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Abstract

L(2, 1)-labeling is a graph coloring model inspired by a frequency assignment in telecommunica-
tion. It asks for such a labeling of vertices with nonnegative integers that adjacent vertices get labels
that di�er by at least 2 and vertices in distance 2 get di�erent labels. It is known that for any k ≥ 4
it is NP-complete to determine if a graph has a L(2, 1)-labeling with no label greater than k.

In this paper we present a new bound on complexity of an algorithm for �nding an optimal
L(2, 1)-labeling (i.e. an L(2, 1)-labeling in which the largest label is the least possible). We improve
the upper complexity bound of the algorithm from O∗(3.5615..n) to O∗(3.2360..n). Moreover, we
establish a lower complexity bound of the presented algorithm, which is Ω∗(3.0731..n).

1 Introduction

The channel assignment problem is the problem of assigning channels of frequency (represented by non-
negative integers) to radio transmitters, so that interfering transmitters are assigned channels whose
di�erence is not in a set of forbidden values. Hale [6] formulated this problem in terms of so-called T -
coloring of graphs. Roberts [5] proposed a modi�cation of this problem, which is called an L(2, 1)-labeling
problem. It asks for such a labeling of vertices of a graph with nonnegative integer labels, that no vertices
in distance 2 in the graph have the same labels and labels of adjacent vertices di�er by at least 2.

By L(2, 1)(G) we denote the L(2, 1)-span of G, which is the smallest value of k that guarantees
the existence of an L(2, 1)-labeling with no label exceeding k. For any �xed k ≥ 4, determining if
L(2, 1)(G) ≤ k was proven to be NP-complete by Fiala et al. [4]. It remains NP-complete even for
regular graphs (Fiala, Kratochvíl [3]) and planar graphs (Eggeman et al. [2]).

Král [9] presented an algorithm for a more general problem, which can determine L(2, 1)-span of any
given graph in time O∗(4n). Havet et al. [7] presented a faster algorithm for computing L(2, 1)(G). The
complexity of this algorithm is bounded by the number of ordered triples of disjoint sets of vertices such
that the �rst of those sets is a 2-packing, i.e. a set in which all the vertices are in distance at least 3 from
each other. Havet et al. [7] proved that the number of k-element 2-packings in a connected graph on n

vertices does not exceed 2k
(
n/2
k

)
. With this bound they showed that their algorithm �nds L(2, 1)-span of

any connected graph on n vertices in time O∗(15
n
2 ) = O∗(3.8729..n).

In [8] we presented an improved version of the algorithm by Havet et al. [7] (we remind this algorithm
in Section 3). The improvement is a consequence of considering an additional dependency that decreases
the number of iterations of the main loop of the algorithm. In the same paper we presented a better
bound on the number of k-element 2-packings in a connected graph on n vertices, which is

(
n−k+1

k

)
.

Those results lead to the time complexity bound of O∗(3.5615..n).
In this paper, in Section 3, we provide a more careful analysis of the algorithm presented in [8]. We

notice that its complexity is in fact determined by the number of triples (U, Y,A) of disjoint sets of vertices

1



such that both sets U and Y are 2-packings and no vertex from U has a neighbor in Y . In Section 4
we present an algorithm generating such triples. It follows from the analysis of this algorithm that the
number of the triples and therefore the time complexity of our algorithm for L(2, 1)-labeling is bounded
by O∗(3.2360..n).

In Section 5 we present a lower bound on the complexity of the algorithm from [8], which is Ω∗(3.0731..n).

2 Preliminaries

All graphs appearing in this paper are connected. We can restrict ourselves to this class of graphs because
a labeling of a disconnected graph can be obtained by labeling each of its components separately.

Let distG(x, y) be the distance between vertices x and y in a graph G, which is the length of a shortest
path joining x and y.

Formally an L(2, 1)-labeling is de�ned as a function f :V (G)→ {0, 1, . . .}, such that ∀x, y ∈ V (G) distG(x, y) =
1⇒ |f(x)− f(y)| ≥ 2 and ∀x, y ∈ V (G) distG(x, y) = 2⇒ |f(x)− f(y)| ≥ 1.

By an L(2, 1)-span of a graph (L(2, 1)(G)) we denote the smallest value of k guaranteeing the existence
of a L(2, 1)-labeling with no label exceeding k.

A set X ⊆ V (G) is a 2-packing in a graph G if all its vertices are in distance at least 3 from each
other (∀x, y ∈ X distG(x, y) > 2).

By the neighborhood of a set X ⊆ V (G) we mean the set N(X) = {u ∈ V (G):∃v ∈ X (u, v) ∈ E(G)}.
Moreover we de�ne N [X] = N(X) ∪X.

A triple of disjoint subsets of vertices (U, Y,A) is called legal in a graph G, if U and Y are 2-packings
in G, Y ∩NG[U ] = ∅ and A ⊆ V (G) \ (U ∪ Y ).

We write f(n) = O∗(g(n)) (resp. f(n) = Ω∗(g(n))) if there exists a polynomial p(n) such that
f(n) ≤ p(n)g(n) (resp. f(n) ≥ p(n)g(n)) for all n greater than some n0. We write f(n) = Θ∗(g(n)) if
f(n) = Ω∗(g(n)) and f(n) = O∗(g(n)).

Let φ denote the golden ratio, i.e. φ = 1+
√
5

2 .

3 Exact algorithm for L(2, 1) - labeling

Let us start with reminding an exact algorithm for L(2, 1)-labeling from [8], which is an improved version
of the algorithm presented originally by Havet et al. [7].

First, the algorithm marks all 2-packings as subsets that can be labeled with the label 0. Then it
tries to extend a partial labeling by adding to it a set of vertices with the next label. More precisely,
the algorithm iteratively marks all subsets of V (G) that can be labeled with no label greater than i for
i = 1, . . . , 2n. (Note here that L(2, 1)(G) is smaller than 2n, since labeling the vertices by distinct even
integers is always a valid L(2, 1)-labeling.) To do it e�ciently, we introduce Boolean variables Lab[X,Y, i]
for all pairs of disjoint sets X,Y ⊆ V (G), where Y is a 2-packing in G and i ∈ {0, . . . , 2n}. The value of
Lab[X,Y, i] is set true if and only if there exists a partial L(2, 1)-labeling f with no label greater than i
for X (i.e. f :X → {0, 1, . . . , i}), such that no vertex in N(Y )∩X has a label i. The values of Lab[X,Y, i]
for every 2-packing Y in G, X ⊆ V (G) \ Y and i ∈ {0, . . . , 2n} are computed by dynamic programming
using the following implication:

If Lab[A,U, i− 1] is true for a 2-packing U and a set A ⊆ V (G) \ U ,
then Lab[U ∪A, Y, i] is true for any Y , which is a 2-packing in G− (A ∪N [U ]).

Let us show this implication. If Lab[A,U, i − 1] is true for a 2-packing U and a set A ⊆ V (G) \ U ,
then there exists a partial labeling f :X → {0, . . . , i− 1} such that no vertex in N(U) ∩ A has the label
i − 1. Hence we can extend the labeling f by setting f(v) = i for every v ∈ U . A labeling obtained in
this way ful�lls the condition to set the value of Lab[U ∪A, Y, i] to true for any 2-packing Y in G, which
is disjoint with A and with N [U ] (i.e. any 2-packing in G− (A ∪N [U ])).

Notice that Lab[V (G), ∅, i] is true if and only if there exists an L(2, 1)-labeling of the graph G with
no label exceeding i. Hence L(2, 1)(G) = min{i: Lab[V (G), ∅, i] is true}.

The description and the proof of correctness of the algorithm Improved-Find-L(2,1)-Span can be
found in [8].
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Algorithm 1: Improved-Find-L(2,1)-Span

1 foreach Y - 2-packing in G do
2 foreach X ⊆ V (G) \ Y, i = 0, . . . , 2n do Lab[X,Y, i]← false

3 foreach X being a 2-packing in G do
4 foreach Y being a 2-packing in G−N [X] do Lab[X,Y, 0]← true
5 if X = V (G) then return "L(2, 1)(G) = 0"

6 for i← 1 to 2n do
7 foreach (U, Y,A) being a legal triple in G do
8 if Lab[A,U, i− 1] then Lab[U ∪A, Y, i]← true
9 if U ∪A = V (G) then return "L(2, 1)(G) = i"

The following theorem is the main result of this paper:

Theorem 1. The algorithm Improved-Find-L(2,1)-Span �nds the L(2, 1)-span of any connected graph

in time O∗((2φ)n) = O∗(3.2360..n) and space O∗(2.7320..n), where n is the number of vertices of the

graph.

Proof. Notice that the complexity of the algorithm Improved-Find-L(2,1)-Span is determined by the
operations in the main loop (lines 9-16) and all inner operations of this loop are performed in a polynomial
time. Thus the time complexity of the algorithm Improved-Find-L(2,1)-Span (in the sense of the O∗

notation) is determined by the time needed to generate all the legal triples in G. In Section 4 we show an
algorithm that generates all such triples. In Theorem 2 we show that the number of legal triples is bounded
by O((2φ)n) = O(3.2360..n) and they can be generated in time O∗(3.2360..n). Hence the computational
complexity of the algorithm Improved-Find-L(2,1)-Span is bounded by O∗((2φ)n) = O∗(3.2360..n).

It was proven in [8] that the space complexity of the algorithm Improved-Find-L(2,1)-Span is
bounded by O∗(2.7320..n).

4 Generating the legal triples

In this section we present a recursive algorithm for generating all legal triples in a connected graph.
If the graph has at most 2 vertices, then all legal triples can be easily enumerated. For graphs

with more vertices, the algorithm proceeds to its main part. In the beginning, the algorithm �nds T
� a spanning tree of G and then P , which is the longest path in T (the longest path can be found in
polynomial time by the algorithm described in [1]). Let v, u, w denote the three consecutive vertices of
P starting from one of the ends of P . Let Q denote the set of neighbors of u di�erent than w. Notice
that they are all leaves, because otherwise P would not be the longest path in T . Let |Q| = q.
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The algorithm constructs the desired triples by branching on all vertices in Q simultaneously.
Suppose that none of the vertices in Q belongs to U or Y . Then each of them belongs or does not

belong to A. After selecting vertices in Q ∩ A (2q possibilities), we proceed with the graph G−Q (this
graph is connected).

Notice that if any of the vertices in Q belongs to U ∪Y , then u /∈ U ∪Y , since U ∪Y is an independent
set.

If exactly one of the vertices (denote it by x) in Q belongs to U or Y (2q possibilities), then we decide
which vertices in (Q \ {x})∪{u} belong to A (2q possibilities) and proceed with the graph G− (Q∪{u})
(this graph is connected).

If there are exactly two vertices in Q ∩ (U ∪ Y ) (denote them by x, y), one of them must be in U
and the other one in Y (q(q − 1) possibilities). We decide which vertices in (Q \ {x, y}) ∪ {u} belong to
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A (2q−1 possibilities) and proceed with the graph G − (Q ∪ {u}) (this graph is connected). Notice that
|Q ∩ (U ∪ Y )| ≤ 2, since each of the sets U and Y is a 2-packing in G.

Notice that the algorithm may generate some triples, that are not legal in G (e.g. because not all
legal triples in T are legal in G), so it has to be checked before returning each triple. This task can be
performed in a polynomial time. Since we have to keep the initial graph G to check if a generated triple
is legal in G, in recursive calls we modify a copy Ĝ of G.

Algorithm 2: Generate-Triples

Call : Generate-Triples(G, Ĝ, U , Y , A)

Arguments: Connected graph G, Connected Ĝ ⊆ G, Set U , Set Y , Set A
1 if V (Ĝ)| ≤ 2 then

2 foreach v ∈ V (Ĝ) and S ⊆ V (Ĝ) \ {v} do
3 if (U ∪ {v}, Y, A ∪ S) is a legal triple then
4 Print (U ∪ {v}, Y, A ∪ S)

5 if (U, Y ∪ {v}, A ∪ S) is a legal triple then
6 Print (U, Y ∪ {v}, A ∪ S)

7 foreach S ⊆ V (Ĝ) do
8 if (U, Y,A ∪ S) is a legal triple then Print (U, Y,A ∪ S)

9 return

10 T ← a spanning tree of Ĝ
11 P ← a longest path in T
12 (v, u, w)← three consecutive vertices starting from one of the ends of P
13 Q← NT ({u}) \ {w}
14 foreach S ⊆ Q do Generate-Triples(G, Ĝ−Q,U, Y,A ∪ S)
15 foreach x ∈ Q and S ⊆ Q ∪ {u} \ {x} do
16 Generate-Triples(G, Ĝ− (Q ∪ {u}), U ∪ {x}, Y, A ∪ S)

17 Generate-Triples(G, Ĝ− (Q ∪ {u}), U, Y ∪ {x}, A ∪ S)

18 foreach x, y ∈ Q, x 6= y and S ⊆ Q ∪ {u} \ {x, y} do
19 Generate-Triples(G, Ĝ− (Q ∪ {u}), U ∪ {x}, Y ∪ {y}, A ∪ S)

Lemma 1. The algorithm call Generate-Triples(G,G, ∅, ∅, ∅) generates each legal triple in a connected

graph G exactly once.

Proof. Let G be a connected graph, Ĝ a connected subgraph of G and U, Y,A disjoint subsets of V (G) \
V (Ĝ). By C(G, Ĝ, U, Y,A) we denote a set of triples (Û , Ŷ , Â) such that (Û , Ŷ , Â) is a legal triple in G,

U ⊆ Û ⊆ U ∪ V (Ĝ), Y ⊆ Ŷ ⊆ Y ∪ V (Ĝ) and A ⊆ Â ⊆ A ∪ V (Ĝ).

We will prove the following statement by induction on |V (Ĝ)|:

(∗) The algorithm call Generate-Triples(G, Ĝ, U, Y,A) generates exactly once each triple (Û , Ŷ , Â) ∈
C(G, Ĝ, U, Y,A).

If |V (Ĝ)| ≤ 2 the algorithm obviously gives the correct result (lines 1� 9 ).

Assume that the statement (∗) is true for all G, Ĝ, U, Y,A de�ned above, such that |V (Ĝ)| < k.

Notice that if a set U (resp. Y ) is not a 2-packing in G, then there is no 2-packing Û (resp. Ŷ )
containing U (resp. Y ) and no legal triple can be generated in this recursive call. In such case the
algorithm Generate-Triples returns no triple, since before returning any triple it checks if it is legal.
Hence from now we can assume that the sets U and Y are 2-packings in G.

Consider a connected graph G, a connected subgraph Ĝ of G with k vertices and disjoint sets U, Y,A ⊆
V (G) \ V (Ĝ) such that U and Y are 2-packings in G. Let Q, u and w be de�ned as in the algorithm.

Since at most two vertices from Q can belong to Û ∪ Ŷ , we can partition the set C(G, Ĝ, U, Y,A) into
three subsets Ti for i ∈ {0, 1, 2} de�ned as follows:

Ti = {(Û , Ŷ , Â) ∈ C(G, Ĝ, U, Y,A) : |Q ∩ (Û ∪ Ŷ )| = i}.
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Notice that any of the vertices in (Q ∪ {u}) \ (Û ∪ Ŷ ) belongs or does not belong to A.

Since the graph Ĝ−Q is connected and has less than k vertices, by the induction hypothesis all the
triples from T0 are generated in recursive call in line 14, all the triples from T1 are generated in the
recursive call in lines 16-17 and all the triples in T2 are generated in the recursive call in line 19.

Theorem 2. There are O((2φ)n) = O(3.2360..n) legal triples in a connected graph on n vertices. All

legal triples can be generated in time O∗(3.2360..n).

Proof. Let f(n) be the maximum number of legal triples in a connected graph on n vertices. Consider
the call of the algorithm Generate-Triples on a connected graph G on n vertices with exactly f(n)
legal triples. Notice that

f(n) ≤ 2qf(n− q) + (2q · 2q + q(q − 1) · 2q−1)f(n− q − 1)

where q is the cardinality of the set Q de�ned in the algorithm.
We shall prove by induction on n that f(n) ≤ 2 · (2φ)n for n ≥ 0. Notice that the inequality holds for

all n ≤ 2. Assume that the inequality holds for all values smaller than n. Then:
f(n) ≤ 2qf(n− q) + (2q · 2q + q(q − 1) · 2q−1)f(n− q − 1) ≤
≤ 2 · 2q(2φ)n−q + 2 · (2q · 2q + q(q − 1) · 2q−1)(2φ)n−q−1 =

= 2 · 2nφn−q−1(φ+ q + q(q−1)
4 ) = 2 · (2φ)n(φ+ q + q(q−1)

4 )φ−(q+1)

One can easily verify that the function h(x) = (φ+x+ x(x−1)
4 )φ−(x+1) is decreasing for any real x ≥ 1

and h(1) = 1. Hence f(n) ≤ 2 · 2nφn.
Since all the local operations are performed in a polynomial time, the time complexity of the algorithm

Generate-Triples is bounded by O∗(3.2360..n).

5 A lower complexity bound

In the analysis of algorithms it is important to know, what the lower bound on their complexity is. In this
section we provide a new lower bound on the worst-case time complexity of the algorithm Improved-
Find-L(2,1)-Span .

Theorem 3. The lower bound on the complexity of the algorithm Improved-Find-L(2,1)-Span is

Ω∗(3.0731..n), where n denotes the number of vertices in the input graph.

Proof. Let us consider a path Pn. Let p(n) denote the total number of legal triples (U, Y,A) in Pn and
let r(n) denote the number of legal triples (U, Y,A) in Pn such that one arbitrarily chosen end-vertex
does not belong to U .

Let v, u and w being three consecutive vertices in one of the ends of Pn (for n ≥ 3). De�ne Z =
V (G) \ (U ∪ Y ∪A).

If v ∈ U , then u cannot belong to U ∪ Y (since U ∪ Y is an independent set), but it can belong to
A or to Z (two possibilities). The vertex w cannot belong to U , but it can be in Y,A or Z. Thus the
number of legal triples (U, Y,A) in Pn such that v ∈ U is equal to 2r(n− 2). Since the case when v ∈ Y
is analogous, the number of legal triples (U, Y,A) such that v ∈ U ∪ Y is equal to 4r(n− 2).

If v /∈ U ∪ Y , then v ∈ A or v ∈ Z (two possibilities) and there are no additional restrictions on the
vertices u and w. Thus the number of legal triples (U, Y,A) such that v /∈ U ∪ Y is equal to 2p(n− 1).

Hence we get the recursion p(n) = 2p(n − 1) + 4r(n − 2) for n > 2. By a similar reasoning we can
receive r(n) = 2p(n− 1) + 2r(n− 2) for n > 2.

By solving this system of recursive equations with initial conditions: p(1) = 4; p(2) = 12; r(1) = 3;
r(2) = 10 we obtain p(n) = Θ(3.0731..n).

Hence the time complexity of the algorithm Improved-Find-L(2,1)-Span is bounded from below
by Ω∗(3.0731..n).
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