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ABSTRACT 

The aim of the current study was to evaluate the potential of the dynamic lipolysis model 

to simulate the absorption of a poorly soluble model drug compound, probucol, from 

three lipid based formulations and to predict the in vitro-in vivo correlation (IVIVC) 

using neuro-fuzzy networks. An oil solution and two self micro and nano-emulsifying 

drug delivery systems were tested in the lipolysis model. The release of probucol to the 

aqueous (micellar) phase was monitored during the progress of lipolysis. These release 

profiles compared with plasma profiles obtained in a previous bioavailability study 

conducted in mini-pigs at the same conditions. The release rate and extent of release from 

the oil formulation were found to be significantly lower than from SMEDDS and 

SNEDDS. The rank order of probucol released (SMEDDS~SNEDDS>oil formulation) 

was similar to the rank order of bioavailability from the in vivo study. The employed 

neuro-fuzzy model (AFM-IVIVC) achieved significantly high prediction ability for 

different data formations (correlation greater than 0.91 and prediction error close to zero), 

without employing complex configurations. These preliminary results suggest that the 

dynamic lipolysis model combined with the AFM-IVIVC can be a useful tool in the 

prediction of the in vivo behavior of lipid based formulations. 

 

Keywords: In vitro-in vivo correlations (IVIVC); in vitro dynamic lipolysis model; self 

emulsifying drug delivery systems, mathematical modeling, neuron-fuzzy networks 
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1. Introduction 

In recent years, much attention has turned to lipid based formulations with the aim of 

improving the oral bioavailability of poorly water soluble drugs. Lipid based 

formulations encompass a diverse group of formulations, very different in physical 

appearance, ranging from a simple triglyceride vehicle to more sophisticated 

formulations such as self-emulsifying drug delivery systems [1] and [2].   

Most lipid based formulations are designed to deliver the entire dose in solution thereby 

bypassing the dissolution process in the gastro-intestinal (GI) tract, which has been 

recognized as one of the main prerequisite for the efficiency of these formulations [3]. 

However, the GI tract is a complex organ where the environment (e.g. liquid volume, pH, 

ionic strength and concentration of bile salt) varies depending on dietary state. In 

addition, lipid based formulations containing hydrolysable lipids like triglycerides are 

prone to lipolysis by gastric and pancreatic lipase in the GI tract.  

The use of an in vitro lipolysis model has been proposed as an approach to probe 

solubilisation in the aqueous phase during the progress of enzymatic degradation of lipid 

based formulations [4], [5], [6], [7], [8] and [9]. However, none of these studies directly 

compared lipid formulations with the same composition, relating the absorption of a drug 

from a lipid based formulation to the solubilization of drug in the micellar phase during 

lipolysis. 

In the present study we have attempted to relate the in vivo performance of three different 

lipid based formulations using the in vitro solubilization data obtained from a lipid 

digestion model.  

Additionally a mathematical model was used to correlate the in vitro and in vivo data. 

Modelling of in vitro-in vivo correlation (IVIVC) has been reported in the literature 

[10], [11], [12] and [13] as an effort to successfully predict in vivo drug concentration-

time profiles using the in vitro dissolution data. The degree of the assumed correlation 

between in vivo absorption and in vitro dissolution properties of drug product reflects 

the existence or not of a point-to-point relationship between in vitro dissolution and in 

vivo input rate [14] and [15]. Efficient performance of an IVIVC model can contribute 

to the optimization of the drug formulation during clinical phases I and II, achieving the 

target concentrations of drug in plasma. Furthermore, it can support changes made to 
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production procedures (clinical phase III), such as variations or scale-up, and during the 

post approval period [16]. 

Many of the IVIVC models adopt a linear approach, i.e., they relate a parameter of a 

time point descriptive of the dissolution to a parameter or a time point descriptive of the 

pharmacokinetic absorption [10], [11] and [12]. However, these IVIVC models are 

unable to account for any nonlinear relationship between the in vitro dissolution data 

and the in vivo pharmacokinetics and the intrinsic variability of the parameters involved 

in the IVIVC modelling procedure [17], [18] and [19].  Newer IVIVC modelling tools 

involve artificial intelligence, i.e., models using artificial neural networks (ANNs). The 

latter have the ability to incorporate a large number of possible variables and 

relationships without a predefined model structure [20], [21] and [22]. This 

characteristic has fostered the use of ANNs in pharmacokinetics and 

pharmacodynamics [23], [24] [25] and [26] and in product development [27]. A 

thorough exploration of the efficiency of the ANN-IVIVC modelling has been 

presented by Dowell et al. [28], who developed a methodological approach to ANN-

IVIVC modelling and examined its feasibility based on different ANNs configurations 

and data formats. Furthermore, stochastic IVIVC modelling based on Bayesian 

approach [29] has been recently proposed [30]. In that IVIVC model, compartment 

models and related prior information are used, whereas the results are interpreted as 

probability distributions of the parameters; hence, predictions of plasma concentration 

profiles with probability distributions based on in vitro dissolution data are feasible.   

In this work, an extension to the ANN-based optimization technique is introduced based 

on Neuro-Fuzzy Modelling (NFM). The concept of NFM has emerged in
 
recent years as 

researchers have tried to combine the transparent,
 
linguistic representation of a nonlinear 

system with the learning ability
 
of ANNs. The adopted neuro-fuzzy model consists of an 

Adaptive neuro-Fuzzy Modeller (AFM) [31] and [32] which combines ANNs with fuzzy 

logic (FL) [33] to model nonlinear complex problems, such as IVIVC modelling. Fuzzy 

logic is a powerful tool, which has been successfully used in many signal processing 

fields, like system modelling and control, pattern recognition, detection, de-noising, 

prediction [34] and [35]. Unlike the Boolean logic, FL allows the input and output values 

to a fuzzy inference model to belong to multiple sets with different degree of membership 
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in each set defined by a particular membership function [33]. This facilitates the idea that 

a nonlinear system can be approximated by softly merging locally linear systems 

avoiding discontinuities if the system state moves from one local model to another [36]. 

This fuzzy transition is achieved using the membership functions to calculate the validity 

of the different local models for a certain state [37]. The resulting structure of the fuzzy 

system has the appearance of a network; hence, the learning methods of an ANN can be 

easily applied to form a neuro-fuzzy model with favourable characteristics. 

To our knowledge, the AFM approach has not been previously used in the context of 

IVIVC modelling; hence, the aim of the proposed study is to examine the predictive 

potential of the AFM-IVIVC approach, based on different data formats and using a 

relative small set of IVIVC data for training and prediction.  

 

2. Materials and Methods 

2.1 Materials 

Pancreatin (porcine), bile extract (porcine) and sesame oil were purchased from Sigma–

Aldrich, USA. 4-bromobenzeneboronic acid (BBBA) was purchased from Lancaster, 

Germany. Cremophor RH 40 was purchased from BASF, Germany and Maisine 35-1 

from Gattefossé, France respectively. Phosphatidylcholine (Lipoid E PC, purity >98%) 

was kindly donated from Lipoid GMBH, Germany. The water used was obtained from a 

Milli-Q-water purification system, Millipore, MA, USA. All other chemicals were of 

analytical grade.  

 

2.2 Preparation of lipid formulations  

The lipid based formulations tested were: an oil solution and two self-emulsifying drug 

delivery systems which were prepared as described previously [38] according to the 

following composition : SNEDDS [Sesame oil : Maisine 35-1 : Cremophor RH 40 :  

Ethanol, 30 : 30 : 30 : 10] , SMEDDS [Sesame oil : Maisine 35-1 : Cremophor RH 40 :  

Ethanol, 26.7 : 26.7 : 26.7 : 20]  and Oil [Sesame oil : Maisine 35-1 : Ethanol, 45 : 45 : 

10]  expressed in w/w. The particle size for the SNEDDS formulation was 45.0  3.4 nm 

and for the SMEDDS formulation was 4.58  0.84 µm respectively.  
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2.3 Lipolysis medium 

In the current study a concentration of 20 mM of bile salts and 4 mM of 

Phosphatidylcholine (Lipoid E PC, purity >98%) was used. This simulates the fed state 

conditions in the GI tract [39]. The composition of the digestion buffer was 150 mM 

NaCl, 2mM Trizma maleate pH 6.5 and the final volume 300 mL. The Trizma-maleate 

concentration was chosen to be low (2 mM) to secure that ionized fatty acids are able to 

change pH in order to trigger the addition of NaOH in the pH-Stat [4]. We chose pH 6.5 

as a compromise between the optimum for the pancreas lipase, which is between 6 and 10 

[40] and the measured duodenal pH in the fed state, which is around 5.0-5.5 [41].  

 

2.4 Preparation of lipase suspension 

The lipase suspension was prepared in accordance with the method described previously 

[5] to give an activity of 800 USP units/ml. Briefly 16.6 g of pancreatin was weighted 

accurately, suspended in 110 mL of Millipore water at 37
o
C and mixed thoroughly. The 

suspension was centrifuged for 7 minutes at 4,000 rpm at 37
o
C and the pH of the 

supernatant was adjusted to 6.5 using 1.00 M NaOH. 100 mL of the pH-adjusted 

supernatant was used for the study. In order to minimize denaturation, the time spent on 

preparing the suspension did not exceed 15 minutes. The lipase activity of pancreatin was 

determined in accordance with United States Pharmacopeia 26, 2003 [42].  

 

2.5 In vitro digestion study 

The experimental set-up of the in vitro lipolysis model has been described previously [5]. 

Briefly it consists of a thermostated double wall reaction vessel, the pH-stat with the auto 

burette for the addition of NaOH, a peristaltic pump for the addition of CaCl2 and the 

computer with the software for the titration experiments. The temperature is monitored 

during the experiment with a thermocouple. The experiment is performed under 

continuous agitation at 37
o
C. A pH-stat titrate control the volume of NaOH to maintain 

the initial pH. The number of OH
-
 ions present in the volume of the titrant can be equated 

with the fatty acid liberation caused by lipolysis.  
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The bile salt, phospatidylcholine and buffer of the lipolysis medium were mixed in a 

thermostatically controlled vessel (37 °C). 3 g of the each formulation was added to the 

obtained 300 mL of the bile salt medium, giving a final concentration of 1% w/v. The pH 

of the obtained medium was adjusted to 6.5 with 1.0 M NaOH. The lipolysis process was 

initiated by adding the 100 ml lipase suspension. In the dynamic lipolysis model the 

continuous addition of calcium chloride solution serves to control accumulation of FA on 

the surface of the emulsions particles by forming insoluble calcium FA soaps, which 

precipitate thus removing FA from the system [43]. Therefore a continuous addition of a 

0.5 M Ca
2+

 solution was started at time zero with a dispensing rate of 0.045 mM/min. 

Throughout the study pH was kept constant at 6.5 by means of a pH-stat (Titrino 718 

with burette from Methrohm, Switzerland). The software used was Tinet, version 2.3 also 

from Methrohm.  

At 0, 15, 30, 45 and 60 minutes, 20-ml samples were withdrawn and the lipase was 

inhibited immediately with a 4-bromobenzeneboronic acid (BBBA) Lancaster, Germany 

solution as described previously [5]. The time zero sample was taken just after 

adjustment of the pH in the medium. The samples were centrifuged at 40,000 rpm for 

135 min [5] and probucol concentration in the aqueous phase was determined by HPLC 

[44].  

 

2.6 In vivo studies 

The bioavailability study was conducted as crossover study in male Göttingen mini-pigs 

fed a high fat meal 30 minutes prior to treatment [44]. The meal consisted of standard 

mini-pig diet enriched with 20 w/w % olive oil to obtain a high fat meal (50% energy 

from fat). 

 

2.7 Statistics 

The solubilization of probucol from SNEDDS, SMEDDS and oil formulations were 

compared with One Way Analysis of Variance for each time point and in cases of 

significance (p<0.05) differences between formulations were allocated by multiple 

comparison with an un-paired t-test (Student-Newman-Keuls Method) using SigmaStat 

version 3.1 (Systat Software Inc. USA). 
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2.8 Functional Principles of Neuro-Fuzzy modelling (NFM) 

The AFM belongs to the family of NFM. In general, neuro-fuzzy models belong to the 

category of empirical data-based models (EDMs). These models rely on the fact that the 

intrinsic features of the observed interactions of a complex system and their mutual 

interrelations can be learned from the data using a great number of simultaneously co-

operating simple processing units or operations. This approach allows the extraction of 

information (knowledge) from these low-level data into other forms that might be more 

abstract [45]. EDMs that make use of fuzzy inference system (FIS) combined with 

adaptive networks provide a neuro-fuzzy network that consists of nodes and directional 

links through which the nodes are connected. Part or all of the nodes are adaptive; hence, 

each output of these nodes depends on the parameters pertaining to this node. The 

learning rule specifies how these parameters should be changed to minimize a prescribed 

error measure [46]. In a neuro-fuzzy network, the synergism of ANNs and FL manages to 

model the structure of complex systems by extracting the necessary knowledge from 

pairs of crisp input-output data. In fact, an ANN can approximate a function, but it is 

impossible to interpret the result in terms of natural language. The fusion of ANNs and 

FL in NFM provide learning as well as readability. On the basis of the FL technology, the 

model can be linguistically described by means of input-output parameterized variables 

and well-defined set of IF/THEN fuzzy rules (namely rule-base). A general structure for a 

fuzzy rule is: “IF <antecedent> THEN <consequent>”, for example: “IF speed is high 

AND distance is small THEN brake force is high”. In this example, speed, distance and 

brake force are fuzzy variables and high and small are fuzzy sets. Fuzzy sets are 

linguistic terms that are expressed in an exact mathematical way by using the concept of 

membership function, which represents the degree of truth of an assertion (e.g. pressure is 

high) in a y-axis range [0, 1]. Membership functions can have several shapes, the most 

common being Gaussian, trapezoidal, triangular and sigmoidal, and their x-axis range 

forms the so-called universe of discourse [34].  

The human-perceived information of the set of fuzzy rules is all encoded, at the 

mathematical level, by means of „fuzzy‟ representations, which do not pursuit precision. 

On the other hand, the ANNs technology, by means of the precise input-output values, 
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identifies the parameters involved in the model, by training a generic model to adaptively 

approximate the relationship between the input-output data [47]. Thus, by means of its 

structure, a neuro-fuzzy network manages not only to deal with the uncertainties of 

complex systems, but it can provide their model with transparent and interpretable 

structure. Furthermore, based upon this modelling, a neuro-fuzzy network manages to 

generalize; hence, it produces predictive outputs when presented with new „proper‟ input. 

The theoretical details of the neuro-fuzzy modelling can be found in [46], [47]. 

Moreover, a simplified introduction regarding the general issues of FL modelling, fuzzy 

sets, membership functions and fuzzy clustering is provided in [34]. However, relevant 

features and context that refer to the adopted means of neuro-fuzzy modelling, i.e., AFM 

[32], are described in the subsection that follows and in the Appendix.     

 

2.9 Structure of AFM 

AFM is a tool that easily allows obtaining a model of a system based on FL data 

structure, starting from the sampling of a process/function expressed in terms of input-

output values pairs (patterns). Its primary capability is the automatic generation of a 

database containing the inferencing rules and the parameters describing the membership 

functions. The generated FL knowledge base represents an optimised approximation of 

the process/function provided as input. AFM is expected to reveal the correlation 

between in vitro inputs (% dissolved) and in vivo outputs (pharmacokinetic observations) 

and generalize, i.e., provide efficient predictions of the output when presented with new 

input values. To infer this response values, AFM is trained to evaluate the relation 

between in vitro inputs and in vivo outputs. However, this initially unknown relation is 

hidden within the empirical data that are obtained from experiments. Therefore, AFM 

training is an equivalent procedure to learning from empirical data. This is achieved with 

the help of the learning capabilities of ANNs to extract a fuzzy rule base automatically 

from input-output data [48]. In fact, the NFMs can automatically identify the fuzzy rules 

and tune the membership functions by modifying the connection weights of the networks 

using the back-propagation algorithm [49]. The AFM used here adopts a six-layer feed-

forward network structure [31] and belongs to the first of the three types of NFMs 

introduced by Horikawa et al. [50]; it is characterized by consequents of a constant type 
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and its schematic structure is depicted in Figure 1. During training, at each level, the 

parameterized nodes perform specific functions of the incoming signal [50] (see 

Appendix for some mathematical details). Briefly, this type of NFM has specially 

designed structures to make the connection weights of the networks correspond to the 

parameters of the fuzzy inference. Through the learning with the back-propagation 

algorithm, NFM can identify the fuzzy rules and tune the membership functions 

automatically [50]. One problem that needs to be addressed when using neuro-fuzzy 

networks for automatic rule extraction is the exponential dependence on the number of 

inputs. For example, when a network is structured for 8 inputs and 3 fuzzy sets per input, 

a base of 3
8
=6561 rules is generated. This shortcoming can be overcome by using 

appropriate clustering algorithms, like „the winner takes all‟ [51] that efficiently reduce 

the number of rules in a knowledge base.  

 

2.9.1 Implementation of the AFM-IVIVC scheme 

The selection of different formatting of the input-output association defines the structural 

characteristics of the AFM-IVIVC scheme, as it varies the number of its inputs and 

outputs, accordingly. Moreover, different types of pattern files are constructed from the 

available experimental data to accommodate for each association characteristics.  

The dataset reported in this study included solubilization  values from three extended-

release formulations (OIL, SMEEDS, SNEDDS) with five solubility time points, i.e., 0, 

0.25, 0.5, 0.75 and 1 hour, each, at which three batches were tested per formulation. Each 

formulation was administered to six pigs in a crossover trial. The drug plasma 

concentrations were sampled at 12 time points, i.e., 0, 0.75, 1.5, 2.25, 3, 4, 5, 6, 8, 12, 24, 

and 48 hours, following oral formulation administration. The dataset from the first two 

formulations, i.e., OIL and SNEDDS, was used in the training procedure of the AFM-

IVIVC, whereas the third one (SMEDDS) was kept as a validation set; hence, success of 

the AFM-IVIVC was based on the prediction of the validation profile.  

Similarly to the procedure introduced by Dowell et al. [28], different types of pattern files 

constructed from the same data were selected for evaluation. These pattern files, namely 

ASSOCIATION-1 through ASSOCIATION-4, included different formatting of the input-

output association [28], and a diagram of their structure is presented in Figure 2. In the 
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latter, the structure of the input-output relationship is depicted, as well as the data format 

across associations to create a pattern file is shown via subscripts. Moreover, a summary 

of the constructed pattern files is presented in Table 1.  

ASSOCIATION-1 refers to a functional relationship of the data employing an input-

output association that uses all of the pharmacokinetic concentration values from a pig as 

an output set associated with an input set that consists of the solubilization profile from 

an individual formulation. The resulting pattern file contains each pharmacokinetic 

observation set associated with each of the three solubilization profiles. In our case, this 

association involves 5 inputs and 12 outputs, hence, it contradicts the output 

configuration of the AFM, i.e., the number of outputs should not be greater than four 

[32]. To overcome this contradiction we split it to three subnets with 5 inputs and 4 

outputs each, creating 3 training datasets for each output set (5-1:4, 5-5:8, 5-9:12), so the 

estimation of the pharmacokinetic observations at various time points should employ the 

relevant subnet (Figure 2(a)). 

ASSOCIATION-2 is similar to ASSOCIATION-1, including the complete kinetic set of 

solubilization values for each tested formulation, but in this case each is associated with a 

single respective pharmacokinetic output, with the input-output association lines of the 

pattern file forming a pharmacokinetic time sequence. Moreover, the pharmacokinetic 

time point is also included as an input (Figure 2(b)).   

ASSOCIATION-3 refers to an input-output association consisted of each in vitro value as 

an input associated with each in vivo output, excluding pharmacokinetic observations 

with no direct association with solubilization observations. The time of observation is 

also added as an input (Figure 2(c)).  

ASSOCIATION-4 is a sequential time series and includes previous solubilization values 

as inputs. The output consists of the pharmacokinetic concentration value, whereas the 

inputs are the pharmacokinetic time point and all the dissolution values that precede that 

point in time. Dissolution values occurring after that pharmacokinetic time point are set 

to zero in the pattern file and are interpreted as null inputs by the model (Figure 2(d)). 

The input/output pairs of the aforementioned associations were all presented to the 

system during AFM-IVIVC training. Learning is implemented in epochs in order to 

define the values of the premise and consequent parameters by minimizing the Mean-
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Quadratic-Error (MQE) [32]. Each epoch foresees two passes: a forward pass of the 

signal, where the premise parameters are kept fixed and the consequent parameters are 

calculated by the least squares method, and a backward pass, where the consequent para 

meters are kept fixed and the premise parameters are updated by the gradient descent 

method [32].  

In all realizations of the AFM-IVIVC according to the four associations three 

membership functions of a Gaussian-bell shape [40], uniformly distributed in their 

universe of discourse, and three linguistic variables, i.e., „low‟, „medium‟, and „high‟, 

were defined as the initial conditions of AFM-IVIVC, i.e., before the training procedure. 

The target MQE for the training procedure was set to 10
-4

. The data configuration 

according to the input-output relationship of the four associations was performed using 

Matlab  (Version 7.1, The Mathworks, Inc., Natick, MA, 2005), whereas the AFM-

IVIVC was implemented using the AFM 2.0 software (SGS-Thomson Microelectronics, 

1998) [32]. 

 

2.9.2 Performance Indices 

Similarly to the work of Dowell et al. [28], the performance of the ANF-IVIVC was 

evaluated using the performance indices defined below: 

Correlation coefficient:   








2

2

2

)(

)ˆ(

yy

yy
R      (10) 

Mean Prediction Error:     )ˆ(
1

yy
N

MPE      (11) 

Mean Absolute Error:     |ˆ|
1

yy
N

MAE ,     (12) 

where y  denotes the actual observation, ŷ  is the prediction of the AFM-IVIVC, y  

corresponds to the average observation and N  is the number of observations. In addition, 

the statistical significance of the estimation of the correlation coefficient 2R  is measured 

with the probability of false hypothesis ,p  with values of 05.0p  denoting statistical 

significance of the estimated 2R  value. Moreover, the ratio of 2R  between the 

predictions and training pattern files is also used as an indicator of possible network 

memorization.   
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3. Results and discussion 

3.1 Lipolysis rate 

The consumption of NaOH during the study, reflecting the progress of lipolysis, is 

depicted in Figure 3. The values presented have been corrected by subtracting the amount 

of NaOH consumed when carrying out experiment without any formulation present. 

Initial lipolysis rates (up to 5 minutes) are almost identical for all formulations After 60 

minutes significantly more NaOH had been consumed during hydrolysis of the oil 

formulation compared to the SMEDDS and SNEDDS formulations. In absolute terms 

1.85 ± 0.15g, 0.94 ± 0.14g and 1.04 ± 0.17g of the lipid phase was hydrolyzed after 60 

minutes. However, when calculated as the percentage of the total amount of hydrolysable 

ester bonds, the oil, SMEDDS and SNEDDS formulations were hydrolyzed to the same 

extent of 68.7 ± 5.6 %, 58.5 ± 0.9 % and 57.8 ± 9.2 %, respectively (not significant 

different).  

 

3.2 In vitro digestion of lipid formulations 

The percentages of probucol released from the oil solution, SNEDDS and SMEDDS into 

the aqueous phase versus time are depicted in Figure 4. The initial release values (mean ± 

SD), before the onset of lipolysis were 27.2 ± 0.3% for the SMEDDS, 16.2 ± 0.4% for 

the SNEDDS and 8.2 ± 2.1% for the formulation. The initial release values reflect a 

partition of probucol between formulation and the mixed micelles and other intermediate 

products present in the aqueous phase. 

From 0 to 15 min a steep release of the drug was noticed for the SMEDDS and SNEDDS 

formulations. The release from the SMEDDS and SNEDDS formulations reaching 95.8 ± 

0.8% and 71.5 ± 1.5% of the total amount at 15 minutes, followed by a levelling off for 

the SNEDDS formulation up to 60 minutes (significantly different values at 15 and 60 

minutes) and a plateau for the SMEDDS formulation (no significant difference between 

15 and 60 minutes). There was no significant difference between 45 and 60 minutes with 

regard to the release of probucol from SMEDDS and SNEDDS formulations (p>0.05).  

The release profile for the oil formulation increases from 8.2 ± 2.1% at time point 0 to a 

plateau of 16.7 ± 9.0% at 45 minutes from where it decreased, but not significantly, to 

15.9 ± 7.7% at 60 minutes (p>0.05). 
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Despite the same relative level of hydrolysis, lipolysis of the oil formulation releases 

significantly lower amounts of probucol to the aqueous phase compared to the SNEDDS 

and SMEDDS (p<0.05). This could be attributed to an up-concentration of probucol in 

the remaining non-hydrolysed lipid phase [9]. At all sampling times, more non-

hydrolysed lipid is present for the oil formulation. In addition, the Cremophor in the 

SEDDS formulations might partition into the aqueous phase during lipolysis and aid an 

increased solubilisation of probucol during lipolysis of the SEDDS formulations.   

The release profiles of probucol in the lipolysis model were compared with data obtained 

from a bioavailability study conducted in mini-pigs fed a high fat meal (standard mini-pig 

diet enriched with 20 w/w % olive oil to obtain 50% energy from fat) 30 minutes prior to 

treatment [44]. 

 

3.3 In vivo studies 

The mean plasma concentration-time profiles following oral administration to fed mini-

pigs are shown in Figure 5. No significant differences were found between the 

determined Tmax values from the orally dosed formulations in the fed minipigs. The 

SNEDDS and SMEDDS formulations had a median Tmax of 8 hours, whereas the oil 

formulation had a slightly longer median Tmax of 12 hours. The SNEDDS and SMEDDS 

formulations exhibited the highest Cmax. The Cmax for the oil solution was significantly 

lower than for SMEDDS.  

No significant differences were observed between the determined AUC0-48h or the relative 

bioavailability in the minipigs fed a high fat meal. The SMEDDS formulation exhibited 

the highest relative bioavailability, which was fixed at 100% for use as a reference. The 

SNEDDS formulations exhibited a relative bioavailability equivalent to that of SMEDDS 

(97%), whereas the relative bioavailability of the oil solution was 61%.  

The in vivo findings show that the SNEDDS and SMEDDS formulations exhibit the 

same Tmax, but Cmax and relative bioavailability are slightly higher for the SMEDDS. 

These findings are in accordance with the profiles obtained from the in vitro lipolysis 

model.  

The in vitro release profile for the oil formulation reach a plateau later (after 30 minutes), 

and at a lower level than the release profiles for the SNEDDS and SMEDDS 
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formulations. This is in accordance with the in vivo findings showing that the oil 

formulation exhibit slightly longer Tmax, lower Cmax and relative bioavailability compared 

to the SNEDDS and SMEDDS. 

Using the area under the curve for the release profiles in ranking the lipid based 

formulations results in the following order: SMEDDS ~ SNEDDS > oil in vitro. The 

same trend was observed in vivo as well.  

Although there was no significant difference between the different formulations tested in 

vivo, there was a trend towards higher absorption values for SNEDDS and SMEDDS. 

This is also the case for the in vitro studies emphasizing that important information may 

be gained from the in vitro dynamic lipolysis model.  

 

 

3.4 Mathematical modelling 

Each configuration of the AFM-IVIVC based on the four associations was trained as 

described in the methodology and inputs from the training and validation pattern files 

were applied to the trained networks resulting in predicted output values; these were then 

compared to the actual observations. Shown in Table 2 are the results of the performance 

indices (see (10)-(12)), for both the training and validation pattern files for each 

configuration of the AFM-IVIVC scheme. These results are measured by the precision 

and bias of the predicted outputs from the training and validation data. Clearly, Table 2 

reflects a success of each AFM-IVIVC configuration when applied to this particular set 

of IVIVC data. In fact, the AFM-IVIVC attempted to account for the determination of a 

mean concentration curve based on the information contained in the solubilisation 

kinetics and for the variability in the pharmacokinetics due to the variability in the 

solubilisation kinetics. Nevertheless, as it is noted in Table 2, ASSOCIATION-3 did not 

provide statistically reliable correlation results, as the structure of this configuration 

combined with the experimental set up resulted in a very limited number of valid cases 

(two only). In all other cases, the estimated correlation was statistically significant 

)001.0( p  exhibiting 
2

TR  and 2

VR  values greater than 0.94 and 0.91 for the training 

and validation set, respectively, resulting in a 22 / TV RR  ratio greater than 0.96. Moreover, 
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in all cases, the MPE and MAE were found close to zero for both training and 

validation sets.    

Figures 6-9 depict the comparison between the actual pharmacokinetic observations and 

the predicted ones by the AFM-IVIVC for each configuration based on ASSOCIATION-

1 through ASSOCIATION-4, respectively. In all these figures, the (a) part corresponds to 

the case of the analysis of the training data set, whereas the (b) part corresponds to the 

case of the analysis of the validation data set.  

Looking at Figure 6, it is clear that both in Figure 6 (a) and (b), the predicted output of 

the AFM-IVIVC follows the mean concentration curve of PK (shown as a solid line), 

exhibiting high correlation )99.0( 2

, VTR . These results show that in the case of 

ASSOCIATION-1, where the data are formatted as a functional relationship, the AFM-

IVIVC successfully determines the shape of the mean PK, despite the noticeable 

variability in PK observations. Moreover, as it is deduced from Figure  6 (a) and (b), the 

subnets involved in this configuration perform equal well, providing reliable predicted 

output for each region of pharmacokinetic time points (denoted as triangles with three 

different orientations), as justified by the corresponding small values of MPE and MAE 

(see Table 2).  

In Figure 7, which corresponds to the case of ASSOCIATION-2, a performance similar 

to Figure  6  is noticed, as, in general, the predicted output is distributed around the curve 

of the mean of the observed PK values (denoted as solid line). However, there is a 

difference in the concentration of the predicted values around the mean PK between the 

training (Figure 7(a)) and validation (Figure 7 (b)) data sets. Clearly in the case of the 

training data set (Figure 7(a)), the predicted values are less dispersed, following the shape 

of the mean PK curve, whereas in the case of the validation data set (Figure 8 (b)), the 

predicted values are more dispersed, yet successfully defining the shape of the mean PK 

curve. This is also reflected in the difference seen in the corresponding correlation values 

(see Table 1), i.e., 973.02 TR  and  ,941.02 VR  and in the small increase of MPE and 

MAE of the validation data set compared to the ones of the training data set (see Table 

2). Nevertheless, the general performance of the AFM-IVIVC under the configuration of 

ASSOCIATION-2 is still high, accounting both for the determination of the mean 

concentration curve and the variability of PK values.  
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As it is already mentioned, the configuration of ASSOCIATION-3 combined with the 

experimental set up resulted in limited valid cases for the AFM-IVIVC. Figure 8 

illustrates the predicted output for this configuration corresponding to two 

pharmacokinetic time points, i.e., 0 and 0.75 h. Both in the case of training (Figure 8(a)) 

and validation (Figure 8 (b)) data sets, the predicted values account for the variability of 

the observed PK values, resulting in small values of MPE and MAE (see Table 2).  

The performance of AFM-IVIVC for the configuration of ASSOCIATION-4 is illustrated 

in Figure 9. In this case, data are formatted as a memorative pattern file and this pattern 

file provides the advantage of being a generalized format with a single output, which also 

allows the AFM-IVIVC to incorporate relationships from the previous inputs. However, 

this pattern file seems unable to use information from dissolution values with a time of 

dissolution greater than the corresponding time of the PK observation [ref. ANNs]. 

Similar to the ASSOCIATION-1 and ASSOCIATION-2, the predicted values of the 

AFM-IVIVC of ASSOCIATION-4 shape quite well the curve of the mean PK, exhibiting 

high correlation values for the training (Fig. 5(a)) and the validation (Figure 9(b)) data 

set, i.e., 945.02 TR  and  ,914.02 VR  respectively, with better performance for the case 

of training than the validation data set (see also the corresponding values of MPE and 

MAE of Table 2). In general, a higher dispersion is seen in the distribution of the 

predicted data when comparing ASSOCIATION-4 with ASSOCIATION-1 and 

ASSOCIATION-2, especially for the predicted values at pharmacokinetic time points 

lying within the time span of 1.5-8 hours for the case of the training set and for those at 

the pharmacokinetic time points of 24 and 48 hours for the case of the validation set. 

The setting of the AFMs incorporated in the AFM-IVIVC scheme was selected as the 

standard one (three membership functions of a Gaussian-bell shape corresponding to the 

linguistic variables of „low‟, „medium‟, and „high‟). An example of the estimated 

membership functions corresponding to each input of the AFM-IVIVC of 

ASSOCIATION-4 is depicted in Figure 10. Other setting, like trapezoid type and greater 

number of membership functions, was tested resulting in non significant performance 

enhancement. The number of the estimated fuzzy rules of the AFM-IVICV was 729 in all 

associations but ASSOCIATION-3 where it was nine; in ASSOCIATION-1, at each 

subnet 243 fuzzy rules were corresponded. Moreover, 1000 epochs as a mean value 
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across the four associations were performed for achieving the target 𝑀𝑄𝐸 during the 

training procedure. Apparently, increase in the number of inputs and outputs would lead 

to a more complicated network structure, which in turn would increase the level of the 

structural complexity, thus decreasing the likelihood of obtaining good solution [28]. The 

structure of the AFMs incorporated in the proposed AFM-IVIVC scheme has led to a 

moderate complexity, securing, at the same time, an efficient prediction performance. 

The results presented so far denote that the AFM-IVIVC exhibits a high performance in 

the prediction of the pharmacokinetic values at different time points based on the 

information contained in the dissolution kinetics. Despite the difference between the data 

set used in the current study and in the one by Dowell et al. [28], a rough comparison 

between the performance of the AFM-IVIVC and the ANN-IVIVC [28] could be 

conducted, as the same data configuration and same performance indices were considered 

in both works. In particular: 

1. From the comparison of the performance indices presented in Table 2 (with the 

exception of 𝑅𝑇,𝑉
2   for the case of ASSOCIATION-3) with those presented in [28-

Table 3] it is clear that the proposed AFM-IVIVC scheme exhibits a higher 

performance than the ANN-IVIVC [28], as it results in 𝑅𝑇
2   and 𝑅𝑉

2  values (worse 

case ASSOCIATION-4) greater than 0.94 and 0.91, respectively,  when the ANN-

IVIVC results in 𝑅𝑇
2   and 𝑅𝑉

2  values (for the best network configurations) greater 

than 0.85 and 0.77, respectively. Moreover, the estimated errors, i.e., 𝑀𝑃𝐸 and 

𝑀𝐴𝐸 are significant lower for the case of AFM-IVIVC (mean 𝑀𝑃𝐸 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 =

0.009; mean 𝑀𝐴𝐸 𝑡𝑟𝑎𝑖 𝑛𝑖𝑛𝑔 = 0.176; mean 𝑀𝑃𝐸 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 = 0.062; 

mean 𝑀𝐴𝐸 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 = 0.176) than those for the case of ANN-IVIVC 

(mean 𝑀𝑃𝐸 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = 1.455; mean 𝑀𝐴𝐸 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = 4.716; 

mean 𝑀𝑃𝐸 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 = 2.117; mean 𝑀𝐴𝐸 𝑣𝑎𝑙𝑖𝑑 𝑎𝑡𝑖𝑜𝑛 = 5.353). Furthermore, the 

𝑅𝑉
2

𝑅𝑇
2  ratio shows a higher consistency in its convergence to one for the case of 

AFM-IVIVC (values from 0.967 to 0.996) than for the case of ANN-IVIVC 

(values from 0.812 to 1.910). 

2. As it have been shown by the results, the AFM-IVIVC incorporates quite well for 

different data formations despite its AFM structure, showing a successful 
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performance in the identification of the IVIVC, whereas ANN-IVIVC performs 

well for ASSOCIATION-1 and ASSOCIATION-4, only, showing a variability in 

its performance across its eight different ANN architectures employed in the 

structure of the ANN-IVIVC. 

3. The AFM-IVIVC expands the structure of ANNs using fuzzy logic, thus, 

providing more flexibility in the identification of nonlinear relationships like the 

IVIVC; hence, resulting in more efficient performance than the ANN-IVIVC, 

despite the relative smaller set of IVIVC data used for training and prediction in 

the case of AFM-IVIVC. 

The promising results presented here pave the way for applying AFM-IVIVC under 

different types of data and experimental design in order to further justify the potential of 

the proposed approach to successfully reveal the correlation between in vitro-in vivo data; 

such approach is an ongoing process within our group. 

 

CONCLUSIONS 

Our results demonstrate that the in vitro dynamic lipolysis model is a potential tool in 

evaluating new oral lipid based formulations and predicting their in vivo behavior and 

lays the framework for future work. Moreover a novel approach in the prediction of a 

mean in vivo plasma concentration profile using dissolution kinetics using neuro-fuzzy 

modelling has been presented in this work. As it has been demonstrated, the introduced 

AFM-IVIVC scheme exhibited efficient predictive performance for different data 

formations of this data set, without employing complex configurations. The proposed 

AFM-IVIVC model has the potential to establish complex relationships and may also 

possess the ability to interpolate pharmacokinetic parameters and profiles given the 

formulation specification. Further refinement is possible with the application of the 

AFM-IVIVC to other data types and larger scale experiments; however, the flexibility 

and efficient performance of the proposed AFM-IVIVC as it has been shown in this study 

looks promising and enables the use of in vitro dissolution for formulation optimization 

and as a surrogate for in vivo bioequivalent formulations. 
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Appendix 

In this Appendix, the functionality of the AFM structure, depicted in Figure 1, is 

explained, from a mathematical viewpoint.  

Suppose, for simplicity, that AFM has two inputs, ,2,1, jx j one output variable, ,y  and 

three membership functions ),(),(),( 321 jjjjjj xmxmxm  for each input variable, 

respectively (see Figure 1). For constant consequence, the rule-base could be formed as 

:iR  IF 1x  is )( 11 xmi  AND 2x  is )( 22 xmi  THEN ,ify   ,,...,2,1 ni        (1) 

where iR  is the ith fuzzy rule and n  is the number of fuzzy rules. In this example, each 

rule has two variables in the antecedent part (input variables) and one variable in the 

consequent part (output variable). It should be observed that in the reported example the 

output variable if   is a constant (i.e., a crisp value) while in the general case it is a fuzzy 

variable. The circles and squares in Figure 1 represent the units of the network, whereas 

denotations ,,, fgc www  1 and -1 between the units are the connection weights; bias units 

with outputs of unity are denoted with the symbol 1. The input-output relationships of the 

units with symbols of ,f , and ̂  are defined as 
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where )(n

jI  and )(n

jO  are the input and the output of the jth unit in the nth layer, 

respectively, )1,( nn

jkw  is the connection weight between the kth unit and the )1( n th layer 

and the jth unit in the nth layer. Units without any symbol just deliver their inputs to 

succeeding layers. The AFM is divided into the premise parts (layer I through layer V) 

and the consequence parts (layers V and VI) (see Figure 1). The degrees of truth of the 

membership functions in the premises are computed in layers I-IV; the connection 

weights cw  and gw  determine the central position and the gradient of the sigmoid 

function in the units in layer III, respectively. Appropriate initialization of the weights of 

the AFM connections allocates the membership functions on the universe of discourse. 

The truth values of the fuzzy rules are obtained by the product of grades of the 

membership functions in the units in layer V as 

Inputs:  
j

jiji xm )(       (7) 

Outputs:  ,ˆ




k

k

i
i




        (8) 

where i  is the truth value of the ith fuzzy rule and i̂  is the normalized value of i . In 

the consequence part (layers V-VI) the connection weights 
if

w  represent if  in (1). The 

inferred defuzzified output of the AFM is given as the output of the unit in layer VI, 

which is the sum of the products between i̂  and 
if

w , i.e.,  

.ˆ~

1





n

i
ifiwy       (9) 
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TABLE 1: Pattern files constructed from different input-output association types based on [28]
*
 

 

Association # Associated Input(s) Associated 

Output(s) 

Pattern Structure # 

Associations/ 

Formulation 

1 

subnet 1 

):( 51 DISSDISSj ttDISS  

):( 41 PKPKi ttPK  

pig1-6 )( 31DISS  18 subnet 2 ):( 85 PKPKi ttPK  

subnet 3 ):( 129 PKPKi ttPK  

2 ):( 51 DISSDISSj ttDISS , PKt  )( PKi tPK  pig1-6 )]([ 12131  PKtDISS  216 

3 )( DISSj tDISS , PKDISSt |  

)( PKi tPK   

only those 

outputs  

where 

DISSPK tt   

pig1-6 )]([ 51|31  PKDISStDISS  90 

4 
PKt , ):( 51 DISSDISSj ttDISS  

(if )PKDISS tt   
)( PKi tPK  pig1-6 )]([ 12131  PKtDISS  216 

* :PK  Pharmacokinetic observations (in vivo); :DISS  % dissolved (in vitro); i: pig number; j: tablet number; :PKt  

pharmacokinetic time point; :DISSt  dissolution time point. 
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TABLE 2: Performance of the AFM-IVIVC scheme for each realization based on the 

corresponding association (see Figure 2)
* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Association 

# 

Training Set Validation Set 

2

2

T

V

R

R
 )(2 pRT  MPE MAE )(2 pRV  MPE MAE 

1 
0.998 

(<<0.001) 
-0.001 0.201 

0.994 

(<<0.001) 
0.020 0.251 0.996 

2 
0.973 

(<<0.001) 
-0.005 0.224 

0.941 

(<<0.001) 
0.007 0.305 0.967 

3 NS 0.021 0.042 NS 0.047 0.056 NS 

4 
0.945 

(<<0.001) 
0.010 0.240 

0.914 

(<<0.001) 
0.177 0.329 0.967 

*
NS: Not statistically significant estimation due to very limited number of valid cases; 

2

TR : 

correlation coefficient (see (10)) for the training set; 
2

VR : correlation coefficient (see (10)) for the 

validation set;  :MPE  mean prediction error (see (11)); :MAE  mean absolute error (see (12)); 

:p  probability of false hypothesis. 
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CAPTIONS TO FIGURES 

 

FIGURE 1: Schematic representation of the configuration of the AFM for two inputs and 

one output. The premise and the consequent parts refer to input variables along with their 

associations and the formation of the output variable, respectively. For explanations of 

the symbols and unit-types the reader should refer to the Appendix. 

 

FIGURE 2: Diagrams of the input-output associations used in pattern files 

ASSOCIATION-1 through ASSOCIATION-4. :PK  Pharmacokinetic observations (in 

vivo); :DISS  % dissolved (in vitro); i: pig number; j: tablet number; :PKt  

pharmacokinetic time point; :DISSt  dissolution time point.  

 

FIGURE 3: The consumption of NaOH as a function of time for the oil formulation (■), 

the SNEDDS formulation (●), the SMEDDS formulation (▼), (mean ± S.E., n=3)  

 

FIGURE 4: The % of drug released into the aqueous phase as a function of time using 

the in vitro dynamic lipolysis model for the oil formulation (■), the SNEDDS formulation 

(●), the SMEDDS formulation (▼), (mean ± S.E., n=3) 

 

FIGURE 5: Plasma concentrations of probucol after administration of different lipid 

formulations in fed state for the oil formulation (■), the SNEDDS formulation (●), the 

SMEDDS formulation (▼), (mean ± S.E., n=6). Adopted from Nielsen et al. [44] 

 

FIGURE 6: Prediction performance of the AFM-IVIVC for the case of pattern files of 

ASSOCIATION-1. (a) Actual pharmacokinetic observations (white squares) from the 

training data set compared with AFM-IVIVC pharmacokinetic predictions (black 

triangles) using in vitro inputs from the training data set. (b) Actual pharmacokinetic 

observations (squares) from the validation data set compared with AFM-IVIVC 

pharmacokinetic predictions (black triangles) using in vitro inputs from the validation 

data set. Downwards, upwards and rightwards triangles correspond to the output from 

subnets 1 through 3 of the AFM-IVIVC ASSOCIATION-1, respectively (see Figure 3).  
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FIGURE 7: Prediction performance of the AFM-IVIVC for the case of pattern files of 

ASSOCIATION-2. (a) Actual pharmacokinetic observations (white squares) from the 

training data set compared with AFM-IVIVC pharmacokinetic predictions (black 

triangles) using in vitro inputs from the training data set. (b) Actual pharmacokinetic 

observations (squares) from the validation data set compared with AFM-IVIVC 

pharmacokinetic predictions (black triangles) using in vitro inputs from the validation 

data set. 

 

FIGURE 8: Prediction performance of the AFM-IVIVC for the case of pattern files of 

ASSOCIATION-3. (a) Actual pharmacokinetic observations (white squares) from the 

training data set compared with AFM-IVIVC pharmacokinetic predictions (black 

triangles) using in vitro inputs from the training data set. (b) Actual pharmacokinetic 

observations (squares) from the validation data set compared with AFM-IVIVC 

pharmacokinetic predictions (black triangles) using in vitro inputs from the validation 

data set. 

 

FIGURE 9: Prediction performance of the AFM-IVIVC for the case of pattern files of 

ASSOCIATION-4. (a) Actual pharmacokinetic observations (white squares) from the 

training data set compared with AFM-IVIVC pharmacokinetic predictions (black 

triangles) using in vitro inputs from the training data set. (b) Actual pharmacokinetic 

observations (squares) from the validation data set compared with AFM-IVIVC 

pharmacokinetic predictions (black triangles) using in vitro inputs from the validation 

data set. 

 

FIGURE 10: The estimated membership functions after their automated tuning by the 

AFM  for the input parameters of the AFM-IVIVC ASSOCIATION-4, i.e., (a) 𝑡𝑃𝐾 , (b) 

𝐷𝐼𝑆𝑆𝑗 (𝑡𝐷𝐼𝑆𝑆1), (c) 𝐷𝐼𝑆𝑆𝑗 (𝑡𝐷𝐼𝑆𝑆2), (d) 𝐷𝐼𝑆𝑆𝑗 (𝑡𝐷𝐼𝑆𝑆3), (e)  𝐷𝐼𝑆𝑆𝑗  𝑡𝐷𝐼𝑆𝑆4  and (f) 

𝐷𝐼𝑆𝑆𝑗 (𝑡𝐷𝐼𝑆𝑆5), corresponding to the three linguistic variables „low‟, „medium‟ and „high‟. 
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FIGURE 4 
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FIGURE 5 
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FIGURE 6 
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FIGURE 7 
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FIGURE 8  
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FIGURE 9 
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FIGURE 10 
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