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In this paper, we develop efficient exact and approximate algorithms for computing a maximum inde-
pendent set in random graphs. In a random graph G, each pair of vertices are joined by an edge with
a probability p, where p is a constant between 0 and 1. We show that a maximum independent set in a

random graph that contains n vertices can be computed in expected computation time 2O(log2
2 n). In addi-

tion, we show that, with high probability, the parameterized independent set problem is fixed parameter
tractable in random graphs and the maximum independent set in a random graph in n vertices can be

approximated within a ratio of 2n/2
√

log2 n in expected polynomial time.

Keywords: independent set; random graphs; exact algorithm; parameterized algorithm; approximate
algorithm
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1. Introduction

In computer science, many optimization problems can be reduced to the optimization of objec-
tives that are formulated and described in a graph. The development of efficient exact or
approximate algorithms for graph optimization problems thus constitutes an important part of the
research in combinatorial optimization. However, a large number of graph optimization problems
have been shown to be NP-hard [14], which suggests that it is unlikely to develop algorithms that
can solve these problems in polynomial time. A well-known example is the Maximum Indepen-
dent Set problem. Given a graph G = (V , E), a vertex set I ⊆ V is an independent set if there
is no edge between any pair of two vertices in I. The goal of the Maximum Independent Set
problem is to find an independent set of the largest size in a given graph G. If G contains n
vertices in total, the problem can be trivially solved in time 2O(n) by enumerating and check-
ing all possible vertex subsets in the graph. Although intensive research has been performed to
improve the computation time needed to find an optimal solution [13,19,23,25], an algorithm
that needs subexponential time is not yet available for this problem. Recently, it is proposed that
this problem is unlikely to be solved in subexponential time [4,5].

Due to the difficulty in developing efficient algorithms that can find optimal solutions for these
problems, a large number of algorithms have been developed to obtain approximate solutions for
these problems in a significantly reduced amount of computation time [20]. These algorithms
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2234 Y. Song

can often achieve a trade-off between the optimality of the solutions and the computation time
needed to obtain them. For example, a simple algorithm that computes a maximal matching in a
graph can approximate its minimum vertex cover within a ratio of 2.0. For some NP-hard prob-
lems, approximate solutions that are within a certain approximate ratio cannot be obtained in
polynomial time unless NP = P. As an example, it has been shown that it is NP-hard to approx-
imate the minimum vertex cover in a graph within a ratio of 1.362 [6]. Another well-known
inapproximability result regarding the Maximum Independent Set problem is that it is NP-
hard to approximate the maximum independent set in a graph within a ratio of n1−ε , where
0 < ε < 1 is a constant and n is the number of vertices in the graph [17]. This result suggests
that an approximate solution with a guaranteed constant approximate ratio cannot be obtained
in polynomial time for the Maximum Independent Set problem unless NP = P. So far, the
best known approximation ratio that has been achieved for this problem in general graphs is
O(n log2

2 log2 n/log3
2 n) [11].

For those problems that cannot be even approximated within a good approximation ratio in
polynomial time, such as the Maximum Independent Set problem, heuristics that can effi-
ciently generate approximate solutions are often employed in practice to solve them [2,16,22].
However, solutions generated by heuristics are not guaranteed to be close to the optimal ones and
their applications are thus restricted to scenarios where the accuracy of solutions is not a crucial
issue.

Parameterized computation is an alternative approach that may lead to practically efficient
algorithms for some NP-hard problems. In practice, an instance of an NP-hard problem may con-
tain one or a few parameters, parameterized computation focuses on the development of exact
algorithms that can efficiently solve the problem while these parameters are small positive inte-
gers. Specifically, if we denote these parameters by p1, p2, . . . , pt, the problem is fixed parameter
tractable if there exists an algorithm that can solve the problem in time O(f (p1, p2, . . . , pt)nd),
where n is the size of the problem, f is a function of the parameters and d is a constant that does
not depend on n or any of the parameters p1, p2, . . . , pt. A well-known example of fixed param-
eter tractable problems is Vertex Cover. In [8], it is shown that there exists an algorithm that
can determine whether a graph contains a vertex cover of size k or not in time O(2kn), where n
is the number of vertices in the graph. However, not all NP-hard problems are known to be fixed
parameter tractable and it has been shown that some of them are unlikely to be solved by effi-
cient parameterized algorithms. Different parameterized complexity classes have been developed
in parameterized complexity theory to reflect the parameterized intractability of these problems
[8]. For example, the Independent Set problem is known to be complete for complexity class
W[1] [9], it thus cannot be solved by an efficient parameterized algorithm unless W[1] collapses
into the class of fixed parameter tractable problems. A comprehensive survey on parameterized
algorithms and parameterized complexity theory can be found in [7].

In this paper, we develop exact and approximate algorithms for the Maximum Independent
Set problem where the underlying graph is a random graph generated based on the Erdős–Rényi
model [10]. Such a random graph is generated by treating each pair of vertices independently and
adding an edge to join them with a probability of p (0 < p < 1), where p is a constant. Recent
research in molecular biology has shown that the protein side chain interaction network conforms
remarkably well to random graphs generated by the Erdős–Rényi model [24]. Therefore, efficient
algorithms for some NP-hard problems in random graphs, if exist, may significantly improve the
computational efficiency for some important optimization problems related to protein structure
prediction.

In [15,21], it has been shown that with high probability, the maximum independent set in a
random graph is of size O(log2 n). However, this result does not directly lead to an algorithm
that can compute the maximum independent set in a random graph in expected subexponential
time. In [12], a polynomial time algorithm that can compute a maximum independent set in a
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International Journal of Computer Mathematics 2235

sparse random graph with high probability is developed. However, the algorithm is based on a
large independent set that is embedded in the graph and thus cannot be used for all graphs. We
show that the maximum independent set in a random graph can be computed in expected com-
putation time 2O(log2

2 n), where n is the number of vertices in the graph. This result significantly
improves the best known time complexity O(2n/4) for finding a maximum independent set in
general graphs [25].

In addition, we show that, with high probability, the parameterized independent set prob-
lem is fixed parameter tractable in random graphs. For approximate algorithms, we develop an

algorithm that can achieve an approximation ratio of 2n/2
√

log2 n in expected polynomial time,
which is a significant improvement compared with the best known approximate ratio that can be
achieved in general graphs [11].

2. Maximum independent set in random graphs

A random graph G(V , p), where 0 < p < 1, is a graph obtained by independently adding edges
between each pair of vertices in V with a probability p. Given a vertex v ∈ V , the degree of v in
G is the number of vertices that are connected to v by an edge in G. We use degG(v) to denote the
degree of vertex v in graph G and NG(v) to denote the set of vertices that are connected to v by an
edge in G. A vertex subset I ⊆ V is an independent set in G if there is no edge between any pair
of vertices in I. The goal of the Maximum Independent Set problem is to find an independent
set of the largest size in a given graph.

In [15,21], it is shown that, with high probability, the size of a maximum independent
set in a random graph G(V , p) is 2 log2 n/log2 1/(1 − p), where n is the number of vertices
in G. A straightforward algorithm by exhaustively enumerating all vertex subsets of size
2 log2 n/log2 1/(1 − p) can thus compute a maximum independent set in most random graphs
in time nO(log2 n). However, to compute a maximum independent set in all random graphs, the
algorithm must be able to cope with the cases where the graph contains an independent set of
size larger than O(log2 n). The algorithm needs time 2O(n) to compute a maximum independent
set in these cases. The best known upper bound of the probability for a random graph to has a
maximum independent set larger than O(log2 n) is 1/nO(1) [15,21], the expected time complexity
of this enumeration based algorithm is thus 2O(n).

We show that the maximum independent set in a random graph G = (V , p) can be computed
in expected subexponential time.

Lemma 2.1 Given a random graph G = (V , p) where n = |V | and a sufficiently small constant
ε such that ε < p, there exists a vertex v ∈ V such that degG(v) ≥ (p − ε)n with probability at
least 1 − 2−μn2

, where μ is a positive constant that only depends on ε and p.

Proof If such a vertex does not exist, the number of edges n(E) in G is at most (p − ε)n2/2
since the degree of each vertex is at most (p − ε)n. However, from the construction of graph G,
the expected number of edges in G can be obtained as follows:

E(n(E)) = pn(n − 1)

2
. (1)

From Chernoff bound, we can bound the probability for n(E) < (p − ε)n2/2 by

Pr

(
n(E) <

(p − ε)n2

2

)
< exp

(
−pn(n − 1)δ2

4

)
, (2)
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2236 Y. Song

where δ = (nε − p)/p(n − 1). For sufficiently large n, we have

δ >
ε

2p
, (3)

n − 1 >
n

2
. (4)

We can thus immediately obtain

Pr

(
n(E) <

(p + ε)n2

2

)
(5)

< exp

(
−ε2n2

32p

)
(6)

= 2−ε2n2/32p ln 2. (7)

We then let μ = ε2/32p ln 2 and we conclude that with probability at least 1 − 2−μn2
, there exists

vertex v ∈ V such that degG(v) ≥ (p − ε)n. �

The proof of Lemma 2.1 relies on the fact that p is a constant independent of n, the lemma
does not hold if the value of p depends on n. A random graph G = (V , p) in n vertices is good
if it contains at least one vertex whose degree is at least (p − ε)n. Given a random graph, the
algorithm starts by finding a vertex v such that degG(v) is at least (p − ε)n. If such a vertex
does not exist, the algorithm enumerates all subsets of V and returns an independent set of the
largest size. If v exists, the algorithm branches on two possible cases on whether v is contained
in I or not. In particular, if v ∈ I, v and vertices in N(v) are deleted from G and the resulting
graph is G1; if v /∈ I, v is deleted from G and the resulting graph is G2. The algorithm is then
recursively applied on both G1 and G2 to compute a maximum independent set in each of them.
We use I1 and I2 to denote the maximum independent sets in G1 and G2 found by the algorithm,
respectively. I2 is returned as a maximum independent set in G if |I2| ≥ |I1| + 1 and I1 ∪ {v} is
returned otherwise. We show that this algorithm terminates in expected time 2O(log2

2 n).

Theorem 2.1 A maximum independent set in a random graph G = (V , p) with n vertices can
be computed in expected computation time 2O(log2

2 n).

Proof We show that the algorithm described above terminates in expected time 2O(log2
2 n). In par-

ticular, the algorithm is recursive and for each step of recursion, we have the following recursion
relation for the computation time if the underlying graph is good and contains m vertices

T(m) ≤ T((1 − p + ε)m) + T(m − 1) + O(m2), (8)

where T(m) is the computation time needed by the algorithm in a graph on m vertices. The
term O(m2) is the computation time needed to find a vertex whose degree is at least (p − ε)m,
since the time needed to compute the degree of a vertex is O(m) and the algorithm may need
to check m vertices to find such a vertex. If the underlying graph is not good, the algorithm
exhaustively enumerates all subsets in the graph and finds an independent set of the largest size.
The computation time is 2O(m).

We are now ready to establish the expected computation time for the algorithm. In particular,
we use ET(m) to denote the expected computation time of the algorithm on a graph that contains
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International Journal of Computer Mathematics 2237

m vertices. From Lemma 2.1, an underlying graph G′ in m vertices is good with a probability of
at least 1 − 2−μm2

. We thus can immediately obtain the following recursion for ET(m):

ET(m) ≤ ET((1 − p + ε)m) + ET(m − 1) + O(m2) + 2O(m)−μm2
(9)

≤ ET((1 − p + ε)m) + ET(m − 1) + O(m2), (10)

where the second inequality is due to the fact that 2O(m)−μm2
is bounded by a constant for all

positive integers m.
We then show that ET(m) ≤ 2c log2

2 m, where c is a positive constant. We show this by induc-
tion. First, for a sufficiently large positive integer m0 whose value will be specified later, we let
c0 = max1≤t≤m0 {log2 ET(t)/log2

2 t} and choose c = max {c0, 2/log2 (1/(1 − p + ε)), 1}. It is not
difficult to see that ET(l) ≤ 2c log2

2 l if 1 ≤ l ≤ m0. We then assume that this holds for all positive
integers less than m. From the above recursion relation on ET(m), we can obtain

ET(m) ≤ 2c log2
2 ((1−p+ε)m) + 2c log2

2 (m−1) + Bm2 (11)

≤ sm−l2c log2
2 m + 2c log2

2 m + (2c log2
2 (m−1) − 2c log2

2 m) + Bm2 (12)

≤ sm−l2c log2
2 m + 2c log2

2 m − log2 m

24m
2c log2

2 m + Bm2 (13)

≤ 2c log2
2 m (14)

where B is a positive constant independent of c, p, ε and s, q, l are some positive con-
stants that depend on c, p, ε only. The first inequality is obtained from the assumption for
induction. The second one is due to the fact that log2

2 ((1 − p + ε)m) = log2
2 (1 − p + ε) +

2 log2 (1 − p + ε) log2 m + log2
2 m and we can let l = 2c log2 1/(1 − p + ε) , s = 2c log2

2 (1−p+ε).
To establish the third inequality, we have

log2
2 (m − 1) − log2

2 m =
(

log2 m + log2

(
1 − 1

m

))2

− log2
2 m (15)

≤
(

log2 m − 1

6m

)2

− log2
2 m (16)

≤ − log2 m

6m
(17)

≤ − log2 m

6cm
, (18)

when m ≥ 16, we can obtain

2c log2
2 (m−1) − 2c log2

2 m = 2c log2
2 m(2c(log2

2 (m−1)−log2
2 m) − 1) (19)

≤ 2c log2
2 m(2−log2 m/6m − 1) (20)

≤ − log2 m

24m
2c log2

2 m, (21)

the third inequality thus follows.
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2238 Y. Song

From the fact that c ≥ 2/log2 1/(1 − p + ε), we have l ≥ 4. We let

c′ = 2

log2 1/(1 − p + ε)
, (22)

s′ = 2c′ log2
2 ((1−p+ε)m), (23)

l′ = 2c′ log2
1

1 − p + ε
, (24)

we now consider the function F(m) = (s′m−l′ − log2 m/24m)2c′ log2
2 m + Bm2. Since s′, l′, c′, and

B are independent of m and l′ ≥ 4, there exists a positive integer m1(p, ε) such that F(m) ≤ 0
when m ≥ m1(p, ε). m0 can be determined as follows:

m0 = max

{
m1(p, ε),

1√
1 − p + ε

, 16

}
. (25)

It is not difficult to see that when c ≥ c′ and m ≥ m0, we have s′m−l′ − log2 m/24m ≤ 0. In
addition, we can further verify that

sm−l = 2c log2 (1−p+ε) log2 (m2(1−p+ε)), (26)

since c ≥ c′, m ≥ 1/
√

1 − p + ε, and log2 (1 − p + ε) ≤ 0, we can immediately obtain

sm−l = 2c log2 (1−p+ε) log2 (m2(1−p+ε)) (27)

≤ 2c′ log2 (1−p+ε) log2 (m2(1−p+ε)) (28)

= s′m−l′ (29)

the following thus holds
(

sm−l − log2 m

24m

)
2c log2

2 m + Bm2 ≤
(

s′m−l′ − log2 m

24m

)
2c log2

2 m + Bm2 (30)

≤
(

s′m−l′ − log2 m

24m

)
2c′ log2

2 m + Bm2 (31)

= F(m) (32)

≤ 0, (33)

the fourth inequality thus follows. From the principle of induction, the theorem has been proved.
�

3. Parameterized algorithm for independent set problem

The parameterized independent set problem is to decide whether a given graph G = (V , E) con-
tains an independent set of size k or not. The problem is known to be W[1]-hard [7–9] and cannot
be solved in time no(k) in general graphs unless W[2] = FPT [4,5]. We show that if the underlying
graph G is a random graph, the problem can be solved in expected time 2O(k2) + O(n3), where n is
the number of vertices in the graph. We need the following lemma to analyse the time complexity
of the algorithm.
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Lemma 3.1 Given a random graph G = (V , p) where n = |V | and a sufficiently small constant
ε such that p + ε < 1, there exists vertex u ∈ V such that degG(u) ≤ (p + ε)n with a probability
of at least 1 − 2−μn2

, where μ is a positive constant that only depends on ε and p.

Proof The proof is similar to the proof of Lemma 2.1. If such a vertex does not exist, the degree
of every vertex in G is at least (p + ε)n. The graph thus contains at least (p + ε)n2/2 edges. The
expected number of edges in G is pn(n − 1)/2. We use n(E) to denote the number of the edges
in G. From Chernoff bound, we can bound the probability for G to contain at least (p + ε)n2/2
edges

Pr

(
n(E) ≥ (p + ε)n2

2

)
(34)

< exp

(
−ε2n2

64p

)
(35)

= 2−ε2n2/64p ln 2 (36)

the lemma immediately follows by letting μ = ε2/64p ln 2. �

The proof of Lemma 3.1 relies on the fact that p is a constant independent of n, the lemma
does not hold if the value of p depends on n.

Theorem 3.1 Given a random graph G = (V , p), there exists an algorithm that can decide
whether G contains an independent set of size k in expected time 2O(k2) + O(n3).

Proof We start the proof by comparing the values of k and L(n) = (1/3) log1/(1−p−ε) n, if
k > L(n), we can enumerate all possible vertex subsets of size k in G and check whether one
of them is an independent set of size k or not. The enumeration and checking needs at most
O(k2nk) time. However, since k > L(n), we can obtain n < (1/(1 − p − ε))3k , the computation
time needed to determine whether G contains an independent set of size k or not is thus at most
O(k2(1/(1 − p − ε))3k2

) = 2O(k2) in this case.
We then consider the case where k ≤ L(n). We use the following procedure to generate an

independent set I. We start with the vertex u with the minimum degree in G, we include u in
I and remove u and all its neighbors in G from G. We denote the resulting graph by G1. The
procedure can be repeatedly executed until there are at most n2/3 vertices left in the graph. We
use G0 = G, G1, G2, G3, . . . , Gl to denote the intermediate graphs generated during this iterative
procedure. It is not difficult to see that vertices in I form an independent set in G.

We show that the above procedure can generate an independent set I of size at least L(n) with
high probability. We use G1, G2, G3, . . . , Gl to denote the resulting graph in each iterative step
and n(Gi) to denote the number of vertices in graph Gi. From Lemma 3.1, the following holds
with a probability of at least 1 − 2−μn2(Gi) for each i between 0 and l.

n(Gi+1) ≥ (1 − p − ε)n(Gi). (37)

Since n(Gi) > n2/3, the probability for this inequality to hold for all i’s between 0 and l is at least
1 − n2−μn4/3

. If this inequality holds for all i’s between 0 and l, we can immediately obtain

l ≥ log1/(1−p−ε)

( n

n2/3

)
(38)

= 1

3
log1/(1−p−ε) n (39)

= L(n). (40)
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2240 Y. Song

I thus contains at least L(n) vertices. With a probability of at least 1 − n2−μn4/3
, the above

iterative procedure generates an independent set of size L(n). Since k < L(n), the algorithm
returns ‘yes’ if I indeed contains L(n) independent vertices, otherwise, the algorithm simply
enumerates all vertex subsets in G and checks whether one of them is an independent set of size
at least k. Since the procedure for generating I needs O(n3) time, the expected computation time
needed for this is at most

O(n3)(1 − n2−μn4/3
) + 2O(n)n2−μn4/3 = O(n3), (41)

where the equality is due to the fact that the second term is bounded by a constant when n is
sufficiently large. The algorithm thus needs an expected time 2O(k2) + O(n3), the theorem has
been proved. �

4. Approximate algorithm

As discussed in the introduction, the maximum independent set problem cannot be approximated
within a ratio of n1−ε in polynomial time unless P = NP, where ε is any positive constant. In [3],
it is shown that the maximum independent set in a graph can be approximated within a ratio of
O(n/log2

2 n). In [11], the approximation ratio is improved to O(n log2
2 log2 n/log3

2 n). The result
so far remains the best known approximation ratio achieved for this problem in general graphs.
In [15, 18, 24], a polynomial time algorithm that can approximate the maximum independent
set in a random graph within a constant ratio with high probability is developed and analysed.
However, the approximation ratio of the algorithm is not guaranteed to be constant for all graphs.
We show that the maximum independent set in a random graph can be approximated within a

ratio of 2n/2
√

log2 n in expected polynomial time, which is a significant improvement compared
with the best known approximate ratio for this problem in general graphs.

Theorem 4.1 Given a random graph G = (V , p) in n vertices where p is a positive constant
between 0 and 1, the maximum independent set in G can be approximated within a ratio of

2n/2
√

log2 n in expected polynomial time.

Proof We use the following simple algorithm to compute an independent set in G. We let k =

2

√
log2 n� and partition the vertices in G into l disjoint vertex subsets such that l − 1 of them

contains k vertices and the remaining one contains at most k vertices. We use G1, G2, . . . , Gl

to denote the subgraph induced by vertices in these vertex subsets. It is not difficult to see that
l ≤ 
n/k� + 1.

We then use the algorithm we have developed in Theorem 2.1 to compute a maximum inde-
pendent set in each of G1, G2, . . . , Gl and return the one that contains the largest number of
vertices.

We first show that the algorithm returns an independent set in expected polynomial time.
G1, G2, . . . , Gl are disjoint and the expected time needed to compute a maximum independent set
in each of them is at most 2c log2

2 k , where c is some positive constant that only depends on p. Since

k ≤ 2
√

log2 n, the expected computation time needed to compute the maximum independent set in
one subgraph is at most 2c log2 n = nc. The algorithm thus returns an independent set in expected
time nc+1.

We then show that the algorithm can achieve an approximate ratio of 2n/2
√

log2 n. We use
APX(G) to denote the size of the independent set returned by the algorithm and OPT(G) to
denote the size of a maximum independent set in G. we assume that I is a maximum independent
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set in G. Since we have partitioned the graph G into l disjoint subgraphs G0, G1, . . . , Gl, at least
one of the l subgraphs contains at least OPT(G)/l vertices from I. These vertices form an inde-
pendent set in the subgraph. Since the algorithm computes a maximum independent set in each
subgraph and returns the one with the largest size, we immediately obtain

APX(G) ≥ OPT(G)

l
, (42)

this suggests that

OPT(G)

APX(G)
≤ l (43)

≤
⌊n

k

⌋
+ 1 (44)

≤ n

k
+ 1 (45)

≤ n

2
√

log2 n − 1
+ 1 (46)

≤ 2n

2
√

log2 n
. (47)

The second inequality is due to the fact that l ≤ 
n/k� + 1. The fourth inequality is due to the

fact that k ≥ 2
√

log2 n − 1. The last inequality holds for sufficiently large n. The theorem thus has
been proved. �

5. Conclusions

In this paper, we study the independent set problem in random graphs. We show that a maxi-
mum independent set in a random graph can be computed in expected subexponential time. We
also show that the parameterized independent set problem is fixed parameter tractable with high
probability for random graphs. Using techniques based on enumeration, we show that the largest
common subgraph in two random graphs can be computed in expected subexponential time. Our
work also suggests that the maximum independent set in a random graph can be approximated

within a ratio of 2n/2
√

log2 n in expected polynomial time, which significantly improves on the
best known approximate ratio for this problem in general graphs.

It remains unknown whether the maximum independent set in a random graph can be com-
puted in expected polynomial time or not. One possible direction of future work is to study
whether there exists such an algorithm. Another related open question is that if such an algorithm
does not exist, whether it can be approximated within an improved ratio in expected polynomial
time. Further investigations are needed to solve these problems.
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