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Summary

Three decades have passed since the first recognition of restriction
checkpoints in the plant cell cycle. A though many core cell cycle genes
have been cloned, the nmechanisnms that control the Gl-to-S and &-to-M
transitions have only recently started to be understood in plants. A
central role in the regulation of the cell cycle is played by the
cyclin-dependent kinases (CDKs), whose activity is steered by regulatory
subunits, cyclins. The activity of the CDK/cyclin conplexes are further
controlled by an intricate panoply of nonitoring nechanisns that result
in oscillations of CDK activity during the division cycle. These
fluctuations trigger the transitions between the different stages of the

cell cycle.
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I nt roduction

Several variations in the cell cycle occur in nature, but in its nost
common formit consists of four different phases. Al though the phases of
DNA replication (S phase) and nmitosis (M phase) are given nost attention,
cells decide whether to proceed or not into the next S or M phase during
the GL and & gap phases, respectively. During the Gl phase, cells
nonitor their environnment and size, whereas one of the tasks perforned
during &Q phase is to control whether DNA duplication has been conpl et ed.
The occurrence in plants of the Gl-to-S and &-to-M checkpoi nts has been
di scovered already in 1966 by Van't Hof [1], who observed that cells in
excised pea root tips stopped dividing and becane arrested in the GL and
@& phase upon carbohydrate starvation. Four years later, the potential of
starved cells to resunme cell division by re-addition of sucrose was found
to depend on RNA transcription and protein synthesis [2], suggesting that
the capacity to progress through the cell cycle relies on a nolecular
identity. Ten years later, Sir Paul Nurse identified the cdc2 gene of
fission yeast, whose gene product was genetically proven to be required
to progress through both the GI-S and &-M transition points [3], a
finding rewarded with last year's Nobel Prize. Over the years, cdc2 has
been shown to be part of a evolutionary conserved group of protein
ki nases whose activation depends on the association with regulatory

cyclin subunits, hence their nanme, "cyclin-dependent Kkinases" (CDKs).

The first clue suggesting that CDK/cyclin conplexes also govern plant
cell division canme from the discovery of a plant protein related to
animal CDKs [4] and the cloning of the first plant CDK-encoding cDNA [5].

Since then, plant honol ogues of different core cell cycle genes have been



cloned progressively. Nevertheless, although the availability of the
conpl ete genone sequence of Arabidopsis thaliana allowed us to identify
all core cell cycle genes [6¢], data on how the Gl-to-S and &-to-M
transitions are regulated in plants are only fragmentary and know edge is
lacking on how internal and external signals inmpinge on these
transitions. Here, we briefly overview the nost recent findings
concerning the nechanistic regulation of the Gl-to-S and &-to-M
transitions in plants. Reviews on nitotic exit and endoreduplication in
plants, two other inportant aspects of the cell <cycle, have been
published by Ciqui and Genschik [7¢¢] and Larkins et al. [8], whereas
the impact of hornones on cell cycle progression has been reviewed by

Stals and Inzé [9].

The Gl-to-S transition

Regul ati on of S phase entry t hr ough phosphoryl ati on of

retinobl astoma-rel ated proteins

| rpressi ve progress has been achieved during the |last years on the study
of S-phase entry in plants (Figure 1). The mechanism that regulates the
Gl-to-S transition appears to be conserved between mammals and plants. In
mammal s, GL-S entry is initiated by the synthesis of D-type cyclins upon
mtogenic stimulation by serumtype growh factors. Conplexed wth
specific CDKs, Dtype cyclins set off the phosphorylation of the
retinobl astoma tunor suppressor protein (RB), a key regulator for the
start of DNA replication [10]. In non-phosphorylated state RB binds
tightly to the heterodineric E2F-DP transcription factor, which is

required for the transcriptional activation of <cell <cycle and DNA



synthesis genes. By RB binding, the transcriptional activation donain of
the E2F-DP factor is nasked, rendering it inactive. Mreover, recruitnment
by RB of DNA-nodi fyi ng enzynes, such as hi stone deacetyl ases and pol yconb
proteins, can repress pronbter activity of E2F-DP target genes, wth
chromatin condensation as a result. RB phosphorylation counteracts the
inhibitory function of RB and releases transcriptionally active E2F-DP

and consequentially onsets DNA replication.

The presence of an RB-nediated pathway in plants has been supported in
the early days by two lines of evidence: the existence of Dtype cyclins
[11, 12] that contain an LxCxE notif, known to nediate RB binding in
human cells and the identification of proteins in gemniviruses that also
contain the LxCxE notif required for efficient viral replication in
cultured cells [13]. In accordance, RB-related (RBR) genes were first
di scovered in naize and later in other plant species [6¢, 14-16]. Plant
RBR has been shown to be phosphorylated by A-type CDKs bound to D-type
cyclins [17, 18¢¢]. This phosphorylation occurs in a cell cycle-dependent
manner, reaches its nmaxinmnum at the GL-S transition, and renains high
until md/late S phase. In analogy wth nmammlian systens, this
phosophorylation results very probably in an inactivation of RBR
rel easing E2F-DP transcription factors in their active form albeit still
to be experimentally proven. CYCD3 cyclins seem to be a rate-limting
factor is this process, because overexpression of Arabidopsis CYCD3;1 and
Ni cotiana tabacum CYCD3;3 stinmulates cells to exit the GL phase [18e-,
19¢¢]. On the flipside, Kip-related proteins (KRPs), which are inhibitors
of CDK activity [20, 21] mght prevent phosphorylation of RBR by
i nactivating CYCD3-containing conplexes. This hypothesis is substantiated

by the observation that overproduction of a tobacco KRP protein (Nt KIS1)



in Arabidopsis conpletely conplenents the severe phenotype induced by
over production of CYCD3;1 [22¢]. Also, in trichones overexpression of a
KRP gene is able to restore the phenotype induced by CYCD3;1

over expression [23ee].

Besides D-type cyclins and KRPs, nore players are involved in the
regul ation of RBR activity. Phosphorylation of CYCD3;1 is required for
both full kinase activity and localisation in the nucleus, suggesting a
still unknown kinase working upstream of CYCD3;1 [18e¢]. Moreover,
overexpression of the CDK-activating kinase CDKD (R2) from rice
accel erates S-phase entry [24¢], This quickened S-phase entry m ght occur
through the activation of CDKA/ CYCD conpl exes, nore rapidly inactivating
RBR. Alternatively, CDKD mght operate in an RBR-independent nmanner
through the phosphorylation of the Cterminal donmain of RNA pol ynerase
I, a known substrate of CDKD [25], which in turn mght activate the

transcription of specific genes required for S phase progression.

The E2F-DP gene famly

In manmmal s, six E2Fs exist that can be classified into three groups: the
activating E2Fs (E2F1-3), the repressive E2Fs (E2F4-5), and E2F6 [26].
The activating E2Fs function as potent transcriptional activators of
E2F-responsi ve genes and overproduction of one of themis sufficient to
drive serumstarved cells into the cell cycle. The repressive E2Fs are
mainly found in quiescent cells and are believed to be inportant in the
control of cell cycle exit and induction of termnal differentiation
through the recruitnment of RBRs to E2F targets genes. E2F6 is

characterized by its lack of a transcriptional activation and RB-bindi ng



domain and is believed to function as a conpetitive inhibitor for
E2F-binding sites in an RB-independent manner. Al E2Fs have in conmmbn
that they need to dinerise with DP proteins to bind with high specificity

to the E2F-binding sites [27-29].

Plant E2F and DP genes have been identified in plants [30]. In the
Ar abi dopsi s genone, three E2F genes (E2Fa, E2Fb, and E2Fc) and two DP
genes (DPa and DPb) are present [6¢] and all display a donmin
organi zation simlar to those of their mnamualian counterparts. In
particular, the highly conserved DNA-binding domain suggested that the
plant E2F-DP factors bind the same DNA sequence notifs as the aninal
E2Fs. Indeed, electrophoretic nobility shift experinments showed that
plant E2Fs bind to the sane E2F-binding site as mammalian E2Fs [31].
Mor eover, E2F-binding sites have been napped in the pronoters of several
genes [32-35]. An in silico search in the Arabidopsis genone for genes
harbouring the TTTCCCGCC cis-acting elenent in their pronoter identified
183 potential E2F target genes, anong which genes involved in DNA
replication, cell cycle regulation, transcription, stress, and defence or
signalling [36]. Many of these and other genes were indeed found to be
up-regul at ed in Ar abi dopsi s pl ants over produci ng t he E2Fa- DPa
transcription factor (K Mieghe, D. Inzé, and L. De Veylder, unpublished

dat a) .

Both E2Fa and E2Fb have been shown to be potent transcriptional
activators when coexpressed with DPa, suggesting that they belong to the
class of activating E2Fs [37-39]. Plants overexpressing the E2Fa gene
display ectopic cell divisions in all tissues examned [40¢¢]. Extra

cells arise because of a delay in cell differentiation. The E2Fa



phenotype was strongly enhanced by the co-expression of E2Fa with DPa,
which can be explained by the ability of DPa to target E2Fa to the
nucl eus [37]. Wereas DPa-overexpressing plants have a nornmal phenotype,
E2Fa- DPa transgenic plants have curled | eaves along their proxinal-dista
axis, which correlates with the occurrence of many additional cel

divisions [40¢¢]; such a phenotype is highly remniscent to that of
CYCD3; 1 overexpression [19¢¢] and suggests that both E2Fa-DPa and CYCD3; 1
function in the sane pathway. Nevertheless, also differences exist: in
E2Fa-DPa transgenic plants, cells are pronoted to enter the S phase,
driving mtotic cells into another cell cycle and nore differentiated
cells into the endocycle; this phenotype has been hypothesized to depend
on the presence or absence of a mtosis-inducing factor (MF) [40e¢]. In
contrast, in the CYCD3;1 transgenic plants, endoreduplication is strongly
i nhi bited, which mght be explained by the strong capacity of CYCD3;1 to

inhibit cell differentiation [19e¢].

In certain cases, an E2F pronoter elenent contributes negatively to gene
expression, as illustrated for the PCNA, MCMB, and RNR2 genes [33, 35

41+,42]. This negative function is nost probably performed by E2Fc that
| acks a strong transactivation domain [38]. Therefore, E2Fc mght have a
function related to that of nmammalian E2F4-5, which acts as a repressor
of the E2F-DP target genes by recruiting the RBR protein to pronoters

This hypothesis is substantiated by the observation that t he
overproduction of a stable form of E2Fc negatively affects cell division
and is correlated with a decrease in expression of CDC6 gene, a known
E2F-DP target gene. Interestingly, the E2Fc protein is degraded rapidly
in an ubi quitin-dependent nmanner after bei ng phosphorylated by CDK/cyclin

conpl exes [43e°].



Pl ants seemto have evol ved to use an additional mechani sm for nodul ating
the expression of E2F-responsive genes. In the Arabidopsis genone, three
genes have been identified with a high internal sequence simlarity to
both E2F and DP, and were, therefore, designated DP-E2F-Li ke (DEL; [6°].
Sequence simlarity is restricted to the DNA- bi nding  donai n;
surprisingly, this domain is present in tandem allowing the DELs to bind
to the canonical E2F-binding site as a nononer [38,44]. Because of the
lack of a transcriptional activation domain, the DEL proteins are
postul ated to act as repressors of E2F-regul ated genes by conpeting with
E2F-DP for the sane binding sites. Indeed, in a conpetition assay, DEL
expressi on antagoni zes the transcriptional activation by E2F- DP proteins
[38, 44]. The expression of DEL1 and DEL3 before the transcription of
S-phase genes suggests that the DEL proteins mght occupy the E2F sites
during Gl, thereby repressing gene transcription [38]. Wuether the DEL
proteins can repress gene transcription via the recruitnent of
DNA- nodi fyi ng enzynmes, such as hi stone deacetyl ase and pol yconb proteins,
and how the E2F-DP proteins at the GL-S transition replace the DELs

remain to be determ ned.

The &-to-Mtransition

Al though recent data have strongly expanded our understanding of the
nol ecul ar events controlling S-phase entry in plants, regulation of entry
into mtosis is still poorly understood (Figure 2). In nmanmmals and
insects, the &-to-M transition is specifically regulated by CDKs that
associate with A- and B-type cyclins. A-type cyclins are produced and

degraded earlier in the cell cycle than B-type cyclins and provide
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distinct and non-redundant functions in cell <cycle progression. In
pl ants, kinase activity assays suggest that two types of CDKs (A and B)
control the @-Mtransition [45, 46], where the B-type CDKs nost probably
regulate plant-specific features of the cell cycl e, because no
counterparts of these particular CDKs can be recogni zed in other species.
When grown in the dark, transgenic Arabidopsis plants containing an
antisense CDKBl;1 construct display a short hypocotyl and open
cotyl edons. This phenotype is related to reduced cell size rather than
cell nunber. In addition, cotyledons of antisense lines fail to green
when transferred from dark to light, a failure attributed to the
conversion of etioplasts to anyloplasts. These data indicate a role for
CDKB1; 1 in hypocotyl cell elongation and cotyl edon cell devel opnent [47].
W found that CDKBl;1 expression is highly specific to stomata and
stomatal precursors of cotyledons, suggesting a promnent role for
CDKB1;1 in stomata developnent as well. |In accordance, transgenic
Arabidopsis plants with reduced B-type CDK activity have a decreased
stomatal index and aberrant guard cells, which are blocked in their &

phase (V. Boudolf, D. Inzé, and L. De Veylder, unpublished data).

Based on their peak of transcription at & and M phases, both A and
B-type cyclins are probably responsible for the mtotic events. Ectopic
expression of alfalfa CYCB2;2 and Arabi dopsis CYCB1; 2 cyclins were indeed
showmn to stinmulate &-to-M transition [48, 49]. Plant B-type cyclin
pronoters contain a commpbn cis-acting elenent, called the Mspecific
activator (MSA) elenent, which is necessary and sufficient for the
periodically specific promoter activation. This notif was also identified
in the pronoter of a &@-Mspecific gene that encodes a Kkinesin-like

protein, NACK1l, suggesting that a defined set of &-Mspecific genes are
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co-regul ated by a comobn MSA-nedi ated mechanismin plants [50-52¢¢]. In a
search for MSA-binding factors, three different Mb-like proteins were
identified, NnybAl, N nybA2, and NtnybB. The latter one is expressed
constitutively during the cell cycle, whereas the two others are produced
specifically at the &-to-M transition, when B-type cyclin genes are
transcribed. Furthernore, NnmybB is a repressor of NMSA containing
pronoters, whereas N nybAlL and Nt nybA2 are activators. Hence, plants,
like animals, contain Mb proteins with a role in cell proliferation;
however, plant Mb proteins seem to be involved in &/M transition

whereas nmanmal i an ones in Gl/S transition [52¢¢].

Accunul ation of mtotic cyclins is a gradual process, whereas the onset
of mtosis is an abrupt and dramatic change. Hence, the CDK/cyclin
conplex activity is muinly achieved by changes in the phosphorylation
state of the kinase. In yeast and nmammals, the CDK/cyclin activity is
pronptly regulated by the dephosphorylation of a single tyrosine 15
(yeast) or both tyrosine 15 and threonine 14 (higher eukaryotes) at the
&-t0-M boundary. The CDK/cyclin conplexes fornmed during S and & phase
are maintained in an inactive form through inhibitory phosphorylation of
these conserved residues by a famly of kinases, designated WEEl (WEEL,
M K1, and MyT1l). The phosphorylation of Tyrl5 and Thrl14 of the CDK
subunit inhibits ATP fixation and blocks substrate binding, preventing
protein Kkinase activation for the remainder of the interphase. A
hormol ogue to WEE1 has been characterized in nmize and Arabidopsis [53,
54]. Overexpression of plant VWEEL genes in Saccharomyces ponbe inhibit
cell division. Interestingly, purified WEEL can inhibit p13*“- absorbed
mtotic CDK activity. Furthernore, WEELl transcripts are nore abundant in

actively dividing tissues and in mize endosperm during the
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endoreduplication period, suggesting that inhibition of mtotic CDK
activity by WEEL could be one of the nechanisns inhibiting &-to-M

transition and activation of the endocycle [53].

The dephosphoryl ation of Thr14 and Tyr15, acconpanied with the activation
of the CDK/cyclin activity at the @/Mtransition is achieved by a dua
speci ficity phosphatase CDC25. No honol ogue of CDC25 could be identified
so far in the Arabidopsis genone. Nevertheless, the presence of the
antagonistic WEE1 kinase and accunulating biochemcal data as well
suggest the existence of a CDC25-like regulation of CDKs in plants.
First, tobacco cell suspension that is arrested in & by cytokinin
starvation can resune mtosis by inducible expression of the yeast cdc25
[55]. Secondly, overexpression of the S. ponbe cdc25 gene in tobacco
plants leads to an increase of lateral root prinordium fornmation and a
new threshold size for <cell division in the prinordia [56, 57].
Furthernore, mcroinduction techniques recently have been used to locally
and transiently manipulate the expression of the yeast cdc25 in tobacco
plants [58], clearly denonstrating that the |ocal expression of cdc25 on
the flanks of young leaf prinordia leads to changes in cell division
patterns. Probably, the CDC25 gene undergoes such dramatic changes over
evolution that it no longer can be recognized as a CDC25 phosphatase in

t he Arabi dopsi s genone.

Concl usi ons

Al t hough our understanding increases on how cell cycle transitions are

regulated we still have no clue how the different transitions are

comunicating to each other. For budding yeast, the conbination of
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chromatin immunoprecipitation assays wth DNA mcroarray analysis
reveal ed that proteins that operate as activators during one stage of the
cell cycle can contribute to the transcriptional activation of proteins
that function during the next stage, formng a fully connected regul atory
circuit [59]. For exanple, activators of the Gl-to-S transition contro
the expression of GL-S cyclin genes, but also regulate the expression of
the &@-Mspecific cyclin clb2, which subsequently inhibits further
expression of the GL-S cyclin genes and pronbtes entry into mtosis. The
observation that overexpression of the CYCD3;1 not only triggers S-phase
entry, but also activates expression of the mtose-specific genes CYCB1; 1
and CYCBL1;2, suggests that simlar regulatory networks mght exist in
plants as well [60e¢]. In concert, plants that display ectopic cel

division as a result of CYCD3;1 or E2FA-DPa overexpression have increased
| evel s of negative regulators of the E2F-RBR pathway [19¢¢; K. Vlieghe,
D. Inzé, and L. De Veylder, unpublished data]. First steps have been
undertaken to unravel this genetic network by the identification of cel

cycle-nodul ated genes in Arabidopsis and tobacco BY2 cells [61e, 62¢].
Both data sets resulted in the identification of a large group of genes
with a still wunknown function. The mmjor future challenge will be to
desi gn experinents that can hel p us understand how the al ready known cel

cycle genes interact with each other, to assign functions to proteins of
the newly discovered genes, and to identify the proteins that operate

together to carry out particul ar processes.
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LEGEND TO FI GURES

Figure 1. Schematic overview of how the Gl-to-S transition is
nechanistically regulated in plants. Pathways that are still not fully

experinental ly denonstrated are marked by question narks.

Figure 2. Schematic overview of how the &-to-M transition is
nechanistically regulated in plants. Question narks indicate pathways

that are still not fully experinentally denbnstrated.
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Teaser: Many cell cycle genes have been cloned years ago, but only now we

start to understand how they all cooperate to drive the cell cycle.

Keywords: CDK, cell «cycle, «cyclin, DNA replication, E2F, mtosis,

restriction point
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