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Abstract

With the advance of modern technology, more and more data are being
recorded continuously during a time interval or intermittently at several
discrete time points. These are both examples of functional data, which
has become a commonly encountered type of data. Functional data analy-
sis (FDA) encompasses the statistical methodology for such data. Broadly
interpreted, FDA deals with the analysis and theory of data that are in the
form of functions. This paper provides an overview of FDA, starting with
simple statistical notions such as mean and covariance functions, then cover-
ing some core techniques, the most popular of which is functional principal
component analysis (FPCA). FPCA is an important dimension reduction
tool, and in sparse data situations it can be used to impute functional data
that are sparsely observed. Other dimension reduction approaches are also
discussed. In addition, we review another core technique, functional linear
regression, as well as clustering and classification of functional data. Beyond
linear and single- or multiple- index methods, we touch upon a few nonlinear
approaches that are promising for certain applications. They include additive
and other nonlinear functional regression models and models that feature
time warping, manifold learning, and empirical differential equations. The
paper concludes with a brief discussion of future directions.
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1. INTRODUCTION

Functional data analysis (FDA) deals with the analysis and theory of data that are in the form of
functions, images and shapes, or more general objects. The atom of functional data is a function,
where for each subject in a random sample, one or several functions are recorded. Although the
term FDA was coined by Ramsay (1982) and Ramsay & Dalzell (1991), the history of this area is
much older and dates back to Grenander (1950) and Rao (1958). Functional data are intrinsically
infinite dimensional. The high intrinsic dimensionality of these data poses challenges both for
theory and computation; these challenges vary with how the functional data were sampled. The
high- or infinite-dimensional structure of the data is a rich source of information and brings many
opportunities for research and data analysis.

First-generation functional data typically consist of a random sample of independent real-
valued functions, X 1(t), . . . , Xn(t), on a compact interval I = [0, T ] on the real line. Such data have
also been termed curve data (Gasser et al. 1984, Rice & Silverman 1991, Gasser & Kneip 1995).
These real-valued functions can be viewed as the realizations of a one-dimensional stochastic
process, often assumed to be in a Hilbert space, such as L2(I ). Here a stochastic process X (t) is said
to be an L2 process if and only if it satisfies E(

∫
I X 2(t)dt) < ∞. Although it is possible to model

functional data with parametric approaches, usually mixed-effects nonlinear models, the massive
amount of information contained in the infinite-dimensional data and the need for a large degree
of flexibility, combined with a natural ordering (in time) within a curve datum, facilitate non- and
semiparametric approaches; these are the prevailing methods in the literature as well as the focus
of this paper. Smoothness of individual random functions (realizations of a stochastic process),
such as the existence of continuous second derivatives, is often imposed for regularization and is
especially useful if nonparametric smoothing techniques are employed, as is prevalent in FDA.

In this paper, we focus on first-generation functional data and include a brief discussion of
next-generation functional data in Section 6. Next-generation functional data are functional data
that are part of complex data objects, and they may be multivariate, be correlated, or involve images
or shapes. Examples of next-generation functional data include brain and neuroimaging data. For
a brief discussion of next-generation functional data, see the report of the London workshop on
the Future of Statistical Sciences (Int. Year Stat. 2013, p. 23).

A basic and commonly adopted framework in FDA is to consider the functional data as realiza-
tions of an underlying stochastic process. In real data applications, the underlying process often
cannot be observed directly, as data may be collected discretely over time, either on a fixed or
random time grid. In such situations the underlying process is considered to be latent. The time
grid where observations are made can be dense, sparse, or neither, and it may vary from subject
to subject. Originally, functional data were regarded as samples of fully observed trajectories. A
slightly more general assumption is that functional data are recorded on the same dense time grid
of ordered times t1, . . . , tp for all n subjects. If the recording is done by an instrument, such as an
electroencephalogram or functional magnetic resonance imaging recording device, the time grid
is usually equally spaced, that is, t j − t j−1 = t j+1 − tj for all j . In asymptotic analysis, the spacing
t j+1 − tj is assumed to approach zero as n tends to infinity, hence p = pn is a sequence that tends
to infinity. Although large p leads to a high-dimensional problem, it also means more data are
available, so here this is a blessing rather than a curse. This blessing is realized by imposing a
smoothness assumption on the L2 processes so that information from measurements at neighbor-
ing time points can be pooled to overcome the curse of dimensionality. Thus, smoothing serves
as a tool for regularization.

Although there is no formal definition of dense functional data, the convention has been to
declare functional data as densely (as opposed to sparsely) sampled when pn converges to infinity
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fast enough to allow the corresponding estimate for the mean function μ(t) = E X (t), where X is
the underlying process, to attain the parametric

√
n convergence rate for standard metrics, such as

the L2 norm. Sparse functional data arise in longitudinal studies for which subjects are measured
at different time points and the number of measurements ni for subject i may be bounded away
from infinity, i.e., sup1≤i≤n ni < C < ∞ for some constant C . A rigorous definition of the types
of functional data based on the spacing and number of observations that are available for each
random function (the measurement schedule or sampling plan) is still lacking. Zhang & Wang
(2014) describe a possible approach, and we present further details in Section 2.

In reality, many observed data are contaminated by random noise, also referred to as measure-
ment errors, which are often assumed to be independent across and within subjects. Measurement
errors can be viewed as random fluctuations around a smooth trajectory or as actual errors in the
measurements. A strength of FDA is that it accommodates measurement errors easily because one
observes repeated measurements for each subject. An interesting, but not surprising, phenomenon
in FDA is that the methodology and theory, such as convergence rates, vary with the measurement
schedule (sampling plan).

Intriguingly, sparse and irregularly sampled functional data (that correspond to a common type
of longitudinal data) such as the CD4 (CD4+ cells are T helper cells, which are immunoactive
white blood cells) count data for which a spaghetti plot is shown in Figure 1 for 25 subjects,
typically require more effort in theory and methodology than do densely sampled functional data,
which are recorded continuously. For the CD4 count data, a total of 369 subjects were included,
with the number of measurements per subject ranging from 1 to 12, with a median of 6 and mean
of 6.44 measurements. This is an example of sparse functional data measured at an irregular and
different time schedule for each individual. Functional data that are observed continuously without
errors are the easiest type to handle as theory for stochastic processes, such as functional laws of
large numbers and functional central limit theorems, are readily applicable. A comparison of the
various approaches is presented in Section 2.

One of the challenges in FDA is that many basic tasks lead to inverse problems, notably for
functional linear regression and many functional correlation measures. These inverse problems
are triggered by the compactness of the covariance operator, which leads to unbounded inverse
operators. This challenge is discussed further in Section 3, in which extensions of classical linear and
generalized linear models to functional linear models (FLMs) and generalized functional linear
models are reviewed. Because functional data are intrinsically infinite dimensional, dimension
reduction is key for data modeling and analysis. The principal component approach is explored in
Section 2, and several approaches for dimension reduction in functional regression are discussed
in Section 3.

Clustering and classification of functional data are useful and important tools with wide-ranging
applications in FDA. Methods include extensions of classical k-means and hierarchical cluster-
ing, Bayesian and model approaches to clustering, and classification via functional regression and
functional discriminant analysis. These topics are explored in Section 4. The classical methods
for FDA have been predominantly linear, such as functional principal components (FPCs) or the
FLM. As more and more functional data are generated, it has emerged that many such data have
inherent nonlinear features that make linear methods less effective. Sections 5 reviews some non-
linear approaches to FDA, including time warping, nonlinear manifold modeling, and nonlinear
differential equations to model the underlying empirical dynamics.

A well-known and well-studied nonlinear effect is time warping, where in addition to the com-
mon amplitude variation, one also considers time variation. This creates a basic nonidentifiability
problem, and Section 5.1 provides a discussion of these foundational issues. A more general ap-
proach to modeling nonlinearity in functional data is to assume that the functional data lie on
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Figure 1
Spaghetti plot for sparsely recorded CD4 count data (the number of CD4 T lymphocytes in a sample of
blood) for 25 subjects, each shown in a different color.

a nonlinear (Hilbert) manifold—this approach extends beyond time warping and includes many
other nonlinear features that may be present in longitudinal data. The starting point for such mod-
els is the choice of a suitable distance, and ISOMAP (Tenenbaum et al. 2000) or related methods
can then be employed to uncover the manifold structure and define functional manifold means
and components. These approaches are described in Section 5.2. In Section 5.3, we briefly review
the modeling of time-dynamic systems with differential equations that are learned from many
realizations of the trajectories of the underlying stochastic process and the learning of nonlinear
empirical dynamics such as dynamic regression to the mean or dynamic explosivity. Section 6
concludes this review with a brief outlook on the future of FDA.

Research tools that are useful for FDA include various smoothing methods, notably kernel,
local least squares, and spline smoothing, for which various excellent reference books exist (Wand
& Jones 1995, Fan & Gijbels 1996, Eubank 1999, de Boor 2001); functional analysis (Conway
1994, Hsing & Eubank 2015); and stochastic processes (Ash & Gardner 1975). Several software
packages are publicly available to analyze functional data, including software at the Functional Data
Analysis website of James Ramsay (http://www.psych.mcgill.ca/misc/fda/), the fda package
from the CRAN (comprehensive R archive network) project using the R software language and
environment (R Core Team 2013) (http://cran.r-project.org/web/packages/fda/fda.pdf ), the
Matlab package PACE on the website of the Statistics Department of the University of California,
Davis (http://www.stat.ucdavis.edu/PACE/), with some of the functions also available in an
R version, fdapace (FDA and empirical dynamics; https://stat.ethz.ch/CRAN/web/packages/
fdapace/index.html), and the R package refund on functional regression (http://cran.r-project.
org/web/packages/refund/index.html).

This review is based on a subjective selection of topics in FDA that the authors have worked
on or find of particular interest. We do not attempt to provide an objective or comprehensive
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review of this fast-moving field and apologize in advance for any omissions of relevant work.
Interested readers can explore the various aspects of this field through several monographs (Bosq
2000, Ramsay & Silverman 2005, Ferraty & Vieu 2006, Wu & Zhang 2006, Ramsay et al. 2009,
Horváth & Kokoszka 2012, Cuevas 2014, Hsing & Eubank 2015) and review articles (Rice 2004;
Zhao et al. 2004; Müller 2005, 2008). Several special journal issues were devoted to FDA, including
a 2004 issue of Statistica Sinica (Issue 3), a 2007 issue in Computational Statistics and Data Analysis
(Issue 3), and a 2010 issue in the Journal of Multivariate Analysis (Issue 2).

2. MEAN AND COVARIANCE FUNCTIONS AND FUNCTIONAL
PRINCIPAL COMPONENT ANALYSIS

In this section, we focus on first-generation functional data that are realizations of a stochastic
process X (·) that is in L2 and defined on the interval I with mean function μ(t) = E(X (t)) and
covariance function �(s , t) = cov(X (s ), X (t)). The functional framework can also be extended
to L2 processes with multivariate arguments. The realization of the process for the ith subject
is Xi = Xi (·), and the sample consists of n independent subjects. For generality, we allow the
sampling schedules to vary across subjects, and we denote the sampling schedule for subject i as
ti1, . . . , tini and the corresponding observations as Xi = (Xi1, . . . , Xini ), where Xi j = Xi (ti j ). In
addition, we allow the measurement of Xi j to be contaminated by random noise ei j with E(ei j ) = 0
and var(ei j ) = σ 2

i j , so the actual observed value is Yi j = Xi j + ei j , where ei j are independent across
i and j and often termed measurement errors.

It is often assumed that the errors are homoscedastic with σ 2
i j = σ 2, but this is not strictly

necessary as long as σ 2
i j = var(e(ti j )) can be regarded as the discretization of a smooth variance

function σ 2(t). We observe that measurement errors are realized only at those time points ti j

where measurements are being taken. Hence these errors do not form a stochastic process e(t)
but rather should be treated as discretized data ei j . However, in order to estimate the variance
σ 2

i j of ei j , it is often convenient to assume that there is a latent smooth function σ (t) such that
σi j = σ 2(ti j ).

2.1. Estimation of Mean and Covariance Functions

When subjects are sampled at the same time schedule (i.e., ti j = tj and ni = m for all i ), the observed
data are m-dimensional multivariate data, so the mean and covariance can be estimated empirically
at the measurement times by the sample mean and sample covariance, μ̂(tj ) = 1

n

∑n
i=1 Yi j , and

�̂(tk, tl ) = 1
n

∑n
i=1(Yik − μ̂(tik))(Yil − μ̂(til )), for k �= l . Data that are missing completely at random

(for further details on missingness see Little & Rubin 2014) can be handled easily by adjusting the
available sample size at each time point tj for the mean estimate or by adjusting the sample sizes of
available pairs at (tk, tl ) for the covariance estimate. An estimate of the mean and covariance func-
tions on the entire interval I can then be obtained by smooth interpolation of the corresponding
sample estimates or by mildly smoothing over the grid points. Once we have a smoothed estimate
�̂ of the covariance function �, the variance of the measurement error at time tj can be estimated
as σ̂ 2(tj ) = 1

n

∑n
i=1(Yi j − μ̂(t j ))2 − �̂(t j , t j ) because var(Y (t)) = var(X (t)) + σ 2(t).

When the sampling schedule differs across subjects, the above sample estimates cannot be
obtained. However, one can borrow information from neighboring data and across all subjects
to estimate the mean function, provided the sampling design combining all subjects, that is,
{ti j : 1 ≤ i ≤ n, 1 ≤ j ≤ ni }, is a dense subset of the interval I . Then a nonparametric smoother,
such as a local polynomial estimate (Fan & Gijbels 1996), can be applied to the scatter plot
{(ti j , Yi j ) : i = 1, . . . , n, and j = 1, . . . , ni } to smooth Yi j over time; this will yield consistent
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Figure 2
Pooled CD4 count data (the number of CD4 T lymphocytes in a sample of blood) and estimated mean
function (black line) for 369 subjects.

estimates of μ(t) for all t. Figure 2 shows the scatter plot of the pooled CD4 counts for all 369
AIDS patients, together with the estimated mean function based on a local linear smoother with
a bandwidth of 0.3 years. The shape of the mean function reveals that CD4 counts were relatively
stable more than a year before seroconversion (which occurs at time 0), then started to decline
sharply around six months before conversion, with the decline ending around six months after
seroconversion, followed by another period of relative stability.

Likewise, the covariance can be estimated on I × I by a two-dimensional scatter plot smoother
{(tik, til ), uikl : i = 1, . . . , n; k, l = 1, . . . , ni , k �= l} to smooth uikl against (tik, til ), where uikl =
(Yik −μ̂(tik))(Yil −μ̂(til )) are the raw covariances. We note that the diagonal raw covariances where
k = l are removed from the 2D scatter plot prior to the smoothing step because these include
an additional term that is due to the variance of the measurement errors in the observed Yi j .
Indeed, once an estimate �̂ for � is obtained, the variance σ 2(t) of the measurement errors can be
obtained by smoothing (Yi j − μ̂(ti j ))2 − �̂(ti j ) against ti j across time. Figure 3 displays the scatter
plot of the raw covariances and the smoothed estimate of the covariance surface �(·, ·) using a
local linear bivariate smoother with a bandwidth of 1.4 years together with the smoothed estimate
of var(Y (t)). The estimated variance of σ 2(t) is the distance between the estimated var(Y (t)) and
the estimated covariance surface. Another estimate for σ 2 under the homoscedasticity assumption
is discussed by Yao et al. (2005a).

The above smoothing approach is based on a scatter plot smoother that assigns equal weights to
each observation; therefore, subjects with a larger number of repeated observations receive more
total weight and hence contribute more toward the estimates of the mean and covariance functions.
An alternative approach employed by Li & Hsing (2010) is to assign equal weights to each subject.
Both approaches are sensible, raising the questions of which one would be preferred for a particular
design and whether there is a unified way to deal with these two methods and their theory. These
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Figure 3
Raw covariances (dots) and fitted smooth covariance surface, obtained by omitting the data on the diagonal,
where the diagonal forms a ridge owing to the measurement errors in the data. The variance of the
measurement error σ 2(t) at time t is the vertical distance between the top of the diagonal ridge and the
smoothed covariance surface at time t.

issues were recently explored by Zhang & Wang (2016), who employ a general weight function
and provide a comprehensive analysis of the asymptotic properties on a unified platform for
three types of asymptotics: L2 and L∞ (uniform) convergence and asymptotic normality of the
general weighted estimates. Functional data sampling designs are further partitioned into three
categories: nondense (designs where one cannot attain the

√
n rate), dense (where one can attain

the
√

n rate but with a nonnegligible asymptotic bias), and ultradense (where one can attain the√
n rate without asymptotic bias). Sparse sampling scenarios where ni is uniformly bounded by a

finite constant are a special case of nondense data and lead to the slowest convergence rates. These
scenarios are also referred to as longitudinal designs. The differences in the convergence rates also
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have ramifications for the construction of simultaneous confidence bands. For ultradense or some
dense functional data, the weighting scheme that assigns equal weights to subjects is generally
more efficient than the scheme that assigns equal weight per observation, but the opposite holds
for many other sampling plans, including sparse functional data.

2.2. Hypothesis Testing and Simultaneous Confidence Bands for Mean
and Covariance Functions

Hypothesis testing for the comparison of mean functions μ is of obvious interest. Fan & Lin
(1998) propose a two-sample test and ANOVA (analysis of variance) test for the mean functions,
and Cuevas et al. (2004) and Zhang (2013) present further work. Other two-sample tests are
proposed for distributions of functional data (Hall & Van Keilegom 2007) and for covariance
functions (Panaretos et al. 2010, Boente et al. 2011).

Another inference problem that has been explored is the construction of simultaneous con-
fidence bands for dense (Degras 2008, 2011; Wang & Yang 2009; Cao et al. 2012) and sparse
(Ma et al. 2012) functional data. However, the problem has not been completely resolved for
functional data, owing to two main obstacles: the infinite dimensionality of the data and the non-
parametric nature of the target function. For the mean function μ, an interesting phase transition
phenomenon emerges: For ultradense data, the estimated mean process

√
n(μ̂(t) − μ(t)) converges

to a mean-zero Gaussian process, W (t), for t ∈ I, so standard continuous mapping leads to the
construction of a simultaneous confidence band based on the distribution of supt W (t). When the
functional data are dense but not ultradense, the process

√
n(μ̂(t) − μ(t)) can still converge to a

Gaussian process W (t) with a proper choice of smoothing parameter, but W will no longer be
centered at zero owing to the existence of asymptotic bias as discussed in Section 1.

Similar asymptotic regimes have been observed for the classical situation of estimating a re-
gression function, say m(t), based on independent scalar response data, where there is a trade-off
between bias and variance, so that optimally smoothed estimates of the regression function will
have an asymptotic bias. The conventional approach is to construct a pointwise confidence inter-
val, and this approach is based on the distribution of rn(m̂(t) − E(m̂(t))) , where m̂(t) is an estimate
of m(t) that converges at the optimal rate rn. This means that the asymptotic confidence interval
derived from it is targeting E(m̂(t)) rather than the true target m(t) and therefore is not really
viable for inference for m(t).

In summary, the construction of simultaneous confidence bands for functional data requires
different methods for ultradense, dense, and sparse functional data; in the latter case, one does
not have tightness, and the rescaling approach of Bickel & Rosenblatt (1973) may be applied. The
divide between the various sampling designs is perhaps not unexpected: ultradense functional data
essentially follow the paradigm of parametric inference, where the

√
n rate of convergence is at-

tained with no asymptotic bias. In contrast, dense functional data attain the parametric rate of
√

n
convergence, albeit with an asymptotic bias, which leads to challenges even in the construction of
pointwise confidence intervals. Unless the bias is estimated separately and removed from the lim-
iting distribution, and proper asymptotic theory is established—which usually requires regularity
conditions for which the estimators are not efficient—the resulting confidence intervals need to be
taken with a grain of salt. This issue is specific to the bias-variance trade-off that is inherited from
nonparametric smoothing. Sparse functional data follow a significantly different paradigm as they
allow no more than nonparametric convergence rates, which are slower than

√
n, and these rates

depend on the design of the measurement schedule and properties of the mean and covariance
functions as well as the smoother (Zhang & Wang 2016). This phenomenon—nonparametric
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versus parametric convergence rates as designs get more regular and denser—has been character-
ized as a phase transition (Hall et al. 2006, Cai & Yuan 2011).

2.3. Functional Principal Component Analysis

Principal component analysis (PCA) ( Jolliffe 2002) is a key dimension reduction tool for multi-
variate data that has been extended to functional data and termed functional principal component
analysis (FPCA). Although the basic ideas were conceived by Karhunen (1946), Loève (1946),
Grenander (1950), and Rao (1958), a more comprehensive framework for statistical inference
for FPCA was first developed by Kleffe (1973) and in a joint PhD thesis of Dauxois & Pousse
(1976) at the University of Toulouse (Dauxois et al. 1982). Since then, this approach has taken off
to become the most prevalent tool in FDA. This is partly because FPCA facilitates the conver-
sion of inherently infinite-dimensional functional data to a finite-dimensional vector of random
scores. Under mild assumptions, the underlying stochastic process can be expressed as a count-
able sequence of uncorrelated random variables, the FPCs or scores, which in many practical
applications are truncated to a finite vector. Then the tools of multivariate data analysis can be
readily applied to the resulting random vector of scores, thus accomplishing the goal of dimension
reduction.

Specifically, dimension reduction is achieved through an expansion of the underlying, but often
not fully observed, random trajectories Xi (t) in a functional basis that consists of the eigenfunctions
of the (auto)-covariance operator of the process X . With a slight abuse of notation, we define the
covariance operator as �(g) = ∫

I �(s , t)g(s )ds , for any function g ∈ L2, using the same notation
for the covariance operator and covariance function. Because of the integral form, the (linear)
covariance operator is a trace class, and hence compact, Hilbert-Schmidt operator (Conway 1994).
It has real-valued nonnegative eigenvalues λ j because it is symmetric and nonnegative definite.
Under mild assumptions, Mercer’s theorem implies that the spectral decomposition of � leads to
�(s , t) = ∑∞

k=1 λkφk(s )φk(t), where the convergence holds uniformly for s and t ∈ I , λk are the
eigenvalues in descending order, and φk are the corresponding orthogonal eigenfunctions.

Karhunen and Loève (Karhunen 1946, Loève 1946) independently discovered the FPCA
expansion

Xi (t) = μ(t) +
∞∑

k=1

Aikφk(t), (1)

where Aik = ∫
I (Xi (t) − μ(t))φk(t)dt are the FPCs of Xi , sometimes referred to as scores. The Aik

are independent across i for a sample of independent trajectories and are uncorrelated across k
with E(Aik) = 0 and var(Aik) = λk. The convergence of the sum in Equation 1 holds uniformly
in the sense that supt∈I E[Xi (t) − μ(t) − ∑K

k=1 Aikφk(t)]2 → 0 as K → ∞. The expansion in
Equation 1 facilitates dimension reduction as the first K terms for large enough K provide a good
approximation to the infinite sum and therefore for Xi , so that the information contained in Xi

is essentially contained in the K -dimensional vector Ai = (Ai1, . . . , Ai K ) and the approximated
processes

Xi K (t) = μ(t) +
K∑

k=1

Aikφk(t). (2)

Analogous dimension reduction can be achieved by expanding functional data into other func-
tion bases, such as spline, Fourier, or wavelet bases. What distinguishes FPCA is that among all
basis expansions that use K components for a fixed K , the FPC expansion explains most of the
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variation in X in the L2 sense. When choosing K in an estimation setting, there is a trade-off
between bias (which gets smaller as K increases, owing to the smaller approximation error) and
variance (which increases with K as more components must be estimated, adding random error).
So a model selection procedure is needed, where typically K = Kn is considered to be a function
of sample size n, and Kn must tend to infinity to obtain consistency of the representation. This
feature distinguishes the theory of FPCA from standard multivariate analysis theory.

The estimation of the eigencomponents (eigenfunctions and eigenvalues) in the FPCA frame-
work is straightforward once the mean and covariance of the functional data have been estimated.
To obtain the spectral decomposition of the covariance operator, which yields the eigencompo-
nents, one simply approximates the estimated autocovariance surface cov(X (s ), X (t)) on a grid of
time points, thus reducing the problem to the corresponding matrix spectral decomposition. The
convergence of the estimated eigencomponents is obtained by combining results on the conver-
gence of the covariance estimates that are achieved under regularity conditions with perturbation
theory (see Kato 1980, pp. 426–79).

For situations in which the covariance surface cannot be estimated at the
√

n rate, the conver-
gence of the estimated eigencomponents is typically influenced by the smoothing method that is
employed. Consider the sparse case, where the convergence rate of the covariance surface corre-
sponds to the optimal rate at which a smooth two-dimensional surface can be estimated. Intuition
suggests that the eigenfunction, which is a one-dimensional function, should be estimable at the
one-dimensional optimal rate for smoothing methods. An affirmative answer is provided by Hall
et al. (2006), who show that eigenfunction estimates attain the better (one-dimensional) rate of
convergence if one is undersmoothing the covariance surface estimate. This phenomenon resem-
bles a scenario encountered in semiparametric inference (e.g., for a partially linear model), where
a

√
n rate is attainable for the parametric component if one undersmooths the nonparametric

component before estimating the parametric component (Heckman 1986). This undersmoothing
can be avoided so that the same smoothing parameter can be employed for both the parametric
and nonparametric component if a profile approach (Speckman 1988) is employed to estimate the
parametric component. An interesting and still open question is how to construct such a profile
approach so that the eigenfunction is the direct target of the estimation procedure, bypassing the
estimation of the covariance function.

A second open question is the optimal choice of the number of components K needed for the
approximation (Equation 2) of the full Karhunen-Loève expansion (Equation 1), which gives the
best trade-off between bias and variance. There are several ad hoc procedures that are routinely
applied in multivariate PCA, such as the scree plot or the fraction of variance explained by the first
few PC components, which can be directly extended to the functional setting. Other approaches are
pseudoversions of the AIC (Akaike information criterion) and BIC (Bayesian information criterion)
(Yao et al. 2005a); in practice, the latter typically selects fewer components. Cross-validation with
one-curve-leave-out has also been investigated (Rice & Silverman 1991), but it tends to overfit
functional data by selecting too large a value for K in Equation 2. A third open question is the
optimal choice of the tuning parameters for the smoothing steps in the context of FDA.

FPCA for fully observed functional data was studied by Dauxois et al. (1982), Besse & Ramsay
(1986), Silverman (1996), Boente & Fraiman (2000), Bosq (2000), and Hall & Hosseini-Nasab
(2006), and it was explored for densely observed functional data by Castro et al. (1986), Rice &
Silverman (1991), Pezzulli & Silverman (1993) and Cardot (2000). For the much more difficult (but
commonly encountered) situation of sparse functional data, the FPCA approach was investigated
by Shi et al. (1996), Staniswalis & Lee (1998), James et al. (2000), Rice & Wu (2001), Yao et al.
(2005a), Yao & Lee (2006), and Paul & Peng (2009). The FPCA approach has also been extended to
incorporate covariates (Chiou et al. 2003, Cardot 2007, Chiou & Müller 2009) for vector covariates
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and dense functional data, for sparse functional data with vector or functional covariates ( Jiang &
Wang 2010, 2011), and also to the case of functions in reproducing kernel Hilbert spaces (Amini
& Wainwright 2012).

The aforementioned FPCA methods are not robust against outliers because PCA involves
second-order moments. Outliers for functional data have many different facets owing to the high
dimensionality of these data. They can appear as outlying measurements at a single or several time
points, or as an outlying shape of an entire function. Current approaches to deal with outliers and
contamination, and visual exploration of functional data more generally, include exploratory box
plots (Hyndman & Shang 2010, Sun & Genton 2011) and robust versions of FPCA (Crambes
et al. 2008, Gervini 2008, Bali et al. 2011, Kraus & Panaretos 2012, Boente & Salibián-Barrera
2014). Owing to the practical importance of this topic, more research on outlier detection and
robust FDA approaches is needed.

2.4. Applications of Functional Principal Component Analysis

The FPCA approach motivates the concept of modes of variation for functional data ( Jones &
Rice 1992), a most useful tool to visualize and describe the variation in the functional data that is
contributed by each eigenfunction. The kth mode of variation is the set of functions

μ(t) ± α
√

λkφk(t), t ∈ I, α ∈ [−A, A ]

that are viewed simultaneously over the range of α, usually for A = 2, substituting estimates
for the unknown quantities. Often the eigencomponents and associated modes of variation have
compelling and sometimes striking interpretations, such as for the evolution of functional traits
(Kirkpatrick & Heckman 1989) and in many other applications (Kneip & Utikal 2001, Ramsay
& Silverman 2002). In Figure 4 we provide the first four estimated eigenfunctions for the CD4
count data.

The first eigenfunction explains 84.41% of the total variation of the data and the second one
an additional 12.33% of the data. The remaining two eigenfunctions account for less than 4%
of the total variation and are less important. The first eigenfunction is nearly constant in time,
implying that the largest variation between subjects is in the subject-specific average magnitude
of the CD4 counts, so the random intercept captures the largest variation of the data. The sec-
ond eigenfunction shows a variation around a piecewise linear time trend with a break point near
2.5 years after seroconversion, reflecting that the next largest variation between subjects is a scale
difference between subjects along the direction of this piecewise linear function. FPCA also facil-
itates FPC regression by projecting functional predictors to their first few principal components,
then employing regression models with vector predictors. Because FPCA is an essential dimension
reduction tool, it is also useful for classification and clustering of functional data (see Section 4).

Last but not least, FPCA facilitates the construction of parametric models that will be more
parsimonious. For instance, if the first two principal components explain more than 90% of the
variation of the data, one can approximate the original functional data with only two terms in
the Karhunen-Loève expansion (Equation 1). This can be illustrated with the CD4 count data,
for which a parametric mixed-effects model with a piecewise linear time trend (constant before
−0.5 years and after 1 year of seroconversion, and a linear decline in between) for the fixed effects
and a random intercept may suffice to capture the major trend of the data. If more precision is
preferred, one could include a second random effect for the piecewise linear basis function with a
breakpoint at 2.5 years. These suggestions for specific shapes underscore the advantages to using
a nonparametric approach such as FDA prior to a model-based longitudinal data analysis for data
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Figure 4
First four eigenfunctions for the CD4 count data (the number of CD4 T lymphocytes in a sample of blood).

exploration. The exploratory analysis may then suggest viable parametric models that are more
parsimonious than FPCA.

3. CORRELATION AND REGRESSION: INVERSE PROBLEMS
AND DIMENSION REDUCTION FOR FUNCTIONAL DATA

As mentioned in Section 1, a major challenge in FDA is the inverse problem, which stems
from the compactness of the covariance operator � that was defined in the previous section,
�(g) = ∫

I �(s , t)g(s )ds , for any function g ∈ L2. Because a compact operator does not have a
bounded inverse, regularization is routinely adopted for any procedure that involves the inverse
of a compact operator. Examples where inverse operators are central include regression and cor-
relation measures for functional data, as �−1 appears in these methods. This inverse problem is,
for example, addressed for functional canonical correlation by He et al. (2000, 2003), who discuss
a solution under certain constraints on the decay rate of the eigenvalues and the cross-covariance
operator.

3.1. Functional Correlation

Different functional correlation measures have been discussed in the literature. Functional canon-
ical correlation analysis (FCCA) serves here to demonstrate some of the problems that one en-
counters in FDA as a consequence of the noninvertibility of compact operators.

3.1.1. Functional canonical correlation analysis. Let (X , Y ) be a pair of random functions
in L2(IX ) and L2(IY ), respectively. The first functional canonical correlation coefficient ρ1 and
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its associated weight functions (u1, v1) are defined as follows, using the notation 〈 f1, f2〉 =∫
I f1(t) f2(t)dt for any f1, f2 ∈ L2(I ):

ρ1 = sup
u∈L2(IX ),v∈L2(IY )

cov(〈u, X〉, 〈v, Y 〉) = cov(〈u1, X〉, 〈v1, Y 〉), (3)

subject to var(〈u, X〉) = 1 and var(〈v, Y 〉) = 1. Analogously for the kth, k > 1, canonical correla-
tion ρk and its associated weight functions (uk, vk),

ρk = sup
u∈L2(IX ),v∈L2(IY )

cov(〈u, X〉, 〈v, Y 〉) = cov(〈uk, X〉, 〈vk, Y 〉), (4)

subject to var(〈u, X〉) = 1, var(〈v, Y 〉) = 1, and subject to the pairs (Uk, Vk) = (〈uk, X〉, 〈vk, Y 〉)
being uncorrelated to all previous pairs (U j , V j ) = (〈u j , X〉, 〈v j , Y 〉), for j = 1, . . . , k − 1.

Thus, FCCA aims to find projections in directions uk of X and vk of Y such that their linear
combinations (inner products) Uk and Vk are maximally correlated, resulting in the series of func-
tional canonical components (ρk, uk, vk, Uk, Vk), k ≥ 1, directly extending canonical correlations
for multivariate data. Because of the flexibility in the direction u1, which is infinite dimensional,
overfitting may occur if the number of sample curves is not large enough. Formally, this is because
FCCA is an ill-posed problem. Introducing the cross-covariance operator �XY : L2(IY ) → L2(IX),

�XY v(t) =
∫

cov (X (t), Y (s ))v(s )ds , (5)

for v ∈ L2(IY ) and analogous covariance operators for X , �XX , and for Y , �YY, and using
cov(〈u, X〉, 〈v, Y 〉) = 〈u, �XY Y 〉, the kth canonical component in Equation 4 can be expressed
as

ρk = sup
u∈L2(IX ),〈u,�XX u〉=1,v∈L2(IY ),〈v,�YY v〉=1

〈u, �XY v〉 = 〈uk, �XY vk〉, (6)

subject to the pairs (U k, V k) = (〈uk, X〉, 〈vk, Y 〉) being uncorrelated to all previous pairs (U j , V j ) =
(〈u j , X〉, 〈v j , Y 〉), for j = 1, . . . , k − 1.

Then Equation 6 is equivalent to an eigenanalysis of the operator R = �
−1/2
XX �XY �

−1/2
YY . Ex-

istence of the canonical components is guaranteed if the operator R is compact. However, the
inverse of a covariance operator and the inverses of �

1/2
XX or �

1/2
YY are not bounded because a covari-

ance operator is compact under the assumption that the covariance function is square integrable.
A possible approach (He et al. 2003) is to restrict the domain of the inverse to the range AX of �

1/2
XX

so that the inverse of �
1/2
XX can be defined on AX and is a bijective mapping AX to BX under some

conditions (e.g., conditions 4.1 and 4.5 in He et al. 2003) on the decay rates of the eigenvalues of
�XX and �YY and the cross-covariance. Under those assumptions the canonical correlations and
weight functions are well defined and exist.

An alternative way to get around the above ill-posed problem is to restrict the maximization
in Equations 3 and 4 to discrete l2 spaces that are restricted to a reproducing kernel Hilbert
space instead of working within the entire L2 space (Eubank & Hsing 2008). In addition to
posing theoretical challenges to overcome the inverse problem, FCCA requires regularization in
practical implementations, as only finitely many measurements are available for each subject. If
left unregularized, the first canonical correlation will always be one. Unfortunately, the canonical
correlations are highly sensitive to the regularization parameter, and the first canonical correlation
often tends to be too large as there is too much freedom to choose the weights u and v. This makes
it difficult to interpret the meaning of the first canonical correlation. The overfitting problem can
also be viewed as a consequence of the high dimensionality of the weight function and is illustrated
by Leurgans et al. (1993), who were the first to explore penalized FCCA. Despite the challenge with
overfitting, FCCA can be employed to implement functional regression by using the canonical
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weight functions uk and vk as bases to expand the regression coefficient function (He et al. 2000,
2010).

Another difficulty with the versions of FCCA proposed so far is that they require densely
recorded functional data so the inner products in Equation 4 can be evaluated with high accuracy.
Although it is possible to impute sparsely observed functional data using the Karhunen-Loève
expansion (Equation 1) before applying any of the canonical correlations, these imputations are
not consistent, leading to a biased correlation estimation. This bias may be small in practice, but
finding an effective FCCA for sparsely observed functional data remains of interest (see Shin &
Lee 2015).

3.1.2. Other functional correlation measures. The regularization problems for FCCA have
motivated the study of alternative notions of functional correlation. These include singular cor-
relation and singular expansions of paired processes (X , Y ). The first correlation coefficient in
FCCA can be viewed as ρFCCA = sup‖u‖=‖v‖=1 corr(〈u, X〉, 〈v, Y 〉). Observing that it is the correla-
tion that induces the inverse problem, one could simply replace the correlation by covariance—in
other words, obtain projection functions u1, v1 that attain sup‖u‖=‖v‖=1 cov(〈u, X〉, 〈v, Y 〉). Func-
tions u1, v1 turn out to be the first pair of the singular basis of the covariance operator of (X , Y )
(Yang et al. 2011). This motivates the definition of a functional correlation as the first singular
correlation,

ρSCA = cov(〈u1, X〉, 〈v1, Y 〉)√
var(〈u1, X〉) var(〈v1, Y 〉) . (7)

Another natural approach that also avoids the inverse problem is to define functional correlation
as the cosine of the angle between functions in L2. For this notion to be a meaningful measure of
alignment of shapes, one first needs to subtract the integrals of the functions (i.e., their projections
on the constant function 1), which corresponds to a static part of the functions. Again considering
pairs of processes (X , Y ) = (X1, X2) and denoting the projections on the constant function 1 by
M k = 〈Xk, 1〉, k = 1, 2, the remainder Xk − M k, k = 1, 2, is the dynamic part for each random
function. The cosine of the L2-angle between the dynamic parts then provides a correlation
measure of functional shapes. These ideas can be formalized as follows (Dubin & Müller 2005).
Defining standardized curves either by X ∗

k (t) = (Xk(t)−M k)/(
∫

(Xk(t)−M k)2dt)1/2, or alternatively
by also removing μk = EXk, X ∗

k (t) = (Xk(t) − M k − μk(t))/(
∫

(Xk(t) − M k − μk(t))2dt)1/2, the
cosine of the angle between the standardized functions is ρk,l = E〈X ∗

k , X ∗
l 〉. The resulting dynamic

correlation and other notions of functional correlation can also be extended to obtain a precision
matrix for functional data. This approach has been developed by Opgen-Rhein & Strimmer (2006)
for the construction of a graphical model for gene time-course data.

3.2. Functional Regression

Functional regression is an active area of research, and the approach depends on whether the
responses or covariates are functional or vector data and include combinations of (a) functional re-
sponses with functional covariates, (b) vector responses with functional covariates, and (c) functional
responses with vector covariates. An approach for (a) was introduced by Ramsay & Dalzell (1991)
who developed the FLM (Equation 15) for this case—the basic idea is presented by Grenander
(1950), who discusses the regression of one Gaussian process on another. This model can be viewed
as an extension of the traditional multivariate linear model that associates vector responses with
vector covariates. The topic that has been investigated most extensively in the literature is scenario
(b) for the case where the responses are scalars and the covariates are functions. Reviews of FLMs
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are presented by Müller (2005, 2011) and Morris (2015). Nonlinear functional regression models
are discussed in Section 5. In the following we give a brief review of the FLM and its variants.

3.2.1. Functional regression models with scalar response. The traditional linear model with
scalar response Y ∈ R and vector covariate X ∈ Rp can be expressed as

Y = β0 + 〈X, β〉 + e, (8)

using the inner product in Euclidean vector space, where β0 and β contain the regression co-
efficients and e is a zero-mean finite variance random error (noise). Replacing the vector X in
Equation 8 and the coefficient vector β by a centered functional covariate X c = X (t) − μ(t) and
coefficient function β = β(t), for t ∈ I , one arrives at the FLM

Y = β0 + 〈X c , β〉 + e = β0 +
∫

I
X c (t)β(t)dt + e, (9)

which has been studied extensively (Cardot et al. 1999, 2003; Hall & Horowitz 2007; Hilgert et al.
2013).

An ad hoc approach is to expand the covariate X and the coefficient function β in the same
functional basis, such as the B-spline basis or eigenbasis in Equation 1. Specifically, consider an
orthonormal basis ϕk, k ≥ 1, of the function space. Expanding both X and β in this basis leads to
X (t) = ∑∞

k=1 Akϕk(t), β(t) = ∑∞
i=1 βkϕk(t), and the model in Equation 9 is seen to be equivalent

to the scalar linear model (Equation 8) of the form

Y = β0 +
∞∑

k=1

βk Ak + e, (10)

where in implementations the sum on the right side is replaced by a finite sum that is truncated at
the first K terms in analogy to Equation 2.

To obtain consistency for the estimation of the parameter function β(t), one selects a sequence
K = Kn of eigenfunctions in Equation 10 with Kn → ∞. For the theoretical analysis, the method
of sieves (Grenander 1981) can be applied, where the K th sieve space is defined to be the linear
subspace spanned by the first K = Kn components. In addition to the basis-expansion approach,
a penalized approach using either P-splines or smoothing splines has also been studied (Cardot
et al. 2003). For the special case where the basis functions ϕk are selected as the eigenfunctions
φk of X , the basis representation approach in Equation 8 is equivalent to conducting a principal
component regression, albeit with an increasing number of principal components. In this case,
however, the basis functions are estimated rather than prespecified, and this adds an additional
twist to the theoretical analysis.

The simple FLM in Equation 9 can be extended to multiple functional covariates X1, . . . , Xp ,
also including additional vector covariates Z = (Z1, . . . , Zq ), where Z1 = 1, by

Y = 〈Z, θ〉 +
p∑

j=1

∫
I j

X c
j (t)β j (t)dt + e, (11)

where I j is the interval where X j is defined. Although the model in Equation 11 is a straightfor-
ward extension of Equation 9, its inference is different owing to the presence of the parametric
component θ . A combined least squares method to estimate θ and β j simultaneously in a one-step
or profile approach (Hu et al. 2004), where one estimates θ by profiling out the nonparametric
components β j , is generally preferred over an alternative back-fitting method. Once the parameter
θ has been estimated, any approach that is suitable and consistent for fitting the FLM (Equation 9)
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can easily be extended to estimate the nonparametric components βk by applying it to the residuals
Y − 〈θ̂ , Z〉.

Extending the linear setting with a single index
∫

I X c (t)β(t)dt to summarize each functional
covariate, a nonlinear link function g can be added in Equation 9 to create a functional generalized
linear model (either within the exponential family or a quasi-likelihood framework with a suitable
variance function)

Y = g
(

β0 +
∫

I
X c (t)β(t)dt

)
+ e . (12)

This generalized FLM has been considered when the link function g is known ( James 2002, Cardot
et al. 2003, Cardot & Sarda 2005, Wang et al. 2010, Dou et al. 2012) and when it is unknown
(Müller & Stadtmüller 2005, D. Chen et al. 2011). When g is unknown and the variance function
plays no role, this is the special case of a single-index model that has further been extended
to multiple indices, the number of which is possibly unknown. Such multiple-functional-index
models typically forgo the additive error structure imposed in Equations 9–12,

Y = g
(∫

I
X c (t)β1(t)dt, . . . ,

∫
I

X c (t)βp (t)dt, e
)

, (13)

where g is an unknown multivariate function on Rp+1. This line of research follows the paradigm
of sufficient dimension reduction approaches, which was first proposed for vector covariates as
an offshoot of sliced inverse regression (Duan & Li 1991, Li 1991), and has been extended to
functional data by Ferré & Yao (2003, 2005) and Cook et al. (2010) and to longitudinal data by
Jiang et al. (2014).

3.2.2. Functional regression models with functional response. For a function Y on IY and a
single functional covariate X (t), s ∈ IX , two major models have been considered,

Y (s ) = α0(s ) + α(s )X (s ) + e(s ), (14)

and

Y (s ) = β0(s ) +
∫

IX

β(s , t)X c (t)dt + e(s ), (15)

where α0(s ) and β0(s ) are nonrandom functions that play the role of functional intercepts, and α(s )
and β(s , t) are nonrandom coefficient functions, the functional slopes.

The model in Equation 14 implicitly assumes that IX = IY and is most often referred to as
a varying-coefficient model. Given s , Y (s ) and X (s ) follow the traditional linear model, but the
covariate effects may change with time s . This model assumes that the value of Y at time s depends
only on the current value of X (s ) and not the history {X (t) : t ≤ s } or future values, hence it
is a concurrent regression model. A simple and effective approach to estimate α is to first fit the
model (Equation 14) locally in a neighborhood of s using ordinary least squares to obtain an initial
estimate α̃(s ), and then to smooth these initial estimates α̃(s ) across s to get the final estimate α̂

(Fan & Zhang 1999). In addition to such a two-step procedure, one-step smoothing methods have
also been studied (Hoover et al. 1998, Wu & Chiang 2000, Huang et al. 2002, Eggermont et al.
2010), as well as hypothesis testing and confidence bands (Wu et al. 1998, Huang et al. 2004),
which are reviewed by Fan & Zhang (2008). More complex varying coefficient models include
the nested model of Brumback & Rice (1998), the covariate adjusted model of Şentürk & Müller
(2005), and the multivariate varying-coefficient model of Zhu et al. (2014).

The model in Equation 15 is generally referred to as an FLM, and it differs in crucial aspects
from the varying coefficient model (Equation 14): At any given time s , the value of Y (s ) depends
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on the entire trajectory of X . It is a direct extension of traditional linear models with multivariate
response and vector covariates by changing the inner product from the Euclidean vector space to
L2. This model also is a direct extension of the model in Equation 9 when the scalar Y is replaced
by Y (s ) and the coefficient function β varies with s , leading to a bivariate coefficient surface. It
was first studied by Ramsay & Dalzell (1991), who proposed a penalized least squares method to
estimate the regression coefficient surface β(s , t). When IX = IY , it is often reasonable to assume
that only the history of X affects Y , that is, β(s , t) = 0 for s < t. This has been referred to as
the historical functional linear model (Malfait & Ramsay 2003) because only the history of the
covariate is used to model the response process. This model deserves more attention.

When X ∈ Rp and Y ∈ Rq are random vectors, the normal equation of the least squares
regression of Y on X is cov(X , Y ) = cov(X , X)β, where β is a p × q matrix. Here a solution
can be easily obtained if cov(X , X) is of full rank so its inverse exists. An extension of the normal
equation to functional X and Y is straightforward by replacing covariance matrices by their
corresponding covariance operators. However, an ill-posed problem emerges for the functional
normal equations. Specifically, if for paired processes (X , Y ) the cross-covariance function is
rXY (s , t) = cov(X (s ), Y (t)) and rXX (s , t) = cov(X (s ), X (t)) is the autocovariance function of X ,
we define the linear operator, RXX : L2 × L2 → L2 × L2 by (RXX β)(s , t) = ∫

rXX (s , w)β(w, t)dw.

Then a functional normal equation takes the form (He et al. 2000)

rXY = RXX β, for β ∈ L2(IX × IX).

Because RXX is a compact operator in L2, its inverse is not bounded, leading to an ill-posed problem.
Regularization is thus needed in analogy to the situation for FCCA described in Section 3.1
(He et al. 2003). The FLM (Equation 9) is similarly ill-posed, but the varying coefficient model
(Equation 14) is not, because the normal equation for the varying-coefficient model can be solved
locally at each time point and does not involve inverting an operator.

Owing to the ill-posed nature of the FLM, the asymptotic behavior of the regression estimators
varies in the three design settings. For instance, a

√
n rate is attainable under the varying-coefficient

model (Equation 14) for completely observed functional data or dense functional data possibly
contaminated with measurement errors, but not for the other two FLMs (Equations 9 and 15)
unless the functional data can be represented by a finite number of basis functions. The conver-
gence rate for Equation 9 depends on how fast the eigenvalues decay to zero and on regularity
assumptions for β (Cai & Hall 2006, Hall & Horowitz 2007), even when functional data are ob-
served continuously without error. An interesting phenomenon is that prediction for the model
in Equation 9 follows a different paradigm in which

√
n convergence is attainable if the predictor

X is sufficiently smooth and the eigenvalues of predictor processes are well behaved (Cai & Hall
2006). Estimation for β and asymptotic theory for the model in Equation 15 were explored by
Yao et al. (2005b) and by He et al. (2010) for sparse functional data.

As with scalar responses, both the varying coefficient model (Equation 14) and FLM (Equa-
tion 15) can accommodate vector covariates and multiple functional covariates. Because each
component of the vector covariate can be treated as a functional covariate with a constant value,
we only discuss the extension to multiple functional covariates, X1, . . . , Xp , noting that interaction
terms can be added as needed. The only change we need to make on the models is to replace the
term α(s )X (s ) in Equation 14 by

∑p
j=1 α j (s )X j (s ) and the term

∫
IX

β(s , t)X c (t)dt in Equation 15
by

∑p
j=1

∫
IX j

β j (s , t)X j (t)dt, where IX j is the domain of X j . If there are many predictors, a variable

selection problem may be encountered, and when using basis expansions it is natural to employ
a group lasso or similar constrained multiple variable selection method under sparsity or other
suitable assumptions.
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Generalized versions can be developed by adding a prespecified link function g in models
(Equations 14 and 15). For the case of the varying coefficient model and sparse functional data, this
has been investigated by Şentürk & Müller (2008) for the generalized varying coefficient model
and for the model in Equation 15 and dense functional data for a finite number of expansion
coefficients for each function by James & Silverman (2005). Jiang & Wang (2011) consider a
setting where the link function may vary with time but the β in the index does not vary with time.
The proposed dimension reduction approach in this paper expands the minimum average variance
estimation method by Xia et al. (2002) to functional data.

3.2.3. Random effects models. In addition to targeting fixed effects regression, the nonpara-
metric modeling of random effects is also of interest. Here the random effects are contained in
the stochastic part e(t) of Equations 14 and 15. One approach is to extend the FPCA approach of
Section 2 to incorporate covariates (Cardot & Sarda 2006, Jiang et al. 2009, Jiang & Wang 2010).
These approaches aim to incorporate low-dimensional projections of covariates to alleviate the
curse of dimensionality for nonparametric procedures. One scenario where it is easy to implement
covariate adjusted FPCA is the case where one has functional responses and vector covariates.
One could conduct a pooled FPCA combining all data as a first step and then use the FPCA scores
obtained from the first stage to model covariate effects through a single-index model at each
FPCA component (Chiou et al. 2003). At this time, such approaches require dense functional data
because, for sparse data, individual FPC scores cannot be estimated consistently.

4. CLUSTERING AND CLASSIFICATION OF FUNCTIONAL DATA

Clustering and classification are useful tools for traditional multivariate data analysis and are
equally important yet more challenging in FDA. As a motivating example for illustrating clusters
of vehicle speed patterns, we take daily vehicle speed trajectories at a fixed location as realizations
of random functions. The data were recorded by a dual-loop detector station located near Shea-
Shan tunnel on National Highway 5 in Taiwan for 76 days during July–September 2009. The
vehicle speed measures (in units of km/h) were averaged over 5-min intervals. Figure 5 displays
the patterns of vehicle speed for two clusters obtained by the k-centers subspace projection method
to be described below. As indicated by Figure 6, Cluster 1 characterizes holidays and Cluster 2
characterizes nonholidays, reflecting the traffic patterns at the location.

In the terminology of machine learning, functional data clustering is an unsupervised learning
process, whereas functional data classification is a supervised learning procedure. Cluster analysis
aims to group a set of data such that data objects within clusters are more similar than those
across clusters with respect to a metric. In contrast, classification assigns a new data object to a
predetermined group by a discriminant function or classifier. Functional classification typically
involves training data containing a functional predictor with an associated multiclass label for
each data object. The discrimination procedure of functional classification is closely related to
functional cluster analysis, even though the goals are different. When the structures or centers of
clusters can be established in functional data clustering, the criteria used for identifying clusters
can also be used for classification. Methodology for clustering and classification of functional data
has advanced rapidly during the past decades, owing to rising demand for such methods in data
applications. Given the vast literature on functional clustering and classification, we focus in the
following on only a few typical methods.
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Figure 5
Observations superimposed on the estimated mean functions of daily vehicle speed recorded by a dual-loop vehicle detector station for
(a) holidays and (b) nonholidays. The different colors in panels a and b correspond to different days of the daily traffic flow trajectories.
The thick gray curves are the estimated mean functions for Clusters 1 and 2. The cluster mean functions are also shown in panel c for
comparison.

4.1. Clustering of Functional Data

For vector-valued multivariate data, hierarchical clustering and the k-means partitioning methods
are two classical and popular approaches. Hierarchical clustering is an algorithmic approach,
using either agglomerative or divisive strategies, that requires a dissimilarity measure between
sets of observations, which informs which clusters should be combined or when a cluster should
be split. In the k-means clustering method, the basic idea hinges on cluster centers, that is, the
means for the clusters. The cluster centers are established through algorithms aiming to partition
the observations into k clusters such that the within-cluster sum of squared distances, centering
around the means, is minimized. Classical clustering concepts for vector-valued multivariate data
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Figure 6
Histograms of cluster labels grouped by (a) day of the week and (b) holiday or nonholiday, respectively. Red shows nonholidays, and
blue shows holidays. Of the 76 days, 20 belong to Cluster 1 and 56 to Cluster 2.
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can typically be extended to functional data, where various additional considerations arise, such as
discrete approximations of distance measures, and dimension reduction of the infinite-dimensional
functional data objects. In particular, k-means type clustering algorithms have been widely applied
to functional data, and are more popular than hierarchical clustering algorithms. It is natural to
view cluster mean functions as the cluster centers in functional clustering.

Specifically, for a sample of functional data {Xi (t); i = 1, . . . , n}, the k-means functional clus-
tering aims to find a set of cluster centers {μc ; c = 1, . . . , L}, assuming there are L clusters, by
minimizing the sum of the squared distances between {Xi } and the cluster centers that are associ-
ated with their cluster labels {Ci ; i =1, . . . , n}, for a suitable functional distance d . That is, the n
observations {Xi } are partitioned into L groups such that

1
n

n∑
i=1

d 2(Xi , μ
c
n), (16)

is minimized over all possible sets of functions {μc
n; c = 1, . . . , L}, where μc

n(t) =∑n
i=1 Xi (t)1{Ci =c }/N c , and N c = ∑n

i=1 1{Ci =c }. The distance d is often chosen as the L2 norm.
Because functional data are discretely recorded, frequently contaminated with measurement er-
rors, and can be sparsely or irregularly sampled, a common approach to minimize Equation 16 is
to project the infinite-dimensional functional data onto a low-dimensional space of a set of basis
functions, similarly to functional correlation and regression.

A vast amount of literature on functional data clustering has been produced during the past
decade, including methodological development and a broad range of applications. Some selected
approaches discussed below include k-means type clustering in Section 4.1.1, subspace pro-
jected clustering methods in Section 4.1.2, and model-based functional clustering approaches in
Section 4.1.3.

4.1.1. Mean functions as cluster centers. The traditional k-means clustering for vector-valued
multivariate data has been extended to functional data using mean functions as cluster centers,
and one can distinguish two typical approaches as follows.

4.1.1.1. Functional clustering via functional basis expansion. As described in Section 2, given a
set of prespecified basis functions {ϕ1, ϕ2, . . .} of the function space, the first K projections {Bik}
of the observed trajectories onto the space spanned by the set of basis functions can be used to
represent the functional data, where Bik = 〈Xc

i , ϕk〉, k = 1, . . . , K . The distributional patterns
of {Bik} then reflect the clusters in function space. Therefore, a typical functional clustering
approach via functional basis expansion is to represent the functional data by the set of coefficients
in the basis expansion, which requires a judicious choice of the basis functions, and then to apply
available clustering algorithms for multivariate data, such as the k-means algorithm, to partition
the estimated sets of coefficients. When clustering the fitted sets of coefficients {Bik} with the
k-means algorithm, one obtains cluster centers {B̄c

1, . . . , B̄c
K } on the projected space, and thus the

set of cluster centers in the function space {μ̂c ; c =1, . . . , L}, where μ̂c (t)=∑K
k=1 B̄c

kϕk(t).
Such two-stage clustering has been adopted by Abraham et al. (2003) using B-spline basis

functions and Serban & Wasserman (2005) using Fourier basis functions coupled with the k-
means algorithm, as well as by Garcia-Escudero & Gordaliza (2005) using B-splines with a robust
trimmed k-means method. Abraham et al. (2003) derived the strong consistency property of this
clustering method, which has been implemented with various basis functions such as P-splines
(Coffey et al. 2014), a Gaussian orthonormalized basis (Kayano et al. 2010), and the wavelet basis
(Giacofci et al. 2013).
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4.1.1.2. Functional clustering via functional principal component analysis. In contrast to the
functional basis expansion approach that requires a prespecified set of basis functions, the fi-
nite approximation FPCA approach using the FPCs as described in Section 2 employs data-
adaptive basis functions that are determined by the covariance function of the functional data.
Then the distributions of the sets of FPC scores {Aik} (Equation 2) indicate different cluster pat-
terns, whereas the overall mean function μ(t) does not affect clustering, and the scores {Aik} play
a similar role as do the basis coefficients {Bik} for clustering. Peng & Müller (2008) use a k-means
algorithm on the FPC scores, employing a special distance adapted to clustering sparse functional
data, and Chiou & Li (2007) used a k-means algorithm on the FPC scores as an initial clustering
step for the subspace projected k-centers functional clustering algorithm. When the mean func-
tions, as the cluster centers, are sufficient to define the clusters, this step is sufficient. However,
when covariance structures also play a role to distinguish clusters, taking mean functions as cluster
centers is not adequate, as will be discussed in the next subsection.

4.1.2. Subspaces as cluster centers. Because functional data are realizations of random func-
tions, it is natural to use differences in the stochastic structure of random functions for clustering.
This idea is particularly sensible in functional data clustering, utilizing the Karhunen-Loève rep-
resentation in Equation 1. More specifically, the truncated representation (Equation 2) of random
functions in addition to the mean includes the sum of a series of linear combinations of the eigen-
functions of the covariance operator with the FPC scores as the weights. The subspace spanned by
the components of the expansion, the mean function and the set of the eigenfunctions, can be used
to characterize clusters. Therefore, clusters of the data set are identified via subspace projection
such that cluster centers hinge on the stochastic structure of the random functions, rather than
the mean functions only.

The FPC subspace-projected k-centers functional clustering approach was considered by
Chiou & Li (2007), using subspaces as cluster centers. Let C be the cluster membership variable,
and the FPC subspace S c = {μc , φc

1, . . . , φ
c
Kc

}, c = 1, . . . , L, assuming that there are L clusters.
The projected function of Xi onto the FPC subspace S c can be written as

X̃ c
i (t)=μc (t) +

Kc∑
k=1

Ac
ikφ

c
k(t). (17)

One aims to find the set of cluster centers {S c ; c =1, . . . , L}, such that the best cluster membership
of Xi , c ∗(Xi ), is determined by minimizing the discrepancy between the projected function X̃ c

i

and the observation Xi ,

c ∗(Xi )=arg min
c ∈{1,...,L}

n∑
i=1

d 2(Xi , X̃ c
i ). (18)

In contrast, k-means clustering aims to find the set of cluster sample means as the cluster
centers, instead of the subspaces spanned by {S c ; c = 1, . . . , L}. The initial step of the subspace-
projected clustering procedure uses only μc , which reduces to the k-means functional clustering.
In subsequent iteration steps, the mean function and the set of eigenfunctions for each cluster is
updated and used to identify the set of cluster subspaces {S c }, until iterations converge. This func-
tional clustering approach simultaneously identifies the structural components of the stochastic
representation for each cluster. The idea of the k-centers function clustering via subspace pro-
jection was further developed to clustering functional data with similar shapes based on a shape
function model with random scaling effects (Chiou & Li 2008).
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More generally, in probabilistic clustering, the cluster membership of Xi may be determined
by maximizing the conditional cluster membership probability given Xi , PC |X (c | Xi ), such that

c ∗(Xi ) = arg max
c ∈{1,...,L}

PC |X (c | Xi ). (19)

This criterion requires modeling of the conditional probability PC |X (· | ·). It can be achieved by a
generative approach that requires a joint probability model or, alternatively, through a discrimi-
native approach using, for example, a multiclass logit model (Chiou 2012).

For the k-means type or the k-centers functional clustering algorithms, the number of clusters
is prespecified. The number of clusters for subspace projected functional clustering can be deter-
mined by finding the maximum number of clusters while retaining significant differences between
pairs of cluster subspaces. Li & Chiou (2011) develop the forward functional testing procedure to
identify the total number of clusters under the framework of subspace projected functional data
clustering.

4.1.3. Functional clustering with mixture models. Model-based clustering (Banfield & Raftery
1993) based on mixture models is widely used in clustering vector-valued multivariate data and
has been extended to functional data clustering. In this approach, the mixture model determines
the cluster centers. Similarly to the k-means type of functional data clustering, typical mixture
model-based approaches to functional data clustering project the infinite-dimensional functional
data onto low-dimensional subspaces in a first step. An example is the work of James & Sugar
(2003), who apply functional clustering models based on Gaussian mixture distributions to the
natural cubic spline basis coefficients, with emphasis on clustering sparsely sampled functional
data. Similarly, Jacques & Preda (2013, 2014) apply the idea of Gaussian mixture modeling to
FPCA scores. All these methods are based on truncated expansions, as in Equation 2.

Random effects modeling also provides a model-based clustering approach, using mixed-effects
models with B-splines or P-splines, for example, to cluster time-course gene expression data
(Coffey et al. 2014). For clustering longitudinal data, a linear mixed model for clustering using a
penalized normal mixture as random effects distribution has been studied (Heinzl & Tutz 2014).
Bayesian hierarchical clustering also plays an important role in the development of model-based
functional clustering, typically assuming Gaussian mixture distributions on the sets of basis coef-
ficients fitted to individual trajectories. Dirichlet processes are frequently used as priors for the
mixture distributions and also to deal with the uncertainty in the cluster numbers (Petrone et al.
2009, Rodriguez et al. 2009, Angelini et al. 2012, Heinzl & Tutz 2013).

4.2. Classification of Functional Data

Whereas functional clustering aims to find clusters by minimizing an objective function, such as
Equations 16 and 18, or more generally, by maximizing the conditional probability as in Equa-
tion 19, functional classification assigns a group membership to a new data object with a dis-
criminant function or a classifier. Popular approaches for functional data classification are based
on functional regression models that feature class labels as responses and the observed functional
data and other covariates as predictors. This leads to regression-based functional data classification
methods—for example, functional generalized linear regression models and functional multiclass
logit models. Similarly to functional data clustering, most functional data classification methods
apply a dimension reduction technique using a truncated expansion in a prespecified function basis
or in the data-adaptive eigenbasis.
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4.2.1. Functional regression for classification. For regression-based functional classification
models, functional generalized linear models ( James 2002, Müller 2005, Müller & Stadtmüller
2005) or, more specifically, functional binary regression, such as functional logistic regression,
are popular approaches. For a random sample {(Zi , Xi ); i = 1, . . . , n}, where Zi represents a class
label, Zi ∈ {1, . . . , L} for L classes, associated with functional observations Xi , a classification
model for an observation X0 based on functional logistic regression is

log
Pr(Z = k | X0)
Pr(Zi = L | X0)

= γ0k +
∫
T

X0(t)γ1k(t)dt, k = 1, . . . , L − 1, (20)

where γ0k is an intercept term, γ1k(t) is the coefficient function of the predictor X0(t), and Pr(Zi =
L | Xi ) = 1 − ∑L

k=1 Pr(Zi = k | Xi ). This model is a functional extension of the baseline odds
model in multinomial regression (McCullagh & Nelder 1983).

Given a new observation X0, the model-based Bayes classification rule is to choose the class
label Z0 with the maximal posterior probability among {Pr(Z0 = k | X0); k = 1, . . . , L}. More
generally, Leng & Müller (2006) used the generalized functional linear regression model based on
the FPCA approach. When the logit link is used in the model, it becomes the functional logistic
regression model, several variants of which have been studied (Wang et al. 2007, Araki et al. 2009,
Zhu et al. 2010, Matsui et al. 2011, Rincón & Ruiz-Medina 2012).

4.2.2. Functional discriminant analysis for classification. In contrast to the regression-based
functional classification approach, another popular approach is based on the classical linear dis-
criminant analysis method. The basic idea is to classify a new data object according to the largest
conditional probability of the class label variable by applying the Bayes rule. Suppose that the kth
class has prior probability πk,

∑K
k=1 πk = 1. Given the density of the kth class, fk, the posterior

probability of a new data object X0 is given by the Bayes formula

Pr(Z = k | X0) = πk fk(X0)∑K
j=1 π j f j (X0)

. (21)

Developments along these lines include a functional linear discriminant analysis approach to
classify curves ( James & Hastie 2001), a functional data-analytic approach to signal discrimination
using the FPCA method for dimension reduction (Hall et al. 2001) and kernel functional classifi-
cation rules for nonparametric curve discrimination (Ferraty & Vieu 2003, Zhu et al. 2012, Chang
et al. 2014). Theoretical support and a notion of perfect classification standing for asymptotically
vanishing misclassification probabilities are introduced by Delaigle & Hall (2012) for linear and
Delaigle & Hall (2013) for quadratic functional classification.

5. NONLINEAR METHODS FOR FUNCTIONAL DATA

Because of the complexity of FDA, which blends stochastic process theory, functional analysis,
smoothing, and multivariate techniques, most research at this point has focused on linear functional
models, such as FPCs and functional linear regression, which are reviewed in Sections 2 and 3.
Perhaps owing to the success of these linear approaches, the development of nonlinear methods
has been slower, even though in many situations linear methods are not fully adequate. A case in
point is the presence of time variation or time warping that has been observed for many functional
data (Kneip & Gasser 1992, Gasser & Kneip 1995). This means that observation time itself is
randomly distorted, and time variation may constitute the main source of variation for some
functional data (Wang & Gasser 1997, Ramsay & Li 1998). Efficient models will then need to
reflect the nonlinear features of the data.
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5.1. Nonlinear Regression Models

The classical functional regression models are linear models, as described in Section 3.2 (see Equa-
tions 9, 11, and 15). Direct nonlinear extensions still contain a linear predictor, but they combine
it with a nonlinear link function, in a similar fashion to the generalized linear model (McCullagh
& Nelder 1983). These are the generalized FLM and single-index models (Equations 12 and 13).
From a theoretical perspective, the presence of a nonlinear link function complicates the anal-
ysis of these models by, for example, requiring one to decompose such models into a series of
p-dimensional approximation models with p → ∞ (Müller & Stadtmüller 2005).

There have been various developments toward fully nonparametric regression models for
functional data (Ferraty & Vieu 2006), which lie at the other end of the spectrum in comparison
to the functional linear model. These models extend the concept of nonparametric smoothing to
the case of predictor functions, where for scalar responses Y one considers functional predictors
X , aiming at E(Y | X ) = g(X ) for a smooth regression function g and, for example, one extends
kernel smoothing to this situation. The idea is to replace differences in the usual Euclidean
predictor space with a projected pseudo-distance in a functional predictor space, so that the scaled
kernel K ( x−y

h ) with a bandwidth h becomes K ( d (x,y)
h ), where d is a metric in the predictor space

(Ferraty & Vieu 2006). Owing to the infinite nature of the predictors, when choosing d as the
L2 distance, such models are subject to a serious form of the so-called curse of dimensionality,
as functional predictors are inherently infinite-dimensional. This curse is quantifiable in terms of
unfavorable small ball probabilities in function space (Delaigle & Hall 2010). What this means
is that an appropriate choice of the metric d that avoids the curse is essential, and whether such a
choice is possible for a given functional data set and how to implement it remain open problems.
In some cases, when data are clustered in lower-dimensional manifolds, the rates of convergence
pertaining to the lower dimension will apply (Bickel & Li 2007), counteracting the curse.

More generally, to bypass the curse and the metric selection problem, it is of interest to consider
nonlinear models, which are subject to some structural constraints that do not overly infringe on
flexibility. One can aim at models that retain polynomial rates of convergence and also are more
flexible than, say, FLMs. Such models are particularly useful when diagnostics for the FLM indicate
lack of fit (Chiou & Müller 2007). Examples are generalized functional linear models (Equation
12) as well as extensions to single-index models (D. Chen et al. 2011) that provide enhanced
flexibility and structural stability while model fits converge at polynomial rates.

5.1.1. Additive models for functional data. Beyond single-index models, another powerful
dimension reduction tool is the additive model (Stone 1985, Hastie & Tibshirani 1986), which
also has been extended to functional data (Lin & Zhang 1999, You & Zhou 2007, Carroll et al.
2009, Lai et al. 2012). In these models, it is generally assumed that the time effect is additive, which
is sometimes restrictive. Modeling additive components that are bivariate functions of time and
a covariate (Zhang et al. 2013), this restriction can be avoided. The two-dimensional smoothing
needed for the bivariate functions may be replaced by one-dimensional smoothing steps, if one
further assumes that each of the additive components is the product of an unknown time effect
and an unknown covariate effect (Zhang & Wang 2015), which leads to easy interpretation and
implementation.

Alternatively, one can utilize the FPCs Ak, as defined in Equation 1, for dimension reduction
of the predictor process or processes X , and then assume that the regression relation is additive
in these components. Whereas the linear functional regression model with scalar response can be
written as E(Y | X ) = EY + ∑∞

k=1 Akβk with an infinite sequence of regression coefficients βk,
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the functional additive model is

E(Y | X) = EY +
∞∑

k=1

fk(Ak), (22)

where the component functions are required to be smooth and to satisfy E( fk(Ak)) = 0 (Müller
& Yao 2008, Sood et al. 2009).

This can be characterized as a frequency-additive model. A key feature that makes this model
not only easy to implement but also accessible to asymptotic analysis is

E(Y − μY | Ak) = E{E(Y − μY |X) | Ak} = E

⎧⎨
⎩

∞∑
j=1

f j (Aj ) | Ak

⎫⎬
⎭ = fk(Ak), (23)

if the FPCs Ak are assumed to be independent, as would be the case for Gaussian predictor
processes, where μY = EY. Equation 23 implies that simple one-dimensional smoothing of the
responses against the FPCs leads to consistent estimates of the component functions fk (Müller
& Yao 2008), so that the usual backfitting that is normally required for additive modeling is
not needed. For the functional linear model in Equation 9, uncorrelatedness of the FPCs of
the predictor processes suffices for the representation E(Y − μY | Ak) = βk Ak, motivating the
decomposition of functional linear regression into a series of simple linear regressions (Chiou &
Müller 2007, Müller et al. 2009).

Projections on a finite number of directions for each (of potentially many) predictor functions
provide an alternative additive approach that is of practical interest when the projections are
formed by taking into consideration the relation between X and Y , in contrast to other functional
regression models, where the predictors are formed merely based on the autocovariance structure
of predictor processes X ( James & Silverman 2005, D. Chen et al. 2011, Fan et al. 2014).

Still other forms of additive models have been considered for functional data. While Equation
22 can be characterized as a frequency-additive model, because it is additive in the FPCs, one
may wonder whether there are time-additive models. It is immediately clear that because the
number of time points on an interval domain is uncountable, an unrestricted time-additive model
E(Y | X) = ∑

t∈[0,T ] ft(X (t)) is not feasible. Addressing this conundrum by assuming that the
functions ft are smoothly varying in t and considering a sequence of time-additive models on
increasingly dense finite grids of size p leads to the sequence

E(Y |X (t1), . . . , X (tp )) =
p∑

j=1

f j (X (tj )),

where f j (x) = g(tj , x) for a smooth bivariate function g. In the limit p → ∞ this becomes the
continuously additive model (Müller et al. 2013)

E(Y |X) = lim
p→∞

1
p

p∑
j=1

g(tj , X (tj )) =
∫

[0,T ]
g(t, X (t)) dt. (24)

This model can be implemented with a bivariate spline representation of the function g; a similar
model was introduced under the name “functional generalized additive model” by McLean et al.
(2014). Nonlinear or linear models, where individual predictor times are better predictors than
FPCs (i.e., regression models with time-based rather than frequency-based predictors), can be
viewed as special cases of the continuously additive model (Equation 24), where only a few time
points and their associated additive functions f j (X (tj )) are assumed to be predictive (Ferraty et al.
2010).
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5.1.2. Optimization and gradients with functional predictors. In some applications, one aims
to maximize the response E(Y | X) in terms of the predictor function X . An example is the
evolution of reproductive trajectories X in medflies, measured in terms of daily egg-laying, where
evolution may work to maximize a desirable outcome such as lifetime reproductive success Y ,
as this conveys an evolutionary advantage. Although enhanced egg-laying at all ages enhances
lifetime reproductive success, measured as total number of eggs produced during the lifetime
of a fly, it also promotes mortality through the cost of reproduction. However, shorter lifespan
implies reduced total number of eggs. The optimal egg-laying trajectory is therefore not simply
the maximal egg-laying possible at all ages but a complex trade-off between maximizing daily
egg-laying and the cost of reproduction in terms of mortality (Müller et al. 2001).

To address the corresponding functional maximization problem, gradients with respect to
functional predictors X are of interest (Hall et al. 2009). Extending the functional additive model
(Equation 22), one can introduce additive gradient operators with arguments in L2 at each predictor
level X ≡ {A1, A2, . . .},



(1)
X (u) =

∞∑
k=1

f (1)
k (Ak)

∫
φk(t)u(t)dt, u ∈ L2. (25)

These additive gradient operators serve to find directions in which responses increase, thus en-
abling a maximal descent algorithm in function space (Müller & Yao 2010a).

5.1.3. Polynomial functional regression. Finally, just as the common linear model can be
embedded in a more general polynomial version, a polynomial functional model that extends
the functional linear model has been proposed (Yao & Müller 2010), with quadratic functional
regression as the most prominent special case. With centered predictor processes X c , this model
can be written as

E(Y | X) = α +
∫

β(t)X c (t)dt +
∫ ∫

γ (s , t)X c (s )X c (t)ds dt, (26)

and in addition to the parameter function β that it shares with the FLM, it also features a pa-
rameter surface γ . The extension to higher order polynomials is obvious. These models can be
equivalently represented as polynomials in the corresponding FPCs. A natural question is whether
the linear model is sufficient or needs to be extended to a model that includes a quadratic term. A
corresponding test was developed by Horváth & Reeder (2013).

5.2. Time Warping, Dynamics, and Manifold Learning for Functional Data

Many functional data are best described by assuming that, in addition to amplitude variation,
additional time variation is present, which is to say that the time axis is distorted by a smooth
random process. Growth data are a classical example. In human growth, the biological age of
different children varies; this variation has a direct bearing on the growth rate, which follows
a general shape with subject-specific timing of, for example, the two major growth spurts, the
pubertal and prepubertal growth spurts (Gasser et al. 1984).

5.2.1. Time variation and curve registration. If both amplitude and time variation are present
in functional data, they cannot be separately identified, so additional assumptions that break
the nonidentifiability are crucial if one wishes to identify and separate these two components
that jointly generate the observed variation in the data. An example in which time warping is
identifiable is briefly discussed in the next section. In the presence of time warping, which is also
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known as curve registration or curve alignment, cross-sectional mean functions are inefficient and
uninterpretable, because if important features such as peak locations randomly vary from curve
to curve, ignoring the differences in timing when taking a cross-sectional mean will distort these
features. Then the mean curve will not resemble any of the sample curves and is not useful as a
representative of the sample of curves (Ramsay & Li 1998).

Early approaches to time-warped functional data include dynamic time warping (Sakoe & Chiba
1978, Wang & Gasser 1997) for the registration of speech, and self-modeling nonlinear regression
(Lawton & Sylvestre 1971, Kneip & Gasser 1988), for which one assumes in the simplest case that
the observed random functions can be modeled as a shift-scale family of an unknown template
function, where shift and scale are subject-specific random variables. A traditional method for
time-warped functional data is the landmark method. Special features, such as the peak locations
in functions or derivatives, are aligned to their average location, and then smooth transformations
from the average location to the location of the feature for a specific subject are introduced (Kneip
& Gasser 1992, Gasser & Kneip 1995). If well-expressed features are present in all sample curves,
the landmark method serves as a gold standard for curve alignment. A problem is that landmarks
may be missing in some sample functions or may be hard to identify because of noise in the data.

The mapping of latent bivariate time warping and amplitude processes into random functions
has been studied systematically, leading to the definition of the mean curve as the function that
corresponds to the bivariate Fréchet mean of both time warping and amplitude processes (Liu
& Müller 2004). This approach can be implemented with relative area-under-the curve warping,
where the latter has been shown to be particularly well suited for samples of random density
functions (Kneip & Utikal 2001, Zhang & Müller 2011).

Recent approaches include registration by minimizing a Fisher-Rao metric (Tucker et al. 2013,
Wu & Srivastava 2014), alignment of event data by dynamic time warping (Arribas-Gil & Müller
2014), and joint models for amplitude and time variation or for combinations of regression and
time variation (Kneip & Ramsay 2008). Adopting a joint perspective as in the latter paper and
also as implemented by Gervini (2015) leads to better interpretability of time-warping models for
spoken language (Hadjipantelis et al. 2015) or better performance of functional regression in the
presence of warping (Gervini 2015).

5.2.2. Pairwise warping. As a specific example of a warping approach, we discuss a pairwise
warping method that is based on the idea that all relevant information about time warping resides
in pairwise comparisons and the resulting pairwise relative time warps (Tang & Müller 2008).
Starting with a sample of n i.i.d. (independent and identically distributed) smooth observed curves
Y1, Y2, . . . , Yn (with suitable modifications for situations where the curves are not directly observed
but only noisy measurements of the curves at a grid of discrete time points are available) we
postulate that

Yi (t) = Xi {h−1
i (tj )}, t ∈ [0, T ], (27)

where the Xi are i.i.d. random functions that represent amplitude variation, and the hi are the re-
alizations of a time-warping process h that yields warping functions that represent time variation,
are strictly monotone and invertible, and satisfy hi (0) = 0, hi (T ) = T . The time-warping func-
tions map time onto warped time. Traditionally, time is assumed to flow forward, and therefore
warping functions are strictly monotone increasing. However, a recent time-warping approach
that allows time to flow backwards has been shown to be useful for modeling declines in house
prices as time reversals (Peng et al. 2014).

To break the nonidentifiability, which is a characteristic of time-warping models as already
mentioned, Tang & Müller (2008) make the assumptions that the overall curve variation is (at

www.annualreviews.org • Review of Functional Data Analysis 283

A
nn

u.
 R

ev
. S

ta
t. 

A
pp

l. 
20

16
.3

:2
57

-2
95

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
A

ca
de

m
ia

 S
in

ic
a 

- 
L

if
e 

Sc
ie

nc
e 

L
ib

ra
ry

 o
n 

06
/0

4/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.



ST03CH11-Wang ARI 29 April 2016 13:44

least asymptotically) dominated by time variation, that is, Xi (t) = μ(t) + δZi (t), where δ van-
ishes for increasing sample size n, the Zi are realizations of a smooth square integrable process,
and E{h(t)} = t, for t ∈ [0, 1]. Then warping functions may be represented in a suitable basis
that ensures monotonicity and has associated random coefficients in the expansion, for example
monotonically restricted piecewise linear functions. If curve Yi has the associated time-warping
function hi then the warping function gik that transforms the time scale of curve Yi toward that
of Yk is gik(t) = hi {h−1

k (t)}, and analogously, the pairwise-warping function of curve Yk toward Yi

is gki (t) = hk{h−1
i (t)}.

Because warping functions are assumed to have average identity E[hi {h−1
k (t)} | hk] = h−1

k (t),
and as gik(t) = hi {h−1

k (t)}, we find that h−1
k (t) = E{gik(t) | hk}, which motivates corresponding es-

timators by plugging in estimates of the pairwise warping functions. This shows that under certain
regularity assumptions, the relevant warping information is indeed contained in the pairwise time
warpings.

5.2.3. Functional manifold learning. Manifold learning provides a comprehensive approach to
time warping and other nonlinear features of functional data (such as scale or scale-shift families)
that simultaneously handles amplitude and time-warping features. A motivation for the use of
functional manifold models is that image data that are dominated by random domain shifts lie
on a manifold (Donoho & Grimes 2005). Similar warping models where the warping component
corresponds to a random time shift have been studied for functional data (Silverman 1995, Leng
& Müller 2006). Such data have low-dimensional representations in a transformed space but
are infinite-dimensional in the traditional functional basis expansion including the eigenbasis
expansion (Equation 1). Although these expansions will always converge in L2 under minimal
conditions, they are inefficient in comparison with representations that take advantage of the
manifold structure.

When functional data include time warping or otherwise lie on a nonlinear low-dimensional
manifold that is situated within the ambient infinite-dimensional functional Hilbert space, desir-
able low-dimensional representations can be obtained through manifold learning; the resulting
nonlinear representations are particularly useful for subsequent statistical analysis. Once a map
from an underlying low-dimensional Euclidean space into functional space has been determined,
this gives the desired manifold representation. Among the various nonlinear dimension reduc-
tion methods that employ manifold learning (Roweis & Saul 2000), ISOMAP (Tenenbaum et al.
2000) can be easily implemented and has been shown to be a useful and versatile method for
FDA.

Specifically, a modified ISOMAP learning algorithm—which adds a penalty to the empirical
geodesic distances to correct for noisy data and employs kernel smoothing to map data from
the manifold into functional space—provides a flexible and broadly applicable approach to low-
dimensional manifold modeling of time-warped functional data (Chen & Müller 2012). This
approach targets simple functional manifoldsM in L2 that are flat (i.e., isomorphic to a subspace of
Euclidean space), such as a Hilbert space version of the Swiss roll. An essential input for ISOMAP is
the distance between functional data. The default distance is the L2 distance in function space, but
this distance is not always feasible (for example, when functional data are only sparsely sampled).
In such cases, the L2 distance needs to be replaced by a distance that adjusts to sparsity (Peng &
Müller 2008).

The manifold M is characterized by a coordinate map ϕ : R
d → M ⊂ L2, such that ϕ is

bijective, and both ϕ and ϕ−1 are continuous and isometric. For a random function X, the mean μ

in the d-dimensional representation space and the manifold mean μM in the functional L2 space
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are characterized by

μ = E{ϕ−1(X)}, μM = ϕ−1(μ).

The isometry of the map ϕ implies that the manifold mean μM is uniquely defined.
In addition to obtaining a mean, a second basic task in FDA is to quantify variation. In analogy

to the modes of variation that are available through eigenfunctions and FPCA (Castro et al. 1986,
Jones & Rice 1992), one can define manifold modes of variation as

X M
j,α = ϕ

(
μ + α(λM

j )
1
2 eM

j

)
, j = 1, . . . , d , α ∈ R,

where the vectors eM
j ∈ R

d , j = 1, . . . , d are the eigenvectors of the covariance matrix of
ϕ−1(X) ∈ R

d , which is to say, cov(ϕ−1(X)) = ∑d
j=1 λM

j (eM
j )(eM

j )T . Here λM
1 ≥ · · · ≥ λM

d are
the corresponding eigenvalues and the modes are represented by varying the scaling factors α.

Each random function X ∈ M then has a unique representation in terms of the d-dimensional
vector ϑ = (ϑ1, . . . , ϑd ) ∈ R

d ,

X = ϕ

⎛
⎝μ +

d∑
j=1

ϑ j eM
j

⎞
⎠ , ϑ j = 〈ϕ−1(X) − μ, eM

j 〉, j = 1, . . . , d ,

where 〈·, ·〉 is the inner product in R
d and ϑ j are uncorrelated random variables with mean 0 and

variance λM
j , the functional manifold components (Chen & Müller 2012). This representation

is a genuine dimension reduction of the functional data to the finite dimension d , whereas for
functional data that lie on a nonlinear manifold, the Karhunen-Loève representation usually
requires a large number of components to provide a good approximation.

In practical applications, the presence of functional manifolds is often evident when plotting
the second FPCs versus the first FPCs; horseshoe-shaped curves will appear, and typically there
are few data in the vicinity of the mean (which is always 0 for all principal components, which are
uncorrelated). An example is shown in Figure 7b, where the FPCs falling near the mean have low
density, and they cluster around the periphery.

The example in the figure is based on a small sample (n = 20) of house price index curves
showing the boom-bust cycle from 2000–2009. These data were previously discussed and modeled
by Peng et al. (2014) and are displayed in Figure 7a. The curves show mostly amplitude variation
with some variation in the timing of the peaks. Many of the peaks have a bimodal appearance,
indicating that when the boom cycle peaked, there was first a slight downturn, followed by a short
period of further price increase just before the onset of the major downturn. The manifold mean
and first mode of variation in Figure 7b reflects this quite well and also shows small shifts in peak
locations as well as shape changes, whereas the ordinary mode of variation does not allow for a
peak shift and shows hardly any bimodality (Figure 7c). In this example, the differences between
the manifold representation and the Karhune-Loève representation are not major, presumably
owing to the low sample size, but the manifold representation is clearly preferable.

5.2.4. Learning dynamics from functional data. Because functional data consist of repeated
observations of (usually) time-dynamic processes, they can be harnessed to determine the dynamics
of the underlying processes. Dynamics are typically assessed with derivatives. Under regularity
conditions, derivatives X (ν) of square integrable processes X are also square integrable and the
eigenrepresentation (Equation 1) implies

X (ν)
i (t) = μ(ν)(t) +

∞∑
k=1

Aikφ
(ν)
k (t), (28)
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Figure 7
(a) Median housing price index trajectories (red ) for 20 US metropolitan regions, 2000–2009; values in the year 2000 are standardized
at 100. The blue curve is the standard cross-sectional mean, and the black curve is the manifold mean. (b) Second functional principal
component plotted against first functional principal component, with the regular mean in blue and the manifold mean in black.
(c) Standard first mode of variation based on L2 eigenanalysis. The outer boundary of the dark shaded region is μ(t) ± √

λ1 and the
outer boundary of the light shaded region is μ(t) ± 2

√
λ1. (d ) Corresponding first manifold mode of variation, with boundaries of the

shaded regions analogous to those in panel c.
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where ν is the order of the derivative. Derivatives of μ can be estimated with suitable smoothing
methods and those of φ by partial differentiation of covariance surfaces. The latter is even possible
in the case of sparsely sampled data, where direct differentiation of trajectories would not be
possible (Liu & Müller 2009).

For the case where one has differentiable Gaussian processes when X and X (1) are jointly
Gaussian, it is easy to see (Müller & Yao 2010b) that

X (1)(t) − μ(1)(t) = β(t){X (t) − μ(t)} + Z(t), β(t) = cov{X (1)(t), X (t)}
var{X (t)} . (29)

This is a linear differential equation with a time-varying function β(t) and a drift process Z. Here Z
is a Gaussian process such that Z(t) and X (t) are independent at each t. If Z is relatively small, the
equation is dominated by the linear part and the function β. Then the behavior of β characterizes
various types of dynamics, where one can distinguish dynamic regression to the mean for those
t where β(t) < 0 and explosive behavior for those t where β(t) > 0. In the first case, deviations
of X (t) from the mean function μ(t) will diminish, whereas in the second case they will increase:
An individual with a value X (t) above the mean will tend to move even higher above the mean
under the explosive regimen but will move closer to the mean under dynamic regression to the
mean. Thus the function β that is estimated from the observed functional data can be used to
characterize the underlying empirical dynamics.

A nonlinear version of dynamics learning can be developed for the case of non-Gaussian
processes (Verzelen et al. 2012). This is of interest whenever linear dynamics is not applicable,
and it is based on the fact that one always has a function f such that

E{X (1)(t) | X (t)} = f {t, X (t)}, X (1)(t) = f {t, X (t)} + Z(t), (30)

with E{Z(t) | X (t)} = 0 almost surely. Generally the function f will be unknown. It can be con-
sistently estimated from the observed functional data by nonparametrically regressing derivatives
X (1) against levels X and time t. This can be implemented with simple smoothing methods. The
dynamics of the processes are then jointly determined by the function f and the drift process
Z. Nonlinear dynamics learning is of interest to understand the characteristics of the underlying
stochastic system and can also be used to determine whether individual trajectories are on track,
for example in applications to growth curves.

6. OUTLOOK AND FUTURE PERSPECTIVES

FDA has widened its scope from a relatively narrow focus on the analysis of samples of fully
observed functions to much wider applicability. An example is longitudinal data analysis: FDA
provides a rich nonparametric methodology for a field that has been dominated by parametric
random effects models for a long time. Also of special interest are recent developments in the
interface of high-dimensional and functional data. These include the following: combining func-
tional elements with high-dimensional covariates, such as modeling predictor times that exercise
an individual predictor effect on an outcome that goes beyond the functional linear model (Kneip
& Sarda 2011); predictor selection among high-dimensional FPC scores and baseline covariates
in functional regression models (Kong et al. 2015); or converting high-dimensional data outright
into functional data, where the latter has been referred to as stringing (Wu & Müller 2010, K.
Chen et al. 2011) and is based on a uni- or multidimensional scaling step to order predictors along
locations on an interval or low-dimensional domain. The stringing method then assigns the value
of the respective predictor to the location of the predictor on the interval, for all predictors. The
distance of the predictor locations on the interval matches as closely as possible a distance measure
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between predictors that can be derived from correlations. Combining locations and predictor val-
ues and potentially also adding a smoothing step then converts the high-dimensional data for each
subject or item to a random function. These functions can be summarized through their FPCs,
leading to an effective dimension reduction that is not based on sparsity and that works well for
strongly correlated predictors.

Many recent developments in FDA have not been covered in this review. These include func-
tional designs and domain selection problems and also dependent functional data such as functional
time series, with many recent interesting developments (e.g., Panaretos & Tavakoli 2013). An-
other area that has gained recent interest is that of multivariate functional data, where one models
samples consisting of vectors of functional or longitudinal data. There is also rising interest in
spatially indexed functional data. These problems pose novel challenges for data analysis (Horváth
& Kokoszka 2012).

Although this review has focused on concepts and not on applications, a driving force of
recent developments in FDA has been the appearance of new types of data that require adequate
methodology for their analysis, as is also true for other growing statistical areas. This is leading to
the current development of next-generation functional data that include more complex features
than the first-generation functional data that have been the emphasis of this review. Examples of
recent applications of next-generation functional data methodology include movement and health
data that are continuously tracked and monitored; data that are recorded continuously over time
by arrays of sensors, such as traffic flow data; continuously recorded climate and weather data;
transcription factor count modeling along the genome; and the analysis of auction data, volatility
and other financial data with functional methods.
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