal ug4(t) will have the form (cf. Egs. (19) and (13))

uy(t) = Ki‘j sin(2Awt) (59)

with Aw = w1 — w,. uy(t) is plotted in Fig. 2.2, left trace. This sig-
nal passes through the loop filter. In most cases the corner fre-
quency wc = 1/75 is much lower than the lock-in range, hence we
can approximate its transfer function by

T
HM@%§=M. (60)

Let us define the gain of this filter at higher frequencies by
constant Ky. Now the output signal of the loop filter is a sine
wave having amplitude K; Ky/2 as shown by the middle trace in
Fig. 2.2. Consequently the frequency of the VCO will be modulated
as shown in the right trace. The modulation amplitude is given by
K4KoKy/2. In this figure the reference frequency and the initial fre-
quency wy,, of the VCO are plotted as horizontal lines. When @,
and @y, are such that the top of the sine wave just touches the
w1 line, the loop acquires lock suddenly, i.e. the lock-in range Aw;
is nothing more than the modulation amplitude K; Ky Ky/2. Mak-
ing use of the substitutions (58) we finally get

Awp = {wn (61)
Now the lock process is a damped oscillation whose frequency
is the natural frequency. Because the loop is assumed to lock

within at most one cycle of that frequency, the lock time can be
approximated by the period of the natural frequency, i.e. we have

T~ — 62
i~ (62)
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Fig. 2.2. Lock-in range of Costas loop.

2.2. Pull-in range Awp and pull-in time Tp

We have seen that all signals found in this block diagram are
sine functions, i.e. all of them seem to have zero average, hence do
not show any dc component. This would lead to the (erroneous)
conclusion that a pull-in process would not be possible. In reality
it will be recognized that some of the signals become asymmet-
rical, i.e. the duration of the positive half wave is different from
the duration of the negative one. This creates a nonzero dc com-
ponent, and under suitable conditions acquisition can be obtained.
We are therefore going to analyze the characteristics of the signals
in Fig. 10.

All considered signals are plotted in Fig. 2.3. For signals I; and
Q; we obtain

L (t) =mq(t) cos(Awt)

Q1 (t) = my(t) sin(Awt)

The sum frequency terms are discarded because they are removed
by the lowpass filter. The signal uy(t) is the product of I; and Q,
and is given by (59). For small arguments 2 Awt this can be written
as

ug(t) = m?(t) Awt = m?(t)0e (t),
where 0, = Awt. Because the phase detector gain is defined by
uq(t) = Kqbe(t),

we have K; = m2.

Next the loop filter output signal ugt) is plotted. Its amplitude
is Ky mf/z, and its phase is delayed by @ror = 2¢1 + ¢,. This sig-
nal modulates the frequency of the VCO as shown in the bottom

2
trace of Fig. 2.3. The modulation amplitude is given by LULSLOY

order to get an estimate for the nonzero dc component of uy(t)
we will have to analyze the asymmetry of the signal waveforms.
It will be shown that u; (the average of uy(t)) is a function of fre-
quency difference Aw and phase @ The analysis becomes easier
when we first calculate u,; for some special values for ¢y, i.e. for
Ot = 0; —/2; and —m. Let us start with ¢ = 0, cf. Fig. 2.4.

In Fig. 2.4 the waveforms for uy(t) and w,(t) are shown. The
asymmetry of the signals is exaggerated in this plot. During the
positive half cycle (duration T) the average value of VCO output
frequency w,(t) is increased, which means that the average differ-
ence frequency Aw(t) is lowered. Consequently the duration of the
positive half wave becomes larger than half of a full cycle. During
the negative half cycle (duration T,), however, the average value
of VCO output frequency w,(t) is decreased, which means that the

=

Q

Ut 0,5mZKy,

~0,5m2K,|

N,

¢+0,

o
(\
pd

N
7

g
N
—~~
~=

Fig. 2.3. Signals of the model in Fig. 10.

during half cycle T, is denoted Aw,_. We get

2 KoKy

W ANEVAN 0,5m?K.K,
/

average difference frequency Aw(t) is increased. Consequently the Awg, = Aw — 2 (63)
duration of the negative half wave becomes less than half of a full

cycle. Next we are going to calculate the average frequency differ-

ence in both half cycles. The average frequency difference during 2 KoK;Ky

half cycle T; is denoted Aw,,, the average frequency difference Awy_ = Aw + 2 (64)
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Fig. 2.4. Signals of the model in Fig. 10 for @i = 0.

Fig. 2.5. Signals of the model in Fig. 10 for ¢ = —7.

For the durations T; and T, we obtain after some manipulations
the following

T KoKyKy
TlNZAw(1+ TA® ) (83)

L K()KdKH
L~ 2Aw (1  mAw ) (66)
Now the average value U, can be calculated from

KoK3 Ky

t) = . 67

1a(0) = 2542 (67)

The average signal u, is seen to be inversely proportional to the
frequency difference Aw. Because uy is positive, the instantaneous
frequency w»(t) is pulled in positive direction, i.e. versus w;, which
means that a pull-in process will take place.

Next we are going to analyze the dependence of u; on phase
@ror- Let us consider now the case for ¢ = —m, cf. Fig. 2.5.
We observe that in interval T; the instantaneous frequency w-(t)
is pulled in negative direction, hence the average difference fre-
quency Awy, becomes larger. Consequently interval T; becomes

Uy

A /,,
\/ t

(1)

/\
\VARV

Fig. 2.6. Signals of the model in Fig. 10 for ¢ = —7/2.

shorter. In interval T,, however, the reverse is true. Here the in-
stantaneous frequency T; is pulled in positive direction, hence the
average Aw,_ is reduced, and interval T, becomes longer. The av-
erage Uy is now equal and opposite to the value of uy for ¢ = 0.
Because it is negative under this condition, a pull-in process can-
not take place, because the frequency of the VCO is “pulled away”
in the wrong direction.

Last we consider the case @i = —7/2, cf. Fig. 2.6. In the first
half of interval T; the instantaneous frequency w,(t) is decreased,
but in the second half it is increased. Consequently the average
difference frequency Awgy, does not change its value during Tj.
The same happens in interval T,. Awy_ does not change either,
and uy remains 0.

It is easy to demonstrate that u; varies with cos(¢), hence
we have

KoK2Ky
T2Aw

ug(t) = Cos(@rot)s  Pror = 241 + 2. (68)

Eq. (68) tells us that the pull-in range is finite. The pull-in
range can be found as the frequency difference for which phase
@tot = —7r /2. An equation for the pull-in range will be derived in
Section 2.2. We also will have to find an equation for the pull-in
time. The model shown in Fig. 11 will enable us to obtain a differ-
ential equation for the average frequency difference Aw as a func-
tion of time.
Recall equations of filter output (26)

t
1
t) = — d
0y = o [ uatrydr
0
and frequency deviation (29)

Aw = Aa)o - Kouif

Eqgs. (68), (26), and (29) enable us to compute the three variables
g, Uy, and Aw as a function of time. This will be demonstrated in
Section 2.2.

The pull-in range can be computed using Eq. (68). Lock can only
be obtained when the total phase shift ¢y is not more negative

http://dx.doi.org/10.1016/j.arcontrol.2016.08.003
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than —s /2. This leads to an equation of the form Gor(o) [dB]

60
201 (Aw 2Awy) = —7/2. 69 B

@1( p) + @2 ( ) / (69) 40 40 dB/dec

According to Eqs. (15) and (22) ¢ and ¢, are given by J

204
¢1(w) = —arctg(w/ws), ]

0
10

¢2(w) = —1/2 + arctg(w/wc) 201
with @¢ = 1/7,. Hence the pull-in range Awp can be computed —40

from the transcendental equation
2arctg(Awp/ws3) = arctg(2Awp/awc). (70)

To solve this equation for Awp we use the addition formula for
the tangent function

2tga
tgRa) = ———
g(2a) e
5 Awp
and can replace 2arctg(Awp/ws3) by arctg A32 Eq. (70) can now
1-292
(1)3

Awp
— = arctg2 4! A“”’
Aa)
1- 2%
‘”3
When the arctg expressions on both sides of the equation are
equal, their arguments must also be identical, which leads to

2Awp
w3 _ Aa)P

1-4% o
@3

be rewritten as arctg

Hence we get for the pull-in range

@1
Zoa— (71)
wc

Aa)p = w3

Last, equation for the pull-in time Tp will be derived. Eqs. (68),
(26), and (29) describe the behavior of three building blocks in
Fig. 11 and enable us to compute three variables iy, uy, and Aw.
We only need to know the instantaneous Aw vs. time, hence we
eliminate i1y and uy from Eqgs. (26) and (29) and obtain the differ-
ential equation

dA 1 K2K2KH 7
dt wTy + Ao 712 0S(@rot) = 0. (72)

This differential equation is nonlinear, but the variables Aw and t
can be separated, which leads to an explicit solution. Putting all
terms containing Aw to the left side and performing an integra-
tion, we get

5 Aw; Aw
nr / / dt. (73)
K3K3Ky COS((Ptot)
Awgy

The limits of integration are Awgy and Aw; on the left side, be-
cause the pull-in process starts with an initial frequency offset
Aw = Awg and ends when Aw reaches the value Aw;, which is
the lock-in range. Following that instant a lock-in process will start.
The integration limits on the right side are 0 and Tp, respectively,
which means that the pull-in process has duration Tp, and after
that interval (fast) lock-in process starts.

Performing the integration on the left imposes some consider-
able problems, when we remember that cos (i) is given by

oS (@) = cos(—2 arct Ao T + arct 2Aa))
Prot) = g w3 5 g o
Finding an explicit solution for the integral seems difficult if not
impossible, but the cos term can be drastically simplified. When
we plot cos (@) Vs. Aw we observe that within the range Aw;

Fig. 2.7. Bode plot of open loop transfer function of Costas loop.

< Aw < Awy the term cos (@or) is an almost perfect straight line.
Hence we can replace cos(¢t) by

Aw
Aa)p '

coS(@ror) ~ 1 —

Inserting that substitution into Eq. (73) yields a rational function of
Aw on the left side, which is easily integrated. After some mathe-
matical procedures we obtain for the pull-in time Tp the following

A(,()pﬂz‘[l A(,()p — A(,()L
Ir=———|Awpln ——— — Aw Aa)]. 74
"7 2K2K2Ky [ P Awp — Awg o+ A0 (74)
Making use of Eqgs. (58) and (60) we have
) 5 KoKy WnTy
Ky = = = —, = .
H=7" @n T 2

Using these substitutions Eq. (74) can be rewritten as
A(J)p?Tz Aa)p — A(J)L

wpln ——— — Aw, +Aa)]. 75
20w} [ P Awp — Awg 0 L (75)

This equation is valid for initial frequency offsets in the range Aw;
< Awgy < Awp. For lower frequency offsets, a fast pull-in process
will occur, and Eq. (62) should be used.

TP:

2.3. Numerical example 1: Designing an analog Costas loop for BPSK

An analog Costas loop for BPSK shall be designed in this section.
It is assumed that a binary signal is modulated with a carrier. The
carrier frequency is set to 400 kHz, i.e. the Costas loop will op-
erate at a center frequency wg = 27 400,000 =2,512,000 rad s—!
The symbol rate is assumed to be fs = 100,000 symbols/s. Now
the parameters of the loop (such as time constants ¢ and t,, cor-
ner frequencies w¢ and w3, and gain parameters such as Ky, Kj;)
must be determined. (Note that these parameters have been de-
fined in Eqgs. (14)-(16) and (62)).

The modulation amplitude is set m; =1. According to
Eq. (13) the phase detector gain is then K; = 1. It has proven ad-
vantageous to determine the remaining parameters by using the
open loop transfer function Gg;(s) of the loop [2]. This is given by

K()Kd 1+ S/we 1

Cou(s) = sy 1+ sws

(76)

The magnitude |GoL(w)| (Bode diagram) is plotted in Fig. 2.7.
The magnitude curve crosses the 0 dB line at the so called tran-
sit frequency wr. It is common practice to choose wr to be about
(0.05wg ...0.1wp). Here we set wr = 0.1wy, i.e. wr = 251,200 rad
s~1. Furthermore we set corner frequency w¢ = wr. When doing
so, the slope of the asymptotic magnitude curve changes from -
40 dB/decade to - 20 dB/decade at w = w¢. Under this condi-
tion the phase of Gg;(w) is -135° at wc. Consequently the phase
margin of the loop becomes 45°, which provides sufficient stabil-
ity. According to Eq. (15) 7, becomes 4us. Next corner frequency
w3 will be determined. The corner frequency of the lowpass filter
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must be chosen such that the demodulated data signal (i. e. the
output of the lowpass filter in the I branch) is recovered with high
fidelity. To fulfill this requirement, w3 should be chosen as large
as possible. On the other hand, the lowpass filter should suppress
the double frequency component (here at about 800 kHz) suffi-
ciently, which means that w3 should be markedly less than 2wg. It
is a good compromise to set corner frequency to twice the symbol
rate, i.e. w3 =227 -100,000 = 1,256,000 rads~!. Last, remain-
ing parameters t; and Ky must be chosen. They have to be speci-
fied such that the open loop gain becomes 1 at frequency w = w.
According to Eq. (76) we can set

KoK,

GoL(we) =1~ .
OL( C) a)g_[]

(77)

Because 2 parameters are still undetermined, one of those can be
chosen arbitrarily, hence we set 7; =20 ws. Finally from (77) we
get Ky = 1,262,000 s~ 1.

The design of the Costas loop is completed now, and we can
compute the most important loop parameters. For the natural fre-
quency and damping factor we get from (58)

n=251,000 rads™' (f, = 40 kHz),
¢ =0.5.

From (61) the lock-in range becomes

Awp = 125,000 rads (A f, =20 kHz)

and from (62) the lock time becomes

T, = 25us.

Next we want to compute the pull-in range. Eq. (71) yields

Awp = 1,086,440 rad s'  (Afp = 173 kHz).

2.4. Numerical example 2: Designing a digital Costas loop for BPSK

To convert the analog loop into a digital one, we first must
define a suitable sampling frequency fsamp (or sampling interval
T =1/fsamp). To satisfy the Nyquist theorem, the sampling fre-
quency must be higher than twice the highest frequency that ex-
ists in the loop. In our case the highest frequency is found at the
output of the multipliers in the I and Q branches (cf. Fig. 4). The
sum frequency term is about twice the center frequency, hence
fsamp must be greater than 4 times the center frequency. A suitable
choice would be fsgmp =8 fo =3.2 MHz.

Next the transfer functions of the building block have to be con-
verted into discrete transfer functions, i.e. H(s) — H(z). For best
results it is preferable to use the bilinear z transform. Given an
analog transfer function H(s), it can be converted into a discrete
transfer function H(z) by replacing s by

21-z1
S=——.

T1+z1
Now the bilinear z transform has the property that the analog fre-
quency range from 0...oc0 is compressed to the digital frequency
range from O... fsgmp/2. To avoid undesired “shrinking” of the cor-
ner frequencies (w¢ and ws3), they must be “prewarped” accord-
ingly, i.e. we must set

(78)

2 ocT

wep= T (79)
2 wsT

w3p = Tt (80)

where ¢ , and ws,, are the prewarped corner frequencies. Now
we can apply the bilinear z transform to the transfer functions of

Table 2.1
Comparison of predicted and simulated results for the pull-in range.

Afo (Hz) Awg (rad s7')  Tp (theory) (us)  (Tp (simulation) (us)
50 kHz 314,000 33 30

70 kHz 439,000 78 85

100 kHz 628,000 204 200

the lowpass filters (cf. Eq. (22)) and of the loop filter (cf. Eq. (15))

and get
[1+ ]+ [1- e ]
Hipr (2) = - 1421 - ) (81)
[1+ ]+ [1- [
) C.p
Hir(2) = P TP . (82)
T — 7T

Because the VCO is a simple integrator, we can apply the discrete

z transform of an integrator, i.e.
KoT

1-z71

The digital Costas loop is ready now for implementation. A

Simulink model will be presented in Section 2.5.

Hyco(2) = (83)

2.5. Simulating the digital Costas loop for BPSK

A Simulink model of a Costas loop for BPSK is shown in Fig. 2.8.

A data signal is created by a random number generator at the
left in the block diagram. The other blocks are self explanatory.
The model is used now to check the validity of the approximations
found for pull-in range and pull-in time.

Eq. (71) predicts a pull-in range A fp = 173 kHz. The simulation
revealed a pull-in range of A fp = 133 kHz, which shows that the
theoretical result is a rather crude approximation. A series of other
simulation delivered results for the pull-in time ATp. The results
are listed in Table 2.1.

We note that the predicted and simulated parameters are in
good agreement.

2.6. Remarks on simulation of BPSK Costas loop

Note that a numerical simulation of various models of the same
circuit can lead to essentially different results if the corresponding
mathematical assumptions, used for the models construction, are
not satisfied. Also the errors caused by numerical integration (e.g.
in MATLAB and SPICE) can lead to unreliable results (Best et al.,
2015; Bianchi, Kuznetsov, Leonov, Yuldashev, & Yuldashev, 2016b;
Kuznetsov et al., 2015a; 2014b). The following examples demon-
strate some limitations of numerical approach on simple models.

Next the following parameters are used in simulation: low-
pass filters transfer functions Hy,(s) = ﬁ w3 = 1.2566 - 106
and the corresponding parameters in system (6) are A, = —ws,

b1 =1, ¢15,=ws; loop filter transfer function Hjf(s) = Tzrf:1,
7,=3.9789-106 1, =2-10">, and the corresponding parame-
ters in system (6) are A=0, b=1, c= Tll h= %; carrier fre-
quency wq =2 -7 -400000; VCO input gain L = 4.8 -10%; and car-
rier initial phase 6,(0) = 6;(0) = 0.

Example 1 (double frequency and averaging). In Fig. 2.9 it is
shown that Assumption 1 may not be valid: mathematical model
in signal’s phase space (see Fig. 1 - black color) and physical model
(see Fig. 4 and system (9) - red color) after transient processes
have different phases in the locked states.

http://dx.doi.org/10.1016/j.arcontrol.2016.08.003
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Fig. 2.8. Simulink model of the digital Costas loop for BPSK.
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Fig. 2.9. Low-pass filter outputs and phase difference for averaged model (black) and physical model (red) in Fig. 4. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)
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Fig. 2.10. Filter outputs: default integration parameters in Simulink ‘max step size’ set to ‘auto’ (black curve); Parameters configured manually ‘max step size’ set to ‘le-3’
(red curve). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Here VCO free-running frequency wyy, =2 -7 -400000 —
600000; initial states of filters are all zero: x(0) = x;(0) =x,(0) =
0.

Example 2 (numerical integration parameters). In Fig. 30 it is
shown that standard simulation of the loop may not be valid:
while the classic mathematical model in signal's phase space
(Fig. 1), simulated in Simulink with predefined integration pa-
rameters: ‘'max step size’ set to 'le-3’, is out of lock (black), the
same model simulated in Simulink with default integration param-
eters: 'max step size’ set to 'auto’, acquires lock (red). Here Matlab

chooses step from 5- 103 to 9 - 10~2; for the fixed step 2 - 10~2 the
model acquires lock, for the fixed step 1-10~2 the model doesn’t
acquire lock.

Here the initial loop filter state output is x(0) = 0.0125; VCO
free-running frequency g, = 10000 —89.45; VCO input gain L =
1000; initial phase shift 6,(0) = —3.4035.

Consider now the corresponding phase portrait (see Fig. 2.11).

Here the red trajectory tends to a stable equilibrium (red dot).
Lower and higher black trajectories are stable and unstable limit
cycles, respectively. The blue trajectory tends to a stable periodic
trajectory (lower black periodic curve) and in this case the model
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Fig. 2.11. Phase portrait: coexistence of stable and unstable periodic solutions. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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Fig. 3.1. Phase detector output signal u, as a function of phase error 6.

does not acquire lock. All trajectories between black trajectories
(see green trajectory) tend to the stable lower black trajectory.

If the gap between stable and unstable trajectories (black lines)
is smaller than the discretization step, the numerical procedure
may slip through the stable trajectory (blue trajectory may step
over the black and green lines and begins to be attracted to the
red dot). In other words, the simulation may show that the Costas
loop acquires lock although in reality it does not happen. The con-
sidered case corresponds to the coexisting attractors (one of which
is a hidden oscillation) and the bifurcation of birth of a semistable
trajectory (Leonov & Kuznetsov, 2013).

Note, that only trajectories (red) above the unstable limit cycle
is attracted to the equilibrium. Hence Aw = 89.45 does not belong
to the pull-in range.

Corresponding limitations, caused by hidden oscillations, ap-
pear in simulation of various phase-locked loop (PLL) based sys-
tems (Best et al, 2015; Bianchi et al., 2016a; Bianchi et al,
2016b; Kudryashova et al., 2014; Kuznetsov et al., 2014a; 2015a;
2014b; Kuznetsov, Leonov, Yuldashev, & Yuldashev, 2014c; Leonov
& Kuznetsov, 2013; Leonov et al., 2015a).

3. QPSK Costas loop
3.1. Lock-in range Aw; and lock time T

The open loop transfer function is identical with that of the
Costas loop for BPSK, cf. Eq. (54) and Fig. 2.1. This holds true for
the closed loop transfer function, too, cf. Egs. (56)-(58). To deter-
mine the lock-in range, we assume that the loop is out of lock. Let
the reference frequency be wy, and the initial VCO frequency .
The difference frequency w; — w, is called Aw. When the loop has
not acquired lock, the phase error 6, is a continuously rising func-
tion that increases towards infinity. The phase detector output sig-

nal uy is then a chopped sine wave as depicted in Fig. 3.1. The
fundamental frequency of this signal is four times the difference
frequency, i.e. 4Aw. This signal is plotted once again in the left
trace of Fig. 3.2. The amplitude of this signal is K;/+/2. Because for
the Costas loop for QPSK the phase detector gain is K; =2 m, it is
equal to v2m. The fundamental frequency of u, is assumed to be
much higher than the corner frequency wc¢ of the loop filter, hence
the transfer function of the loop filter can be approximated by

T:
HLF(S) ~ ?j =Ky. (84)

Hence the output signal of the loop filter u; has an amplitude
of K;Ky/~/2, cf. middle trace of Fig. 3.2. This signal modulates the
output frequency of the VCO, and the modulation amplitude is
given by K;KyKy/~/2, cf. right trace in Fig. 3.2. It is easily seen that
the loop spontaneously locks when the peak of the w-(t) waveform
touches the w; line, hence we have

KoKyKy

Awp = . 85
L 73 (85)
Making use of Egs. (58) and (84) this can be rewritten as

Awy = V2¢ wp. (86)

Because the transient response of the loop is a damped oscilla-
tion whose frequency is wp, the loop will lock in at most one cycle
of wy, and we get for the lock time

T, ~ == (87)

3.2. Pull-in range and pull-in time for QPSK

Consider the simplified nonlinear model of QPSK Costas loop, cf
Section 1.1.2. Let us define the total phase by gt = 491 + @,. Next
we are computing the average phase detector output signal uy as
a function of frequency difference and phase. First we calculate iy
for the special case @i = 0. As shown in the right trace in Fig. 3.3
during interval T; the average frequency w, is increased, hence the
average difference Aw becomes smaller. During next half cycle T,
the reverse is true: the average difference Aw becomes greater,
hence for ¢t =0 T; is longer than T,. The modulating signal is
therefore asymmetric, and because also uy4(t) (left trace) is asym-
metric its average Uy becomes nonzero and positive. This asymme-
try has been shown exaggerated in Fig. 3.3.

Using the same mathematical procedure as for BPSK Costas
loop, the average u, signal is given by

_ 0.37321(5KH
i=—F2" cos(4gi[Aw] + ¢2[4Aw]). (88)

As in case of the Costas loop for BPSK, here again
Eq. (88) shows us that the pull-in range is finite. The pull-in range
is the frequency difference for which phase ¢+ = —7/2. An equa-
tion for the pull-in range will be derived here. We also have to find
an equation for the pull-in time. To derive the pull-in process, we
will use the same nonlinear model as used for the Costas loop for
BPSK, cf. Fig. 11. The transfer functions for the loop filter and for
the VCO have been given in Eqgs. (26) and (29), respectively.

The pull-in range can be computed using Eq. (88). Lock can only
be obtained when the total phase shift is not more negative than
—m/2. This leads to an equation of the form

401 (Awp) + 2 (4Awy) = —71/2. (89)
According to Eqs. (15) and (22) ¢4 and ¢, are given by
¢1(w) = —arctg(w/ws),

@2 (w) = -1 /2 + arctg(w/wc)

http://dx.doi.org/10.1016/j.arcontrol.2016.08.003
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Fig. 3.3. Signals of the Costas loop for QPSK in the unlocked state.

with @¢ = 1/75. Hence the pull-in range Awp can be computed
from the transcendental equation

4arctg(Awp/ws) = arctg(4Awy/we). (90)
Using the addition theorem of the tangent function

(1 - tg?a)4tga

tgeda) = ————,
g4 1 - 6tg?a + tgta
the term 4arctg(Awplws) can be replaced by
[ _ ﬂ)z};ﬂ
@3 @3
arctg

Awp \? Awp\4*
176( wsp) +< wzp)

Eq. (90) then takes form
2
A
[1 - ( w‘;’v) }43
2 7=
A A wc
-s() + (%)

When the arctg expressions on both sides are equal, the argu-
ments must be identical as well, hence we get

1- (A”P)Z 42
@3 @3 4Aw,
2 17 T
o) ()
Solving for Awp yields

G—K—\/s—ﬂ P41
Awp=w3\/ w3 [ w3] ( w;). (91)

2

arctg

Last, equation for the pull-in time Tp will be derived. Based on
the nonlinear model shown in Fig. 11 and in Egs. (26), (29), and
(88) we can create a differential equation for the instantaneous

difference frequency Aw as a function of time. For this type of
Costas loop the differential equation has the form

d COS QYrot
Jphen + Aw" 0.373%K2K2Ky = 0
with

T

2 + arctg Awwe.

Aw
COS @t = —4arctg w—s -

Also here the cos term can be replaced by

Aw

COS QProt =1 —
Pro Aa)p

and, using similar procedures as in previews section, we get for the
pull-in time

Aa)p

™ A(l)p — Aa)]_
0.278, w?

TP Aa)p — Aa)o

[Aa)p In — Awgy + AG)L], (92)

which again is valid for initial frequency offsets in the range Aw,
< Awg < Awp. For lower frequency offsets, a fast pull-in process
will occur, and Eq. (87) should be used.

3.3. Numerical example: Designing a digital Costas loop for QPSK

A digital Costas loop for QPSK shall be designed in this section.
It is assumed that two binary signals (I and Q) are modulated with
a quadrature carrier (cosine and sine carrier). The carrier frequency
is set to 400 kHz, i.e. the Costas loop will operate at a center
frequency wg = 2 400,000 =2,512,000 rad s~!. The symbol rate
is assumed to be f¢ =100,000 symbols/s. Now the parameters of
the loop (such as time constants t; and 7, corner frequencies wc
and w3, and gain parameters such as Ky, K;) must be determined.
(Note that these parameters have been defined in Eqs. (14)-(16)
and (62)). It is possible to use the same parameters as for digital
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Fig. 3.4. Simulink model of the digital Costas loop for QPSK.
BPSK, i.e. Table 3.1

K, =2,
K()Kd 1+ S/w¢ 1

GoL(s) = st 1350

wr = 251, 200,

Ty =4 us,

w3 =2 %2 % 100,000 = 1, 256, 000, (93)
T4 =20 s,

Ko = 631,000 s,

wp = 251,000 rad/s

¢ =0.5,

Awp = 177,483 rads (Af, =20 kHz).
From (86) the lock-in range becomes

Aw; = 177,483 rads (A f; =20 kHz)

and from (87) the lock time becomes

T, = 25 us.

Next we want to compute the pull-in range. Eq. (91) yields
Afp =73 kHz). In Section 3.4 we will simulate this Costas loop
and compare the results of the simulation with the predicted ones.

In digital domain fsgmp =8 and fp =3.2 MHz. Transfer func-
tions Hjpr(z), Hyco and H;g(z) are defined in (81)-(83). A Simulink
model will be presented in Section 3.4.

(fn =40 kHZ)

3.4. Simulating the digital Costas loop for QPSK

A Simulink model of a Costas loop for QPSK is shown in Fig. 3.4.

Two data signals (I and Q) is created by random number gen-
erators at the left of the block diagram. The other blocks are self
explanatory. The model is used now to check the validity of the
approximations found for pull-in range and pull-in time.

Eq. (91) predicts a pull-in range Afp = 73 kHz. The simulations
reveals a value of 62 kHz. A series of other simulations delivered
results for the pull-in time ATp. The results are listed in Table 3.1.

At higher frequency offsets the results of the simulation are in
good agreement with the predicted ones. The pull-in time for an
initial frequency offset of 40 kHz is too low, however, but it should

Comparison of predicted and simulated results for the pull-in range.

Afy (Hz)  Awg (rad s7')  Tp (theory) (us)  (Tp (simulation) (us)
40 kHz 251,200 14 35
50 kHz 314,000 37 40
60 kHz 376,800 86 70

be noted that the lock time T; is about 25 pus, and the total pull-in
time cannot be less than the lock time.

3.5. Remarks on simulation of QPSK Costas loop

Similar problems to BPSK Costas loop simulation also exist for
QPSK. Different mathematical models can give qualitatively differ-
ent results, which shows the importance of analytical methods in
studying QPSK Costas loops.

4. Modified Costas loop for BPSK
4.1. Lock-in range Aw; and lock time T

From the model of Fig. 6 with K; =1 the open loop transfer
function is determined as

Ko 1+sT
GoL(s) = ?072

(94)

Since open loop transfer function of Modified Costas loop is
effectively the same as (54), linear analysis is the same as for
BPSK Costas loop. Therefore transfer function in normalized form

is equal to
25 wy + Wi
$2 +2cLwn + w3’

_ Ko _a)n'L'z
wn = /T—], ¢ = 5

Here w; is natural frequency and ¢ is damping factor.

For the following analysis we assume that the loop is initially
out of lock. The frequency of the reference signal (Fig. 17) is wq,
and the frequency of the VCO is w,. The output signal of multiplier
M; is then a phasor rotating with angular velocity Aw = wq — ws.

Ges(s) =

(95)
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Fig. 4.2. Pull-in process of the modified Costas loop for BPSK.

Consequently the phase output of block “Complex — mag, phase”
is a sawtooth signal having amplitude (7/2) K; and fundamental
frequency 2Aw, as shown in the left trace of Fig. 4.1. Because 2Aw
is usually much higher than the corner frequency wc of the loop
filter, the transfer function of the loop filter at higher frequencies
can be approximated again by

T.
HLp(a)) ~ ?? = KH

The output signal us of the loop filter is a sawtooth signal and
has amplitude (7/2) K;Ky, as shown in the middle trace of the
Fig. 4.1. This signal modulates the frequency w, generated by the
VCO. The modulation amplitude is given by (7m/2) K; Ky Ko, cf.
right trace. The Costas loop spontaneously acquires lock when the
peak of the w, waveform touches the w; line, hence we have

_T - TkK, 2
A(,()L =3 KdKOKH =3 KdK() o .

Making use of the substitutions Eq. (95) this can be rewritten
as

Awp =TTl wn. (96)

Because the lock process is a damped oscillation having frequency
wy the lock time can be approximated by one cycle of this oscilla-
tion, i.e.

T, ~ == (97)

4.2. Pull-in range and pull-in time of the modified Costas loop for
BPSK

Assume that the loop is not yet locked, and Aw = w1 — w;. As
shown in Section 4.1 (cf. also Fig. 4.1) uy is a sawtooth signal hav-
ing frequency 2Aw, cf. left trace in Fig. 4.2. As will be explained
in short, this signal is asymmetrical, i.e. the duration of the posi-
tive wave Ty is not identical with the duration T, of the negative.
The middle trace shows the output signal of the loop filter, and the
right trace shows the modulation of the VCO output frequency w-.
From this waveform it is seen that during T; the average frequency
difference Aw becomes smaller, but during interval T, it becomes
larger. Consequently the duration of T; is longer than the duration
of T,, and the average of signal u, is nonzero and positive. Using

the same mathematical procedure as in previews sections, the av-
erage uy can be computed from

72K;KoKy

U= "gAn

(98)

Because this type of Costas loop does not require an additional
lowpass filter, the u, signal is not shifted in phase, and therefore
there is no cos term in Eq. (98). This implies that there is no po-
larity reversal in the function ui;(Aw), hence the pull-in range be-
comes theoretically infinite. Of course, in a real circuit the pull-in
range will be limited by the frequency range of the VCO is ca-
pable to generate. When the center frequency fy of the loop is
10 MHz, for example, and when the VCO can create frequencies
in the range from 0...20 MHz, then the maximum pull-in range
Afp is 10 MHz, i. e. Awp = 6.28 - 106 rad/s.

As seen in the last section, the pull-in range of this type of
Costas loop can be arbitrarily large. Using the same model as for
BPSK Costas loop (see Fig. 11), we can derive an equation for the
pull-in time:

2 Aw}

Tr ~ — .
' W)

(99)

4.3. Designing a digital modified Costas loop for BPSK

The following design is based on the method we already used
in Section 2.3. It is assumed that a binary signal I is modu-
lated onto a carrier. The carrier frequency is set to 400 kHz,
i.e. the Costas loop will operate at a center frequency wg = 2w
400,000 =2,512,000 rad s~'. The symbol rate is assumed to be
fs =100,000 symbols/s. Now the parameters of the loop (such as
time constants T4 and t,, corner frequency w¢, and gain parame-
ters such as Ky, K;) must be determined. (Note that these parame-
ters have been defined in Eqs. (14)-(16), and (62)).

It has been shown in Section 4.1 that for this type of Costas
loop K; = 1. The modulation amplitudes m; and m; are set to 1. It
has proven advantageous to determine the remaining parameters
by using the open loop transfer function Gg;(s) of the loop, which
is given here by (94). The magnitude of Gy (w) has been shown in
Fig. 2.1. As already explained in Section 2.3 the magnitude curve
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Fig. 4.3. Simulink model of the modified Costas loop for BPSK.

Table 4.1
Comparison of predicted and simulated results for the pull-in range.

Afo (Hz) Awp (rad s7')  Tp (theory) (us)  (Tp (simulation) (us)
50 kHz 314,200 2.5 20
100 kHz 628,000 10 20
200 kHz 1,256,000 40 50

crosses the 0 dB line at the transit frequency wr. As in the case of
the conventional Costas loop for BPSK/QPSK, we again set

wr = 0.1(1)0,

wr = 251,200 rads™ !,

Gor(w) = —135°,

o — 4yss (100)
71 = 20us,

Ky =1,262,000 s~

For the natural frequency and damping factor we get from
Eq. (58)

wy = 251,000 rads~!  (f, = 40 kHz) (101)
¢ =0.5.

From (95) lock-in range is as of
Aw; =394,000 rads, Af, =627 kHz, T, =25 us. (102)

As done in Section 2.4 a suitable sampling frequency fsamp must
be chosen for z-domain. As shown previously fsqmp must be greater
than 4 times the center frequency of the Costas loop. Therefore
fsamp =8, fo =3.2 MHz. The transfer functions of the loop filter
and VCO are the same as (82) and (83).

The digital Costas loop is ready now for implementation. A
Simulink model will be presented in Section 4.4.

4.4. Simulating the modified digital Costas loop for BPSK

Fig. 4.3 shows the Simulink model of the Costas loop. Table 4.1
lists a number of results for the pull-in time Tp.

The predictions for A fy =50 kHz and 100 kHz are too low. As
already mentioned in Section 3.4 the pull-in time cannot be lower
than the lock time, and the latter is estimated ~ 25 s. The simu-
lation results for these two difference frequencies are around 20 ps,
which roughly corresponds to the lock time. The simulation result

Fig. 4.4. Obtaining the phase error signal from multiplier M.

for a frequency difference of 200 kHz comes close to the predicted
value.

4.5. Pull-in time for an alternative structure of the modified Costas
loop for BPSK

As demonstrated in Fig. 17 the phase error signal uy; was ob-
tained from the phase output of block “Complex — mag, phase”.
The phase of the complex input signal to this block can be ob-
tained from the arc tg function. This imposes no problem when a
processor is available. This is the case in most digital implementa-
tions of the Costas loop. As an alternative a phase error signal can
also be obtained directly from the imaginary part of multiplier M»;
this is shown in Fig. 4.4.

It is easily seen that here u, is given by

ug = m(t) sin(6e).

The blocks shown in Fig. 4.4 therefore represent a phase de-
tector having gain K; = m. In the cases when m # 1 this must be
taken in account when specifying the open loop transfer function,
cf. Section 4.3. For this design the pull-in time of the loop is given
by

_m? Aw?
P16 Cwp

4.6. A note on the design of Hilbert transformers

Hilbert transformers used in the system of Fig. 17 are imple-
mented in most cases by digital filters. In this application the max-
imum frequency in the spectrum of the modulating signal mq(t)
is much lower than the carrier frequency f;. Under this condition
the Hilbert transformer can be replaced by a simple delay block.
All we have to do is to shift the input signal u;(t) by one quar-
ter of a period of the carrier. When the sampling frequency fs is
n times the carrier frequency f;, we would shift the input signal
by n/4 samples. This implies that n must be an integer multiple
of 4.
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Fig. 5.1. Bode plot of magnitude of open loop gain Go;(w) for QPSK.

5. Modified Costas loop for QPSK
5.1. Lock-in range Aw; and lock time T

From the model of Fig. 6 the open loop transfer function is de-
termined as
Ko 1457,

Go(s) = 2 ——=.

103
st (103)

as explained in Section 1.2.2.

Fig. 5.1 shows a Bode plot of the magnitude of Gg;. The plot
is characterized by the corner frequency w¢, which is defined by
wc = 1/15 and gain parameters K; and Ky. At lower frequencies the
magnitude rolls off with a slope of - 40 dB/decade. At frequency
wc the zero of the loop filter causes the magnitude to change its
slope to - 20 dB/decade. To get a stable system, the magnitude
curve should cut the O dB line with a slope that is markedly less
than - 40 dB/decade. Setting the parameters such that the gain is
just 0 dB at frequency w¢ provides a phase margin of 45°, which
assures stability [2]. From the open loop transfer function we now
can calculate the closed loop transfer function defined by

O, (s)
O1(s)°

After some mathematical manipulations we get

Ger(s) =

Garls) Kok 122
52 +SK0’§;1T2 + Kgi:(d

It is naturally to represent this transfer function in normalized
form, i.e.

25 wn + W}

Ges(s) = —7F—7—"—
cs(s) $2 + 2S¢ wy + w?

with the substitutions

. KOKd _a)nfz
Wn = | o = 5

where w, is called natural frequency and ¢ is called damping fac-
tor. The linear model enables us to derive simple expressions for
lock-in range Aw; and lock time Tj.

For the following analysis we assume that the loop is initially
out of lock. The frequency of the reference signal (Fig. 19) is wy,
and the frequency of the VCO is w,. The output signal of multiplier
M is then a phasor rotating with angular velocity Aw = wq — w;.
Consequently the phase output of block “Complex — mag, phase is
a sawtooth signal having amplitude (7 /4) K; and fundamental fre-
quency 4 Aw, as shown in the left trace of Fig. 5.2. Because 4 Aw
is usually much higher than the corner frequency wc of the loop
filter, the transfer function of the loop filter at higher frequencies

(104)

can be approximated again by
T

Hir(0) ~ = = Ky.
T

The output signal u; of the loop filter is a sawtooth signal as
well and has amplitude (7r/4) K;Ky, as shown in the middle trace
of the figure. This signal modulates the frequency w, generated by
the VCO. The modulation amplitude is given by (7 /4) K ;KyKy, cf.
right trace. The Costas loop spontaneously acquires lock when the
peak of the w, waveform touches the w; line, hence we have

T T T
Awp = —KiKoKy = =K Ky —=. 1
o1 = 7 KakoKy = 7 Kallo - (105)
Making use of the substitutions Eq. (95), this can be rewritten
as

Aw, = %Cwn. (106)

Because the lock process is a damped oscillation having fre-
quency wp, the lock time can be approximated by one cycle of this
oscillation, i.e.

T~ 22 (107)

5.2. Pull-in range and pull-in time of the modified Costas loop for
QPSK

Assume that the loop is not yet locked, and that the difference
between reference frequency w; and VCO output frequency w, is
Aw = w1 — wy. As shown in Section 5.1 (cf. also Fig. 5.2) u, is a
sawtooth signal having frequency 4Aw, cf. left trace in Fig. 5.3.

As will be explained in short, this signal is asymmetrical, i.e. the
duration of the positive wave T; is not identical with the duration
T, of the negative one. The middle trace shows the output signal
of the loop filter, and the right trace shows the modulation of the
VCO output frequency w,. From this waveform it is seen that dur-
ing T; the average frequency difference Aw becomes smaller, but
during interval T, it becomes larger. Consequently the duration of
T, is longer than the duration of T,, and the average of signal u, is
nonzero and positive. Using the same mathematical procedure as
in Sections 2.3 and 3.3 the average u, can be computed from

72K2KoKpy
64Aw

Because this type of Costas loop does not require an additional
lowpass filter, the u, signal is not shifted in phase, and therefore
there is no cos term in Eq. (108). This implies that there is no
polarity reversal in the function u;(Aw®), hence the pull-in range
becomes theoretically infinite. Of course, in a real circuit the pull-
in range will be limited by the frequency range of the VCO is ca-
pable to generate. When the center frequency fy of the loop is
10 MHz, for example, and when the VCO can create frequencies
in the range from 0...20 MHz, then the maximum pull-in range
Afp is 10 MHz, i. e. Awp = 6.28 - 106 rads—'.

As seen in the last section, the pull-in range of this type of
Costas loop can be arbitrarily large. Using nonlinear model (11) we
can derive an equation for the pull-in range:

16 Aw}
RN

;= (108)

Awp

(109)

5.3. Designing a digital modified Costas loop for QPSK

The following design is based on the method we already used
in Section 4.3. It is assumed that two binary signals (I and Q) are
modulated onto a quadrature carrier (cosine and sine carrier). The
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Fig. 5.3. Pull-in process of the modified Costas loop for QPSK.
Table 5.1 processor is available. This is the case in most digital implementa-

Comparison of predicted and simulated results for the pull-in range.

Afo (Hz) Awg (rad s7')  Tp (theory) (us)  (Tp (simulation) (us)
50 kHz 314,200 20 20

100 kHz 628,000 81 80

200 kHz 1,256,000 327 300

carrier frequency is set to 400 kHz, i.e. the Costas loop will op-
erate at a center frequency wg = 277400, 000 = 2, 512,000rads™.
The symbol rate is assumed to be fs = 100,000 symbols/s. Now
the parameters of the loop (such as time constants 74 and t,, cor-
ner frequency w¢, and gain parameters such as Ky, Ky) must be
determined. (Note that these parameters have been defined in Egs.
(14)-(16), and (62)).

It has been shown in previews sections that for this type of
Costas loop K; = 1. The modulation amplitudes m; and m; are set
to 1. It was proven advantageous to determine the remaining pa-
rameters by using the open loop transfer function Gg;(s) of the
loop, which is given here by (103). The magnitude of Gp;(w) has
been shown in Fig. 5.1. As already explained in Section 2.3 the
magnitude curve crosses the 0 dB line at the transit frequency wr.
We again set parameters as in (100), (101) and (102). A Simulink
model will be presented in Section 5.4.

5.4. Simulating the digital Costas loop for QPSK

Fig. 5.4 shows the Simulink model of the Costas loop. Table 5.1
lists a number of results for the pull-in time Tp.

The predictions come very close to the results obtained from
the simulation.

5.5. An alternative structure of the modified Costas loop for BPSK

As demonstrated in Fig. 19 the phase error signal uy; was ob-
tained from the phase output of block “Complex — mag, phase”.
The phase of the complex input signal to this block can be ob-
tained from the arctg function. This imposes no problem when a

tions of the Costas loop. As an alternative a phase error signal can
also be obtained directly from the imaginary part of multiplier M5;
this is shown in Fig. 5.5.

It is easily seen that here u, is given by

uyg = 2msin(6,).

The blocks shown in Fig. 5.5 therefore represent a phase de-
tector having gain K; = 2m. This must be taken in account when
specifying the open loop transfer function, cf. Section 5.3. For this
design the pull-in time of the loop is given by

1.78 Aw}
Tp ~ 73.
fwy
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Appendix A
Al. Hold-in range for lead-lag filter
One needs to be cautious using model in Fig. 5 even for calcu-

lating hold-in range for BPSK Costas. Consider an example: Costas
loop with lead-lag loop filter

1451,
= 110
F(s) Tost T1>T7,>0 (110)
and low-pass filters LPFs
1
H, = — .
1pF (S) . w3 >0 (111)
In locked state phase error 6, satisfies
Aw  sin(26,) (112)

KK, ~ 2
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Fig. 5.4. Simulink model of the modified Costas loop for QPSK.

Fig. 5.5. Obtaining the phase error signal from multiplier M,.

therefore we get a bound for the hold-in range

KoK,
|Awo| < %‘ (113)
In order to find hold-in range we need to find poles of the closed-
loop transfer function (roots of the characteristic polynomial) for
the linearized model (small-signal model) of the system in Fig. 4.
Open-loop transfer function is as follows

. KOKd 1+s1, 1 COS(Zeeq)
Cor= T T T s 2 (114)
1 s
i(l + Ty $)KoKy c0S(260eq) +s(1 + w—)(l + 11 8). (115)
3

Phase error 6 corresponds to hold-in range (see (112)) if all roots
of the polynomial (115) have negative real parts (i.e. polynomial
(115) is stable). Applying Routh-Hurwitz criterion to study stability
of the polynomial, we get that for the following parameters

‘C —
> h-0 (116)
1Ty
polynomial (115) is stable for all |Awg| < %. However, if
T1— 1T
n (117)
the following condition is necessary for stability:
2 -1 —-w31q
20 ( ) 118
COS( eq) = K(]Kd —T1+ T +W3T1 Ty ( )

Then, taking into account static phase error in Eq. (112), we get
different hold-in ranges for different values of w3

KoKy 2 —1-wsmy 2 KoKy
20™d 9 A 20%d
4 \/ (KoKd(—T1+T2+0)3T11’2>> < |Awol < 4"
ifoz)3<1"l_t2 2 ( —1 -3 ) <1,
SRS K()Kd —T1+ T +w3T1 Ty
Kng . TT1—T 2 -1- w3Tq
A —=,if 1
| (1)0|< 4 s < SRS K()Kd<—‘t'1+‘[2+a)3f11'2)|> ’
Kng . T1—T0
A —=,if —_—.
_I wo| < ==, ifwy = o
(119)
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