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Summary 

Pressured to deliver high quality leads in early drug discovery, the pharmaceutical 

industry developed the leadlike concept. Leadlikeness implies cut-off values in the 

physico-chemical profile of chemical librarires (e.g., molecular weight below 460) and in 

vivo measured properties for individual compounds (e.g., bioavailability above 30% in 

rat). We examine these concepts in the context of Virtual (theoretically possible), 

Tangible (chemically feasible) and Real (physically available) worlds of molecules. In a 

thought experiment, we take the HTS concept to extreme: Screening the ‘Global 

Collection’ (60 million compounds) on 5000 targets could yield 3 million drug 

candidates. We show that the worlds of Tangibles and Reals is significantly under-

sampled above 350 molecular weight. This justifies the design and screening of ‘reduced 

complexity’ (leadlike) compound libraries, preferably with ‘synthetic handles’ available 

for rapid expansions in the same chemotype region.  

Keywords: cheminformatics, combinatorial library design, drug discovery, leadlike 

screening 

 

Teaser 

Taking the HTS concept to its extreme (60 million compounds over 5000 targets) in the 

context of virtual/tangible/real molecules, we argue that the leadlike concept provides a 

more effective way to sample chemical space and to probe biological activity space.  
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Introduction 

Preclinical drug research has placed an increased pressure on earlier stages of the 

discovery process [1-3], in particular on the choice of leads or drug prototypes [4], i.e. the 

molecular structures that undergo the process of optimization prior to reaching candidate 

drug status [5]. We discuss the reasons for this pressure, briefly analyzing the evolution 

of concepts that aim at improving the quality of leads [6, 7], and the understanding of 

leadlike space [8]. These concepts are currently used to assist the design and construction 

of virtual and physical compound collections for screening.  

Two distinct scenarios occur: In the first scenario, one does not have any specific target 

in mind at the time when the compound collection is assembled. In the physical world, 

this corresponds to most in-house collections for HTS (High-Throughput Screening) that 

have evolved in the pharmaceutical industry through the historical collection of samples 

synthesised and acquired over many years. In the virtual in silico world, this can be 

extended to the concept of a virtual library that is not target-specific. A subset of possible 

(or tangible) compounds in the library includes those that experience suggests can be 

physically assembled on demand through established chemistries.  The second scenario 

occurs when constructing a more focused library for a specific target (or group of related 

targets), using target-based information in order to focus or bias the selection. In the 

physical world, this corresponds to target-specific (focused) libraries available from 

many chemical vendors or as designed and synthesised internally within a pharmaceutical 

company. In the virtual world, such compound sets can be derived from analyzing high 

activity molecules (HAMs), or from known leads co-crystallized with the target of 

interest. The possible collection is in this case represented by a much more limited set of 
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target molecules which meet, for example, specific pharmacophoric criteria although they 

may still be part of a larger array, which is actually synthesised. This is because of the 

nature of combinatorial chemistry which is usually done in n by m arrays. 

One of the major efforts to revise the input/output (or the signal/noise) ratio with regards 

to the effectiveness of chemical aspects of drug discovery has been in the area of 

cheminformatics. In the strictest sense, chemical informatics integrates data via 

computer-assisted manipulation of chemical structures [9]. Chemical inventory and 

compound registration are vital to cheminformatics, but it is their combination with other 

theoretical tools from the wider realm of Computational Chemistry and their linkage  to 

Physical Organic Chemistry, Pharmacodynamics and Pharmacokinetics (and eventually, 

to the amelioration/avoidance of undesirable pharmacology leading to Toxicology) that 

brings unique capabilities in the area of lead and drug discovery. In recent years, 

cheminformatics has emerged as the informatics-driven technological push in preclinical 

research, since it attempts to link all the involved scientific partners, from virtual 

screening to animal toxicology via one central element: chemical structure. 

Cheminformatics has been given increased attention in the early stages of lead discovery, 

where the concept of leadlikeness has gained increased importance: The processes by 

which interesting starting points for medicinal chemistry can be found needs to become 

cost effective.  

 

Issues in Early Lead Discovery 

The innovation deficit [1] of pharmaceutical R&D, whereby there appears to be a lack of 

truly new therapies being developed, can in part be explained by the desire to have a 
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‘best-in-class’ strategy for products (thus securing a lasting product), in contrast to the 

‘first-in-class’ strategy, i.e., being the first to market a new class of therapeutics. Because 

‘first-in-class’ rarely remain ‘first-in-class’ (e.g., Cimetidine was surpassed by 

Ranitidine, and Felodipine by Amlodipine), the incentive to be strong innovators is 

somewhat lacking unless a company also commits to improving on its own ‘first-in-class’ 

products. Pharmaceutical companies therefore often follow similar trends and molecular 

targets in a market-driven prioritization process [3], which can slow the pace of 

innovation. While companies will aspire to be truly innovative the market experience 

often makes the prospects of developing truly new products daunting [3, 10*]. 

Lipinski’s seminal analysis of reasons why compounds failed to progress to become oral 

drugs and the resulting ‘rule of fives’ (RO5) [11] pointed out the dangers of ignoring 

pharmacokinetic properties in combinatorial library design. Given the time-lag between 

lead discovery and drug launch (8-15 years on the average [12]), we may still be 

witnessing the effects of progressing drug candidates from the pre-RO5 era. A decade 

after the initial shift in the lead discovery paradigm toward HTS and combinatorial 

chemistry, pharmaceutical R&D productivity remains low. In addition to ignoring or 

forgetting a lot of the principles of medicinal chemistry in the early years of the new 

technologies the goalposts have also been continually moving. Thus, the criteria that 

candidate drugs must fulfill prior to approval are increasingly demanding.   

HTS clearly works as a method for finding starting points for drug discovery programs, 

but how can it be made more effective? The preclinical drug discovery cascade, starting 

from HTS and moving into the launched drug phase requires the screening of the order of 
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one million compounds to find a suitable lead for one ultimately successful outcome [13] 

– see Figure 1.  
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Figure 1. A typical drug discovery cascade [13]. Accurate figures are difficult to average 

across the pharmaceutical industry, so the number of compounds is for illustrative 

purposes. A 40% false positive rate is assumed in evaluating HTS hits, and one in 2-5 

leads are assumed to progress from lead identification to drug candidate. The risk of 

failure increases as a molecule becomes a drug candidate because of high costs in clinical 

trials. Modified from [13]. 

 

If we knew a priori more about the relationship between chemotypes and target activity 

this ratio would undoubtedly improve. Thus HTS is usually more successful for so called 

‘tractable targets’, e.g., kinases or G-protein coupled receptors [14]. Not withstanding this 

lack of chemotype-activity knowledge, there are also many process enhancements that 

should be considered as being helpful in improving the overall success in HTS. Often 
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there is a high rate of false positives in single-dose single-experiment assays (see Figure 

1); partly this is the risk of doing n=1 experiments.  Post-HTS analyses [15] are often 

further clouded by the screening of reactive species or optically interfering components 

(which can be the result of sample degradation) in biochemical assays [16*], the tendency 

of some chemicals to aggregate [17**] or to turn up as frequent hitters [18*]. Further, the 

selection of HTS hits to follow up from the primary assay often remains subjective, as the 

definition of a ‘HTS hit’ may depend on the available information and experience of the 

chemist assigned to the project. Totally new targets and the desire to not rule out possible 

hits may force chemists to select ‘hits’ at 30% inhibition, whereas well-patented areas 

and decades of medicinal chemistry experience, coupled with an established assay, will 

allow chemists to select hits at 80% inhibition. Probability schemes have been devised to 

assist this process [19]. Cheminformatics tools are increasingly used to handle the vast 

amounts of data from HTS [15] and to bring rigor to the process of looking for genuine 

leads.  

 

The Virtual, Tangible, Global and Real Worlds of Molecules. 

Virtual, Tangible, Global and Real Collections. In the ideal scenario, it would seem 

appropriate to reliably screen the maximum number of molecules that we can afford 

against every appropriate target in order to find the highest number of leads and 

ultimately effective drugs. While this is the only way to ensure that we discover all 

possible leads (that already physically exist) for all targets, this is highly impractical. For 

instance there is no effective limit for the number of compounds that can be made or 

acquired. It has been estimated that there are far in excess of 1060 drug like molecules that 
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could be made [20]. This vast number of compounds is referred to as the Virtual 

Collection of compounds because they cannot be all made, but they are essentially a 

‘resource’ that can be mined as needed. Having appropriate informatics systems to access 

these virtual compounds via 2D, 3D and other property spaces is a key part of lead 

discovery strategies. Those compounds that can be reliably made via an appropriate 

chemical route can be designated as Tangibles because they could be ‘easily’ synthesized 

or acquired in a timely manner from a supplier as needed. The total output of the 

pharmaceutical sector (including academic and commercial resources) represents the 

Global Collection (see below). Most pharmaceutical companies have yet smaller 

collections ready for screening. These include the compound samples that have been 

accumulated over many years, as well as novel compounds acquired from external 

sources or produced in-house by automated facilities together with compounds made in 

lead optimization projects. These are the Reals, i.e., those discrete entities that physically 

exist within a company and are actually available for screening. The 

Virtual/Tangible/Real (VTR) description of compounds provides a framework for 

considering how we design and build screening sets. 

The Magnitude of the ultimate Screening experiment: A thought experiment estimate. The 

issues in lead discovery are better understood by gaining insights into the magnitude of 

the problem that might need to be faced if HTS was taken to extremes. We estimate that 

fewer than 120 million compounds have been synthesized worldwide and could be 

available for biological screening if everyone pooled their resources. This is based on the 

fact that one of the largest collections of commercially available structures, 

ChemNavigator [21], covers ca. 12 million structures (8 million unique molecules), of 
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which 90% are RO5 compliant. The combined output from the pharmaceutical sector 

world-wide, the Global Collection, is unlikely to exceed 10 times that number, in terms 

of unique chemical structures. This sets an upper limit for the Global collection if we had 

access to the contents of everyone's Reals.  

For reasons related to inadequate storage, compound purity and stability, and considering 

the compound quantities, we further estimate that only 50% of the Global Collection (i.e., 

60 million structures) could become available for screening. Given the current capacity of 

HTS robots (we assume 100,000 compounds/day), screening 60 million compounds on 

5,000 targets at a single dose, single experiment level would take over 8 years, using 

1000 HTS robots operating at full capacity. Five thousand targets represent ten times 

more targets than currently addressed by therapeutic agents (N = 483 [2]). At a few cents 

per assay for reagents, the entire effort would cost many billion dollars (not including 

man-years, equipment, assay/target preparation and chemical preparation costs). The 

budget of this ‘global HTS’ effort would be comparable to the entire research and 

development budgets ($32 billion) of the pharmaceutical industry in 2002 [22].  

It is not just the cost of this experiment in reality that is daunting. If 8 bits are enough to 

store single results, and 4 bits are required to store assay conditions, i.e., 12 bits/result, 

the results of screening the 'Global collection' would further require more than 3,352 

gigabytes of storage space. While such space is feasible these days, it is unlikely that 

current software has the capacity to effectively navigate through the entire dataset – 

although each target per se would require less than 687 MB of storage. By conservatively 

assuming a 0.1% success rates and 40% false positives (same as in Figure 1), this effort 

could yield 180 million HTS actives, up to 3 million drug candidates and up to 300,000 
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new drugs. This thought experiment shows without a doubt that the current lead 

discovery paradigm could reach an unprecedented scale, but would require steep changes 

both in terms of logistics and financial support. Even if mergers and acquisitions world-

wide led to a single, meta-pharmaceutical entity, this would still be an extraordinarily 

daunting task that would require drastic changes in the decision-making process and 

clarity in the prioritization of molecules at the chemical level.  

 

The Druglike and Leadlike Concepts 

Druglikeness. Since the Global Collection is likely to remain unavailable for lead 

discovery in the next decade, medicinal and combinatorial chemists are exploring the 

VTR concept in an effort to explore in silico, which Reals are sensible to have available 

to ‘represent’ the larger Global and Virtual spaces. As discussed above chemical space is 

effectively infinite. A further simple example of this is provided by considering the 

simple case of substituted n-hexanes with 150 substituents [23]: Weininger estimates that 

all the possibilities, from mono- to 14-substituted hexanes, regardless of synthetic 

feasibility, amount to 1029 n-hexanes [23]. The search for ‘lost and emerging chemistry’ 

[24] aims at identifying molecular scaffolds that go beyond rings with 6, 10-13 or 17 

atoms. More effective methods are needed to decide which of these vast numbers of 

compounds to select as potential starting points and ultimately which have any prospect 

of being developed into drugs. 

Chemical fingerprints can serve as the basis [25, 26] for a crude computer-based 

discrimination between ‘drugs’, represented by WDI, the World Drug Index [27], or by 

MDDR, the MDL Drug Data Report [28], and ‘non-drugs’, represented by ACD, the 
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Available Chemicals Directory [28]. Although this result was reproduced by other groups 

[29-31*], it has yet to become accepted by the chemistry community as a decision-

enabling scheme. If it was truly effective, it could assist chemists to quickly evaluate, for 

example, what other chemists have considered worthy of synthesis (and patenting) before 

them. The problem is that good druglike scores do not make a molecule a drug. It is often 

assumed that Lipinski’s RO5 criteria define druglike space. However we showed that this 

was not the case [32], as there are more compounds in ACD, or ‘non-drugs’, which are 

RO5 compliant, compared to compounds from MDDR, or ‘drugs’. A recent study by 

Vieth et al [33*] looked at the differences in the properties of drugs having a variety of 

routes of administration and confirmed that oral drugs have properties associated with 

lower molecular weight (MW), fewer hydrogen bond acceptors (HAC) and donors 

(HDO), and fewer rotatable bonds (RTB) compared to drugs that have other routes of 

administration (see also earlier work [11]). Despite this extension to RO5 criteria, there 

remains a gulf between these crude rules of thumb and true discriminating power for 

specific design purposes. It is therefore more appropriate to think of the RO5 type criteria 

as necessary, but not sufficient to create an oral drug-like molecule.  

Leadlikeness.  Unlike the druglike scores, where large numbers of chemical structures 

have been submitted to statistical analyses, the leadlike concept [34] is based on 

significantly smaller datasets [6, 7, 35*]. Despite this, the concept of leadlikeness is 

already having a significant impact in the design of chemical libraries [36**]. This is, in 

part, because the concepts and methods related to leadlikeness are very intuitive and fit 

with the current experience of what typically happens [37*] in lead optimization. Based 

on current data, it appears that, on the average, effective leads have lower molecular 
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complexity [6] when compared to drugs, as well as a fewer number of rings (RNG) and 

rotatable bonds [7], have lower MW and are more polar [34].  

Rishton extended the leadlike concept [16*] by including chemical properties. He 

suggests that leadlike structures should bind only in a non-covalent, reversible manner, 

should show chemical stability toward proteins, and should not be ‘promiscuous 

inhibitors’ [17**], ‘frequent hitters’ [18*] or ‘warhead’ compounds [16*]. Rishton’s 

‘warheads’ include electrophilic ‘suicide inhibitors’, phosphates, phosphonates, 

hydroxamates and thiol ‘chelators’, i.e., groups known to react with proteins under HTS 

assay conditions. 

 

Implications for Library Design 

Having recognized that poor solubility and poor permeability are among the main causes 

of failure [38] in later stages of drug development (see also Figure 1), the medicinal 

chemistry community is now rethinking [39**] its drive to produce large, hydrophobic 

molecules by limiting these properties to values smaller than those suggested by Lipinski 

[11*]. Our survey [8] of the chemical structures published between 1991 and 2000 in the 

Journal of Medicinal Chemistry [40] shows that 25.2% of the high-activity molecules 

(HAMs), or better than 10 nM, are large (MW > 425 a.m.u.), hydrophobic (the logarithm 

of the octanol/water partition coefficient [41], LogP, is above 4.25) and poorly soluble 

(the logarithm of the intrinsic aqueous solubility, LogSw, is below –4.75). This should be 

compared to the 1.7% HAMs that are small (MW < 300), significantly less hydrophobic 

(LogP < 1.5) and soluble (LogSw > -2). Therefore, one can conclude that the benefits of 

the leadlike concept have yet to be translated into practice on a large scale.  
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As pointed out by Kuntz et al. [42] and confirmed in our earlier work [13], higher 

molecular weight does not necessarily warrant higher activity. A close examination of the 

WOMBAT database [40] reveals that increased biological activity is not directly 

correlated [8] to an increase in size and hydrophobicity – see Figure. 2.  

 

Figure 2. Size (MW) and hydrophobicity (LogP) in relationship to biological activity as 

captured in WOMBAT [40]: HAMs (6564 activities, black) are shown in contrast to low-

activity molecules, LAMs (24124 activities below 1 M, in gray); 61% of the LAMs and 

41.6% of the HAMs can be labeled as ‘leadlike’ (MW < 450 and LogP < 4.5). 

 

This result is relevant as one of the aims of combinatorial chemistry is ultimately to 

produce drugs, not leads [7]. The leadlike strategy, also proposed for virtual screening 

[43], has practical consequences for energy-based ranking of virtual hits [44], since an 

increase in the number of non-hydrogen atoms is likely to yield higher scores during 

virtual screening. Therefore careful choice of virtual screening scoring schemes needs to 

be done if inappropriately large molecules are not to be selected by in silico screening for 
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taking forward for real screening. We have also argued that such molecules actually have 

a lower chance of being hits because of the very high chance of getting interactions 

wrong in over-functionalized (i.e. large) molecules [6]. 

Placing our property-based analyses [8] in the context of preclinical drug discovery, we 

have formulated computational criteria for leadlike compounds [45]: MW≤460, -4 ≤ 

LogP ≤ 4.2, LogSw ≥ -5, RTB ≤ 10, RNG ≤ 4, HDO ≤ 5, HAC ≤ 9 – where RNG is the 

number of rings. Such criteria are expected to be applicable to chemical libraries during 

lead identification. However, the following experimental criteria, mostly related to in vivo 

properties (e.g., in rat), become more relevant for individual compounds: Bioavailability 

above 30%, low clearance (e.g., below 10 mL/min/Kg), LogD7.4 (LogP at pH 7.4) 

between 0 and 3, poor (or no) binding to drug-metabolizing cytochrome P450 isozymes, 

plasma protein binding below 99.5%, lack of acute and chronic toxicity at the expected 

therapeutic window (e.g., assuming 500 mg/day P.O. regimen for 7 days), no 

genotoxicity, teratogenicity or carcinogenicity at doses 5-10 times higher than the 

therapeutic window. The experimental criteria should be applied to (most) compounds 

progressed from the lead identification to the lead optimization stage.  

 

Developing Leadlike Screening Sets 

These and related concepts have led us and others to develop screening strategies which 

are complementary to more traditional HTS methods. Some companies, e.g., Astex [46], 

Plexxikon [47] and Vertex [48] have gone so far as to have the concepts of screening 

fragments or very small lead like entities (in connection with X-ray crystallography or 

NMR) as their principle lead generation paradigm [36**]. The general approach is to try 
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to find start points for lead optimization which are more ‘leadlike’ and typically less 

complex than those derived solely on ‘druglike’ criteria.  

Another aspect of leadlikeness and reduced complexity that we have explored [49] 

concerns the sampling rates that can be achieved with Reals of a given complexity within 

the vast space of Tangibles or Virtuals. This can be explored with the aid of Figure 3, 

which shows the number of carboxylic acids (of all types) registered in the GSK registry 

system plotted as a molecular weight distribution (black curve). The grey curve shows the 

incremental number of acids in the collection for each 25 a.m.u. increase and is 

effectively the rate of increase in the number of compounds in a particular MW range. 

The steep rise in the number of acids with MW follows an exponential curve initially, as 

expected – since the number of Tangibles increases exponentially with the number of 

heavy (non-hydrogen) atoms in a molecule. However, at around 150 a.m.u., the observed 

MW increase of these compounds ceases to be exponential. Why is the rise no longer 

exponential after 150 a.m.u.? Our explanation is that we significantly under-sample the 

potential carboxylic acids (i.e., the Virtuals), and that this under-sampling gets worse as 

MW and complexity increase.  
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Figure 3. Distribution of Carboxylic Acids in GSK collection 

 

A different view of the same data combines the actual count of carboxylic acids within a 

given MW range (grey triangles), the cumulative observed count (black squares) and the 

extrapolated (exponential) count (black circles) – Figure 4. The y-axis scale is modified 

to provide an indication of the true cumulative number of virtual carboxylic acids that 

probably exist with MW~400. A nominal figure of 1010 is suggested but this is probably 

an under-estimate. The precise numbers are not relevant, the key conclusion is that at 

lower MWs (e.g., 300 a.m.u.), the Reals represent a better sample of the Virtual world. 

This is contrasted to the under-sampling that occurs at a higher MW (e.g., 450 a.m.u.). 

Thus, above 350 MW, the two curves start to diverge significantly. Should any biological 

activity be observed within chemotypes in the lower MW region, then using these 

molecules as the starting point can provide a more effective way to probe the region of 
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higher MW compounds within the related chemotype/pharmacophore region. This is the 

essence of the leadlike concept, and should be reflected in the process of lead 

optimization, in contrast to attempts to directly probe biologic activity in the region of 

exponentially larger number of higher MW compounds. 
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Figure 4. The potential number of chemicals with a carboxylic moiety, plotted against 

MW. Above MW = 350, there is an increased divergence between the number of 

observed compounds (Reals) and all theoretical combinations (Virtuals).  

 

Starting points with lower MW are likely to have less potency and are not always clearly 

identifiable via HTS, if the screening concentration is typically of the order of 10 µM or 

less. The obvious solution is to screen compounds at higher concentrations, e.g., 50 µM, 

but this introduces problems related to solubility, purity and interference with readout, 

e.g. by fluorescence quenching. Nevertheless, with careful selection of compounds and 

robust screens we have been able at GSK to screen several targets (mainly enzymes) at 

up to 1mM concentration and still extract useful information.  
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The so-called ‘Reduced Complexity’ screening set that we have used for this purpose was 

assembled using a number of computational criteria, e.g.,  average values for MW < 350, 

RTB  6, heavy atoms  22, HDO  3, HAC  8, ClogP  2.2, and matching certain 3D 

pharmacophoric patterns based on the GaP approach [50]. The GSK selection criteria 

also require the presence of a ‘synthetic handle’, i.e., chemical moieties that allow rapid 

synthesis of further analogues. Typical generic structures considered for the ‘Reduced 

Complexity’ screening set are shown in Fig 5. However, similarity searching for related 

compounds in the world of Reals (GSK compound collection and external suppliers) is 

sometimes a faster follow up procedure. Wherever possible we also aim to obtain 

experimental data on the binding mode of the compounds to the protein by X-ray or 

NMR methods.  
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Figure 5. Examples of generic structures considered for the Reduced Complexity 

screening set. X, Y indicate possible heteroatoms. ‘Synthetic handles’ are shown in bold.  

 

Conclusions.  

In our opinion, the concept of leadlikeness will help refine the processes by which 

interesting starting points for medicinal chemistry can be found in a cost effective 

manner. We believe that leadlikeness is an integral part of the continual enhancement of 
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the processes of HTS. It illustrates the use of conceptual and computational tools that are 

needed in order to avoid resorting to the heroics that would be needed if our ‘all against 

all’ thought experiment was literally followed to exhaustion. In looking for leadlikeness, 

one needs to exercise caution. Unlike the Planck constant, the cut-off values attributed to 

leadlikeness are context-specific: Should the delivery route change from oral availability 

to, e.g., intravenous injections or aerosol inhalations, most of these values would be 

adjusted to fit a different profile. Furthermore, the history of drug discovery abounds with 

counterexamples to the leadlike concept: Tetrahydrofolate (MW = 574.5) served as lead 

for Methotrexate (MW = 454.4), and Tubocurarine (MW = 610.7) was the lead for 

Gallamine (MW = 510.8). As Rishton points out [16], “most drugs found in the compiled 

databases were classically discovered and developed using biological assays, selective 

cytotoxicity assays and animal models of disease, not using biochemical [e.g., HTS] 

assays.” In other words, these leads were optimized at a time where chemists could 

modify 1-10 molecules, have them screened and interpret the results before another 

design/make/test cycle would start. Today, there is a risk that high throughput 

experiments reduce the opportunity for innovative and iterative thinking, as millions of 

molecules are screened simultaneously without the possibility of interpretation and 

analysis between the traditional rounds of experiments. We have to face the fact that the 

design/make/test cycle sometimes occurs only in the late stages of lead identification 

(secondary and follow-up screening), and mostly in lead optimization. This increases the 

rational for applying the leadlike concept, since the critical decision in preclinical 

discovery remains the choice of the lead compounds which ultimately derive from what 
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is in screening collections [13]. Therefore the careful incorporation of the leadlike 

concept into screening collections becomes even more important. 
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