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Abstract 

The present theoretical and experimental investigations concern static and dynamic 

properties of capillary bridges (CB) without gravity deformations. Central to their theoretical 

treatment is the capillary bridge definition domain, i.e. the determination of the permitted limits 

of the bridge parameters. Concave and convex bridges exhibit significant differences in these 

limits. The numerical calculations, presented as isogones (lines connecting points, characterizing 

constant contact angle) reveal some unexpected features in the behaviour of the bridges. The 

experimental observations on static bridges confirm certain numerical results, while raising new 

problems of interest related to the stability of the equilibrium forms. 

The dynamic aspects of the investigation comprise the capillary attraction (thinning) of 

concave bridge. The thinning velocities at the onset of the process were determined. The capillary 

attraction, weight of the plates and viscous forces were shown to be the governing factors, while 

the inertia forces turned to be negligible. 

Keywords: capillary bridge, catenoid, isogone, statics, dynamics  

1. Introduction 

The modern basis of capillary bridges investigation was set with the studies of Plateau, who 

140 years ago defined a mathematical problem, known nowadays as Plateau’s problem [1]. 

Defined originally as a purely mathematical issue (finding the surface with minimal area at given 

boundaries), it has turned in the years into an analytical tool for the description of capillary 

systems. Ever since the second half of the last century, capillary bridges (CB) have been among 

the intensively studied capillary systems. It corresponds to their increasing application in 

laboratory techniques and industrial praxis. For example: liquid material transferring from AFM 
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tips to silicone substrates for lithographic purposes [2]. With the development of patterning and 

lithography studies of capillary bridges in slit pore geometry became important [3]. Further 

implementation of CB can be found in the so-called weakly adhesive solid surfaces studies [4]. 

CB between two bodies of spherical shape appears to be important for soil-water interaction. 

Interesting are the investigations of surface roughness influence on the CB behavior [5]. There 

have been attempts to develop methods for contact angles measurement between the liquid and 

two particles [6].  

The recent CB theoretical investigations primarily feed the experiment (see above), but 

attention is also paid to classical problems like equilibrium, stability, etc. [7, 8, 9].  

Our study pertains to both the experiment and the theory of CB. In theoretical aspects the 

relations between CB geometrical parameters are investigated mainly (contact radius, height, 

contact angle, etc., Section 3). The emphasis is on the so-called ‘definition domain’, e.g. the 

upper CB height limit at given contact angle and volume. Some dynamic characteristics are also 

considered, such as the capillary pressure and CB-maintaining external force. The experimental 

part (Section 2) describes the setup and methods for measuring equilibrium (static) and non-

equilibrium (dynamic) CB states. The new moment here is the measured velocity of mutual 

approach of the CB plates upon acting of capillary attraction. The analysis of the dependence 

‘attraction (thinning) velocity vs. CB height’ clearly shows that the inertia forces are negligible, 

as compared to the drag forces. In section 4 the main experimental results are presented, as well 

as their interpretation. The work is completed with concluding remarks (Section 5). Some 

mathematical details are incorporated as an appendix. 

2. Experimental setup 

Our experimental setup consists of a micrometer, onto the measuring arms of which two 

square (20x20x2 mm) stainless steel supporting plates were fixed parallel to each other.  

Two 22x22 mm microscope cover glasses (ISOLAB) of soda lime silica composition 

were selected as working surfaces. They were glued to the supporting plates for static 

measurements. In the case of attraction kinetics experiments, only the upper glass was glued, 

while the lower one was placed on the corresponding stainless steel plate. Images were recorded 

by using a high speed camera, MotionXtra N3, which was mounted onto a horizontal optical tube 

with appropriate magnification. (Fig. 1). All experiments were carried out with deionized 

(Milipore) water.  
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Fig.1. Schematic representation of the experimental setup 

2.1 Static capillary bridge experiments 

Two types of static experiments were performed:  

1) Hydrophilic glass surfaces were pre-cleaned with 99.9% C2H5OH and washed with 

deionized (Millipore) water before being glued to the supporting plates. A small droplet of 

≈ 1 mm3 volume, was placed in the middle of the lower glass slide. The upper glass slide was 

moved toward the droplet until a capillary bridge was formed. Further, several equilibrium states 

were recorded; pressing the shape until thin film was formed. Afterwards stretching took place 

until breakage occurred (Fig. 5 presents several consecutive pictures of stretching). The 

experiment was repeated several times with varying initial droplet volume. Concerning the 

effects due to evaporation, the direct volume decrease played no role, since the theoretical 

relations are CB volume invariant (Section 3.3). Other effects related to the evaporation (e.g. 

thermo-effects) were not observed.  

2) Experiments with hydrophobized glass cover slides were performed. The preliminary 

hydrophobization was done with PDMS (Rhodia Silicones, 47V1000), following the procedure 

developed by Marinova et al. [10]. Before gluing the slides, they were washed with 99.9% 

C2H5OH. The capillary bridge was formed after placing a droplet on the lower surface and 

attaching it later to the upper glass slide. Stretching was applied onto the droplet until a breakage 

of the capillary bridge occurred. Selected sequential pictures of the experimental part are 

presented in Fig. 6. 

2.2 Dynamic capillary bridge experiments 

A single drop of volume V ≈ 1 mm3 was placed on a hydrophilic glass slide of weight, 

m ≈ 0.3×10-3 kg. Another flat, hydrophilic planar cover glass was moved toward the droplet from 
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above until a CB was formed in an equilibrium state. When the distance between the plates was 

slightly reduced, by Δh, the lower plate was taken off from the support by the capillary force Fγ 

and the CB began fast thinning. The recorded data of the dependence h vs. t, are presented in 

Fig. 7. 

3. Mechanical balance and calculations 

Our theoretical investigations concern only the mechanical properties of CB. We do not 

consider the processes of evaporation, condensation and the related potential temperature effects 

[11, 12, 13]. The gravitational deformation of the liquid/gas surfaces is neglected in the 

theoretical analysis, due to the small linear dimensions of the drop. Yet, in sufficiently stretched 

CB, especially if hydrophobic, signs of gravitational deformation were observed experimentally, 

which fact is discussed in Section 4. Here, in Section 3, we shall present separately the 

mechanical balance of static and dynamic CB. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Schematic representation of a concave CB (see Glossary for the denotations). 

3.1 Static balance  

In general, the CB mechanical equilibrium comprises the pressure balance on liquid/gas 

interfaces and the external force on the CB plates balancing the capillary attraction/repulsion. 

Upon neglecting gravity effects and other external fields, the pressure balance is reduced to 

constPP ==Δ γ , where ei PPP −=Δ  is the jump across the liquid/gas interfaces, Pi, Pe are the 
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internal, external pressures. For CB with axial symmetry; the capillary pressure takes the 

form rrrP ∂∂= − /)sin(1 ϕγγ , with γ as the interfacial tension liquid/gas, r, as the radial co-ordinate 

and φ as the angle between the axis of symmetry and the generatrix normal (Fig. 2), [14].  

Axial symmetry is justified in this case, as we consider CB formed between parallel and 

homogeneous plates. The first integral of the pressure balance (in scaled form) offers no 

difficulty:  

( ) 11sin 2 +−= xCϕ   (1) 

Where, mrrx /= is the dimensionless radial coordinate and γγ 2/mrPC =  is the dimensionless 

capillary pressure. Further on we shall use another scaling parameter, V1/3 (V = CB volume), 

allowing for the liquid incompressibility (for the denotations see Glossary). The neck radius rm, 

also used by other authors as scaling parameter [9, chapter 11], has the advantage of reducing the 

CB generatrix equation to a mono parametric curve y(x, C), Eq. (5). Another illustration of the 

neck radius, useful as a scaling measure, is the expression of C. Applying Eq. (1) to the 

liquid/solid contact (x = X) one obtains: 

1
1sin

2 −
−

=
X

XC θ  (2) 

The parameters, mrRX /= , and θ are the dimensionless contact radius and contact angle (Fig. 2). 

Relation (2) clearly shows the algebraic character of C ~ Pγ, i.e. it can be positive, zero or 

negative. At convex generatrix (X < 1), in the entire interval of angles ( πθπ ≤<2/ ), the 

capillary pressure is positive (C > 0). In the case of concave CB (X > 1, 2/0 πθ <≤ ), the sign of 

C depends on the values of θsinX . For instance, at 1sin <θX , C < 0 (negative capillary 

pressure); at C = 0, and we have a CB catenoidal state. Zero capillary pressure is natural value for 

the classical catenoid [14], e. g. for capillary surface of soap membrane stretched between two 

coaxial rings, [15]. It is interesting to note, that the generartix of CB with C = 0 differs from the 

classical catenoid generatrix (Fig. 3). 

Two particular points on the positive branch of C worth attention: At C = 1/2, CB 

acquires cylindrical shape with parameters X = 1 and θ = π/2. Cylindrical CB is an attractive 

capillary subject because of its simple form, making the stability problems very transparent. The 

other reference point is C = 1, corresponding to spherical CB form (circular arc generatrix curve). 
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From dynamic viewpoint, the spherical form corresponds to a CB state without supporting 

external force, F = 0 (see below) which some authors call ‘equilibrium state’ [16].  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3. Parametrical plot of H/R vs 1/X curves: A) classical catenoid; B) CB with zero capillary 

pressure (catenoidal state). Note the different co-ordinates of the maxima. 

In the general case, capillary force Fγ acts upon the CB plates on part of the liquid, which 

if axisymmetric, will acquire the form:  

γγ πθγπ pRRF 2sin2 −= .  (3a) 

The term θγπ sin2 R  is the normal (toward the contact plane) component of the three-

phase contact force, and the term γπ pR2  is the capillary pressure force. Upon expressing Рγ 

through С from Eq. (2) we finally obtain for Fγ: 

1
sin2 2 −

−
=

X
XRF θγπγ . (3b) 

By analogy with the parameter C, the force Fγ can alter its sign or become zero. At 

concave CB, since 1≥X  for all angles in the interval 2/0 πθ ≤≤ , Fγ does not change its sign in 

the entire range of admissible values of the thickness Н (see Section 3.3).  It acts as an attractive 

force. The positive sign of the force according to Eq. (3b) in this case, ( ) 01 ≥≥XFγ , is related to 

the sign of the external force Fе. The behaviour of the force Fγ at convex CB is different. Since in 
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this case X < 1, then Fγ is positive, i.e. attractive at 0)(sin >− Xθ . In the point X=θsin  the 

force is zero [spherical CB, see Eq. (2) at C = 1]. The external force is negative at X > sin θ,  i.e. 

Fγ  < 0, repulsive force. 

The static state (CB mechanical equilibrium) requires Fγ to be balanced by an external 

force Fе, (Fе = Fγ). The external force Fе here is regarded as positive when it is directed along the 

outer CB plates normal (Fig. 2). From experimental viewpoint this definition means that Fе > 0 is a 

stretching force, while Fе < 0 is a pressing force. We have to specify it in this way, because Fγ (in 

accord with the condition of equilibrium) has the reverse meaning, which could bring forth 

misconception. 

3.2 Dynamic balance  

A state of Fе ≠ Fγ, will result motion of the plates (attraction or repulsion), with a force 

macrobalance of the kind: 

Fin + Fγ + Fη = Fe  (4) 

where Fin and Fη represent the inertial and viscous (drag) forces.  

Under the conditions of the experiment (Section 2), the weight of the lower (mobile) plate 

played the role of an external force, Fе = mg (m is the plate mass and g is the gravity constant). In 

the theoretical analysis, the liquid bridge weight is neglected, as it is much (some 100 times) 

smaller. For the same reason the inertia force can be assumed as Fin = m H&& , where H&& is the 

acceleration of the plate. As we shall see from the experimental results (Section 4), H&&  << g, so 

that Fin is negligible compared to the drag force, Fη. In this case, Fη has two components of 

resistance: in the bulk and in the three-phase contact line. At low Reynolds number, the drag 

force in the bulk can be presented in the form HBFb
&=  [17, 18], with dtHdH /Δ≡& and drag 

coefficient B = ηb, where η is bulk viscosity coefficient. The factor b depends on the 

hydrodynamic boundary conditions and requires solution for each concrete case. The case of a 

thin CB the coefficient b will be considered in Section 4.2 (Eq. 10). The resistance in the three 

phase contact line is a function of the three-phase contact line velocity )(R& , but owing to the 

liquid incompressibility, R&  can be expressed through H& (see e.g. Fig. 4a). At low values of the 

velocity R& , the contact line drag Fc obeys dependence similar to that for the bulk, HbF ccc
&η= , 

[19], where cη and cb  are the respective coefficients. 
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3.3 Calculations 

This section presents the mode of estimating the more important CB parameters as a 

function of height (see Figs. 4a, 4b). All calculations are based on the generatrix equation y(x), for 

which Eq. (1) yields:  

( ) ( )
X

CxRI
Cxy

,
, 0=  (5a) 

Where:  

( ) ( )
( )[ ]∫

−+−

−+
±=

x

d
C

CCxI
1

2222

2

0

11

11, ξ
ξξ

ξ  (5b) 

The integral I0(x,C) describes the upper part of the generatix curve (above the equator, y > 0, see 

Fig. 4). The sign ‘±’ accounts whether the CB is concave (positive sign, X > 1, 2/0 πθ <≤ ) or 

convex (negative sign, X < 1, πθπ ≤<2/ ). Further the signs of I0 will be omitted, accounting for 

the correct sign in every particular situation. Traditionally I0 is presented via (Legendre’s) elliptic 

integrals first and second kind F, E, [9], but for its evaluation we apply another calculation scheme 

(see further). The experimentally determinable parameter, related to I0 is the CB height Н: 

( )
X

CXIR
H

,2 0
*

* =   (6) 

Both dimensionless parameters H*and R* are already scaled by the cube root of the CB 

liquid volume 31V , ( 31* /VHH = , 31* /VRR = , see in Glossary). Note that y(x, C) in Eq. (1) is 

scaled by rm, i.e. mrCrzCxy /),(),( = . As we already noted in Section 3.1, the scale 31V , known 

in the literature [16] accounts for the liquid incompressibility, thus making all results invariant 

from the initial droplet volume and its possible alterations in the course of the experiment, e.g. 

for evaporation. This scaling transforms the dimensionless expression for the volume into similar 

to Eq. (6) relation between the CB parameters: 

( )
3

2
3*21

X
IRπ

= , (7a) 

Where: 
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( ) ( )
( )[ ]∫

−+−

−+
=

X

d
C

CCXI
1

2

222

2

2
11

11, ξξ
ξξ

ξ  (7b) 

Due to the obvious genetic connection (the same kernel) of the integrals, Eqs. (6b) and (7b), they 

are marked as two members of the series: 

ξξ
ξξ

ξ d
C

CI
X

n
n ∫

−+−

−+
≡

1
222

2

)]1(1[
)1(1 , where: n = 0, 2 (8a) 

We shall remind that in the dimension form the CB volume is given by the integral: 

∫=
2/

0

23

*

2
H

m dyxrV π  (8b) 

 
 

 

 

 

 

 

 

 

 

Fig.4. Selected isogonic plots: (a) dimensionless height, *H  vs. dimensionless contact radius *R ; 
(b) *H vs. 1/X. The isogonic maxima )(*

max θH  on the plots (a) and (b) are equal for the 
corresponding contact angles θ (see the points). The thermodynamic branch is on the left-hand 
side and below *

maxH  in the plot (a), and on the right branch in the plot (b). C = 0 represents the 
catenoidal state. The inset shows the direction of the external force, Fe. 

The numerical procedure affects the computation of the integrals In. They are integrable, 

but singular (in the limit X = 1), which gives rise to significant instability of the numerical results. 

We have solved the problem by dividing the integrals into singular and regular parts. The 

singular part allows direct integration, while the regular part is estimated numerically. This 

procedure yields:  

( ) ( ) ( )
( )

( )[ ]
( )[ ]∫ +−+

+−−
−⎥

⎦

⎤
⎢
⎣

⎡
−

−−−
−=

X

dx
xCx
xCx

C
XCC

CC
CXI

1
2

222

0 11
11

21
1221arcsin

2
1

4
, π  (9a) 

(b)(a) 
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( ) ( ) ( )( ) ( )
2

2222

22 2
1121

42
211,

C
XCXC

CC
CCXI

−−−−
−⎥⎦

⎤
⎢⎣
⎡ −

+=
π  

( ) ( )
( )

( )[ ]
( )[ ]∫ +−+

+−−
−⎥

⎦

⎤
⎢
⎣

⎡
−

−−−
⎥⎦
⎤

⎢⎣
⎡ −

+−
X

dx
xCx
xCxx

C
XCC

CC
C

1
2

2
2

22

2 11
11

21
1221arcsin

2
1

2
211   (9b) 

In practice, the estimate of In, according to Eqs. (9a, 9b), is performed by assigning a 

series of values of X at a fixed contact angle θ. The computation procedure is split into two 

subintervals X > 1, 2/0 πθ <≤ (concave CB) and πθπ ≤<< 2/,1X (convex CB). The point 

X = 1, θ = π/2 (cylinder), formally singular, is constructed directly (Fig. 4a). We have used for X 

step of ΔX = 0.05; the angles subject to computation were: 1°, 7.5°, 15°, 30°, 45°, 60°, 89°, 89.9°, 

90.2°, 91°, 120°, 135°, 150°, 179°, (Fig. 4a). 

4. Results and discussion 

In this section we shall discuss results related to static and dynamic CB. The comments on 

static CB are subdivided, for concave and convex CB (see Section 2), and comprise both 

experimental and theoretical results. 

4.1 Static capillary bridges 

The key result of the static CB experiments is on the verification of the agreement 

between computed and measured CB geometric parameters (H, R, rm, θ). Additional information 

about the contact angle hysteresis and the upper stretching limit (Hmax) is provided. 

4.1.1 Concave CB, 2/0 πθ <≤  

The experimental data are presented in Fig. 5. The coordinate system )/( RH vs. X-1 is so 

chosen as to allow using the measurable parameters H, R и mr  in any arbitrary scale. In addition, 

the coordinate Х-1 has been favored for more compact presentation ( 10 1 ≤≤ −X ) than the 

parameter X ( ∞<≤ X1 ). Concurrently, the co-ordinate )/( RH  complicates the interpretation of 

the data. Thus, for example, the maximum max)/( RH  is not a stretching limit point. It does not 

correspond to the maximum ( )max
*H  (Fig. 4b). The experimental observation confirms this fact. 

The data points in Fig. 5 exceed max)/( RH  but not the real stretching limit (the black points on 
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the isogones). As expected, the comparison with the data of the plots in Fig. 5 and Fig. 4 

confirms that they lie on the thermodynamic branch of the isogones.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5. Data from several experiments (the triangles, hollow circles and squares) of concave CB 
stretching (direction of stretching is from right to left). The measured contact angles indicated 
apparent hysteresis. The photo series above illustrate the real CB shape deformation at stretching. 

The measured contact angles are in good agreement with the angles of the computed 

isogones (see the marked values 41°, 55°, Fig. 5). As is seen from the graph, the concave CB 

exhibit expressed hysteresis. Starting from contact angles values of θ = 55°÷ 60° for the thin CB 

(X-1 ≅ 0.85), upon their stretching the angles diminish to about θ = 32° and 7.01 ≅−X . Further they 

increase again to about θ ≅ 45° and 3.01 ≅−X . The contact angles passage through a minimum is 

further proof for the theoretical analysis. Qualitatively, this can be illustrated by drawing vertical 

line (pinned contact, R*=const) for each measured value of R, in Fig. 4a. The points of 

intersection with the corresponding isogone mark the dependence ( )constRH =∗∗ ,θ . 

4.1.2 Convex CB, ( πθπ <<2/ )  

The experimental data on convex CB are presented in Fig. 6. The coordinate X was 

chosen (instead of X-1, see Fig. 5) for the sake of convenience of the analysis. Within the 

relatively narrow range of 91.099.0 ÷=X  the data practically lie on a single isogone of θ ≈ 100°, 

and they do not exhibit detectable hysteresis. The observed deviation from the isogone we 

attribute to the effect of gravity, in the range Х = 0.91-0.8. 
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Fig. 6. Data from two experiments (triangles and squares) of convex CB (direction of stretching 
is from right to left). The contact angle at weak stretching (X=0.99÷0.91) is practically constant. 
The deviation from the isogone at stronger stretching is due to gravity. The photo series above 
illustrate the real CB shape deformation at stretching.  

The series of photos above in the graph (Fig. 6) show that the deviation coincides with the 

rise of observable difference between the upper and lower radii of contact. In accord with the 

expected gravitational influence, the upper radius (and angles) of contact diminish, while the 

corresponding parameters on the lower plate augment. It is a fact of interest that the mean angle 

values of the two (upper and lower) contacts remain practically constant, θ ≈ 100° over the entire 

range of CB existence. The domain of rupture (the upper existence limit) of the investigated 

convex CB turned to be at 80.084.0 ÷=X , significantly earlier than the definition limit Х = 0 

(Appendix A). This is another significant difference from the concave CB, where the maximum 

height, *
maxH  is practically reached (Fig. 5). The reason for the premature rupture could be the 

rise of Rayleigh instability [20], combined with the gravitational deformation. Yet, this 

phenomenon requires its own analysis. 

4.2 Dynamic capillary bridges 

The scheme of the dynamic experiments is given in Section 2.2 and the results are shown 

in Figs. 7a, 7b. The motion quality is clearly outlined in two dependences, presented there, but 

the ‘velocity vs. ΔH‘ is the more informative. Heq is the equilibrium thickness in the abscissa 

and HHH eq −=Δ . As described in Section 2.2, Heq can be clearly established experimentally. 
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The force balance of this state eeq FHF =)(γ  results from Eq. (4). It determines the parameters of 

the static pending CB (Heq, etc.) through Eqs. (3a, 6, 7). Since the motion is initiated by slightly 

pressing the top plate, and thus decreasing the CB thickness, ΔH turns into a natural coordinate of 

the process. The rectilinear section of the relationship in Fig. 7b corresponds to ΔH(t) dependence, 

ln(ΔH) ~ t (Fig. 7a). The subsequent negative deviation suggests viscous effects prevailing over 

the driving capillary force changes. The straight-line section in the ‘velocity vs. ΔH’ graph 

(Fig. 7b), results from the general Eq. (4), at the following approximations:  

Firstly, the experiment specifies that the inertia (in the rectilinear section) is negligible. 

As shown in Section 3.2, it suffices for the purpose to show that H&&  << g. The estimate of the 

inertia term in Eq. (4) is performed by equivalently expressing )(/ HdHdHH Δ= &&&&  and 

introducing the orders of magnitude of the respective quantities from Fig. 7b, e.g. 

200≤H& μm/s, 15.0)(/ −≈Δ sHdHd & , i.e. 2/100 smH μ≤&& . In the same scale 27 /10 smg μ≈ , 

which perfectly justifies neglecting of the inertia term. Thus, three terms remain significant in the 

force balance Eq. (4), namely, the capillary force Fγ, the viscous force Fη, and the gravity force of 

the plate mg: 

mgFF =+ ηγ . (10) 

Secondly, the approximation, given below, is valid for the initial stage of the process 

(near the static state): 

H
H
F

mgHHF
eq

eq Δ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
−≈−Δ− γ

γ )(  (11) 

Expressing the friction force by HBFb
&=  (Section 3.2) turns Eq. (10) into: 

=HB & H
H
F

eq

Δ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂ γ  (12) 

Equation (12) describes qualitatively the rectilinear section of the experimental 

dependence in Fig. 7b. Yet, proving the model demands further quantitative experimental 

corroboration of the value of the coefficient of proportionality BHF eq /)/( ∂∂ γ , which requires 

further investigation. Considering the deceleration in the later stages of CB thinning, as we 

already noted, it is mostly due to specific aspects in the dependences Fγ(H), Fη(H). In the 

literature can be found reports dedicated to similar problems. Each of them more or less is 
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devoted to a particular case [21-24]. We suggest that the dynamics of thin CB fits the discussion 

in Refs [25, 26].  

 

 

 

 

 

 

 

 

 

Fig. 7. Experimental data of concave CB capillary pressing/attraction: (a) CB thickness H vs. 
time t; (b) thinning velocity dH/dt vs. (Heq – H), (see the text). 
 
4.3 Thin liquid bridge 

In contrast to the variety of CB profiles near the upper height limits, their flattening 

(thinning) toward zero thickness (the lower CB limit), is of much more universal character. This 

universality starts to show itself at a thickness Н much smaller than the radius of contact R 

(R >> H). It offers the ground to set the thin capillary bridges into a separate domain of their own. 

Since thin CB is situated in the region ∞→** ,, mrrR , the analysis by means of the X-coordinate is 

more convenient. Taking into account the definition ** / mrRX ≡ , and the self-evident fact that for 

the thermodynamic branch, 1)( * →∞→RX  makes suitable the substitution Х = 1+Δ, at Δ → 0. 

Thus, the parameter С (dimensionless capillary pressure, Eq. 2) in the thin CB region tends to: 

4
sin1

2
sin1)1( θθ +

+
Δ

−
−≈Δ−=XC   (13) 

The two terms on the right-hand side represent the two (dimensionless) curvatures: the generatrix 

curvature, also named meridional curvature (first term) and the azimuthal curvature (second term). 

For example, at θ  = o90 we obtain a cylinder; the generatrix turns into a straight line of zero 

curvature, which leaves only the second (azimuthal) curvature, equal to 1/2 and С = 1/2. The 

generatrix curvature change of sign as a function of the contact angle is allowed for by the sign of 

Δ. 

a)  b)
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It is worth commenting on the fact that the thin CB generatrices converge to equations of 

circular peripheries, which follows from Eq. (5). The latter in the approximation of a thin CB, 

Δ+≤≤ 11 x  takes the form:  

2]1)1(2[1
)1(21
+−−

−+
−=

xC
xC

dx
dy   (14) 

Upon integration, Eq. (14) yields: 
222 )1( cc XXxy =−++  (15) 

The dimensionless circular radius CX c 2/1=  (coinciding with the CB generatrix radii of 

curvature) is related to the CB thickness, via θcos2/ cm XrH = . The use of modulus sign is meant 

to eliminate the sign alteration when the angle θ passes through π/2 (see above). The capillary 

pressure, C is represented by the first term on the right-hand side of Eq. (13). Equation (15) can be 

generalized as: 

( ) 222 1 cc XXxy =±−+  (16) 

Where, the positive sign is for θ  < π/2 and negative for θ > π/2.  

Estimation of the capillary force acting upon thin CB yields the respective asymptotic 

formula for Fγ: 

⎟
⎠
⎞

⎜
⎝
⎛ +=

Δ
−

+≈Δ+=
H

RRRXF θπγθπγγ
cos21)sin11()1(  (17) 

By analogy to the capillary pressure, again for the case of °≠ 90θ , the second term in the 

right hand side is of interest, which eventually (upon sufficient thinning) becomes 

dominant HRHF /cos2)0( 2 θπγγ =→ . Allowing for the volume constancy ( constHR =2π ), 

makes the force Fγ in the asymptotic dependence inversely proportional to the thickness of a 

square: 2/1~)0( HHF →γ . In the estimate of the volume, we have assumed that it equals to its 

cylindrical part, disregarding the menisci- an entirely correct approximation in case of sufficiently 

thin bridges.  

The initiated dynamic analysis sets the interesting question about the spontaneous 

evolution of CB with wetting liquid (e.g. water between glass plates). Naturally, the weight of the 

plates is an inevitable force component, but below certain thickness it can be definitely 

disregarded. The wetting will cause progressive thinning and the eventual formation of a thin 
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bridge. Yet, the thinning of a thin liquid layer between parallel plates is a well-studied problem in 

hydrodynamics, for which the law of viscous friction (Reynolds law) is valid: 34 8/3 HRHF ηη
&=  

( H& , thinning rate and η, viscosity), [27, 28]. Applying again the postulate of constant volume, for 

the friction force, we arrive at a (similar to that of the capillary force) simple dependence on 

thickness: 5/~ HHF ηη
& . The next natural step is to set the wetting force Fγ equal to the friction 

force Fη , in order to describe the CB kinetics of thinning: 3~ HH& . We must stipulate here that, 

similarly as at the estimate of the volume, the resistance at the edges of the thinning bridge is 

neglected in the Reynolds formula. The analysis can be extended further by taking into account 

that dtdHH /−=& , with subsequent integration. 

The deceleration in the later stages of CB thinning, as we already noted is mostly due to 

specific aspects in the dependences Fγ(H) and Fη(H). General theory is not yet developed, but we 

shall give an indicative example. Section 3.3 provides a relation of the kind (9а), valid for thin 

CB, 3~ HH& , which in terms of ΔН states:  
3)(~ HHH eq Δ−& ,  (18) 

As Eq. (18) shows, the slope of the ‘velocity vs. ΔH‘ dependence is already negative. 

Conclusion  

As is natural for a study dedicated to a classical subject, the contributions in the present 

one about the capillary bridges are mainly methodological. One relatively little investigated 

aspect here is the so-called CB ‘definition domain’, i.e. the interval of parameter values in which 

the CB equations hold (Appendix A). This problem has been analyzed on reversible CB model 

engaging bridges which maintain the contact angle constant at stretching or pressing. The most 

expressed and experimentally manageable parameter is the CB height (thickness) H, presented in 

the form of isogone (θ=const) in different co-ordinate systems (e.g. Figs. 2a, 2b). The computed 

isogones exhibit differences in the behaviour of concave and convex CB. Both the concave and 

the convex CB are characterized by an upper thickness limit. With concave СВ the upper limit is 

a maximum in the respective isogone [a function of the contact angle )(max θH ], while the upper 

thickness limit of a convex CB is constant in the entire range of obtuse contact angles, 

πθπ ≤<2/  (Fig. 2). Another difference between concave and convex CB is observed in the 

behaviour of the contact radius, R(H, θ = const). With concave CB the radius R passes through a 
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minimum which is dependent on the contact angle )(min θR , while with convex CB, the contact 

radius steadily reduces to zero (Fig. 2). The boundary R(θ ≠ π) = 0 has proved attainable, due to 

the formation of an inflexion on the convex CB generatrix. 

Differences in the concave and convex CB behavior have been observed also at (quasi-) 

static experiments. For example, concave CB exhibit pronounced hysteresis (isogones crossing at 

stretching; Fig. 5), while convex CB stayed practically on the same isogone, θ = const (Fig. 6). 

The capacity of the method to study the hysteresis at stretching normal to the plates designates 

one of the chief directions of our future experiments. The observed realization of the upper height 

limit also deserves attention. Concave CB closely approaches the theoretical limit )(max θH  

(Fig. 5), while convex CB breaks definitely earlier (Fig. 6). Most generally, these facts indicate 

that destabilizing effects arise at the convex bridges, one of which is observed in the appearance 

of inflexion. We shall remind here that the stability problems are beyond the scope of the present 

investigation; hence the comments as made are of hypothetical nature. Yet, the observations on 

the thinning kinetics of concave bridges (Section 4.2) are of markedly pioneer significance. The 

obtained results show exponential time dependence ΔH(t) it the first stage, followed by distinct 

deceleration of the process. The proposed interpretation of this dynamics, which is still at the 

stage of modeling, undergoes presently its development in direction to a quantitative theory. 
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Glossary 

Denotation Description  Secs., Eqs., Figs. 
Dimension symbols 

r, z  Current coordinates Section 3.1, Eq. 1 
Section 3.3, Fig. 2;  

mr , R  Waist (neck), contact radii  Section 3.1, Fig. 2 
ϕ , θ  Current, contact angles Section 3.1, Fig. 2 
H, V  Height (thickness), volume Section 3.3, Fig. 2 

inF , γF , ηF , eF  Inertia, capillary, viscous (drag), external (supporting) 
forces 

Section 3.1, Fig. 2 
Section 3.2, Eq. 4,  

eP , iP , γP  External, internal, capillary pressures Section 3.1, Fig. 2 
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γ Surface tension. Section 3.1 
Dimensionless (scaled by mr ) symbols 

x ; y Current coordinates  Section 3.1 
X ; C Contact radius, capillary pressure Section 3.1, Eq. 2 

Dimensionless (scaled by 3 V ) symbols 
*
mr , *R , *H  Waist, contact radii, height  Section 3.3, Eq. 6 
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Appendix A. Definition domain of capillary bridge 

The interval of parameter values satisfying Eqs. (5, 7) should be conceived as the СВ 

definition domain. In Figs. 4 and 3, this relation is represented in different co-ordinates in the form 

of isogones (constant contact angle families). A characteristic of the isogones in the range of 

°<≤ 900 θ is the existence of a maximum in the co-ordinate proportional to the height H 

(independent of scaling). In Figs. 4a and 4b, the dependence of the maximal height on the contact 

angle, )(max θ∗H , is clearly visible. Naturally, the values of )(max θ∗H  are the same for a particular 

angle values in the diagrams on Figs. 4a and 4b, regardless of the different abscissae values. The 

diagrams of cylinder (θ = o90 ) indicate unlimited height, i.e. Н → ∞. This behaviour of the 

cylinder is due to the characteristics of its shape, straight line generatrix, permitting zero contact 

radius limit (R → 0). The isogones heights in the range o90  < θ  ≤ o180  are also limited with 

respect to stretching, but for quite different circumstances. All isogones here end at a point contact 

0=∗R  (Fig. 4a). It is interesting to note that in the state of 0=∗R  the parameter C acquires the 

value ( ) 10 ==XC , independent on the contact angle value, Еq. (2), and coinciding with the value 

of C for a sphere (Section 3.1). The similarity of the point 0=∗R  with the spherical CB-shape is 

deepened by the calculated value ( ) 24.10** ≅=RH . Indeed, when expressing the height H from 

the definition 3/1* /VHH ≡ , and assuming it equal to the sphere diameter ( 6/3HV π= ), we obtain 
3/1* )/6( π=H =1.24. The problem here is that the complete (closed) sphere is only congruent with 

a contact angle °= 180θ  while for all other angles the asymptote R → 0 calls for additional 

analysis. The solution of the problem is associated with the appearance of an inflexion point xi in 

the generatrix, i.e. with the appearance of a root in 0)/( 22 =
ixdxyd , Eq. (5): 

θ
θ

sin1
sin12

X
XX

C
Cxi −

−
=

−
=   (A.1) 

The result (A.1) is known in the literature [9], but is not analysed parametrically. It ensues from 

Eq. (А.1) that the inflexion emerges in the range θsin0 << X , i.e. beyond the ‘sphere’ state 

(Section 3.1). Another obvious consequence of Eq. (A.1) is that an inflexion does not appear at 

θ = o180 , but the point contact there is realized through a closed sphere (see above). As for the 
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point contact at °≠ 180θ , formally it looks as a kink point on the liquid surface, but its correct 

interpretation is as a three-phase contact point. 

Figure A.1 illustrates the presence of an inflexion point for two angles ( °95 , °120 ) at 

different Х (different stretching). It is clearly seen that at °= 180θ  any signs of inflexion are 

absent. The xi values, calculated according to Eq. (A.1) and coinciding with the points of the 

graphs, are presented in Table A.1: 

Table A.1  
Inflection points coordinates, xi for angles °95 , °120 at different stretching  

θ 95° 120° Parameters 
X 0.50 0.10 0.01 0.50 0.10 0.01 

ix  0.70 0.32 0.10 0.57 0.29 0.10 
 

The lower (zero) limit of CB height (H → 0) is accessible to all isogones at 0° ≤ θ ≤ 180° 

(see Fig. 4). For details about the CB behaviour at H → 0, see Section 4.3. 

It is worth considering the two branches around *
maxH (Figs. 4a, 4b). We shall note the fact 

that such a duality as )()( *
2

**
1

* RHRH = , Fig. 4a; )/1()/1( 2
*

1
* XHXH = , Fig. 4b, is observed only 

at concave CB. Both are equilibrium branches (solution of Eq. 3.1), but of different surface energy. 

The analysis reveals that the branch corresponding to lesser Х at H = const (the right-hand side 

branch in Fig. 4b) is of smaller surface energy, i.e. the (thermodynamically) equilibrium branch. 

From geometrical viewpoint, CB of a smaller Х value looks less taken in at the waist. Similar dual 

trend of the capillary surface generatrix has been established already at the catenoid. Fig. 3 shows 

the graphs of a classical catenoid and of CB at C = 0. The right-hand sides (of smaller Х) 

correspond to the thermodynamically stable branches on both graphs. 

We shall finally refer to the contact radius R definition domain. Informative to the purpose 

are the diagrams *H vs. ∗R  in Fig. 3. In this case the left-hand side toward the maximum represents 

the thermodynamic branch. Their specificity is that when descending along given isogone from 

maxH down to smaller thicknesses, the contact radius R initially decreases [ θ)/( HR ∂∂  > 0]. This 

paradoxical (from the standpoint of liquid incompressibility) course persists as long as reaching 

certain minimal radius, 0)/( =∂∂ θHR , after which R alters its course in ‘natural’ direction 

0)/( <∂∂ θHR . Obviously, constant volume in the region maxmin )( HHRH ≤≤  is maintained on 

the account of mr , which exhibits continuous alteration 0)/( <∂∂ θHrm for all Н values.
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Fig. A.1. Capillary bridge profiles computed for three different states (Х= 0.01, 0.1, 0.5) of three 
isogones in dimensionless coordinates y = y(x): (a) θ = 95°; (b) θ = 120°; (c) θ = 180°. The 
appearance of an inflexion is distinctly perceptible at increased stretching (Х = 0.1, 0.5) at 
θ  ≠ 180°. 

(a) 

(b) 

(c) 
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• The study pertains both static and dynamic CB.  

• The analysis of static CB emphasis on the ‘definition domain’.  

• Capillary attraction velocity of CB flattening (thinning) is measured.  

• The thinning is governed by capillary and viscous forces. 
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