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Although photometry, the measurement of the intensity and distribution of visible light, is important
in many areas, most undergraduate physics courses do not include this topic. We present a simple
introduction to key concepts in photometry, and as a fun example, we investigate the optics of a Jack
O’Lantern. © 2006 American Association of Physics Teachers.
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I. INTRODUCTION

Our everyday world is filled with light sources and sur-
faces that redirect light. Our visual perception system has
evolved to characterize the nature of such surfaces, which is
important to our survival. The measurement of the intensity
and distribution of light that is visible to the human eye is
broadly termed photometry.

Given its importance, it is surprising that most under-
graduate physics students learn nothing about photometry.
For example, few students are aware that the terms lumi-
nance and illuminance have distinct precise meanings that
are as different as momentum and velocity. We present here
a conceptually simple introduction to the subject of photom-
etry and, as a fun example, we look at the optics of the inside
of a pumpkin, and explain why a pumpkin is ideal for mak-
ing a Jack O’Lantern.

II. REVIEW OF BASIC PHOTOMETRIC CONCEPTS

We begin with a brief review in which photometry is pre-
sented as an important subset of radiometry. Both radiometry
and photometry involve measurements of electromagnetic
radiation.1,2 Radiometry and photometry apply to a very
common situation which might be called a dynamic steady
state, in which the rates of energy flow are constant over time
intervals that are longer than the typical field oscillation pe-
riod and are long enough to be readily measured. In such a
situation, the key concept is the rate of energy flow, or
power. Sources of electromagnetic energy produce radiation
at a fixed rate, which spreads out spatially, such that at any
point the time average of the flux is a constant. Radiometric
and photometric measurements allow us to quantitatively de-
scribe the way in which the radiation propagates.

Students are often confused by the terminology for de-
scribing how the radiation can spread out. It is helpful to
begin by conceptually considering a plane through which a
unique well-defined flow of energy propagates, and to pic-
ture the radiant power passing through a very small region of
interest on this plane. It is physically impossible for radiant
power to be concentrated entirely at one precise point, one
precise direction, or at one precise wavelength. Instead, ra-
diant power must always be distributed to some extent in
three possible ways: spatially �over area�, directionally �over
solid angle�, and spectrally �over wavelength�. Radiometric
and photometric measurements describe how the radiation is
distributed in these three ways.

A. Radiometric quantities

To describe the key radiometric quantities, we will tempo-
rarily ignore the spectral distribution of the radiation, so that
we consider radiation that is distributed only over area and
solid angle.

There are four key radiometric quantities: Radiant flux,
radiant intensity, irradiance, and radiance. To explain these
quantities, we start with the conceptual plane through which
radiation from a source passes. The radiant flux describes the
total power of the radiation from the source regardless of
where it strikes the plane, or at what angle it strikes it. This
quantity has unit of Watts �W� and is typically denoted by the
symbol �.

The solid angle is most easily described as the range of
angles which, for an observer positioned at the center of a
sphere, will project on a given area on the surface of that
sphere. The value of the solid angle is equal to the size of
that area of interest divided by the square of the radius of the
sphere, and its units are given as steradians �sr�.

The radiant intensity describes how the radiation is distrib-
uted over a solid angle in a particular direction. Radiant in-
tensity has units of Watts/steradian �W/sr�. In contrast, the
term irradiance describes how the radiation spreads out over
an area, where the area is measured in units of Watts/square
meter on the notional plane.

To help illustrate these two quantities, consider the case
where perfectly collimated radiation passes through the
plane, as shown in Fig. 1. In this case, the radiation has an
infinite radiant intensity, because it occupies essentially zero
solid angle, but it has a finite and well-defined irradiance on
the plane. �This situation is depicted for illustrative purposes
only; even highly collimated light has a finite divergence, so
infinite radiant intensity cannot be achieved in practice.�

In contrast, consider the case where the radiation passes
through a single infinitesimally small point on the plane, but
within a well-defined solid angle, as shown in Fig. 2. In this
case, the radiation has an infinite irradiance, because the area
is essentially zero, but it has a finite and well-defined radiant
intensity. �Again, this situation is intended for illustrative
purposes only, because in a real system the area cannot be
equal to zero.�

Radiant intensity is a useful idea because it describes the
irradiance that will occur after the light has propagated a
specific distance, as depicted in Fig. 3. If the radiant intensity
I at a distance d is measured in the perpendicular plane, the
irradiance E is given by the inverse square law:

E =
I

d2 . �1�
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Finally, consider the case where the radiation passes
through the plane over a well-defined area, and also with a
well-defined solid angle, as shown in Fig. 4. The radiance L
describes this distribution over both solid angle and area.
This quantity has units of Watts/square meter/steradian and is
probably the least intuitive of the four, but in many situations
it is the most useful. As will be explained in more detail, the
radiance is useful because its value, defined in the plane
perpendicular to a ray, remains constant along the ray path,
even if it passes through lenses or other nonlossy optical
elements that change either the spatial or angular character-
istics of the radiation.

It is a well-known �and often frustrating� fact that it is not
possible to decrease both the spatial and angular spread of
the radiation; decreasing one will automatically increase the
other. For instance, it is often desirable to focus the radiation
to a small point in space, which would require increasing the
solid angle over which the radiation is distributed. Con-
versely, to use a collimating lens to decrease the solid angle
of the radiation, it is first necessary to allow the radiation to
spread out spatially so the lens can work effectively. Regard-
less of how the manner of propagation is manipulated, the
radiance of the radiation remains the same, unless it is re-
duced by lossy optical elements that introduce absorption
and/or scattering. A common way of describing this relation-
ship between spatial and angular spread is to note that for a
beam of light, the product of the solid angle and the cross-
sectional area of the beam is a constant. This product is
known as the étendue and is an important characteristic of an
optical system.

This situation is analogous to the uncertainty principle in
quantum mechanics, which requires that at any given time,
either the position or momentum of a particle can be pre-
cisely measured, but it not possible to precisely measure
both. Similarly, according to the Fourier analysis of a pulse
of radiation, it is impossible to have a pulse that is both
narrowband in frequency and short in duration.

B. Photometric quantities

To understand the relationship between photometry and
radiometry, it is necessary to consider the spectral, or wave-
length, characteristics of the radiation. In particular, it is of-
ten useful to describe the amount of radiation that lies within
a certain band of wavelengths, for example between approxi-
mately 400 and 700 nm, for which radiation is visible to the
human eye. The perceived brightness varies across this vis-
ible band, and is described by the photopic luminous effi-
ciency function V��� shown in Fig. 5. This curve is a psy-
chophysical quantity—it cannot be determined by objective
measurements alone and instead requires comparative sub-
jective assessments reported by human observers.

For any spectral distribution of a radiometric quantity, the
equivalent photometric quantity can be obtained by multiply-
ing the radiometric quantity at each wavelength by the value
of the photopic curve V��� at that wavelength and integrating
the resulting product function. �A normalization factor is also
required, as we will describe.�

As an example, consider the situation where the radiant
flux as a function of wavelength is known. This value can be
converted to luminous flux and the corresponding unit could
be termed an “effective visible watt.” Instead, we use a dif-
ferent unit, with a different size, known as the “lumen.” So
what is a lumen and why do we use it? The answer is purely
historical. When the intensity of light was first quantified, it
was not recognized as electromagnetic radiation, so there
was little incentive to link it to measurements of electromag-
netic energy. Instead, a “standard candle” was used as the
standard light source, which led to the first definition of the
lumen as 1/4� times the amount of light radiated from a
source which has, in all directions, the luminous intensity of
a 1 cm2 area of molten platinum, measured in the perpen-

Fig. 3. Irradiance determined by inverse square law.

Fig. 4. Radiation passing through a plane with certain area and solid angle.

Fig. 1. Collimated radiation passing through a plane.

Fig. 2. Radiation passing through a small point on a plane.
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dicular direction, at its melting point temperature, under 1
atmosphere of air pressure. This well defined, but arbitrary,
choice of unit led to the definition of units for the other
photometric quantities. A complicated and long story leads to
definition that the conventional unit of luminous flux, the
lumen, is equivalent of exactly 1/683 effective visible Watts.
Another way to say the same thing is that for light at the
wavelength of peak sensitivity of the human eye �defined to
be light at a frequency of 5.4�1014 Hz�, 1 W of radiant flux
is equivalent to 683 lumens.

The system of photometric units involves the same kind of
descriptions as the radiant power based units, that is, radiant
flux, irradiance, radiant intensity, and radiance, using the lu-
men instead the watt. Illuminance is the analog of irradiance,
luminous intensity is the analog of radiant intensity, and lu-
minance is the analog of radiance. The unit of illuminance is
lumens/square meter �also known as lux�, the unit of lumi-
nous intensity is lumens/steradian �also known as a candela,
cd� and the unit of luminance is lumen/steradian/square
meter or candela/square meter �cd/m2�.

As with radiance, luminance is an abstract concept, but it
has an extremely important connection to perception, in that
the human eye evaluates the luminance of a surface when it
looks at it. Luminance is constant along a ray path, and for
this reason the apparent brightness of a surface is unrelated
to its distance from the eye. We can say that the perceived
phenomenon of brightness is closely linked to the precisely
defined photometric property of luminance. Although bright-
ness, being a perceived experience, cannot be accurately
quantified, it is generally observed that equal luminance cor-

responds to approximately equal perceived brightness and
increased luminance corresponds to increased perceived
brightness. Table I provides a summary of the radiometric
and photometric terms described above.

C. The integrating sphere

In photometry experiments, it is common to measure the
total luminous flux of a light source by measuring the lumi-
nous intensity at many different angles and summing over all
angles to determine the total flux.3–5 To achieve accuracy
such measurement procedures are extremely time consum-
ing, generate large amounts of data, and require a sophisti-
cated data collection system. An alternate approach that re-
quires only a single measurement is often used. This
approach uses a spherical structure known as an integrating
sphere6–8 �also known as an Ulbricht sphere�, as depicted in
Fig. 6.

The inner surface of the structure is a highly reflective,
white material that causes multiple reflections of light within
the sphere so that the inner surface is very uniformly illumi-
nated. The resulting luminance of the inner wall of the
sphere is measured by viewing with an appropriate lumi-
nance detector through a small hole in the side of the sphere,
typically called the exit port. To calibrate the device a cali-
bration lamp of known luminous flux is placed in the sphere
and the ratio of the detector response to the lamp output is
determined in several spectral bands. These data can then be
used to calibrate a measurement of the radiant flux within
each wavelength band for a test lamp placed in the structure.
In this way the luminance measurement at a single position
inside the sphere is known to be accurately proportional to
the flux emitted from the lamp.

If the inner surface is highly reflective over a wide range
of wavelengths, the integrating sphere is a very forgiving
device because the light will reflect many times so that the
inner surface of the sphere achieves highly uniform lumi-
nance regardless of the exact shape of the structure, minor
defects in the surface, or the size and distribution character-
istics of the source. A typical integrating sphere has a reflec-
tance of greater than 0.8 compared to a perfect reflector. This
reflectance value is about the same as white paper. In con-
trast, black ink printed on a page has a reflectance of about
0.05.

The fraction of the integrating sphere surface occupied by
the exit port is denoted by f:

Table I. Summary of radiometric and photometric terms.

Radiation spreading over
Radiometric term

Symbol �units�
Photometric term
Symbol �units�

Nothing Radiant flux
� �W�

Luminous flux
�v �lm=1/683 effective visible W�

Solid angle Radiant intensity
I �W/sr�

Luminous intensity
Iv �lm/sr=cd�

Area Irradiance
E �W/m2�

Illuminance
Ev �lm/m2=lux�

Solid angle and area Radiance
L �W/m2/sr�

Luminance
Lv �lm/m2/sr=cd/m2�

Fig. 5. Photopic luminous efficiency function, V���.
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f =
Ae

As
, �2�

where Ae is the area of the exit port and As is the total surface
area of the sphere. The luminous intensity at the exit port can
be predicted from the sphere multiplier, M, which is deter-
mined by the surface reflectance � and the port fraction f2.

M =
�

1 − ��1 − f�
. �3�

This multiplier quantifies the expected increase in luminance
at the exit port as a result of the multiple reflections within
the sphere. If the exit port is small, for example, f �0.05,
and the surface reflectance is high, the value of this mul-
tiplier can be very high, often greater than 20.

Alternatively, the output efficiency � of the sphere as

� = fM . �4�

The total luminous flux diffusely reflected into the sphere,
�s, can be quantified by knowing the spectral radiant flux of
the source, �radiant���, and the spectral reflectance of the
surface ���� from:

�s = �
�=400

�=700

�radiant�������V��� . �5�

The total luminous flux that leaves the exit port is then given
by:

�e = ��s. �6�

The luminance at the exit port Le can be determined by the
relation for diffuse illumination,

Le =
�e

�Ae
, �7�

which is based on the effective solid angle over which the
diffuse light is distributed being � steradians. �The value of
� arises from integration of the cos�	� dependence of the
irradiance per unit area of a diffuse emitter over the half
sphere of emitted directions.�

It is interesting to compare this luminance to what would
be expected in the absence of a highly reflective inner sur-
face, in which case the luminance of the exit port would be

L =
�sf

�As
. �8�

Equation �8� results from the fact that in the absence of a
highly reflective inner surface, the input flux is spread over
the entire sphere As, but only the flux that strikes the small
exit port f will leave the sphere. Multiple reflections result in
a value of Le that is much greater than would otherwise be
the case.

III. PUMPKIN PHOTOMETRICS

Consider the Halloween Jack O’Lantern, which has many
of the same features as an integrating sphere—a diffusely
reflective interior, a light source, and an exit aperture. To
determine a Jack O’Lantern’s efficiency, the reflectance of
the inner surface of a pumpkin was measured using a spec-
trophotometer to quantify the spectral radiance of a sample
of pumpkin interior under diffuse illumination with an incan-
descent source, compared to the same spectral radiance mea-
surements for a calibrated diffuse white reflectance standard.
The reflectance of the pumpkin was calculated from the ratio
of the pumpkin radiance to that of the standard. The result is
shown by the solid line in Fig. 7. The reflectance varies
smoothly as a function of wavelength and is surprisingly
high for wavelengths greater than 600 nm, which explains
the bright orange color of the pumpkin’s interior.

The spectral distribution of a typical candle also was mea-
sured using the spectrophotometer. Because the candle is an
incandescent source, the relative flux also varies smoothly
with wavelength. The relative radiant flux of the candle �nor-
malized so that the value at 700 nm is equal to 1� is shown as
the dotted line in Fig. 7. The relatively strong contributions
from wavelengths greater than 600 nm give candlelight and
other common incandescent light sources their warm visual
appearance; this appearance is seen not only for illuminating
a Jack O’Lantern, but for lighting in general, because the
slightly reddish light is known to give a more pleasant color
rendering of skin.

As an example of using the relations in Table I to deter-
mine the photometric quantities for this candle, we assume
that the irradiance at a distance of 1 m from the candle is
5 mW/m2 in a 10 nm wide wavelength band centered on
555 nm, the peak of the visible band. If we multiply by 4�

Fig. 6. An integrating sphere.

Fig. 7. Reflectance inside pumpkin and relative radiant flux of candle.
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steradians, the solid angle of the full sphere over which the
candle emits light, we obtain a total radiant flux of about
63 mW in this band.

The radiant flux of the candle shown in Fig. 7 represents
only a small part of the emitted radiation. A candle, like all
other objects, has a very special property that it emits elec-
tromagnetic radiation with a distribution of wavelengths that
depends on its temperature. Only a fraction of the emitted
radiation is at the visible wavelengths as shown by the solid
portion of the curve in Fig. 8; the complete emission spec-
trum is depicted by the dotted line.

We now employ these measured values to determine the
output efficiency of a typical Jack O’Lantern.

A. Understanding and quantifying a Jack O’Lantern

A typical pumpkin has an inner diameter of approximately
0.3 m, resulting in a surface area As=0.28 m2. For the fol-
lowing calculations, we assume that the face of the Jack
O’Lantern, which represents the exit ports of the integrating
sphere, occupies an area fraction f =0.05. The efficiency was
calculated at each wavelength using Eqs. �3� and �4� and the
measured spectral reflectance function for the pumpkin, as
shown in Fig. 9. As expected, the pumpkin demonstrates the
highest efficiency for wavelengths greater than 600 nm.

By using Eq. �5� and �6� and assuming a typical candle
luminous flux of 10 lumens, the total luminous flux that

leaves the Jack O’Lantern face is calculated to be
2.54 lumens. It follows from Eq. �7� that the luminance of
the face is approximately 60 cd/m2. This luminance level is
comparable to that of an image produced by a television set;
a picture of an orange, for example, displayed on television
has the same luminance value as a typical Jack O’Lantern. A
harvest moon at moonrise has approximately this luminance
value.

The effect of different exit port sizes can be demonstrated
by removing the lid of the Jack O’Lantern and observing the
corresponding reduction in the luminance of the face.

If the inside of the pumpkin were absorptive instead of
reflective, for instance with values of ���� of about 0.1, Eq.
�8� would yield a luminance value of only 0.6 cd/m2, two
orders of magnitude less than the normal Jack O’Lantern, as
illustrated in the sketch in Fig. 10. With such a low reflec-
tance interior, it would be difficult to see the glowing fea-
tures even in pitch dark, whereas the usual Jack O’Lantern is
clearly visible in even partial daylight and exhibits a very
dramatic contrast at night.
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Fig. 8. Emission spectrum of a candle due to blackbody radiation.

Fig. 9. Efficiency of pumpkin as an integrating sphere.
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