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1 Abstract

In aerosol science today light scattering simulations are regarded as an indispens-
able tool to develop new particle characterization techniques or in solving inverse
light scattering problems. Light scattering theories and related computational
methods have evolved rapidly during the past decade such that scattering com-
putations for wavelength sized nonspherical scatterers can be easily performed.
This significant progress has resulted from rapid advances in computational
algorithms developed in this field and from improved computer hardware.
In this paper a review of the recent progress of light scattering theories and

available computational programs is presented. Short outlines of the various
theories is given alongside with informations on is capabilities and restrictions.

2 Introduction

In aerosol science there is increasing interest not only to determine the size
of aerosol particles using optical methods but also the shape or the refractive
index of the particles. This can help, for example, to find the source of a particle
contamination. To develop new and efficient optical particle characterization
methods light scattering simulation methods are needed which can handle a wide
variety of particle shapes. In this paper I would like to review the state of the art
in this field as it developed over the last decade. I will give a short description of
the various theories available and provide information on computation programs.
A number of light scattering theories have been developed, all having their

pros and cons. Extensive overviews of available theories have been published
by Wriedt [1], Kahnert [2] and more recently by Veronis and Fan [3]. A review
of this subject with emphasis on colloid science has been written by Niklasson
and Vargas [4]. A paper by Zhao et al. [5] provides an overview of the methods
that are currently being used to study the electromagnetics of silver and gold
nanoparticles.
Of historic interest might be the critical review by Bouwkamp [6] who

presents the progress in classical diffraction theory up 1954. In this paper both
scalar and electromagnetic problems are discussed. This report may also serve
as an introduction to general diffraction theory.
Interesting reviews on related subjects of nanooptics and metamaterials have

recently been published by Myroshnychenko et al. [7] and by Veselago et al. [8].
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With the progress of the internet in the 1990s two web sites were erected
to provide information on and links to available light scattering codes: Electro-
magnetic Scattering Programs [9] and SCATTERLIB [10]. With both lists there
is an emphasis on open access to computational programs. In the near future
this web information will be expanded by a New Scattering Information Portal
for the light-scattering community [11]. Most of the mentioned computational
programs can be found on either of this two web pages.
For the purpose of this review I will divide the available numerical methods

used in electromagnetics into three main categories.
Analytical and semianalytical methods
— Mie theory and its extensions
— Separation of Variables Method (SVM)
— T-Matrix
— Generalized Multipole Technique (GMT)
— Null-Field Method with Discrete Sources (NFM-DS)
Differential equation methods
— Finite difference time domain method (FDTD)
— Finite Element Method (FEM)
Integral equation methods
— Method of Moments (MOM)
— Volume Integral Equation Method (VIEM)
With Analytical and semianalytical methods all fields are represented as lin-

ear combinations of known solutions of Maxwell’s equations such as spherical
vector wave functions, spheroidal wavefunctions or other fundamental solutions.
Unter the heading Differential equation methods two methods are included

Finite difference time domain method and Finite Element Method. With these
methods the differential equation must be discretized over the entire volume of
the scatterer and part of the surrounding medium. Thus both methods need a
special boundary condition to truncate the computational domain. Differential
equation methods lead to matrices that are highly sparse reducing computer
storage.
Integral equation methods are based on the discretization of an integral equa-

tions using the Green’s function of the surrounding medium. With this methods
the radiation conditions for the scattered field is automatically satisfied. The
matrix to be solved is a full matrix.
Next, I will shorty review the methods available making reference to re-

view papers where available. For more profound reviews the interested reader is
referred to the cited review articles.

3 Mie Theory and its extensions

In a paper within a special edition commemorating Gustav Mie and the Mie
theory a short review of Mie theory and its extensions should not be missing. In
1908 Gustav Mie published his famous paper on simulation of the colour effects
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connected with colloidal Gold particles [12]. In this paper he gave a first outline
of how to compute light scattering by small spherical particles.
Cardona and Marx [13] comment, that this paper was almost ignored until

about 1945 but its importance rose starting from the 1950s with interest in
colloids such that hundred years after publication his paper is still much cited
[14] with currently 160 citations a year. The paper is call Dornröschen (Sleeping
Beauty) by the researchers at Information Retrieval Services of Max Planck
Society [15] because of its late recognition considering the number of citations.
The citations of this paper show that the applications of Mie theory cover

a wide range of subjects from climate research, optical particle characterization
to interstellar dust in astrophysics.
Understandably prior to the development of electronic computers in the mid-

dle of last century there were not many paper written on computing scattering
problems using Mie’s theory since the computational labour involved in evalu-
ating functions such as Ricatti-Bessel functions was quite extreme.
Even with the rise of the computer it took some time before stable algo-

rithms were developed. Gradually several generally reliable and stable scatter-
ing programs were published. Early well known algorithms were published by
Giese [16] and Dave [17]. The IBM report by Dave from 1969 was still send out
on request in the 1990s. Nowadays a number of efficient algorithms and FOR-
TRAN programs are available. A major step was the program MIEV0 written
by Wiscombe [19, 18], which is based on Lentz’s continued-fraction method for
the calculation of spherical Bessel functions [20]. The program is well-tested and
widely used. It has been demonstrated that Mie’s theory can be now successfully
applied up to size parameters of 10.000 [21, 22, 23] and this year Mie theory has
even been programmed on a Java enabled Mobile Phone using a Matlab clone
[24]. As the scattering of a plane electromagnetic wave by a dielectric sphere is
considered a canonical problem, Mie’s theory is still used as a standard reference
to validate methods intended for more complex scattering problems [25, 26].
Apparently one of the first English language versions of Mie theory was

published by Bateman [27]. Mie’s original paper was translated into the English
language as late as 1976 by the Royal Aircraft Establishment in the UK [28] and
two year later by Sandia Laboratories in US [29]. Recently a Spanish translation
of the original paper became available [30] and Chinese and Hebrew translations
are on the way [31].
As it is easy to consider spherical scatterers there are many extensions of

Mie theory covering different aspects. A theory for a coated dielectric sphere
was first published by Aden and Kerker [32]. An advanced algorithm is given
by Toon and Ackerman [33]. An algorithm for a sphere having two coatings has
been presented by Kaiser and Schweiger [34]. These theories have also been
extended to spherical particles consisting of multiple layers by Li Kai [35]. Even
today improved algorithms are published on this subject [36].
A scattering sphere can also be chiral or optically anisotropic. Theories and

programs for such type of scatterers have been published by Bohren in his book
for a chiral sphere [38] and by Doicu et al. [37] for anisotropic spheres.
In optical particle characterization scattering by a focused laser beam is quite
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often of interest. There are different concepts available to handle this problem. A
laser beam with Gaussian intensity distribution can be expanded into spherical
vector wave functions or into a spectrum of plane waves [39]. The Generalized
Lorenz Mie Theory (GLMT) developed by G. Gouesbet and coworkers is based
on the first approach. Is has recently been reviewed by Gouesbet [40]. Plane
wave expansion is used by Albrecht at al. [41] and it is integrated into the Null-
Field Methods with Discrete Sources (NFM-DS) developed by and Doicu and
coworkers [37].
Scattering by an aggregate of spheres will also be considered in this sections.

There are efficient programs available by Mackowski [42] and Yu-lin Xu [43].
The theory has recently been extended to clusters of rotationally symmetric
particles [44] and arbitrary shaped particles [45].
Mie and absorbing surrounding medium has been considered by Sudiarta

[46] and by Frisvad et al. [47].
As colour pigments and crystals are anisotropic there is some interest to ex-

tend Mie’s theory to such kind of scattering particles. Stout et al. [48] established
a vector spherical harmonic expansion of the electromagnetic field propagating
inside an arbitrary anisotropic medium to solve this problem. A similar problem
of an uniaxial anisotropic sphere was considered by Geng et al. [49] to find the
coefficients the scattered field. Droplets of liquid crystals may be considered as
spherical particle with radial anisotropy. This scattering problem is discussed
by Qui at al. [50] using an extension of Mie theory.
Especially with nanosized nobel metal particle of size lower than about 20nm

various modifications, extensions and corrections to Mie’s original theory are
needed to take into account that "sharp" boundary conditions do not hold in
the nanoscale. [51]. In his recent survey paper [52] Kreibig lists among others
the following supplementary models to the Mie theory, incident wave not plane,
non step-like boundary condition, dielectric function dependent on particle size.
Applying this extensions help to explain measured absorption spectra of Ag
nanoparticles and plasmon polaritons.

4 Separation of Variables Method

Asano and Yamamoto [53] were apparently were the first who used separation
of the vector wave equation in spheroidal coordinates to consider light scat-
tering by homogeneous prolate or oblate spheroidal particles with an arbitrary
size. In this way all fields are expanded in terms of spheroidal wavefunctions.
This method using spheroidal wavefunctions for field expansion is commonly
termed Separation of Variables Method (SVM). Voshchinnikov and Farafonov
[54] applied a related approach. Their solution is claimed to be more efficient
than the one of Asano and Yamamoto from the computational point of view.
The approach has especially an advantage for strongly elongated or flattened
particles.
Voshchinnikov’s SVM codes based on spheroidal expansion are available from

Il’in’s website of scattering codes [55]. Scattering by coated spheroids can also
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computed using SVM [56]. A recursive algorithm for the solution of the problem
of scattering by multilayered spheroidal particles has been presented by Fara-
fonov [57]. The method has been reviewed by Farafonov et al. [58]. SVM has
also been combined with the Generalized Lorenz-Mie theory to compute light
scattering for by a homogeneous spheroid in a shaped laser beam [59].
Suitable Mathematica programs using Spheroidal Wave Functions to com-

pute scattering by spheroidal particles have been published in a book by Le-Wei
Li et al. [60]. These includes also programs for coated dielectric spheroids. For
more references on this subject using spheroidal wave function I would like to
refer the interested reader to this book. In a paper by Schulz [61] a method for
computing the T-matrix with the SVM is given.

5 T-Matrix Method

The T-matrix method or null-field method is one of the most well known light
scattering theories to compute scattering by nonspherical particles. A Fortran
program for a perfectly electric conducting rotationally symmetric scatterer was
published quite early by Waterman [62]. The book by Barber and Hill [63]
includes some nice Fortran programs to compute scattering by spheroids. Near
field and internal field can also be computed.
Recent reviews of the literature on this method have been published by

Mishchenko et al. [64, 65]. The advantage of this method is that the T-matrix
is computed, which includes the full solution of the scattering problem. This
matrix relates the expansion coefficients of the incident field to the expansion
coefficients of the scattered field. By using a precomputed T-matrix, scattering
by a rotated or a translated particle or orientation averaged scattering can
easily be computed. Additionally, multiple scattering or scattering by a particle
located near a plane interface can be computed from a stored T-matrix of this
particle.
Most well known, tested and widely used are the T-Matrix programs by

Mishchenko [66]. The standard T-matrix method is restricted to particles hav-
ing an aspect ratio not larger than about 1:4 [67]. To solve the stability problems
with particles having a larger aspect ratio expansion of the internal field using
discrete sources was introduced into the null-field method. This method is re-
viewed in one of the following sections of this paper.
The Optical tweezers toolbox by Timo Nieminen [68], implemented in Mat-

lab, is based on the T-Matrix method for the computational modelling of op-
tical tweezers. The toolbox is designed for the calculation of optical forces and
torques, and can be used for both spherical and nonspherical particles, in both
Gaussian and other beams.
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6 Generalized Multipole Technique

The Generalized Multipole Technique (GMT) is a relatively new and fast ad-
vancing method which has been developed by different research groups. Ludwig
[69] coined the term Generalized Multipole Technique for this spectrum of meth-
ods.
The main idea of the Generalized Multipole Technique consists in approxi-

mating the solution of the problem by a linear combination of discrete sources.
These discrete sources are the fundamental solution of the differential equation
of the problem. The introduction of discrete sources method is generally at-
tributed to Kupradze and Aleksidze [70]. The coefficients of the scattered field
are found by satisfying the boundary conditions on the surface of the scatterer
by combining point matching with a least squares technique.
There are a variety of methods which use "equivalent sources" for field ex-

pansion. The "equivalent sources" may be of any type as long as they are solu-
tions of the wave equation. Spherical waves, dipoles, Mie potentials and Gabor
functions have been applied for field expansion.
A review of these methods has been published in an edited volume by Wriedt

[71] and more recently by Fairweather [72]. A comprehensive presentation of
the discrete sources method is given by Doicu et al. [73]. For an analytic foun-
dation of the null field method and the discrete sources method in acoustics and
electromagnetics the reader is referred to this book.
The Fortran code of the Multiple Multipole Program (MMP) has been pub-

lished by Hafner and Bomholt [74]. The book is out of print but an executable
is available [75]. Boundary methods for solving Maxwell equations with a focus
on the Multiple Multipole Program (MMP) are outlined by Hafner [76]. The
5th order Gaussian beam can also quite easily be integrated into the Multiple
Multipole Program [77].
The Discrete Sources Method (DSM) is developed by Yuri Eremin and

coworkers [78]. In this method the unknown amplitudes of the discrete sources
are determined from the boundary condition in least square sense. DSM is re-
tricted to rotationally symmetric scatterers but the discrete sources can also
be positioned in complex plane such that scattering by really flat discs can be
computed [79]. A high aspect ratio of 1:50 for elongated particles and 20:1 for
flat particles can be achieved [80]. Using DSM scattering by red blood cell can
be computed in an efficient way [81].

7 Null-Field Method with Discrete Sources

The Null-Field Method with Discrete Sources (NFM-DS) developed in Bremen
combines approaches of the Generalized Multipole Techniques (GMT) with the
T-Matrix Method. For expansion of the internal field within a scatterer discrete
sources are used. This helps to compute the T-Matrix of particles having a large
aspect ratio.
For rotationally symmetric particles such as finite fibres the discrete sources
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Figure 1: Scattering diagram of a biaxially anisotropic cube ka=3, with refrac-
tive indices n=(1.1, 1.3, 1.7). The plane wave is incident along the z-axis. The
scattering diagrams along the xz- and the yz-plane are plotted.

are positioned on the axis of symmetry of the particle [82]. With oblate rota-
tionally symmetric scatterers it is of advantage to position the discrete sources
in a complex plane [83]. In this way, scattering by oblate discs [84], flat Cassini
shaped particles [85] has been solved. Scattering by particles having an aspect
ratio as large as 100:1 can easily be computed both for extremely oblate or
prolate particles.
For a full description of the theory we refer the interested reader to the

recently published monograph by Doicu et al. [37] which also includes Fortran90
programs on CD-ROM. Recently the method has been extended to compute
scattering by biaxially anisotric particles [86]. A sample of a computational
result is shown in Fig. 1. The full scope of the Null-Field Method with Discrete
Sources has recently been presented in a review paper [87].

8 Finite Difference Time Domain

The most common electromagnetic modelling technique for scattering simula-
tions is the Finite Difference Time Domain method (FDTD). The Finite Differ-
ence Time Domain (FDTD) method is an electromagnetic modelling technique
which is becoming more popular in computing light scattering by nonspherical
or inhomogeneous particles. The Finite Difference Time Domain Algorithm has
been introduced in 1966 by Yee [88].
For the application of FDTD the computational space and time is divided

into a grid of discrete points and then the derivatives of the Maxwell equations
are approximated by finite differences. With the FDTD method an entire vol-
ume including the scatterer is discretized into a cubical grid. The basic element
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of discretization is the Yee cell [88]. A difference approximation is applied to
evaluate the space and time derivatives of the field. The fields are computed us-
ing a time marching scheme until a steady state solution is obtained. Not only
the scattering particle has to be gridded but also some part of the surround-
ing medium. To truncate the computational domain the FDTD needs the use
of absorbing boundary conditions that require a layer of grid cells all around
the computational domain. The absorbing boundary conditions ensure that the
wave is not reflected at the open boundary of the discretized volume.
A near- to far-field transformation is needed to compute the scattered far-

field from the near-field values of the computational domain. FDTD can be
applied to any kind of problem involving complex materials with arbitrary geom-
etry, and it continues to be an active field of research [89].
Recently, it has been demonstrated that a GPU (Graphics Processing Unit)

can be a cost effective co-processor [90]. Currently almost all vendors of FDTD
programs offer an acceleration card based on a GPU.
There are about 27 commercial FDTD software vendors [91]. An other list of

commercial programs is given in a review paper by Veselago et al. [8]. A survey
of the Finite-Difference Time Domain literature has been published by Shlager
and Schneider [92].
The are also a number of open source FDTD development projets such as

BigBoy [93], Meep [94], GMES [95] and OpenGEMS [96]. Further open source
programs are listed in Wikipedia [97].
The Transmission Line Matrix (TLM) method is related to the FDTDmethod.

It has similar capabilities. With TLM the nodes of the cubic grid are connected
by virtual transmission lines. [98]. A number of commercial TLM packages is
also listed in the review by Veselago et al. [8].

9 Finite Element Method

In light scattering applications the Finite Element Method (FEM) is not that
well known. But you will nevertheless find some paper on applying this method.
FEM is based on discretion of the total simulation volume including the scat-
tering particle into a set of finite elements (tetrahedra or triangular prisms)
which are best suited to describe the geometry of arbitrary shaped scattering
particle. Then the unknown functions are represented by simple interpolation
functions defined on each element with unknown coefficients. This functions
provide an approximation to the solution within a finite element. Thus a system
of equations is formulated which has to be solved.
To limit the region of computation like in FDTD the computational space

has to be terminated using some artificial absorbing boundary. To solve the
problem, the FEM makes use of a variational formulation [99]. The resulting
matrix to be solved is sparse which is considered an advantage of this method
[100]. A review of the finite element method for light scattering computations
has been published by Violakis et al. [101].
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Currently one of the most popular software packages implementing a 3D fi-
nite element method is Comsol Multiphysics. COMSOL Multiphysics (formerly
FEMLAB) is a finite element analysis and solver software package for various
physics and engineering applications [102]. Using this program the polariza-
tion dependence of greatly enhanced electromagnetic fields, in coupled gold
nanoparticle-nanowire systems has recently been investigated [103]. The en-
hancement is strongest when the incident light is polarized across the junction
of the particle wire system.

10 Method of Moments

In electrical engineering the Boundary Element Method (BEM) is commonly
call Method of Moments (MoM). By MoM the surface integral equations are
solved by discretization and reducing them to a system of linear equations. The
development of the method is commonly attributed to Harringon [104]. The
equation solved by MoM generally has the form of an electric field integral
equation (EFIE), a magnetic field integral equation (MFIE) or combined field
integral equation (CFIE) [105].
In this method the scatterer is replaced by a number of interacting equivalent

electric or magnetic surface currents. Thus just the boundary surface has to be
discretizing. A full matrix is generated which has to be solved to find the surface
currents. From the equivalent currents on the surface of the scatterer all farfield
quantities can be computed. Currently there is much progress with this method
using various acceleration method such as the Fast Multipole Method (FMM).
The fast multipole method (FMM) accelerates the matrix-vector product in the
conjugate gradient (CG) method used to solve the matrix equation iteratively
[106].
A personal history of the development of the Method of Moments as applied

to electromagnetics is presented by Harrington [107].
Open FMM is a free collection of electromagnetic software for scattering at

very large dielectric objects [108] based on an implementation by Fostier [109].
A FMM program is able to handle and solve very large linear systems. Thus
scattering by objects as large as 250 λ in diameter has been solved using a
parallel computer [110]. A number of commercial companies offering 3D MoM
simulation package are listed in appendix F of Davidson book [111].

11 Volume Integral Equation Method

The Volume Integral Equation (VIE) may be solved by two related methods to
compute scattering by an arbitrarily shaped or inhomogeneous scatterer [112].
Most well known and apparently most used is the Discrete Dipole Approxima-
tion (DDA) proposed by Purcell and Pennypacker [113]. In DDA an arbitrarily
shaped particle is treated as a three-dimensional assembly of dipoles on a cubic
grid. Each dipole cell is assigned a complex polarizability which can be com-
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Figure 2: Faceted “Fresnel-2” object represented by triangular surfaces.

puted from the complex refractive index of the bulk material and the number of
dipoles in a unit volume. An extensive review of the method has recently been
published by Yurkin and Hoekstra [114]. A Wiki on this method covering all
aspects from theory to program has been prepared by Draine and Flatau [115].
A number of programs based on this related methods is freely available. This

includes DDSCAT [115], ADDA [116], CG-FFT by Manuel F. Catedra, jscat by
Jouni Peltoniemi and LIBGREEN by Nicolas Piller [117]. For the FORTRAN
sources programs please have a look at the web site Electromagnetic Scattering
Programs [9].
Also with this method there is a project to accelerate light scattering sim-

ulation by reconfigurable computing which intends to implement DDA in an
FPGA (field-programmable gate array) chip [118]. A new release of the discrete-
dipole approximation scattering code DDSCAT recently became available [115].
DDSCAT 7.0 contains a number of new features such as postprocessing to calcu-
late the fields within or near a scattering particle. With this version absorption
and scattering by targets containing arbitrarily-oriented anisotropic materials
can be calculated.
To generate particle shape input data consisting of positions of the dipoles

together with the index of refraction for DDA programes from 3d-model file
formats based on a surface triangulation such as Wavefront .obj the “point in
polyhedron” algorithm can be used [119]. Fig. 2 gives an example of a triangu-
lated Fresnel-2 shape and Fig. 3 presents the corresponting DDA input data as
a collection of spheres representing dipoles.

12 Validation

In development of computational programs in the field of light scattering valida-
tions is an important aspect. Mostly, results obtained from different computer
programs are compared in the literature.
Examples using Discrete Sources Method (DSM) [120] for validation of the

NFM-DS have been published for the flat discs [85], concave Cassini oval based
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Figure 3: “Fresnel-2” object represented by 296,687 spheres (dipoles).

shapes [84], long fibres [121].
Results for a dielectric cube comparing NFM-DS with DDA, FDTD [122]

and VIEM [123] have been published by Wriedt and Comberg [124]. NFM-DS,
DDA and MMP [74] have been compared for a two particle multiple scattering
problem by Comberg and Wriedt [125]. NFM-DS, MMP, DSM, DDA and Finite
Integration Technique (FIT) [126] have all been applied to compute scattering
by a red blood cell [127]. Especially DSM proved to be an efficient method
to compute scattering by the erythocyte. Fig. 4 shows the cross sections of
two erythocytes of different shapes used for the sample results computed using
DSM pesenented next. Fig. 5 presents the scattering diagram for incident p-
polarisation and Fig. 6 for the corresponding s-polarisation. In each case the
incident plane wave propagates along the axis of symmetry of the scattering
erythocyte.
Recently, several computer implementations of the DDA method have been

compared in terms of their accuracy, speed and usability. Additionally, the ac-
curacy of the implementations have been studied by comparing results against
results from Mie, T-matrix or cluster T-Matrix codes [128].
For validation microwave analog experiments can also be used. Sabouroux

et al. [129] measured amplitude and phase of the scattered field of a cluster of
spheres and the measurements compared with theoretical predictions obtained
from a multiple-scattering T-matrix method and discrete dipole approximation
(DDA). Excellent agreement demonstrates the validities of both the experiment
and the models.
Grosges et al. [25] compared numerical scattering results in context of near-

field spectroscopy for FEM and FDTD on gold nano structures where the geo-
metrical singularities at the edges of the square generate a high gradient of
the electric near field. A good agreement between the different methods was
observed.
Some numerical benchmarks results computed using various commercial and

other software have been published by IEEE Germany [130]. For example prob-
lem 1 is a sphere with complex valued permittivity in a field of a plane wave
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Figure 4: Cross section of axially symmetric erythrocyte of two different shapes.

and nearfields computed inside the sphere are provided.
Babenko and Petrov [131] also considered internal field computation for com-

paring three different theories (GMT, T-Matrix Method, SVM) with respect to
computer time, precision and effectiveness. The three numerical techniques are
applied to calculate the internal fields in small spheroidal particles. The GMT
demonstrated the greatest capabilities with respect to size parameter (up to
100) and aspect ratio (up to 100:1).
Yurkin et al. compared the Discrete Dipole Approximation (DDA) and the

Finite Difference Time Domain (FDTD) method for simulating light scattering
of spheres in a range of size parameters up to 80 and refractive indices up to 2
[132]. DDA demonstrated to be faster for smaller refractive indices, while the
FDTD poved to be more efficient for larger values.

13 Conclusion

In this paper an overview of the progress in developing light scattering pro-
grams suitable for application in optical particle characterization has been given.
A fundamental description of each technique has been presented and suitable
references have been provided such that the reader can find more detailed in-
formation on the various methods and sources of computer programs.
The state-of-the-art in numerical light scattering modeling is progressing

rapidly especially with fast advancing research fields such as nanophotonics and
nearfield optics. With almost all concepts there was much progress in the recent
years.
The recent advance in computer hardware, and the development of fast al-

gorithms with reduced computational demands and memory requirements, have
made an exact numerical solution of the problem of scattering from large scat-
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Figure 5: Scattering diagram of erythrocyte with λ = 476nm and n=1.05.
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Figure 6: Scattering diagram of erythrocyte with λ = 476nm and n=1.05.
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tering particles highly feasible. Today scattering by realistically shaped particles
of realistic size can be computed in an efficient way.
Especially the number of open source programs and development projects is

increasing contiously.
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