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Abstract 
The formation of three-dimensional shell-like structures with bilayer graphene 
walls is described. The structures are produced by the passage of an electric 
current through graphite in an arc-discharge apparatus. High resolution 
transmission electron microscopy is used to characterize the carbon, and 
provides evidence that the structures are three-dimensional rather than flat. A 
striking feature of the material is that it contains bilayer nanotubes seamlessly 
joined to larger shell-like regions. The possible growth mechanism of the 
carbon is discussed, and potential applications considered. 
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1. Introduction 

Experiments with a graphite arc have proved to be extremely fruitful for 

carbon research. In 1960, Roger Bacon used a DC arc to produce graphite 

whiskers, scroll-like graphite fibres with outstanding mechanical properties [1,2]. 

This proved to be a key event in the development of carbon fibres. Thirty 

years later, Krätschmer and Huffman and their co-workers achieved the first 

bulk synthesis of C60 using an arc-evaporator [3], a development that gave a 

huge boost to fullerene research. Shortly afterwards Iijima [4] produced highly 

perfect multiwalled carbon nanotubes using arc-evaporation, and in 1993 

Iijima and Ichihashi [5] and Bethune and co-workers [6] showed that single-

walled nanotubes could also be made in this way. Recently, yet another kind 

of carbon has been discovered in graphite samples which have been 

subjected to arc-discharge [7,8]. This new carbon apparently consists of 

hollow graphitic shells bounded by curved and faceted planes, typically made 

up of two graphene layers. The curvature and faceting appears to be due to 

the presence of a small number of pentagons and other non-hexagonal rings 

distributed in a hexagonal graphene network. The hollow structures, which 

can be several 100s of nm in size, are frequently decorated with nano-scale 
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carbon particles, or short nanotubes; in some cases, nanotubes are found to 

be seamlessly joined to the thin shells.  

 

In this paper, the synthesis of these novel carbon structures, and their 

characterisation by high resolution transmission electron microscopy, is 

described. Evidence that the structures are three-dimensional rather than flat is 

presented, and the possible formation mechanism of the structures is 

considered, although many aspects of this remain poorly understood. In 

particular is not clear why the great majority of the hollow particles have 

bilayer, rather than monolayer or multi-layer walls. It is suggested that this 

may be related to the edge structure of the original graphite. The relationship 

between the new structures described in this paper and rather similar ones 

reported in 2009 by Jia et al. [9] and by Huang and colleagues [10] is 

discussed. In these latter papers, a structural transformation of graphite 

similar to that reported here was produced by the in situ heating of graphite 

“nanoribbons” inside a TEM. This was explained in terms of sublimation and 

edge reconstruction of flat graphene, but may actually have involved a 

transformation from flat graphite to hollow structures, as described in the 

present work. 

 

The new carbon materials may have useful applications in a number of areas. 

With their extremely large surface-to-volume ratios they could be useful as 

hydrogen storage materials or in catalysis. They could also be of value in 

electrical devices such as supercapacitors or lithium ion batteries, where their 

structural stability might give them advantages over materials assembled from 

graphene flakes by solution or other methods. 

 

2.  Experimental Methods 

The graphene material described in this paper was prepared in a commercial 

arc-evaporator, a Quorum Q150T ES, which is normally used for carbon-

coating specimens for electron microscopy. In this unit the electrodes are 3 

mm graphite rods, one of which is thinned to a diameter of approximately 1.4 

mm and held in contact with the other electrode with a spring mechanism. The 

chamber is pumped by a turbomolecular pump to a pressure of approximately 
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3 x 10-4 mbar. Before carrying out the “evaporation”, the rods are out-gassed 

by passing a current of about 30A for 1 minute. For evaporation, a current of 

75A is passed for 3 s. 

 

Following evaporation, the thinner carbon rod was found to have slightly 

shortened, and a small deposit was formed in the area where the two rods 

made contact, as shown in Fig. 1. This was collected and prepared for TEM 

by grinding in an agate mortar under isopropanol, mixing in an ultrasonic bath 

and depositing onto lacey carbon TEM grids. The microscope used was a 

JEOL 2010, with a point resolution of 0.19 nm, operated at an accelerating 

voltage of 200kV. Images were recorded digitally using a Gatan Orius 200 

camera. Samples from the fresh graphite rods were also imaged, for 

comparison with the carbon collected after arcing. 

 

3. Results 

A typical image of material from the fresh graphite rod is shown in Fig. 2(a). 

As expected, this consists mainly of flat crystallites, ranging from a few 100 

nm to about 5 µm in size, containing up to 100 layers. The crystallites were 

often folded and buckled, and were covered with small amounts of finely-

divided material. However, nanotubes or other fullerene-related structures 

were not seen in the fresh graphite.  

 

The carbon collected from the graphite rods following arcing contained some 

“normal” graphite, but this was accompanied by many regions which had a 

very different appearance. One of these areas is shown in Fig. 2(b). Here, the 

outline of the structure is much more irregular than in the fresh graphite, with 

many curved and unusually-shaped features, including re-entrant structures. 

The material is decorated with numerous short nanotubes or nanoparticles. 

The proportion of carbon in the arc-treated samples which had this altered 

structure is difficult to estimate with any accuracy, but typically it appeared 

that about 50% had been transformed in this way. 

 

Micrographs recorded at higher magnifications showed that the thin structures 

consisted largely of bilayer graphene. An example is shown in Fig. 3. The 
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bilayer spacing, determined from this and other images, was generally 

somewhat larger than the interplanar spacing for graphite, being typically 

around 0.4 nm. The possible cause of the preferential formation of bilayer 

graphene is discussed below. Single-layer graphene was only rarely seen; 

regions with 3 or more layers were more common. The nanotubes and 

nanoparticles which were supported on the larger structures were also 

generally bilayer, although nanoparticles with many layers were sometimes 

seen. 

 

Several features of the unusual structures observed in the arc-treated carbon 

suggest that the material consists of three-dimensional, hollow structures 

rather than flat bilayer graphene. One notable observation is that small 

nanoparticles or nanotubes are sometimes seen apparently inside larger 

structures. Figure 4 shows an example, where a small, single-walled 

nanotube appears to be encapsulated in a bilayer structure. Another striking 

feature of the graphitic material was that nanotubes were often observed to be 

joined to the larger regions. Several examples of this are shown in at low 

magnification in Fig. 5 (a). The tubes were generally 3 – 6 nm in diameter. 

Higher resolution images, such as that in Fig. 5 (b), showed that the 

nanotubes were almost invariably bilayer, and were seamlessly joined to the 

larger structures. This provides further evidence that the large bilayer 

structures are three-dimensional rather than flat, since it is difficult to envisage 

a way in which nanotubes, with their circular cross-section, could be 

connected to flat, few layer, graphene without being seriously distorted, at 

least in the vicinity of the junction.  

 

The exact nature of the junctions between the tubes and the larger shell-like 

regions is not known at present. A number of authors have analysed the 

possible ways in which a nanotube could be joined to a graphene sheet (e.g. 

[11-13]), but these have all involved tubes bonded to flat graphene planes. In 

the present case, the nanotubes seem to be joined to cone-shaped regions. It 

is possible that the junctions may be similar to those observed in certain 

nanotube tips where a short cylindrical region joins a conical structure [14]. 

Such structures involve a -60° disclination, believed to be due to the presence 
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of a heptagonal ring, but more work is needed to establish the precise 

structure of these connections. 

 

4. Discussion 

A striking transformation in the structure of graphite as a result of the passage 

of an electric current in an arc-discharge apparatus has been described. This 

apparently involves the formation of three-dimensional shell-like structures 

bounded by very thin walls, which in most cases consist of bilayer graphene. 

As mentioned in the previous section, there any several reasons for believing 

that these new structures are three-dimensional and hollow rather than flat. 

These include the observation that small nanoparticles or nanotubes are 

sometimes seen encapsulated inside larger structures, and that nanotubes 

are often found to be seamlessly joined to the thin shells. 

 

The mechanism of the transformation is not known at present, but it is 

possible that the key to understanding the process may lie in the edge 

structure of graphite. It is well established that graphite planes often have 

“closed” edges, so that the layers resemble folded sheets [15-19], as 

illustrated in Fig. 6 (a). The transformations reported in this paper may simply 

involve an “opening” of the layers, as shown schematically in Fig. 6 (b). Such 

a process might be initiated by the nucleation of pentagonal rings at the 

closed edges: it is clear from the presence of nanotube-like structures in the 

carbon that pentagons are present. It also seems clear that the electric current 

passing through the carbon, rather than simply the high temperature, is 

responsible for the transformation. However, further work is needed to gain a 

more detailed understanding of the process. 

 

Transformations rather similar to those described here were reported in two 

studies published in 2009 by Jia et al. and Huang et al. [9,10]. These studies 

involved in situ Joule heating of graphite nanoribbons inside a TEM, which 

resulted in the formation of complex edge structures, sometimes with short 

nanotubes attached to larger areas. In both papers the authors drew a 

different conclusion about the nature of the transformation to that given here: 

the process was discussed in terms of sublimation and edge reconstruction of 
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flat graphene. It seems more likely that they were actually seeing a 

transformation from flat graphite to hollow structures, as described in the 

present work, rather than sublimation. However, there was one important 

difference between the structures seen in the Jia and Huang studies and the 

ones reported here. The hollow structures described in the present study were 

almost invariably bounded by bilayer graphene walls, while the structures in 

the 2009 work were virtually all single layer. This may reflect differences in the 

precursor graphites used for these experiments. In the present work it has 

been suggested that the precursor graphite had edges in which two adjacent 

bilayers were joined, as shown in Fig. 6 (a). It may be that in the precursor 

graphite used by Jia and Huang, only adjacent monolayers were joined. This 

raises interesting questions about the edge structures of graphites, an area 

that has not yet been studied in detail. 

 

The material reported in this paper could be described as “three-dimensional 

graphene”. In recent years a number of groups have described the production 

of three-dimensional structures constructed from graphene, or graphene oxide, 

but these materials differ in significant ways from the structures reported here. 

In most cases the methods used to assemble the graphene flakes have 

involved suspending them in a solvent, using chemical methods to link them 

together and then removing the solvent in a controlled way [20-23], although a 

chemical vapour deposition method has also been reported [24]. These 

techniques produce porous graphene structures, with pore sizes typically of the 

order of a few 10s of μm. In these structures the graphene fragments are held 

together by weak Van der Waals type forces, suggesting they would possess a 

relatively low rigidity, and that the pore structure would be prone to collapse. 

The new carbon structures described in the present paper differ from these 

materials in that the porosity is on a much smaller scale, and results from the 

presence of a small number of pentagons, plus a few other non-hexagonal 

rings, distributed throughout the graphene network. The “three-dimensionality” is 

thus a consequence of the chemical bonding configuration in the structure, 

producing far greater strength and resilience than in the materials produced by 

assembling graphene flakes. 
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Concerning potential applications of the three-dimensional graphene structures, 

these could lie in a number of areas. One possibility might be hydrogen storage, 

since forms of carbon rather similar to those described here have been shown 

to have good H2 storage capabilities. Thus, Orimo et al. reported in 1999 that 

“nanostructured graphite” prepared by mechanical milling of synthetic graphite 

can have high H2 uptakes [25]. Carbon nanohorns have also been shown to 

have potentially useful H2 storage properties [26]. Theoreticians have suggested 

that “pillared graphene”, a three-dimensional network constructed from 

graphene and short nanotubes, could adsorb 6% of its weight in hydrogen at 

room temperature and pressure [27]. Although the present material is a 

disordered rather than an ordered network, its H2 storage characteristics might 

be similar to those of “pillared graphene”. 

 

The new structures may also have applications in electrical devices. A number 

of studies have demonstrated that various forms of modified graphene can be 

used to produce supercapacitors with high specific energy densities [e.g. 28 - 

30]. The graphenes used in these studies are typically produced by exfoliating 

graphite [28] or by chemical vapour deposition [30]. Although these materials 

initially have the high surface areas required for supercapacitors, it is not clear 

that they would retain these surface areas under operating conditions: the flat 

graphene flakes would have a tendency to clump together. In contrast, the 

curved and faceted shells described in the present paper would be much 

more likely to retain their surface area. As well as supercapacitors, there has 

been great interest in using graphene in the anodes of lithium ion batteries 

[31]. The large internal volume, stability and high conductivity of the structures 

described here suggest they might also be useful in this area. 

 

Finally it is interesting to reflect that, although the products of carbon arcs 

have been studied intensively since Bacon’s work in 1960, and carbon arcs 

themselves have been used since the early 19th century, it appears that the 

kind of structures described in this paper were not observed before 2009. As 

Peter Thrower perhaps knows better than anyone, carbon is a material which 

continues to produce surprises. 

 



 8 

References 
 
 
 
[1] Bacon R. Growth, structure and properties of graphite whiskers. J. Appl. 

Phys. 1960; 31(2):283–90. 
 
[2] Thrower PA. Roger Bacon 1926-2007 – Obituary. Carbon 2007; 45(6): 

1143-1144. 
 
[3] Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR. Solid C60: a 

new form of carbon. Nature 1990; 347(6291): 354-358. 
 
[4] Iijima S. Helical microtubules of graphitic carbon. Nature 1991; 

354(6348): 56-58. 
 
[5] Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. 

Nature 1993; 363(6430): 603-605. 
 
[6] Bethune DS, Kiang CH, de Vries MS, Gorman G, Savoy R, Vasquez J, 

Beyers R. Cobalt-catalysed growth of carbon nanotubes with single-
atomic-layer walls, Nature 1993; 363(6430): 605-607. 

 
[7] Harris PJF. Ultrathin graphitic structures and carbon nanotubes in a 

purified synthetic graphite. J. Phys.: Condens. Matter 2009; 21(35): 
355009. 

 
[8] Harris PJF. Structural transformation of graphite by arc-discharge. 

Philosophical Magazine 2011; 91(18): 2355-2363. 
 
[9]  Jia X, Hofmann M, Meunier V, Sumpter BG, Campos-Delgado J, 

Romo-Herrera JM, Son H, Hsieh YP, Reina A, Kong J, Terrones M, 
Dresselhaus MS. Controlled formation of sharp zigzag and armchair 
edges in graphitic nanoribbons. Science 2009; 323(5922): 1701-1705. 

 
[10]  Huang JY, Ding F, Yakobson BI, Lu P, Qi L, Li J. In situ observation of 

graphene sublimation and multi-layer edge reconstructions. 
Proceedings of the National Academy of Sciences of the United States 
of America 2009; 106(25): 10103-10108. 

 
[11] Baowan D, Cox BJ, Hill JM. Two least squares analyses of bond 

lengths and bond angles for the joining of carbon nanotubes to 
graphenes. Carbon 2007; 45(15): 2972-2980.   

 
[12] Li YF, Li BR, Zhang HL. The computational design of junctions 

between carbon nanotubes and graphene nanoribbons. 
Nanotechnology 2009; 20(22): 225202. 

 



 9 

[13] Chernozatonskii LA, Sheka EF, Artyukh AA. Graphene-nanotube 
structures: Constitution and formation energy. JETP Letters 2009; 89 
(7): 352-356. 

 
[14] Iijima S, Ichihashi T, Ando Y. Pentagons, heptagons and negative 

curvature in graphitic microtubule growth. Nature 1992; 356(6372): 
776-778. 

 
[15] Ugarte D, Morphology and structure of graphitic soot particles 

generated in arc-discharge C60 production. Chem. Phys. Lett. 1992; 
198(6): 596-602. 

 
[16] Buseck PR, Huang BJ, Keller LP, Electron-microscope investigation of 

the structures of annealed carbons. Energy & Fuels 1987; 1(1): 105-
110. 

 
[17] Murayama H, Maeda T. A novel form of filamentous graphite. Nature 

1990; 345(6278): 791-793. 
 
[18] Gogotsi Y, Libera JA, Kalashnikov N, Yoshimura M. Graphite 

polyhedral crystals. Science 2000; 290(5490): 317-320. 
 
[19] Liu Z, Suenaga K, Harris PJF, Iijima S. Open and closed edges of 

graphene layers. Phys. Rev. Lett. 2009; 102(1): 015501. 
 
[20]  Lee SH, Kim HW, Hwang JO, Lee WJ, Kwon J, Bielawski CW, Ruoff 

RS, Kim SO. Three-dimensional self-assembly of graphene oxide 
platelets into mechanically flexible macroporous carbon films. 
Angewandte Chemie-International Edition 2010; 49(52): 10084-10088. 

 
[21]  Chen W, Yan L. In situ self-assembly of mild chemical reduction 

graphene for three-dimensional architectures. Nanoscale 2011; 3(8): 
3132-3137. 

 
[22]  Worsley MA, Pauzauskie PJ, Olson TY, Biener J,  Satcher JH, 

Baumann TF. Synthesis of graphene aerogel with high electrical 
conductivity. Journal of the American Chemical Society 2010; 132(40):   
14067-14069. 

 
[23]  Lv W, Tao Y, Wang Ni, Zhou Z, Su FY, Chen XC, Jin FM, Yang QH. 

One-pot self-assembly of three-dimensional graphene 
macroassemblies with porous core and layered shell. J. Mater. Chem. 
2011; 21(33): 12352-12357 

 
[24]  Chen ZP, Ren WC, Gao LB, Liu BL, Pei, SF, Cheng, HM. Three-

dimensional flexible and conductive interconnected graphene networks 
grown by chemical vapour deposition. Nature Materials 2011; 10(6):   
424-428. 

 



 10 

[25]  Orimo S, Majer G, Fukunaga T, Züttel A, Schlapbach L and Fujii H. 
Hydrogen in the mechanically prepared nanostructured graphite. Appl. 
Phys. Lett. 1999; 75(20): 3093-3095. 

 
[26]  Tanaka H, Kanoh H, El-Merraoui M, Steele WA, Yudasaka M, Iijima S, 

Kaneko K. Quantum effects on hydrogen adsorption in internal 
nanospaces of single-wall carbon nanohorns. Journal of Physical 
Chemistry B 2004; 108(45): 17457-17465. 

 
[27]  Dimitrakakis GK, Tylianakis E, Froudakis GE. Pillared graphene: A new 

3-D network nanostructure for enhanced hydrogen storage. Nano 
Letters 2008; 8(10): 3166-3170.   

 
[28]  Stoller MD, Park SJ, Zhu YW, An JH, Ruoff RS. Graphene-based 

ultracapacitors. Nano Letters 2008; 8(10) 3498-3502. 
 
[29]  Du QL, Zheng MB, Zhang LF, Wang YW, Chen JH, Xue LP, Dai WJ, Ji 

GB, Cao JM. Preparation of functionalized graphene sheets by a low-
temperature thermal exfoliation approach and their electrochemical 
supercapacitive behaviors. Electrochimica Acta 2010; 55(12) 3897-
3903.  

 
[30]  Miller JR, Outlaw RA, Holloway BC. Graphene double-layer capacitor 

with ac line-filtering performance. Science 2010; 329(5999): 1637-
1639. 

 
[31]  Liang M, Zhi L. Graphene-based electrode materials for rechargeable 

lithium batteries. Journal of Materials Chemistry 2009; 19(33): 5871-
5878. 

 
 
  



 11 

Figures 
 
 
 
 
 
 
 
 
 
 
 
Figure 1  Photograph of graphite rods following passage of current in arc-

evaporator. Arrow indicates deposit containing unusual 
graphene material. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2  (a) Transmission electron micrograph of carbon from fresh 
graphite rod. (b) Micrograph at same magnification showing 
transformation in structure following arc-discharge.  
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Figure 3  Typical structure of carbon following arc-discharge. Almost all 

the material in this image is bilayer. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4  Hollow graphene structure with single-walled nanotube 

apparently encapsulated inside (arrowed). 
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Figure 5  Nanotubes joined to larger hollow regions. (a) Intermediate 

magnification micrograph, (b) higher magnification image of 
different region, (c) sketch of the structure shown in (b). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6  Schematic illustration of transformation of folded graphene 

sheets into hollow structure. 
 
 


