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Podocalyxin is an extensively O-glycosy-
lated and sialylated type I transmem-
brane protein that is implicated in a wide
range of cancers and is normally ex-
pressed in kidney podocytes, hematopoi-
etic progenitor cells, vascular endothelia,
and a subset of neurons (Figure 1).1–18

Podocalyxin’s C-terminal PDZ-binding
motif, DTHL,2,5,6 facilitates interactions
with Na�/H� exchanger regulatory fac-
tor 1 (NHERF1) and NHERF2.19 –21

These two adaptor proteins form com-
plexes with a multitude of proteins and
are implicated in protein trafficking, ion
transport, and signaling.22–25 Podoca-
lyxin also associates with the actin-bind-
ing protein ezrin.3,26 Thus, podocalyxin
likely affects a variety of important cellu-
lar functions through its association with
NHERF proteins, ezrin, and the actin cy-
toskeleton.

Podocalyxin is most closely related to
the hematopoietic stem cell marker

CD34 and the recently discovered sialo-
mucin, endoglycan.2,27,28 These proteins
have similar protein and gene structures
and partially overlapping expression pat-
terns.28,29 Although CD34 has been ex-
tensively studied, its function is still not
entirely clear. In specialized lymph node
endothelial cells, called high endothelial
venules, modified forms of CD34 and
podocalyxin act as adhesive ligands for
L-selectin on circulating lymphocytes
and thereby regulate cell trafficking8,30;
however, in most other situations, CD34
and its relatives seem to act in the oppo-
site capacity, as regulated blockers of ad-
hesion. For example, in the hematopoi-
etic system, they facilitate cell migration
and prevent nonspecific adhesion.11,31,32

Interestingly, we also defined a novel
role for podocalyxin in establishing cell
morphology.33 When expressed ectopi-
cally in breast or kidney epithelial cells,
podocalyxin dramatically increases mi-

crovillus formation (Figure 2A).33 This is
dependent on indirect association of
podocalyxin with the actin cytoskeleton,
because disruption of actin polymeriza-
tion abolishes the phenotype.33 Simi-
larly, blocking podocalyxin expression
prevents tubule formation in a kidney
tubulogenesis model.34 Moreover, podo-
calyxin is essential for extension of foot
processes in kidney podocytes (discussed
in the Podocalyxin in the Developing
Kidney section).2 Thus, mounting evi-
dence suggests a role for podocalyxin in
cellular morphogenesis. Here we outline
the normal activities of podocalyxin and
describe how its dysregulation facilitates
malignant behavior of tumor cells.

DIVERSE ROLES OF
PODOCALYXIN IN A VARIETY OF
TISSUES

Podocalyxin was initially identified in
kidney glomeruli, where it is not only
abundant but also essential for kidney
development.1,2 In addition, it is found
in all three germ layers during embryo-
genesis, as well as hematopoietic progen-
itors, megakaryocytes and platelets, vas-
cular endothelia, mesothelial cells lining
organs, and a subset of neurons.2,6,9,12,14
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ABSTRACT
Podocalyxin, a sialomucin most closely related to CD34 and endoglycan, is ex-
pressed by kidney podocytes, hematopoietic progenitors, vascular endothelia, and
a subset of neurons; aberrant expression has recently been implicated in a range
of cancers. Through interactions with several intracellular proteins and at least one
extracellular ligand, podocalyxin regulates both adhesion and cell morphology. In
the developing kidney, podocalyxin plays an essential role in the formation and
maintenance of podocyte foot processes, and its absence results in perinatal
lethality. Podocalyxin expression in the hematopoietic system correlates with cell
migration and the seeding of new hematopoietic tissues. In addition, it is abnor-
mally expressed in subsets of breast, prostate, liver, pancreatic, and kidney cancer
as well as leukemia. Strikingly, it is often associated with the most aggressive cases,
and it is likely involved in metastasis. Thus, a thorough investigation of the normal
activities of podocalyxin may facilitate the development of new cancer treatment
strategies.
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Podocalyxin in the Developing
Kidney
Kidney glomeruli, responsible for filtration
and urine formation, include capillary
loops, a glomerular basement membrane,

and epithelial cells called podocytes.35

Podocytes display an unusual architecture
consisting of a cell body, major processes
extending around capillary loops, and ac-
tin-rich interdigitating foot processes (Fig-

ure 2B).36,37 The apical surface of podo-
cytes, which faces the urinary space, is
coated by a sialic acid–rich glycocalyx that
is designated the epithelial polyanion and is
composed mainly of podocalyxin.1,38

Glomerular development proceeds
through a series of stages.39,40 The initial
steps involve formation of mesangial
cells, glomerular epithelial cells (podo-
cytes), proximal tubule cells, and capil-
lary endothelium. Podocytes then prolif-
erate, and junctional proteins migrate
from apical surfaces basolaterally toward
the glomerular basement membrane.40

Extensive morphologic rearrangements
whereby foot processes extend and junc-
tions redistribute between foot processes
subsequently occur; junctions are later
replaced by slit diaphragms.40,41 Podoca-
lyxin first appears just before formation
of foot processes and slit pores, and its
redistribution correlates with that of
junctions: It is expressed as junctional
proteins migrate basolaterally and is al-
ways found along the apical surface of
podocyte cell bodies and foot processes
above the level of slit diaphragms.1,40 – 42

Maintenance of the intricate glomeru-
lar podocyte architecture is essential for
optimal filtration; numerous human dis-
eases and animal models of glomerular
malfunction involve loss of structural in-
tegrity,43 a phenotype often attributed to
abnormal podocalyxin. Diabetic nephrop-
athy, a leading cause of chronic kidney fail-
ure and ESRD, involves broadening of foot
processes and is accompanied by a de-
crease in glomerular sialic acid content;
loss of foot process structure is also the
main morphologic abnormality in patients
with nephrotic syndrome.44–46 In two ani-
mal models of glomerular disease (puro-
mycin aminonucleoside nephrosis and
protamine sulfate perfusion), podocalyx-
in’s negative charge is neutralized, foot
process architecture is disrupted, and slit
diaphragms are displaced or completely re-
placed by leaky, discontinuous junctions;
intraperitoneal injection of sialidase pro-
duces similar effects.35,42,47–51 Podoca-
lyxin-deficient mice provide further evi-
dence that podocalyxin maintains the
unique podocyte morphology. Podoca-
lyxin-null mice have fewer major processes
and lack foot processes and slit diaphragms

DTHL
P

P

P

Figure 1. Podocalyxin’s structure. Podocalyxin has an extensively O-glycosylated (ver-
tical lines) and sialylated (triangles) extracellular mucin domain (purple), several sites of
N-glycosylation (red circles), and a cysteine-containing globular domain (green). This is
followed by a juxtamembrane stalk (blue), a single-pass transmembrane domain (pink),
and an intracellular domain (green) with putative phosphorylation sites and a C-terminal
DTHL sequence for interaction with PDZ domains.

Figure 2. Podocalyxin expression dramatically affects cell morphology. (A) Ectopic
expression of podocalyxin in MCF-7 breast epithelial cells induces microvillus formation.
Bar � 1 �m.33 (B) Podocalyxin is required for normal formation of kidney podocytes.
Bar � 2 �m.2 Podocytes are shown surrounding capillaries. Loss of podocalyxin prevents
dissolution of tight junctions (circled) between neighboring podocytes and results in a
complete absence of podocyte foot processes (arrows).
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entirely (Figure 2B).2 Moreover, podocyte
cell bodies envelop capillary loops, and
there is a striking presence of junctional
complexes between adjacent podocytes.2

Thus, although podocalyxin was originally
thought to provide a charge-selective bar-
rier for glomerular filtration, it is now
known to play a role in podocyte morpho-
genesis and maintenance of structural in-
tegrity,1,2,52,53 a function that fits with its
onset of expression as well as the in vitro

microvillus formation studies described al-
ready (Figure 2A).33

Because neutralization of podoca-
lyxin’s extracellular domain alters
podocyte morphology, the three afore-
mentioned disease models were used to
decipher the mechanisms involved.
Podocalyxin is normally linked to the
actin cytoskeleton through NHERF
proteins and ezrin,3,19,54 but it disen-
gages from the cytoskeleton in all three

models, either through disruption of
the podocalyxin/NHERF2/ezrin com-
plex or by dissociation of the entire
complex from actin.54,55 This arrange-
ment provides a likely explanation for the
morphologic changes noted in podocytes.
In support of this, mice with reduced
core1-�1, 3-galactosyltransferase activity
express hypoglycosylated podocalyxin and
have distorted glomerular architecture.56

Similarly, deletion of podocalyxin’s extra-
cellular domain abolishes the microvillus
formation phenotype induced by ectopic
expression of podocalyxin in vitro.33 How
exactly an alteration in the surface charge
of podocalyxin affects the complex is not
known, but it may be that neutralization of
the charge induces a conformational
change in the cytoplasmic tail of podoca-
lyxin, which prevents binding, or that
modification of podocalyxin’s extracellu-
lar domain directly affects an as-yet-un-
known ligand-binding domain (Figure 3).
We favor the second possibility because
microvillus formation is unaffected by de-
letion of virtually all of podocalyxin’s in-
tracellular domain.33 Thus, early studies
suggested a very important role for
podocalyxin in kidney development, an
expectation that was clearly fulfilled by
the generation of podocalyxin-null mice.

The podocyte phenotypes observed
in podocalyxin-deficient mice are con-
sistent with a role for podocalyxin in
decreasing cell adhesion and affecting
cell morphology. As in developing glo-
meruli, the podocytes in podocalyxin-
null animals retain apical junctions;
cell– cell junctions do not migrate ba-
solaterally and develop into slit dia-
phragms.2 Thus, these cells retain an
immature architecture. It seems likely
that under normal conditions, either
podocalyxin alters distribution of tight
junction proteins by means of its cyto-
plasmic interaction partners or simply
that expression of high levels of this
bulky, negatively charged molecule on
the apical surface may physically dis-
place junctions to a more basal loca-
tion. The strikingly abnormal podo-
cytes in podocalyxin-deficient animals
prohibit kidney function and are the
apparent cause of perinatal lethality in
all mice lacking this molecule.2

A

B CONFORMATIONAL CHANGE MODEL

EXTRACELLULAR LIGAND MODEL

Low / no podocalyxin

Wildtype podocalyxin

Wildtype podocalyxin

High podocalyxin

Neutralized podocalyxin

Neutralized podocalyxin

Figure 3. Podocalyxin expression induces morphologic changes in a manner dependent
on its extracellular domain. (A) Podocalyxin-induced morphologic changes: Formation of
microvilli (black), actin recruitment (red), migration of cell junctions (green), and disruption
of adhesion complexes (blue). (B) Podocalyxin-induced morphologic changes (including
actin recruitment and microvillus or foot process formation) require podocalyxin’s extra-
cellular domain. Two models are depicted to explain this observation. Purple: Podoca-
lyxin, with the negatively charged extracellular glycosylations shown as perpendicular
lines. In the conformational change model, neutralization of podocalyxin leads to a
conformational change and disruption of interactions with intracellular binding partners
(blue). In the extracellular ligand model, neutralization of podocalyxin alters the binding
site for an unknown transmembrane protein (light blue), responsible for indirectly linking
podocalyxin to the actin cytoskeleton.
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Podocalyxin in the Hematopoietic
System
Podocalyxin is expressed in all hematopoi-
etically active tissues throughout develop-
ment, predominantly by hematopoietic
progenitors and erythroblasts.6,11,57 It is
first expressed in embryonic days 10
through 12 (E10 through 12) murine yolk
sac and peripheral blood, and, interest-
ingly, expression decreases over time.11

Then, as hematopoiesis shifts to fetal liver
at E15, 75% of fetal liver cells express podo-
calyxin, and, again, expression gradually
decreases.11 Similarly, fetal spleen and
bone marrow both contain podocalyxin-
positive populations upon acquisition of
hematopoietic activity, and expression
then decreases to virtually undetectable
levels by birth11; however, there is a distinct
burst of expression in hematopoietic tis-
sues immediately after birth.11 Thus, the
establishment of each hematopoietically
active tissue and/or the seeding of hemato-
poietic cells into new tissues coincide
tightly with increased podocalyxin expres-
sion.

In adult, podocalyxin expression in
the hematopoietic system is much
more restricted. At steady state, it is ex-
pressed only on cells of the megakaryo-
cytic lineage and a rare population of
cells with a stem cell phenotype that
give rise to myeloid and lymphoid lin-
eages in serial transplantation experi-
ments.6,9,11 Moreover, although ery-
throid cells in adult do not normally
express podocalyxin, it is rapidly up-
regulated by erythroid progenitors un-
der conditions of extensive erythroid
expansion.11 For example, podocalyxin
is expressed in response to phenylhydr-
azine-induced hemolytic anemia11 and
upon direct induction of erythroid ex-
pansion by erythropoietin injection.58

Experiments with erythropoietin re-
ceptor mutants and in silico analysis of
podocalyxin’s promoter sequence in-
dicated that erythropoietin-induced
expression is dependent on STAT5 sig-
naling.58 Thus, podocalyxin seems to
be upregulated by erythroid progeni-
tors only when high rates of erythro-
poiesis are required, such as through-
out development and under conditions
of erythropoietic stress.

Despite the substantial expression
of podocalyxin in the developing he-
matopoietic system, there are no de-
tectable differences in frequencies of
any hematopoietic lineages in podoca-
lyxin-deficient mice.11 Interestingly,
though, short-term homing assays
demonstrate that cells lacking podoca-
lyxin or CD34 display decreased migra-
tion in vivo.11 Thus, although podoca-
lyxin is not essential for hematopoiesis,
it may facilitate the crossing of endo-
thelial barriers during migration to
distant hematopoietic microenviron-
ments.11 Hematopoietic cells of the
yolk sac become less adherent to leave
blood islands, precursors in fetal liver
must cross into the vasculature to mi-
grate to spleen and bone marrow, and
severe anemia leads to an efflux of ery-
throid progenitors from bone marrow
to establish additional sites of erythro-
poiesis. Each of these situations corre-
sponds to an increase in podocalyxin
expression.

Podocalyxin is also a universal
marker of vasculature.10 –12 It is found
on endothelial cells lining a wide range
of vessels, from the coronary artery to
the specialized postcapillary high en-
dothelial venules.8,10,12 Despite this,
the vasculature seems normal in devel-
oping podocalyxin-null animals.2

CD34 may functionally compensate for
loss of podocalyxin, though, because it
is also ubiquitously expressed in vascu-
lature and is upregulated in podoca-
lyxin-null mice.2,59 Furthermore, al-
though there are no obvious defects in
the vasculature, approximately 25% of
podocalyxin-deficient embryos exhibit
mild to severe edema, which could be
attributed to leaky blood vessels.2

Additional Sites of Podocalyxin
Expression and Defects in
Podocalyxin-Null Animals
One of the most recently described sites
of podocalyxin expression is the brain,
where it is detected in many regions, with
the highest expression in cerebral cortex
and cerebellum postnatally.13,14 Expres-
sion in migrating cells in the developing
cerebellum suggests that antiadhesive
forces may aid in the detachment and

migration of neuronal cells and leading
processes or that podocalyxin may be ac-
tively involved in axonal path finding
through its interactions with PDZ do-
main– containing proteins.3,14

Finally, podocalyxin is expressed by
mesothelial cells lining body cavities.2

Loss of podocalyxin from these cells pre-
vents retraction of the embryonic gut
from the umbilical cord during develop-
ment, presumably by increasing adhe-
sion, and thus 30% of podocalyxin-null
animals are born with gut herniation or
omphalocele.2 Under normal circum-
stances, this physiologic omphalocele is
resolved during embryogenesis (E16 in
mice) as the peritoneal cavity expands.60

Thus, in another tissue where CD34 can-
not functionally compensate for podoca-
lyxin’s absence, there seems to be an in-
crease in cell adhesion.

PODOCALYXIN IN CANCER

Up to this point, we have described the
normal function and expression pattern
of podocalyxin, but much can be learned
from assessing disease states in which
podocalyxin expression is dysregulated.
Podocalyxin has been implicated in nu-
merous malignant situations, including
breast cancer, testicular cancer, prostate
cancer, and leukemia.15–18

Podocalyxin in Breast Cancer
Using a 272-case tissue microarray of in-
vasive breast carcinomas, we showed that
podocalyxin is upregulated in a subset of
tumors and is correlated with very poor
outcome.16 The mean survival time was 6
yr less for patients with very highly podo-
calyxin-positive tumors than for all other
patients.16 Although there were no sig-
nificant differences in histologic subtype
or tumor size between groups, there were
proportionally more high-grade, estro-
gen receptor–negative tumors in the
high-podocalyxin group.16 Importantly,
highly podocalyxin-positive tumors are
often found in patients who do not ini-
tially present with lymph node metasta-
ses, and podocalyxin overexpression is a
statistically significant independent pre-
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dictor of poor outcome with an eight-
fold relative risk.16

Podocalyxin in Prostate Cancer
Podocalyxin mutation, rather than over-
expression, is associated with aggressive
prostate cancer.18 Initially, a genome-
wide screen of �500 affected siblings
strongly implicated chromosome 7q32-
q33 in tumor aggressiveness,61 a finding
confirmed in subsequent studies.62,63

This region also exhibits a high fre-
quency of allelic imbalance in prostate
tumors, with the podocalyxin locus
(podxl) contained within the smallest re-
gion of imbalance.64 Mutational analysis
was therefore performed on genomic
podxl from 17 previously identified fam-
ilies, and the relationship among pros-
tate cancer, tumor aggressiveness, and
podxl variants was assessed in a family-
based association study.18 Several com-
mon mutations were identified, includ-
ing a variable in-frame deletion and
several missense mutations.18 The in-
frame deletion variant led to loss of
serine and proline residues in podocalyx-
in’s extracellular domain and increased
the relative risk for developing more ag-
gressive prostate cancer.18 The presence
of missense mutations increased the risk
for developing prostate cancer by ap-
proximately 50% but had no effect on
aggressiveness.18 Although the func-
tional implications of these mutations
are still under investigation, it is likely
that alteration of podocalyxin’s negative
charge would increase cell motility and
invasiveness or disrupt the association of
podocalyxin with the actin cytoskeleton,
as described in the kidney.

Podocalyxin in Testicular Cancer
Podocalyxin was first reported in pa-
tients with cancer in 2003, when it was
described as a marker of nonseminoma-
tous germ cell tumors (NSGCT).15 It is
also found in the supernatants of cul-
tured embryonal carcinoma cell lines
and may therefore be a useful serum
marker for detection of NSGCT.65 Inter-
estingly, the NSGCT form of podoca-
lyxin seems to undergo additional post-
translational modifications,15 which may
have functional implications.

Podocalyxin in Pancreatic Ductal
Adenocarcinoma
Although normal pancreatic tissue is
negative or very weakly positive for
podocalyxin, a large percentage of pan-
creatic ductal adenocarcinomas (PDAC)
are positive, and higher grade tumors are
more frequently positive (53% of grade 3
versus 18% of grade 1 tumors).66 In gen-
eral, individual, noncohesive, invasive
tumor cells exhibit the strongest levels of
podocalyxin expression.66 Although a
larger study is required to determine
whether podocalyxin is an independent
negative prognostic marker of PDAC, it
is a good diagnostic tool for distinguish-
ing PDAC from carcinomas originating
in other related sites.66

Podocalyxin in Hepatocellular
Carcinoma
Two groups have reported podocalyxin
upregulation and/or altered staining pat-
terns in hepatocellular carcinoma,67,68 a
form of cancer that is detected very late,
with a resulting exceptionally low 5-yr
survival rate.69 Whereas normal vessels
lining the hepatic sinusoid allow free dif-
fusion of macromolecules but not larger
particles, vasculature within tumors is
often abnormally permeable, allowing
passage of larger molecules and even me-
tastasis of cancerous cells through widened
cell–cell junctions, larger fenestrations,
transcellular holes, and an irregular base-
ment membrane.68,70 Thus, it is thought
that podocalyxin may contribute to the
leakiness of hepatocellular carcinoma vas-
culature. Regardless of the functional im-
plications of its expression, however,
podocalyxin may be a useful marker for
earlier detection of this type of cancer.

Podocalyxin in Leukemia
Podocalyxin expression in leukemia was
assessed for several reasons: The related
protein, CD34, is expressed by many but
not all leukemic blasts; podocalyxin is
expressed by normal hematopoietic pro-
genitors; and the podocalyxin transcrip-
tional regulator Wilms’ tumor 1 is ex-
pressed by the majority of blasts in acute
myeloid leukemia (AML) and acute lym-
phoblastic leukemia (ALL).11,17,71–73 Us-
ing tissue microarrays and biopsy speci-

mens, podocalyxin was detected in blasts
in a large majority of AML and ALL
cases, with strong expression in 41 and
22%, respectively.17 Podocalyxin was
also expressed in myeloid sarcomas, with
very high expression in 53% of cases; this
is suggestive of a role in facilitating tissue
infiltration.17 A second study reported
high podocalyxin in 18% of AML cases,
with the majority of cells being a mono-
cytic phenotype.74 Because these are gen-
erally associated with poor prognosis,
this is another example of increased cor-
relation of podocalyxin expression with
worse outcome.74 Again, the functional
relevance of podocalyxin expression in
this type of cancer has not been conclu-
sively demonstrated, but its presence
could be used as a marker to increase the
sensitivity of assays designed to detect
leukemia.

Podocalyxin in Wilms’ Tumor
Wilms’ tumor is the most common pedi-
atric kidney cancer75; in contrast to the
other cancers described herein, podoca-
lyxin expression is significantly reduced
in Wilms’ tumors relative to normal fetal
kidney, according to a cDNA microarray
analysis of 64 tumor samples.76 Impor-
tantly, though, there is a significant in-
crease in podocalyxin expression in the
more aggressive, anaplastic tumors.76

Because p53 is usually mutated in ana-
plastic Wilms’ tumors and it has been
shown to regulate negatively podoca-
lyxin expression,76 this may explain why
podocalyxin is expressed more highly in
these cases. Functionally, podocalyxin
may contribute to the increased metasta-
sis of this subset of tumors.

CONCLUSIONS

Podocalyxin has an important role in nor-
mal development and cancer progression.
Adhesion and morphogenesis both are ex-
tremely important activities throughout
development. Adhesion—or lack there-
of—regulates proper migration of cells,
whereas morphogenesis is critical for the
generation of many specialized cell types.
Podocalyxin is clearly important in facili-
tating formation of intricate podocyte foot
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processes, but it may also play a role in gen-
eration of neuronal processes and the
megakaryocytic extensions involved in
platelet production. In addition, it may be
involved in global cell migration and
movement of hematopoietic cells across
endothelial barriers when colonizing new
niches. Expression on vascular endothelial
cells likely prevents nonspecific adhesion
and facilitates transendothelial migration
of hematopoietic cells, as well as preventing
collapse of capillary lumens as a result of
adhesion of opposing membranes. Fur-
thermore, the coating of podocalyxin on
mesothelial cells lining body cavities likely
protects organs from damage. This is espe-
cially evident in podocalyxin knockout an-
imals, which are inefficient at retracting
physiologic omphaloceles late in develop-
ment. Thus, podocalyxin expression
throughout development and in adult
likely regulates adhesion and cell morpho-
genesis in a variety of tissues.

Podocalyxin has also been associated
with a wide variety of cancers. It is up-
regulated in hepatocellular carcinoma
and a subset of testicular cancers, and it is
also found in leukemias.15,17,68 Impor-
tantly, it is upegulated or mutated in
highly aggressive breast cancers, prostate
cancers, pancreatic ductal adenocarcino-
mas, and Wilms’ tumors.16,18,66,76 There
are several possible reasons for podoca-
lyxin dysregulation in malignant circum-
stances, but, in some cases, it is likely due
to abnormal p53 expression, because
podocalyxin is negatively regulated by
p53.76 In support of this, we have shown
that high podocalyxin expression is pos-
itively correlated with abnormal p53
staining in invasive breast carcinomas.16

Although the mechanistic implica-
tions of podocalyxin dysregulation in
these malignant situations are not en-
tirely clear, its association with the most
aggressive cases and its role in regulating
cell adhesion suggest it may facilitate me-
tastasis. Ectopic expression leads to in-
creased invasion, as shown in prostate
and breast cancer cell lines.77 Further-
more, it is likely that expression of podo-
calyxin results in a generalized disrup-
tion of cell adhesion, particularly in
situations in which apical domains ex-
pand as a result of a loss of polarity.33

Importantly, podocalyxin expression
leads to a dramatic recruitment of
NHERF-1 to the apical cell surface.33

This has widespread downstream impli-
cations, because it may affect NHERF-1’s
interactions with a multitude of signal-
ing proteins.33 Podocalyxin also recruits
f-actin and ezrin, leading to modification
of downstream signaling pathways as
well as upregulation of matrix metallo-
proteases.26,33,77 Moreover, solid tumors,
which require increased nutrients and
therefore increased blood flow, may be-
come more aggressive as a result of podo-
calyxin-mediated angiogenesis. Thus,
podocalyxin is not only essential for de-
velopment but also an important consid-
eration in malignancy.
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