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ABSTRACT 

An alternative to the theory of probability is applied to the problem of assessing the robustness, to 

uncertainty in model parameters, of the correlation between measurements and computer simulations. The 

analysis is based on the theory of information-gap uncertainty, which models the clustering of uncertain events 

in families of nested sets instead of assuming a probability structure. The system investigated is the propagation 

of a transient impact through a layer of hyper-elastic material. The two sources of non-linearity are (1) the 

softening of the constitutive law representing the hyper-elastic material and (2) the contact dynamics at the 

interface between metallic and crushable materials. The robustness of the correlation between test and 

simulation, to sources of parameter variability, is first studied to identify the parameters of the model that 

significantly influence the agreement between measurements and predictions. Model updating under non-

probabilistic uncertainty is then illustrated, based on two complementary immunity functions: the robustness to 

uncertainty and the opportunity from uncertainty. Finally an info-gap model is embedded within a probability 

density function to represent uncertainty in the knowledge of the model’s parameters and their correlation 

structure. Although computationally expensive, it is demonstrated that info-gap reasoning can greatly enhance 

our understanding of a moderately complex system when the theory of probability cannot be applied due to 

insufficient information. 

1. INTRODUCTION 

One central difficulty in identifying the form of a numerical model and experimentally calibrating the 

values of its parameters is that the identification and calibration results can be ambiguous. Alternative 

combinations of model forms and parameter values can yield essentially equally good reproduction of test data. 
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This ambiguity is sometimes analyzed in terms of analytical or numerical ill-conditioning or instability. This 

ambiguity is further exacerbated by the fact that not only decision variables are involved, but numerous other 

unknown or uncertain variables fluctuate beyond the control of the experimenter, and sometimes even without 

the experimenter's awareness of their presence or relevance. In short ambiguity can occur whenever 

“variables”—meaning input parameters, models or conceptual forms—can interact to reproduce the data in more 

than one way. 

Uncertainty plays a central role in calibration and ambiguity of identification. Clearly conceptual ambiguity 

and numerical ambiguity are the result of imprecision or lack of information, both of which also result from 

uncertainty. Epistemic uncertainty occurs in modeling activities when the laws that govern the evolution of a 

system are not known with absolute certainty. More specifically, parameter uncertainty originates from the 

imprecision with which parameters of a model are measured or identified. Uncertainty, rather than being an 

accident of the scientific method, is its very nature. (Adapted from a quote of Andrea Saltelli [1].) 

This paper addresses the problem of refining a numerical model to make it reproduce the test data to a 

given level of accuracy. To achieve this objective the correct model form and parameter values must be inferred 

from the test data. In light of the above discussion this implies that uncertainty must be accounted for and that 

the robustness of the identification to that uncertainty must be established. That is, we address the question: How 

much uncertainty in unmeasured variables can be tolerated without changing the identification? If the robustness 

to uncertainty is great, then the ambiguity is of low significance since the unmeasured variables could vary 

greatly without inducing a different model. On the other hand low robustness implies significantly ambiguous 

model identification; the chosen model could change substantially due to even small changes in the unmeasured 

variables. 

In structural dynamics where the preferred analysis method is the finite element method, the model 

identification problem has been studied extensively [2]. The work presented in this paper departs from the state-

of-the-art in finite element model updating in two main ways. First non-linear finite element models are 

developed to represent fast, transient events. Some of the materials involved exhibit a softening behavior and 

they cannot be represented with a linear constitutive relation. In addition the dynamical phenomenon of interest 

is high-frequency wave propagation. It occurs in less than one millisecond and cannot be represented using a 

truncated basis of low-frequency mode shapes. 

Second, due to our fragmentary information and incomplete understanding of the processes involved, 

uncertainty cannot be represented with the theory of probability. Probability theory is often taken for granted 

even though it can only be rigorously justified when extensive observations are available. For example assume 

that X is a random variable with realizations -0.19, +0.73, -0.59, +2.18, and -0.14. If enough samples are 

available, statistics such as the mean and standard deviation can be accurately estimated. If more samples 

become available, it might even be possible to estimate the probability density function. However if only the five 

observations in the previous sequence are known, about all that can be said without adding more information that 
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is really available is that X belongs to an interval of unknown size which is centered somewhere in [-0.59; 

+2.18]. Not being able to rely on probability implies that uncertainty propagation cannot take advantage of 

efficient sampling techniques. Therefore the computational cost of the method proposed here for uncertainty 

propagation should not come as a surprise. 

2. UNCERTAINTY AND ITS EFFECT ON COMMON MODELING ACTIVITIES 

We start by discussing the effect of uncertainty on common modeling activities such as correlating tests 

and simulations, and calibrating parameters of a model. The discussion also introduces definitions and notations 

used throughout this paper. 

2.1 Representing Systems and Uncertainties 

The numerical model we seek to develop using the finite element method is simply denoted: 

The model provides a non-linear mapping between y, the output features (such as peak stress, peak acceleration, 

fundamental resonant frequency), and q, the model’s decision parameters (such as the constitutive law, shell 

thickness, friction coefficient). The selection of q entails both the identification of the model’s parameter values 

as well as the choice between conceptually distinct classes of models. The decision parameters q are distinct 

from system design decisions or operational decisions based on the model, which are not considered in this 

paper, which concentrates on the modeling process. A model specified by q is validated when it can be asserted 

with confidence that q accurately represents the physical properties of the system throughout the design domain 

or operational space. 

In addition to the decision variables q we deal with uncertain variables u represented by an information-gap 

model (IGM) denoted by U(u0;α): 

where the IGM will be defined in section 3. The unknown u may represent a damping mechanism that we are not 

aware of; a coefficient of strain-rate dependency; a non-linear stiffness parameter, etc. We may have information 

about the uncertain variables u, however this information may be quite fragmentary. We may not even know the 

identity of some of these uncertain variables. Or we may be unsure whether a given variable should be 

categorized as a decision variable q or an uncertain variable u. This expresses the fact that the actual sources of 

uncertainty and their influence on the performance indicators y are incompletely known. 

2.2 Robustness: Immunity to Uncertainty 

The conventional paradigm for correlation between test measurements and mathematical analysis states 

that the decision variables q can be chosen to provide a model that reproduces the experimental data with high 

M(q)y   (1) 

 ;uU  uM(q;u),   y 0  (2) 
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fidelity. However due to the ambiguity of identification, different models might perform equally well. One 

model may be better than the others but we cannot know which. 

Furthermore even if a single choice of the decision variables q reproduces the data with higher fidelity than 

all competing models, we still cannot have confidence that this model is physically valid throughout the design 

domain. The reason is that the uncertain variables u interact with the decision variables q and thereby preserve 

the potential for identification ambiguity. The quality of calibration may be due not to the physical validity of q, 

but to felicitous interaction between q and u. 

However when a model is obtained which is true to the data and also highly insensitive to variations of the 

uncertain variables, then the validity of this model is strengthened. By establishing the immunity of the decision 

variables q to the uncertain variables u, we weaken the interaction between the latter and the former and thereby 

reduce the ambiguity of the identification. This “factoring out” of the uncertain variables strengthens the 

confidence in the validity of the model throughout the design domain. 

3. INFORMATION-GAP MODELING OF UNCERTAINTY 

How to factor out the uncertain variables without relying on the theory of probability is the focus of this 

section. Info-gap models of uncertainty are briefly introduced. A formulation is then proposed to investigate the 

robustness of test-analysis correlation to sources of uncertainty. 

3.1 Test-analysis Correlation 

As explained previously, a numerical model is calibrated if it accurately reproduces the test data. The 

discrepancy between test data yTest and model predictions y can be assessed with different metrics denoted by 

R(q;u). For instance a mean-squared error metric may be defined: 

The index k runs over all the repetitions of all the various different tested quantities. Note that predictions y of 

the model depend upon the decision variables q as well as upon the choice of uncertain variables u. Whatever 

measure of discrepancy is employed, let RC denote the greatest level of infidelity that is acceptable. That is, a 

model is said to be calibrated if: 

A model is “good enough” or “acceptable” if it satisfies equation (4). In other words RC specifies the level 

of satisficing for the model calibration [3]. While the fidelity function R(q;u) depends upon the uncertain or 

unknown quantities u, it will turn out that this is not an impediment to the analysis. On the contrary it is the 
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prime mover of the info-gap robustness analysis to be discussed below. The uncertainty of variables u is 

modeled by an IGM U(u0;α) which is a family of nested sets parameterized by an uncertainty parameter α>0 [3]. 

3.2 Information-gap Modeling of Uncertainty 

Before proceeding with a robustness analysis it is useful to briefly explain how the info-gap models of 

uncertainty are constructed. An IGM is simply a collection of nested sets of uncertain events. The “size” of these 

sets is controlled by the horizon-of-uncertainty parameter α. The sets, denoted U(u0;α), are nested so that α<α’ 

means that U(u0;α) is included in U(u0;α’). In other words the range of uncertain events increases as the 

uncertainty parameter α increases. For example describing the random variable X of section 1 with an IGM could 

consist of establishing nested intervals within which X varies around a nominal value denoted by Xo: 

Equation (5) shows that the range of values that the variable X can assume increases without bound as the 

uncertainty parameter α increases. 

Other examples of info-gap models of uncertainty are provided in sections 6, 7, 8 and reference [3]. The 

key point is that info-gap theory hypothesizes the structure of the uncertainty space and expresses how uncertain 

events cluster around one another, but no measure functions are posited. It is important to realize that an IGM 

requires less information than is needed for specifying the frequency of occurrence of events in terms of a 

probability density function. An IGM includes all representations of the uncertain event—that is, all probability 

distributions, membership or belief functions, intervals, random sets, etc.—that are consistent with the model’s 

structure and horizon-of-uncertainty α. 

3.3 Robustness to Uncertainty 

The value of the performance level RC is not chosen a priori. As in all info-gap analyses, the performance 

level RC is embroiled in a basic trade-off and its value is chosen in light of the resolution of that trade-off. The 

basic decision function of info-gap decision theory is the robustness function ̂ . The robustness of decision q is 

the greatest value of the uncertainty parameter α at which the model fidelity is never worse than RC. The 

robustness is formally defined as: 

where α is the horizon-of-uncertainty and u0 denotes the nominal setting of the unknown quantities u. 

The significance of the robustness function is that it assesses the degree of variation of the uncertain u that 

does not jeopardize the fidelity of the model to the data. If the robustness of decision q is large, then the model 

fidelity is immune to large variations of the unknown quantities u. If ̂  is small, on the other hand, then even 

  0XXX);U(X oo        , |  (5) 
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very small fluctuations of the uncertain quantities u endanger the model fidelity. The identification of the model 

is therefore ambiguous when the robustness is small. At low robustness decisions based on the model are likely 

to be questionable due to the influence of variability and modeling error. Methods for judging whether ̂  is 

'small' or 'large' are discussed elsewhere [3, chap. 4]. 

A value of decision variables q whose robustness is large represents a model from which the effect of 

uncertainty u has been substantially removed. If ̂  is large, then we have reason to believe that q represents 

physically meaningful properties of the system, uninfluenced by the unknown auxiliary terms u. 

Note also that the robustness ̂  depends on the demanded model fidelity RC. In fact there is an irrevocable 

trade-off: the stricter the demanded fidelity (expressed as a small value of RC), the lower the robustness 

(manifested in a small value of ̂ ) [4]. Good performance is obtained at the expense of eroded immunity to 

failure. Examining this trade-off of performance against immunity-to-failure lets the analyst choose an 

acceptable and feasible level of demanded fidelity RC. These aspects of decision-making under uncertainty are 

illustrated in section 7. 

4. SHOCK PROPAGATION THROUGH A HYPER-ELASTIC MATERIAL 

In this section we describe the experimental system which is studied in this paper. In section 5 we discuss a 

standard approach for developing a finite element model of such a system, and we discuss the info-gap critique 

of  this standard analysis. In section 6 we formulate and perform the info-gap robustness and opportunity 

analysis of this system. The analysis is limited to a single uncertain variable, all other uncertain variables being 

held fixed at their nominal values. The analysis in section 6 is repeated for each of the four uncertain variables. 

In section 7 we remove the 1-variable constraint, and perform the robustness and opportunity analyses with 

uncertainty in four variables simultaneously. We discuss implications of the info-gap analysis for system 

modeling, emphasizing the trade-offs between robustness, opportunity, and fidelity to data. 

The application of interest is a high-frequency shock performed in the summer of 1999 at Los Alamos 

National Laboratory. The experiment was designed to study the propagation of a shock wave through a non-

linear, visco-elastic material [5]. 

4.1 Impact Test Setup 

The test consists of dropping from various heights a carriage (drop table) on which are mounted a layer of 

hyper-elastic material and a steel cylinder. Upon impact on a concrete floor a shock wave is generated that 

propagates through the hyper-elastic material. The heavy steel cylinder compresses the hyper-elastic pad and 

causes elastic and plastic strains during a few milliseconds. A photograph of the setup is shown in figure 1-a. 
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Four acceleration measurements were collected during each test. One signal was measured on the top 

surface of the carriage and the other three were measured on top of the steel cylinder. The former is referred to as 

the “input” acceleration signal and the latter are the “output” acceleration signals at sensors 1, 2, and 3. Figure 1-

b shows the input and output signals obtained when the same test was repeated ten times. 

  

(a) Experimental set-up. (b) Signals measured during 10 replicate tests. 

Figure 1: Experimental set-up and acceleration measurements. 

 

Figure 2: Peak acceleration variability measured at sensor 2. 
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4.2 Observed Variability and Feature Definition 

The reason for replicate testing was to estimate the total variability of the experiment. Because the sources 

of environmental and operational variability were a priori unknown, the tests were repeated to estimate the total 

experimental uncertainty. Such uncertainty manifests itself through the variables denoted by u in the previous 

discussion. Figure 2 illustrates the variability of output signals collected at sensor 2 when a 6.3 mm-thick hyper-

foam pad is tested and the carriage is dropped from an initial height of 0.33 meters. Overall it can be observed 

that peak acceleration values vary by 14%. Although not large, ignoring this variability would result in 

predictions erroneous by several hundred g’s, which might suffice to yield catastrophic failure of the system. 

To analyze the results of this experiment we focus on the peak acceleration and time-of-arrival at sensor 2. 

The impulse is so short in time—and the shape of the pulse can be reproduced by a half-sine wave—that 

matching these two features is sufficient to capture the energy content of the response. In the following, these 

features of the measured data are denoted by the acronyms PAC2 and TOA2, respectively.  

Figure 3 defines the two response features graphically. It is emphasized that the time-of-arrival is not 

defined as the absolute time at which the signal peaks, but rather as the time it takes the shock wave to travel 

from the input sensor (located on top of the drop table) to the output sensor (located on top of the steel cylinder). 

 

Figure 3: Definition of the PAC2 and TOA2 response features. 
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5. FINITE ELEMENT MODELING AND TEST-ANALYSIS CORRELATION 

This section describes the finite element simulation developed in response to testing and for the purpose of 

prediction. The model-building exercise includes an assessment of the sources of uncertainty (section 5.1), and 

test-analysis correlation that establishes the fidelity of the model (section 5.2). The adequacy of parametric 

calibration is discussed in section 5.3. 

5.1 Finite Element Modeling 

Figure 4 illustrates the finite element model developed for numerical simulation. The analysis program 

used is HKS/Abaqus®-Explicit, a general-purpose package for finite element modeling of non-linear structural 

dynamics [6]. It features an explicit time integration algorithm, which is convenient when dealing with non-

linear material behavior, contact dynamics, and high frequency excitation. The model shown in figure 4 defines 

963 nodes, 544 volume elements, and two contact pairs located at the cylinder/pad interface and the pad/carriage 

interface. It yields a total of 2,889 degrees of freedom composed of structural translations in the three directions 

and Lagrange multipliers defined for handling the contact constraints. An analysis running on a typical single-

processor workstation is executed in approximately 10 minutes of CPU time. 

The finite element simulation was parameterized in an effort to capture the material variability, the 

experimental variability, and other sources of uncertainty. Based on experimental evidence, see figure 1-b, it was 

decided that the model had to be three-dimensional to represent the fact that the drop table might not always hit 

the floor perfectly horizontally. Two tilt angles were therefore introduced in the numerical simulation. Another 

source of variability was the torque applied to the tightening bolts that held the assembly together on the 

carriage. The applied torque was not measured during testing. A small scaling variation of the measured impulse 

was also allowed to account for potential sensor calibration errors and other systematic bias introduced by data 

decimating and filtering. These four parameters are defined in table 1. 
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Table 1: Input parameters of the model and their nominal ranges. 

Symbol Definition Nominal Value Lower Bound Upper Bound Units 

θ1 First tilt angle 0.50 0.00 2.00 Degree 

θ2 Second tilt angle 0.50 0.00 2.00 Degree 

PB Bolt preload 1.72 0.00 3.45 MPa 

sI Input scaling 1.00 0.90 1.10 Unitless 

Other input parameters are not included in this analysis because previous work has demonstrated that these 

additional parameters do not explain the observed variability [5, 7]. The tilt angles, bolt preload, and input 

scaling parameters constitute the decision variables q: 

Typical ranges for the four parameters that control the numerical simulation are shown in table 1. The 

range of each parameter is established based on experience and physical constraints. For example observation of 

the carriage’s support system suggests that tilt angles greater than one degree are not possible. However it must 

be stressed that the actual ranges of these variables are not known. The nominal values listed in the table are 

physically plausible estimates of the parameter values. 

5.2 Test-analysis Correlation and Parameter Calibration 

 

Figure 4: Computational finite element model. 

 TIB sPq 21   (7) 
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We now briefly outline a typical approach to correlate tests and simulations results, and in section 5.3 the 

limitations of this approach are identified. The info-gap response to these limitations is developed in section 6. 

A typical test-analysis correlation study would proceed with a comparison of measured and predicted 

features to assess the model’s accuracy. When the agreement is not deemed sufficient, the input parameters (7) 

are adjusted to reduce the distance between measurements and predictions. This is illustrated in figure 5, which 

shows a “2D slice” of the four-dimensional test-analysis metric R(q) defined to assess the distance between 

measured and predicted features. The metric is defined from the weighted L2 norm of the prediction error e(q): 

where y(q) is the output of the numerical simulation and 
testy  is the vector of average test results. (A variation of 

this would be to average R(q) over repeated measurements.) The weighting Wee is, here, a constant and diagonal 

matrix that eliminates the dimensional difference between the units of PAC2 and TOA2. The matrix eeW  is the 

diagonal matrix of observed variances of the measurements of PAC2 and TOA2, whose diagonal elements are 

[3.4645E+03, 9.6111E-10]. 

 

Figure 5 shows that various combinations of the decision variables preload PB and scaling sI can provide 

small prediction errors when the tilt angles are kept constant and equal to 0.8 degrees. The response surface was 

)()()(          ),()(          ,
TOA2

PAC2
)( 1 qeWqeqRqyyqeqy ee

TTest 








  (8) 

 

Figure 5: Test-analysis metric R(q) versus parameters PB and sI. 

Input scaling 
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generated by analyzing the finite element model at 256 different combinations of the quadruplet (θ1;θ2;PB;sI). 

Quadratic polynomials were then best fitted through the 256 features PAC2 and TOA2 to interpolate the surface 

between the points that had not been analyzed. In a typical optimization framework the shape of the response 

surface would be unknown, and an optimization solver would be wrapped around the finite element code to 

solve the problem: 

Hence the ranges listed in table 1 define the four-dimensional hyper-cube design domain within which parameter 

calibration is sought. The value of the metric at the optimal parameter set, R*=R(q*), is the best possible test-

analysis error that can be achieved with the current model. 

5.3 Issues That Make The Approach in Section 5.2 Inadequate 

The test-analysis framework of section 5.2 breaks down because of the severely ambiguous identification of 

the preload PB and impulse-scaling sI variables. We noted in section 5.2 in connection with figure 5 that a 

continuous range of values of PB and sI provides essentially the same fidelity between measurements and 

predictions. As discussed in sections 1 and 2.2 this ambiguity is a serious impediment to the future application of 

the updated model in configurations other than explicit test points. 

If we knew a probability density function for the preload and scaling variables, then we could use any of a 

number of statistical tools to choose a best estimate of these entities, and thereby remove the ambiguity. The 

reader is referred to references [8, 9] for a discussion of uncertainty assessment, calibration, and validation. The 

test-analysis correlation metric R(q) is compatible with common tests in conventional statistics [10] or Bayesian 

statistics [11]. However we know no such probability density function. The tilt angles and bolt preload vary in 

unknown ways. Measurements are not available that would justify the choice of a particular probability structure. 

Simply assuming that these parameters are, for instance, uniformly or normally distributed would be pure 

conjecture because evidence is not available to support such an assumption. Making assumptions that are not 

backed up by strong evidence can lead to erroneous decisions with catastrophic consequences; analysts should be 

careful not to assume more than is really known¶. 

Because there is no evidence available to justify the choice of a probability distribution to model the 

uncertainty of the impact experiment, conventional methods for propagating uncertainty, such as statistical 

                                                
¶ See, for example, a discussion in reference [12] of the toy-problem “Can the value of y be greater than 1.8 
when y=(a+b)a and 0.1<a<1, 0<b<1?” Assuming Gaussian probability distributions for parameters a, b and 

performing a one million-sample Monte Carlo analysis can yield the answer “Never,” which is erroneous. 

Assuming uniform distributions under-predicts the number of occurrences when y>1.8. If the value y=1.8 were 

some critical level not to be exceeded, catastrophic failure could occur as a result of assuming more than is really 

known—which is that parameter a, likewise b, belongs to an interval, 0.1<a<1. The location within the interval 

of the most likely value of parameter a cannot be inferred from the above problem statement. 
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testing, are of limited utility. It is to remedy this deficiency that the info-gap theory of uncertainty is 

implemented in this study. 

6. THE ROBUSTNESS AND OPPORTUNITY ANALYSES 

In section 5 we updated the system model by choosing values of the parameters (θ1;θ2;PB;sI). However, 

these variables are neither observed nor controlled. In fact, there is every reason to believe that they assume 

widely different values during different runs and under different conditions. In the remainder of this paper we 

study the modeling implications of unknown variations of these parameters, around the nominal or estimated 

values obtained in section 5. 

The variables (θ1;θ2;PB;sI) were considered controllable decision variables in the context of parametric 

calibration (section 5). However, we now regard them as unknown and uncontrollable entities whose uncertainty 

is represented by an IGM. Henceforth we will denote these variables by u=(θ1;θ2;PB;sI) and reserve q for the 

decision variables. In sections 6 and 7 it is assumed that the only knowledge about the uncertain variables 

(θ1;θ2;PB;sI) of the finite element simulation—which in fact are info-gap uncertain—is that they belong to 

intervals of unknown absolute size and known relative size. Typical intervals are listed in table 1. No evidence is 

available from which a probability structure might be inferred, and the analysts are not willing to make further 

assumptions. 

The first question we would like to answer is: “How robust is our design objective to the uncertainty in 

the variables u?” The goal is to ensure that the predictions of the finite element model provide acceptable 

correlation with the tests. Clearly “acceptable” is a subjective and somewhat arbitrary notion that depends on the 

application. For simplicity, the illustration targets an acceptance level of no more than RC=20% error. Answering 

the above question is, in a broad sense, an issue of sensitivity. We wish to estimate the sensitivity of the 

performance R(q;u) to variations of the uncertain variables u, where q represents various parameters of  the 

model being developed. 

To stress the parallel to the discussion of section 3, it is emphasized that the parameters u=(θ1;θ2;PB;sI) are 

info-gap uncertain variables because the characteristics of their variations are not known with certainty, and 

cannot be controlled by the analysts. It is also important to recall that the robustness analysis differentiates 

between decision variables q (controllable parameters that characterize the system-model begin developed) and 

uncertain variables u (that represent ancillary uncertainties). This would typically be achieved by categorizing 

each input parameter either as a decision variable qk (that can be chosen by the analyst) or an uncertain variable 

uk (which is not controllable) in an attempt to obtain a design objective function R(q;u). 

6.1 Numerical Procedure 
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A robustness analysis consists of estimating the horizon-of-uncertainty ̂  that guarantees acceptable 

performance as defined in equation (6). For simplicity, the acceptable performance region is denoted by 
CRR  , 

and the “failure” region is 
CRR  . Uncertainty is represented using an IGM of uncertainty denoted by U(u0;α), 

as outlined in section 3. The computational and decision-making procedures are conceptually illustrated in 

figures 6-a and 6-b, respectively. Figure 6-a shows that, at each horizon-of-uncertainty αk, an optimization 

problem is solved to provide the worst possible performance R*(αk) within the info-gap uncertainty set U(u0;αk): 

The sequence of points {αk;R*(αk)} that appear in figure 6-a is then used to approximate the continuous 

performance curve R*(α) shown in figure 6-b. Information flows in figure 6-a from the vertical axis (α) to the 

horizontal axis (R*). Decision-making is illustrated in figure 6-b, and it reverses the flow of information. For the 

target performance RC the tolerable horizon-of-uncertainty ̂  is obtained by reading the performance curve 

R*(α). The shaded area in figure 6-b represents the acceptable operating region. 

Of course if the analyst is only interested in estimating ̂ , it is not necessary to construct the entire curve 

R*(α) as illustrated in figure 6. Efficient search strategies can be devised that take advantage of the curve’s 

proven monotonic property [13]. 

6.2 Robustness Function For Each Variable 

The objective of this first analysis is to assess the robustness of test-analysis correlation to parameter 

uncertainty. Therefore the adverse aspect of uncertainty is investigated by answering the question: How large 

can the horizon-of-uncertainty be, without causing unacceptable deterioration of the test-analysis correlation? 
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(a) Info-gap robustness calculation. (b) Inference of the allowable uncertainty. 

Figure 6: Conceptual illustration of an info-gap robustness analysis. 
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The analysis starts in this section with the definition of four info-gap uncertainty levels α1-α4, one for each 

uncertain variable in u=(θ1;θ2;PB;sI). In section 7 we consider the four variables together. The robustness 

analysis focuses on one uncertain variable uk at a time, with the other three kept constant and equal to their 

nominal values. This analysis studies the effect of each input parameter independently from the others. The 

performance criterion R(q;u) is the test-analysis correlation metric defined in equation (8). The convex domains 

of uncertainty U(uk
0;αk) are simply intervals defined by: 

where the lower and upper limits uk
– and uk

+ represent the minimum and maximum bounds that the parameter uk 

cannot exceed. The symbol uk denotes one of the four unknowns (θ1;θ2;PB;sI), and uk
0 represents a nominal 

value. Table 1 defines the nominal values uk
0, and the quantities uk

– and uk
+ are defined as follows. uk

– is the 

lower bound minus the nominal value, while uk
+ is the upper bound minus the nominal value. Thus uk

– is 

negative, uk
+ is positive, and the uncertainty intervals are asymmetric for the angle parameters. Because the 

dimensionless horizon-of-uncertainty parameter αk is in fact not known, we confront here not a single specific 

interval of variation U(uk
0;αk), but rather an unbounded family of nested uncertainty intervals {U(uk

0;αk), αk>0}. 

Figure 7, which is the realization of the schematic figure 6, investigates the deterioration of the original 

test-analysis correlation due to uncertainty. The vertical axis is the uncertainty parameter αk, and the horizontal 

  0     ,    );( 00  
kkkkkkkkkk uuuuuuU   (11) 

 

Figure 7: Results of the worst-case info-gap robustness analysis. 
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axis is the worst quality of model performance, R*(αk), defined in equation (10). The optimization searches for 

the worst correlation at each uncertainty level. A gradient-based BFGS algorithm is wrapped around the 

HKS/Abaqus® finite element package through a Matlab™ interface. This implementation is feasible only 

because the algorithm optimizes one variable at a time and requires a small number of finite element calculations 

to converge, typically 12 to 15. The reason why the worst test-analysis correlation R*(αk) increases when the 

uncertainty level αk increases is because R*(αk) is the solution of the maximization problem (10). For larger 

horizon-of-uncertainty parameters αk the search space U(uk
0;αk) becomes more inclusive, and the solution R*(αk) 

can only increase. 

It can be observed that the most adverse effects of uncertainty are associated with parameters PB (bolt 

preload) and sI (impulse scaling). Uncertainty in the preload PB has the potential to increase the original 14.5% 

test-analysis correlation error (at α=0) to more than 37% (at α=1). Uncertainty in the tilt angles, on the other 

hand, produces little deterioration of the correlation. Graphically it can be observed that the model is most robust 

to a lack-of-knowledge in the tilt angles because the slopes of their robustness functions are the steepest, 

meaning that large horizon-of-uncertainties can be tolerated with little change of the performance. From this 

analysis we learn that it may not be critical during an experiment to attempt to control or measure the tilt angles. 

It is also learned that no more than ̂ =24% uncertainty can be tolerated in the knowledge of the bolt preload PB 

to guarantee that the test-analysis correlation error remains less than RC=20%. Such information is read from the 

figure as 24.0)20.0(ˆ  . 

6.3 Opportunity Function For Each Variable 

We now investigate the beneficial aspect of uncertainty. The question is: Can uncertainty be taken 

advantage of to improve the test-analysis correlation? Stated differently: Can the model performance be 

substantially better than the nominal performance, even at a low horizon-of-uncertainty? 

This question is not to be confused with the previous analysis of robustness. It is in fact defined in 

reference [3] as a judgment of opportunity. Robustness searches for the greatest info-gap parameter ̂  up to 

which R(q;u) is necessarily at least as good as (no greater than) the demanded performance level RC. It results in 

two embedded maximization problems, as shown in equation (6). Opportunity, on the other hand, is the least 

info-gap parameter α at which R(q;u) can be, but is not necessarily, as good as RW. To stress the difference with 

the robustness function previously denoted by ̂ , the opportunity is denoted by ̂ : 

Note that the opportunity function ̂  is the dual of the robustness function ̂  in the sense that the maxima 

of equation (6) become minima in equation (12). The threshold RW is the windfall performance and it is 
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generally desirable to choose it much smaller than the critical performance RC, RW<<RC. In our application the 

critical performance is the test-analysis correlation error above which predictions of the model are deemed 

inappropriate, RC=20%. The windfall performance RW defines what would essentially be an excellent model 

with, say, less than RW=1% correlation error between test and analysis. 

Figure 8 investigates the beneficial potential of uncertainty. The vertical axis is the horizon-of-uncertainty 

α, and the horizontal axis is the smallest prediction error that can be attained at this uncertainty level—that is, the 

result of the inner minimum in equation (12). The optimization searches for the best possible correlation at each 

uncertainty level, as one uncertain variable varies while the others are fixed at their nominal values. When the 

four uncertain variables are fixed at their nominal values (α=0), the nominal performance error of 14.5% is 

obtained. With a horizon-of-uncertainty of α=0.1 favorable variation of the bolt preload can—but does not 

necessarily—improve the performance to a prediction error of 12%. A reduction of the error to just 1% is 

possible—though not guaranteed—at a horizon-of-uncertainty of α=0.55. 

As mentioned previously in the case of the robustness analysis, examining the slopes of the opportunity 

functions is useful in understanding the model sensitivities. Clearly better performance of the model—meaning a 

smaller test-analysis correlation error—is obtained through a favorable variation of the bolt preload PB more 

easily than it can be obtained with the other parameters θ1, θ2, or sI. This can be observed visually by comparing 

the slopes of the opportunity functions. 

 

Figure 8: Results of the best-case info-gap opportunity analysis. 
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From this analysis we learn that the knowledge of the bolt preload PB is critical to the performance of the 

model, in terms of both robustness-to-uncertainty and opportunity to reach a better-than-expected test-analysis 

correlation error. Analysts and experimentalists alike can take advantage of this information to improve their 

predictive capability and test planning, by indicating the variables to which the predictive accuracy is most 

sensitive. It is emphasized that the sensitivity analyses presented here differ from conventional sensitivity studies 

in the sense that (1) sensitivity is not defined through the computation of finite differences, and (2) no probability 

information is assumed for effect screening or analysis of variance. The analysis here employs only very limited 

information about the uncertainties which accompany the measurement and modelling process.  

7. PERFORMANCE, ROBUSTNESS, AND DECISION-MAKING 

After having studied the effect of each uncertainty variable uk on the performance criterion R(q;u), the 

robustness and opportunity problems are now solved in the case where the uncertain quadruplet (θ1;θ2;PB;sI) is 

modeled by a single IGM. The first objective is to identify the allowable amount of uncertainty ̂  that provides 

an acceptable design. The four variables θ1, θ2, PB, and sI are investigated jointly even though the analysis could 

be restricted to PB and sI because it has been demonstrated in section 6.2 that the prediction error is robust to tilt 

angle uncertainty. The second objective is to illustrate the cost-benefit analysis that stems from reaching a trade-

off between robustness and opportunity. 

7.1 Robustness and Opportunity Analyses of the Drop Test Model 

According to the procedure described in section 6 the following two optimization problems are solved for 

values, αk and βk, of the horizon-of-uncertainty parameter α: 

Note that αk and βk denote values of the same horizon-of-uncertainty α. Different notations are used to 

differentiate the robustness function ̂  from the opportunity function ̂ . On the left of equation (13), searching 

for the worst test-analysis correlation error at each uncertainty level provides the robustness function ̂ . On the 

right of equation (13), searching for the best test-analysis correlation error provides the opportunity function ̂ . 

While one always attempts to maximize the robustness-to-uncertainty ̂  of a decision, the opportunity ̂  is 

minimized because it indicates the least amount of uncertainty that could potentially improve the performance. 

The robustness and opportunity functions are assessed with respect to RC=20% and RW=1%, respectively. 

The uncertainty is represented by a family of nested four-dimensional intervals {U(u0;α), α>0}: 
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At any given uncertainty level, α=αk or α=βk, the intervals defined by the IGM (14) provide the constraints for 

the optimization problems (13). Figure 9 presents the robustness and opportunity functions. It is emphasized that 

each point in figure 9 is the solution of a four-dimensional optimization problem. Clearly, the info-gap analysis 

can become demanding in terms of computational resources as the dimension of the IGM increases and more 

uncertainty levels, α=αk or α=βk, are requested. 

The robustness ̂  corresponding to an acceptable prediction error of RC=20% can be read directly from the 

curve α-versus-R*(α) (star symbols, solid line). No more than 17% uncertainty can be tolerated to guarantee 20% 

test-analysis correlation error. Controlling the uncertainty to no more than 17% during the physical experiments 

and the development of the numerical model surely comes at a—potentially significant—cost. For example this 

constraint can be translated into a requirement of the accuracy needed to apply a torque through the tightening of 

bolts so that the preload does not vary by more than 17% about the measured or estimated value. 

 

Table 2: Design that provides 1% test-analysis error. 
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Figure 9: Results of the info-gap robustness and opportunity analyses. 
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Symbol Nominal Value Calibrated Value 

θ1 0.50 degree 0.97 degree 

θ2 0.50 degree 0.98 degree 

PB 1.72 MPa 1.28 MPa 

sI 100.00% 92.52% 

The second curve (diamond symbols, dashed line) of figure 9 shows the opportunity function, or the extent 

to which the modeling uncertainty might result into a better-than-expected performance. As more uncertainty is 

tolerated, the parameters (θ1;θ2;PB;sI) deviate more from their nominal settings, which enlarges the family of 

models. At the horizon-of-uncertainty of %38ˆ   the windfall performance of RW=1% error is reached. It 

means that at least one finite element model gives excellent predictions. The variables (θ1;θ2;PB;sI) that yield less 

than 1% error between test measurements and model predictions are listed in table 2. 

7.2 Accepting Sub-optimal Performance to Enhance Robustness to Uncertainty 

The examples we have discussed illustrate that performance—defined, here, in terms of prediction error—

can be optimized in the context of non-probabilistic uncertainty. Valuable information is learned about how 

uncertainty affects performance, without having to rely on probabilistic or approximation methods. 

Figure 9 illustrates the important trade-off between sub-optimal performance and robustness-to-uncertainty. 

The optimum model in the sense of equation (9) is guaranteed to produce no more than 14.5% prediction error. 

Its robustness to uncertainty, however, is zero. This means that the prediction error can exceed 14.5% as soon as 

the parameters deviate from the calibrated solution q*. This makes it difficult to rely with confidence on the 

predictions of the model in practical situations where some of its parameters are uncertain, as is the case here. 

Figure 9 also shows that the robustness to uncertainty increases as more prediction error is accepted. If one is 

willing, for example, to lower the fidelity aspiration from 14.5% error to 20% error, then one can be confident 

that the predictions will not exceed 20% error even if the parameters of the model deviate up to 17% away from 

their nominal settings. 

The lesson is that model fidelity should not be optimized but rather merely satisfied, which is referred to as 

satisficing in reference [3]. The main benefit is that the decision’s robustness-to-uncertainty can be enhanced 

when the best possible fidelity is not sought. This is important in situations where the model upon which the 

decision relies is imperfect or not known with absolute certainty. 

7.3 Studying the Robustness-opportunity Trade-off for Cost-benefit Analysis 

Cost-benefit analysis stems from discussing the trade-off between robustness ̂  and opportunity ̂  

functions. Figure 9 shows that, at the 17% uncertainty level, the finite element simulation still provides at least 

8% test-analysis correlation error. Obtaining less than 8% error is impossible because %8ˆ   is the result of a 

minimization problem at the 17% horizon-of-uncertainty. In other words the performance of the model is 
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bounded between 8% and 20% prediction error if the analyst is only willing to accept a 17% lack-of-knowledge 

with respect to the nominal settings. Contrasting the robustness and opportunity values at a given uncertainty 

level provides the basic mechanism through which one can estimate the performance enhancement benefits. The 

other side of the equation is to estimate the cost of not exceeding a specified level of uncertainty or lack-of-

knowledge. Reducing the uncertainty typically comes at the cost of performing more tests or implementing 

higher-fidelity models. Cost assessment is not discussed here because it is purpose-specific and application-

dependent to a great extent. 

One could, for example, ask what it would take to obtain a finite element model that provides a “near 

perfect” prediction of the physical test—for instance, less than 1% error. The answer is provided by the 

opportunity function, %40ˆ  . On the other hand a 40% horizon-of-uncertainty only guarantees no more than 

RC=28% test-analysis correlation error. While we seek to obtain a perfect prediction, it could happen that our 

current model yields some prediction error (up to 28% error). Weighting the cost of controlling no more than 

17% uncertainty (with the benefit of guaranteeing no more than RC=20% error) against the lesser cost of 

allowing up to 40% uncertainty (with the risk of deteriorating the test-analysis correlation to 28% error) is the 

essence of decision-making. 

8. HYBRID UNCERTAINTY MODELS FOR TEST-ANALYSIS FIDELITY 

Our final application investigates the possibility of combining information-gap models of uncertainty with 

probabilistic models. The same problem as before is analyzed, that is, the identification of a family of finite 

element models that provide a given level of prediction accuracy while maximizing the robustness to 

uncertainty. The main difference is that probability distributions are assumed for random variables (which will 

be defined). Although no evidence is available to justify this assumption here, the theory of probability is 

nevertheless utilized to illustrate a situation commonly encountered in engineering applications. It is further 

assumed that the parameters of the probability distributions are only partially known, and info-gap models are 

constructed to represent the uncertainty. The example demonstrates one of the many ways in which info-gap 

uncertainty can be coupled with probability. It also illustrates how several info-gap models can be nested within 

each other. The problem is formulated in section 8.1 and the info-gap models are introduced in section 8.2. 

Finally a brief discussion of opportunity versus prediction fidelity concludes the analysis in section 8.3. 

8.1 Formulation of the Performance Criterion 

As in any info-gap analysis, the formulation starts with the definition of a performance criterion R. The 

correlation between test measurements and model predictions is assessed through the likelihood of the model 

given test data. Such a metric is appropriate, for example, in the context of Bayesian inference where the goal is 

to identify a family of models that best reproduce the available test data, while exploiting a priori information 

that the analyst has access to about the solution. The unknown variables of the finite element model are, as 
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before, represented by the quadruplet u=(θ1;θ2;PB;sI). Uncertainty in parameters u results in prediction errors 

e=yTest-y of a model y=M(q;u). 

It is assumed that Gaussian probability laws can describe the variations of both parameters u and errors e. 

We emphasize that such assumption is not, at this point, justified by evidence that might result from empirical 

observations or expert judgment. It is nevertheless common practice in engineering applications to assume the 

form of a probability law, if nothing else, to simplify the computational procedure. Using the Bayes rule of 

posterior probability together with the assumption of Gaussian distributions leads to the well-known formulation 

of the test-analysis metric R [11]: 

testy is the vector of average test results. (An alternative would be to average R(q;u;v) over repeated 

measurements.) y(q;u) is the output of the numerical simulation. The matrix eeW  is the diagonal matrix of 

observed variances of the measurements of PAC2 and TOA2, whose diagonal elements are [3.4645E+03, 

9.6111E-10]. 

The performance function (15) follows a Chi-square distribution because the underlying probability laws of 

u and e are assumed Gaussian. The weighting matrices Wee and Wvv are multivariate covariance matrices that 

must be defined next. First the covariance matrix Wee of the output features PAC2 and TOA2 is estimated from 

ten replicate experiments and kept constant for the remainder of the analysis: 

The second covariance matrix Wvv characterizes the variability of the unknown parameters u and it is 

assumed to possess five independent variance and covariance coefficients v1-v5 such that: 

The preferred scientific method to estimate the coefficients of matrix Wvv would be to measure the random 

variables u in replicate experiments. However we have seen that the parameters u cannot be measured directly. 

The covariance structure shown in equation (17) results from the judgment that the four variables θ1, θ2, PB, and 
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sI are uncorrelated with the exception, possibly, of the two tilt angles#. Table 3 defines the nominal variance and 

covariance coefficients and their assumed ranges. 

Table 3: Ranges of the probability law’s hyper-parameters. 

Symbol Definition Design Domain Nominal Value 

v1 Variance of θ1 0–15.0 x 10-3 degree2 0.0 degree2 

v2 Variance of θ2 0–15.0 x 10-3 degree2 0.0 degree2 

v3 Variance of PB 0–5,160.0 x 10-3 Mpa2 0.0 MPa2 

v4 Variance of sI 0–16.5 x 10-3 0.0 

v5 Covariance Cov(θ1;θ2) 0–15.0 x 10-3 degree2 0.0 degree2 

The original problem of assessing the test-analysis fidelity of a family of models given four unknown 

variables u is therefore augmented with the five coefficients of variance denoted by v. A conventional calibration 

would seek to optimize u such that the prediction error R is minimized. At the optimum an estimation of the 

posterior covariance matrix (a first-order approximation) would then be calculated as [11]: 

Instead of seeking an optimal solution at the expense of sacrificing its robustness to the uncertainty (see section 

7.2), the relationship between sub-optimal fidelity, robustness-to-uncertainty, and opportunity-from uncertainty 

is studied. 

8.2 Definition of the Information-gap Models 

Uncertainty arises from the unknown calibration variables u and the coefficients of variance v. This 

situation illustrates the common case where a probability law is assumed whose parameters are unknown. 

Instead of assuming yet another probability law for the unknown parameters, an IGM is used to represent the 

parameter uncertainty. The lack-of-knowledge about parameters u and coefficients v is represented by two info-

gap models denoted by U(u0;α) and V(v0;β), respectively. 

The first IGM U(u0;α) describes how the unknown parameters u vary away from their nominal settings u0 

as the horizon-of-uncertainty parameter α increases. Likewise the second IGM V(v0;β) represents the deviation of 

the variance and covariance coefficients v away from their nominal settings in table 3: 

                                                
# The reason for this choice is that there is no physical reason why the parameters PB and sI should be correlated 

with each other and the tilt angles. Errors in the estimation of the preload PB are not related to calibration errors 

represented by sI. The carriage’s support system, on the other hand, might introduce a correlation between the tilt 

angles θ1 and θ2. 
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The horizon-of-uncertainty parameters αu and αv represent the extent to which the variables u and v deviate 

from their nominal settings u0 and v0, respectively. Note that there is initially no correlation between the tilt 

angles θ1 and θ2, as indicated by v5
0=0 in table 3. By allowing the covariance coefficient v5 to become non-zero 

the info-gap analysis not only performs a parametric variation of the model’s parameters, but it also changes the 

structure of the model. In the remainder the notation U(u0;αu)xV(v0;αv) defines the combined info-gap models of 

uncertainty. 

8.3 Discussion of Test-analysis Fidelity and Opportunity From Uncertainty 

Once the performance criterion R(q;u;v) and the info-gap models U(u0;αu) and V(v0;αv) have been 

established, the numerical implementation is similar to the one presented in section 6.1. Here the discussion is 

restricted to the opportunity to windfall: How far away from the nominal knowledge (u0;v0) should one operate 

the model to possibly obtain—but not guarantee—performance as good as RW? What motivates this question is 

the need to know if the current family of models contains at least one member capable of providing the aspired 

windfall performance RW. The model’s functional form would typically be questioned if such a model cannot be 

found, or more physical tests would be requested to better quantify the uncertainty. The answer requires the 

calculation of the opportunity function. 

The main difference with the opportunity analysis reported in section 6.3 and equation (12) is that the 

Cartesian product of two info-gap models is now used, instead of a single IGM as before. For each performance 

aspiration RW an info-gap analysis is performed to identify the opportunity values  vu  ˆ;ˆ  where 
u̂  and 

v̂  refer 

to the opportunity functions associated to the unknown parameters u and v, respectively: 

Figure 10 illustrates the performance criterion R(q;u;v) as a function of the opportunity functions 
u̂  and 

v̂  labeled “design uncertainty” and “covariance uncertainty”, respectively. Each point on the surface represents 

the result of the optimization of variables (u;v) in a specific domain U(u0;αu)xV(v0;αv). Convergence is generally 

reached with about 20 finite element analyses because the number of unknowns is small (four variables u plus 

five coefficients of variance v). 
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It can be observed in figure 10 that parameter variability and covariance structure uncertainty exhibit a 

complex pattern of interaction. With small covariance coefficients ( %50ˆ v ) the best possible test-analysis 

fidelity is governed by the variables u. As the covariance coefficients become more pronounced ( %50ˆ v ) and 

the variability of u increases, a dramatic change occurs. The interaction between the two sources of uncertainty 

suddenly yields models capable of excellent predictions (RW=1% error). The analysis demonstrates that finite 

element models can be found that meet the high aspiration for performance of RW=1% test-analysis correlation 

error. These models are not unique as indicated by the non-trivial shape of the high-fidelity region 

  %1);;(ˆ;ˆ vuqRvu    . The bad news is that such models are located “far away” from the nominal knowledge 

(u0;v0). Figure 10 also provides important information for cost-benefit analysis of the trade-off between 

experimentation costs with the consequences of not testing certain regions of the design or operational space. 

Table 4: Design that provides 1% test-analysis error. 

Symbol Nominal Value Calibrated Value 

θ1 0.50 degree 0.99 degree 

θ2 0.50 degree 0.29 degree 

PB 1.72 MPa 2.61 MPa 

sI 100.00% 103.01% 

 

Table 5: Calibrated variance and covariance hyper-parameters. 

 

Figure 10: Opportunity function of the hybrid uncertainty model. 
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Symbol θ1 θ2 PB sI 

θ1 4.8 x 10-3 1.5 x 10-3 0 0 

θ2 1.5 x 10-3 6.7 x 10-3 0 0 

PB 0 0 3,741.5 x 10-3 0 

sI 0 0 0 11.8 x 10-3 

 

Table 6: Inferred standard deviations and correlation coefficient. 

Coefficient Inferred Value Percent of Mean 

σ(θ1) 0.07 degree 7.0% 

σ(θ2) 0.08 degree 28.3% 

σ(PB) 1.93 MPa 74.1% 

σ(sI) 0.11 0.1% 

Cor Coef(θ1;θ2) 0.265 N/A 

The values of parameters u and coefficients of variance v that lead to one of the high-fidelity models (that 

is, R(q;u;v)1%) are listed in tables 4 and 5, respectively. The resulting standard deviations of parameters 

(θ1;θ2;PB;sI) and the correlation coefficient between tilt angles θ1 and θ2 are given in table 6**. Because it was 

assumed that the unknown parameters u vary according to a multivariate normal distribution, the mean vector 

and covariance matrix given in tables 4 and 5 suffice to fully specify the probability law. The inference of a 

probability law whose functional form is unknown can be handled much the same way although it would require 

wrapping the info-gap analysis around a sampling algorithm to propagate the uncertainty from model inputs to 

output predictions. 

Although the correlation between the tilt angles is relatively small at 0.265, it seems important to obtain a 

good correlation between measurements and predictions. Comparing the calibration results listed in table 2 (from 

a pure info-gap analysis) and table 4 (from a probabilistic/info-gap analysis) shows that the values of the first 

angle θ1 and input magnitude scaling sI are consistent. This is confirmed by the less-than-10% standard 

deviations for θ1 and sI shown in table 6. Significant standard deviations, on the other hand, are obtained for the 

second angle θ2 and bolt preload PB. The values of θ2 and PB listed in table 4 are less consistent with those listed 

in table 2, which may be another indication that these parameters vary more than θ1 and sI. Valuable information 

is hence learned that could be used, for example, to perform a probabilistic-based reliability analysis or focus the 

instrumentation on the parameter PB that exhibits the most variability during subsequent physical tests. 

                                                
** The standard deviations listed in table 6 are equal to the square roots of variances shown on the main diagonal 

of table 5. The correlation coefficient between angles θ1 and θ2 in table 6 is the covariance divided by the 

product of the standard deviations from table 5. 
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9. CONCLUSION 

The quantification and propagation of uncertainty through a linear model has been the subject of extensive 

studies in many sciences, especially in the context of probability theory. The relationship between uncertainty 

and non-linear dynamics is not well understood, the main reason being the difficulty in analyzing non-linear 

systems. This paper illustrates how information-gap models can be defined and analyzed for studying the 

propagation of uncertainty through a non-linear finite element simulation without relying on probabilities. The 

non-linear system considered is the propagation of a transient impact through a layer of hyper-elastic material. 

The sources of non-linearity are the softening of the constitutive law of the hyper-elastic material and contact 

dynamics at the interface between metallic and crushable materials. 

We have concentrated on establishing the robustness-to-uncertainty of a numerical model in reproducing 

experimental measurements of a non-linear system subject to a mechanical shock loading. This work 

demonstrates that model updating under uncertainty can be formulated and solved without relying on the theory 

of probability. Analysts are therefore offered a practical alternative for situations where only sparse data are 

available or only limited testing is possible. The main limitation of the approach remains its computational 

burden, resulting from the need for a sequence of numerical optimizations used for assessing the effect of 

uncertainty on performance. 

Future work will focus on the application of info-gap theory to decision-making and model validation. 

Model validation—the assessment of a model’s predictive accuracy throughout a substantial region of a design 

domain or operational space—requires correlation with test data. In the case of complex engineering systems it is 

doubtful that enough validation experiments can be performed to enable statistical tests of validity. Information-

gap methods of validation are therefore envisioned as, likely, the only currently available alternative. 
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