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Purpose of review

The scarcity of pharmacological neuroprotective treatments

for traumatic brain injury is a concern being targeted on

various fronts. This review examines the latest treatments

under investigation.

Recent findings

In the last 12–18 months, no drug has completed phase III

clinical trials as a clearly proven method to treat traumatic

brain injury. While the drugs work in rodents, when they

make it to clinical trial they have failed primarily due to

negative side-effects. Those still in trial show promise, and

even those rejected have undergone modifications and now

show potential, e.g. second-generation N-methyl-D-aspartic

acid and a-amino-3-hydroxy-methyl-4-isoxazolyl-propionic

acid receptor antagonists, calpain inhibitors, and

cyclosporine A analogues. Also, several drugs not

previously given much attention, such as the antibiotic

minocycline, estrogen and progesterone, and a drug

already approved for other diseases, erythropoietin, are

being examined. Finally, a treatment generating some

controversy, but showing potential, is the application of

hypothermia to the patients.

Summary

Clearly, finding treatments for traumatic brain injury is not

going to be easy and is evidently going to require numerous

trials. The good news is that we are closer to finding one or

more methods for treating traumatic brain injury patients.
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MTBI m
ild traumatic brain injury

NMDA N
-methyl-D-aspartic acid

TBI tr
aumatic brain injury
� 2006 Lippincott Williams & Wilkins
1350-7540

Introduction
Traumatic brain injury (TBI), a significant health pro-

blem, represents a potentially catastrophic debilitating

medical emergency with poor prognosis and long-term

disability. Each year in the US at least 1.4 million people

seek medical help for a TBI, of which about 50 000 die,

235 000 are hospitalized, and 1.1 million are treated and

released from an emergency department [1]. An esti-

mated 90 000 of these patients will suffer permanent

impairment from their injury and more than half

will experience at least short-term disability. Yet with

all these potential patients, there is no clinically

proven therapy.

Mild traumatic brain injury – a silent epidemic
TBI severity is classified based on Glasgow Coma Score

(GCS). Of the 1.4 million TBIs reported annually [1],

about 10–25% are severe (GCS 3–8), while the rest are

moderate (GCS 9–12) or mild (GCS 13–15) (MTBI) [2].

However, MTBI is under-diagnosed and occurrences are

underestimated because many sufferers do not seek

medical attention. MTBI concussion, one of the most

common neurological disorders [3], occurs when an

impact or forceful motion of the head results in a brief

alteration of mental status, such as confusion or disor-

ientation, or brief loss of memory or consciousness. Even

such brief alterations in mental status can, however,

inflict profound and persistent impairment of physical,

cognitive and psychosocial functioning [4]. MTBI is

often referred to as a ‘silent epidemic’ because its neuro-

logical sequelae are nonspecific and it is a common

occurrence in the general population [5,6]. Many suf-

ferers and healthcare providers fail to recognize the

potential severity of a brief loss of consciousness [7].

Often, individuals with MTBI do not receive medical

care at the time of injury, but see their primary care

physician days, weeks or even months after the injury

with complaints of persistent symptoms [7,8]. Of the total
 reproduction of this article is prohibited.
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Table 1 Classes of neuroprotectants

Class Mechanism
Treatments still
under investigation

NMDA receptor
antagonists

antagonists of major
ionotropic NMDA-
subtype glutamate
receptor, suppressing
excitotoxic responses

aptiganel, eliprodil,
memantine,
nitromemantines,
traxoprodil, ACEA-
1416, arcaine

AMPA receptor
antagonists

antagonists of ionotropic
AMPA-subtype
glutamate receptor,
suppressing excitotoxic
response

zonampanel (YM872),
BIIR-561-CL
(irampanel)

Necrosis
inhibitors

calpain inhibitors
(also inhibit some
forms of apoptosis)

MDL28170, SJA6017,
SNJ-1945

Apoptosis
inhibitors

pan-caspase inhibitors M826, MX1013,
IDN-6566,
IDN-5370,
minocycline,
dexamethasone

Necroptosis
inhibitor

prototype inhibitor of
caspase-independent
cell death

necrostatin-1

Immunophilin
ligands

ligands that bind to
immunophilin proteins
that might suppress
calcineurin activity or
mitochondria
permeability transition
pore

cyclosporine A,
DEBIO-025,
UNIL025, NIM811,
FK506

Ovarian
hormones

neuroprotective likely
through brain-specific
hormone receptor
subtype(s)

estrogen,
progesterone

Erythropoietin hypoxia-induced cytokine/
hormone that suppress
neuronal apoptosis by
acting on brain
erythropoietin receptors

recombinant human
erythropoietin

Hypothermia body or brain cooling to
reduce metabolic load
on injured brain

338C for at least 48 h

There are a number of mechanisms that can be targeted by neuropro-
tectants. This lists the most prominent targets where investigation is
currently quite active, and the drugs and treatments that still have
potential. AMPA, a-amino-3-hydroxy-methyl-4-isoxazolyl-propionic acid;
NMDA, N-methyl-D-aspartic acid.
annual estimated costs of US$56 billion associated with

TBI, US$16.7 billion are for MTBI [9]. These estimates

do not include costs for lost productivity or quality of

life.

Blast-induced brain injury
The leading cause of combat casualties is brain injury,

with an estimated 15–25% of all injuries sustained in 20th

century conflicts [10]. An emerging trend in modern war-

fare is the dramatic increase of blast-induced brain injuries

due to supersonic over-pressurization shock waves gener-

ated by high-order explosives. The blast injuries are

generated as the wave propagates through the body dama-

ging the gas–fluid interfaces [11]. The most serious

damage is inflicted on internal gas-filled structures such

as the lungs, gastrointestinal tract and middle ear. Air

emboli can also form in blood vessels, causing cerebral

infarcts when they travel to the brain. The brain, a soft

tissue, is believed to be vulnerable to the direct impact of

the shock wave as well. As insurgents in Iraq and Afghani-

stan continue to use improvised explosive devices against

American troops, closed head injuries significantly out-

number penetrating ones amongst patients being treated

at the Walter Reed Army Medical Center. All blast

exposed casualties are now routinely evaluated for brain

injuries – 59% are diagnosed with TBI, of which 56% are

considered moderate or severe [12].

Different neuroprotective mechanisms –
different targets
There are numerous targets with their attending neuro-

protective mechanisms for the treatment of TBI.

Although there are many targets, each with their own

drug treatments under investigation [13��], in this review

we will focus on those receiving the most attention and

have proceeded the furthest in terms of clinical relevance

(Table 1).

N-Methyl-D-aspartic acid receptor antagonists
N-methyl-D-aspartic acid (NMDA) receptor-linked gluta-

mate excitotoxicity has been shown to contribute to neural

injury in TBI. Although the early noncompetitive NMDA

antagonists, phencyclidine and MK801, were shown to be

neuroprotective against TBI in rats [14,15], they unfortu-

nately were not clinically acceptable. New drugs, however,

have been or are currently being tested.

A glutamate antagonist (competitive NMDA receptor

blocker) selfotel (CGS 19755) was abandoned during

phase III trials for stroke and TBI after interim analysis

showed no benefit [16��]. Similarly, phase III trials of ion

channel-blocking NMDA receptor noncompetitive

antagonists, aptiganel and eliprodil, were terminated

early when safety concerns became an issue and the

results were no better than neutral, so the data remain

inadequately reported [16��].
opyright © Lippincott Williams & Wilkins. Unauth
Other drugs under study include memantine, a phase III

clinically tolerated effective agent in treating Alzheimer’s

disease, which is currently in trials for additional neuro-

logical disorders. Combinatorial drugs called nitromeman-

tines were developed to use memantine as a homing

signal to target nitric oxide in hyperactivated NMDA

receptors in the hope they would be able to avoid some

of the systemic side-effects. These second-generation

memantine-derivative therapeutics were designed to be

activated under pathologically conditions and, in prelimi-

nary studies, appear to offer better neuroprotection [17��].

Traxoprodil (CP-101606) antagonist is highly selective for

the NR2B subunit of the NMDA receptor [18]; ACEA-

1416, an analog of ACEA-1021 [19], and arcaine, an analog

of agmatine [20], have been shown to be neuroprotective

in animal models of brain injury and ischemia, and appear

to better tolerated.
orized reproduction of this article is prohibited.
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a-Amino-3-hydroxy-methyl-4-isoxazolyl-
propionic acid receptor antagonists
The activation of a-amino-3-hydroxy-methyl-4-

isoxazolyl-propionic acid (AMPA) receptors provides

the initial membrane depolarization to relieve the

magnesium block – a prerequisite for the activation of

NMDA receptors. Inhibitors for AMPA receptors have

not had the same reported side-affects as the NMDA

receptor antagonists, making them a more agreeable

target. Second-generation noncompetitive AMPA recep-

tor antagonists such as GYKI 53405 and talampanel have

been shown to be neuroprotective in experimental TBI

or stroke models [21,22], but failed to advance success-

fully in clinical trails. A new noncompetitive AMPA

antagonist zonampanel monohydrate (YM872), which is

also neuroprotective in rats [23], is now in phase II clinical

trial for treating stroke patients. Like the Gyki com-

pound, the oxadiazole BIIR 561 CL (irampanel) is also

a noncompetitive antagonist with neuroprotective effects

in rats, but it binds to a different site on the receptor. It

also has an additional effect – it has been shown to block

neuronal voltage-gated sodium channels [24].

Calpain inhibitors
Over-activation of cellular proteases is another key

response in brain cells after physical or chemical stresses.

Traumatic or ischemic insult which induces massive

release of glutamate from damaged synapses can lead

to activation of glutamate receptor-associated and vol-

tage-dependent calcium channels. Such influx of calcium

ions directly activates the calcium-activated cytosolic

protease calpain. In fact, calpains are prominently acti-

vated in pro-necrotic cell injury, but are also activated

during neuronal apoptosis [25]. Calpains, as proteases,

have the capability to degrade key structural brain cell

proteins leading to tissue auto-digestion.

Calpain inhibitors have been demonstrated to be neuro-

protective in many ischemic and TBI animal models [26].

Treatment aimed at downstream neuropathological

events could provide a longer window of opportunity

for effective intervention and therefore be valuable for

more patients. In the rat TBI model, calpain proteolysis is

initiated within the first few minutes after injury, but

peak activity can persist for hours [27,28] or even several

days in mild injury [29]. Indeed, studies using calpain

inhibitors, MDL-28170 and SJA6017, in models of

cerebral ischemia [30] and TBI [31] indicate a potential

therapeutic window of at least 3–6 h. Calpain inhibitors

may have a further advantage over glutamate receptor

antagonists and calcium channel blockers in that calpain

exists predominantly as an inactive proenzyme under

normal physiological conditions, and only becomes sig-

nificantly activated under pathological conditions.

Therefore, it would be reasonable to assume that calpain

inhibition would not lead to any untoward adverse
opyright © Lippincott Williams & Wilkins. Unautho
events. On the other hand, glutamate receptors play a

critical neurotransmitter role in and outside of the central

nervous system, and therefore their inhibition could be

expected to have profound side-effects. Indeed, they

have also been shown to have significant psychotomi-

metic outcomes [32].

Drawbacks of calpain inhibitors include relative low

solubility of this class of compounds, and lack of meta-

bolic stability and optimal pharmacokinetic profile.

Recently, the chemically optimized calpain inhibitor,

SNJ-1945, was reported to have significantly improved

solubility and metabolic pharmacokinetic profile [33]. We

now await further advancement of this class of agents.

Caspase inhibitors
Parallel with the calpain activation and necrosis, brain

cells may undergo physical or chemical homeostatic

perturbations that may lead to apoptosis. One major

biochemical hallmark of apoptosis is the activation of

the caspase family of proteases. The major executioner in

this family is caspase-3, which has the capability to

degraded key structural proteins leading to delayed

neuronal cell death. Caspase inhibitors have been

demonstrated to be neuroprotective in many animal

models of ischemic and TBI [26]. For example, the

potent pan-caspase inhibitor M826 is neuroprotective

against neonatal hypoxic–ischemic brain injury [34],

while MX1013 reduced cortical damage by approxi-

mately 50% in a model of brain ischemia/reperfusion

injury [35]. Recently, the chemically optimized and

drug-like caspase inhibitor, IDN-6556, was reported to

suppress apoptosis in a model of hepatic injury [36�]. This

drug is currently in clinical phase II trial for liver trans-

plants as an antihepatic apoptosis agent. Although IDN-

6556 has not been tested in experimental TBI models, it

would be interesting to see if its antiapoptotic effects

extend to TBI and whether it can cross the blood–brain

barrier. Another caspase inhibitor produced by the same

company, IDN-5370, was found to be protective against

apoptosis induction in cortical and synaptic neurons, and

reduced infarct size in rodent cardiac ischemia/reperfu-

sion models by more than 50% [37]. Minocycline, a

broad-spectrum tetracycline antibiotic member, was

found to inhibit cytochrome c release. In use for more

than 30 years, it was specifically designed to cross the

blood–brain barrier. It has recently been reported this

antibiotic can protect brain cells in animal models of

diseases such as acute brain injury, multiple sclerosis,

amyotrophic lateral sclerosis, Alzheimer’s disease, stroke,

etc. The drug is currently in early clinical trials [37].

Finally, dexamethasone has been found to decrease

caspase-3 activation in meningitic animals, demonstrat-

ing that dexamethasone can decrease acute brain injury

in a rat model of bacterial meningitis as measured by

neurobehavioral performance [38�].
rized reproduction of this article is prohibited.
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Necroptosis inhibitor
A new nonapoptotic death pathway, termed necroptosis,

characterized by necrotic cell death morphology and

activation of autophagy, was recently described as a

contributor to ischemic injury. In the study a specific

and potent small-molecule inhibitor of necroptosis,

necrostatin-1, was identified by its ability to block a

critical step in necrotic cell death induced by death

receptor activation even in the presence of caspase

inhibitors, thereby offering a new neuroprotective and

therapeutic target for stroke [39�].

Immunophilin ligands
Mitochondrial dysfunction, leading to increased mito-

chondrial permeability transition pore openings, is a

hallmark of neuronal cell perturbation in both pro-

necrotic and pro-apoptotic challenges. Cyclosporine

A (CsA) and analogues have been shown to bind to

the mitochondrial-specific cyclophilin D, a component

of the permeability transition pore stabilizing the

mitochondrial permeability transition, as well as to

calcineurin. CsA was found neuroprotective in an exper-

imental model of diffuse brain injury [40]. One possible

drawback to CsA is that it is immunosuppressive and

could be counter-indicated in TBI patients. Recent data,

however, showed that nonimmunosuppressive CsA

analogues such as DEBIO-025 [41], UNIL025 and

NIM811 [42,43], with the latter two determined to be

more potent than CsA, are also neuroprotective and thus

may be a good candidates for TBI therapy.

Another immunophilin ligand, FK506, which does not

stabilize mitochondrial permeability transition, attenu-

ates TBI impaired axonal transport, although it fails to

attenuate neurofilament compaction [44]. FK506 appar-

ently operates by complexing with FK-binding proteins

and calcineurin, interacting at a completely different site

on calcineurin from CsA and thereby providing some

measure of neuroprotection [45].

Ovarian hormones: estrogen and
progesterone
It has been well established that estrogen and progester-

one provide gender-based neuroprotective effects in

ischemic and TBI [46�]. Estrogen receptor subtype a,

found in the brain [47�], is now believed critical in

mediating neuroprotection. Progesterone appears

particularly effective in protecting against lipid peroxi-

dation following TBI in rats [48]. The number of studies

continues to grow on the beneficial influences on

neuronal injury of these steroids and their actions appear

to be exerted on multiple processes. The mechanisms by

which these steroids mediate these effects are, however,

still uncertain [49��]. It is, nonetheless, possible that the

combined use of estrogen and progesterone (or their more

refined analogues) could be a viable therapy against TBI.
opyright © Lippincott Williams & Wilkins. Unauth
Erythropoietin
Erythropoietin (EPO) has been a surprising entry into the

stable of possible neuroprotective drugs. Since nearly all

brain cells, including neurons, astrocytes, oligodendro-

cytes, microglia and the endothelial cells lining the

capillaries [50], appear capable of expressing EPO and

its receptor [51�] when induced by hypoxia, it appears to

offer multifaceted protection from deleterious stimuli

such as hypoxia, excess glutamate, AMPA, serum depri-

vation or kainic acid [50] exposure. In rodent models of

ischemic stroke with an increase in apoptotic lesions

[52�], a regime of EPO reduces infarct volume, and

prevents behavioral abnormalities, cognitive dysfunction

and brain atrophy [53�]. In general, EPO improves func-

tional outcome in animal models with subarachnoid and

intracerebral hemorrhage, TBI [50], and spinal cord

injury. EPO, with its convenient 6-h therapeutic window

and its improved safety profile with the advent of the

recombinant human form, has been employed in a lim-

ited therapeutic trial for stroke. The results were prom-

ising enough so that a larger multicenter phase II/III trial

has been initiated in Germany [54��].

Hypothermia
Hypothermia, while not a drug, is a medical treatment

that has recently shown some positive results (e.g. [55])

in single-center trials, but one multicenter clinical trial

failed to clearly to show a positive effect leading to some

controversy [56�,57�]. This multicenter study has been

criticized on several points, including trial methodology,

design and intervention application, group comparison,

and intercenter variations. What was evidentially unam-

biguous is that hyperthermia occurs in the majority of the

brain-injured patients, and that a relationship between

hyperthermia and poor outcome exists. It is also clear

that hypothermia treatment reduces intracranial hyper-

tension [58��]. A new multicenter phase III study has

recently completed enrollment and the data are cur-

rently being analyzed.

Conclusion
TBI represents a major central nervous system disorder

without any clinically proven therapy. In this review,

various pharmaceutical agents or treatments have been

shown to have beneficial effects in animal models of TBI

and even some cases on human patients. The past 10 plus

years have, however, witnessed numerous failures in

clinical drug trials for the treatment of TBI in humans.

This indicates just how difficult it is to translate promising

preclinical data into clinical successes [59]. In retrospect, a

number of key missing components can be identified in

these clinical trials and need to be included in future trials:

(1) stronger preclinical animal efficacy data (with positive

results from at least two animal models of TBI), (2) advan-

cing drug candidates with an extended therapeutic win-

dow of at least 3–4 h (i.e. drug still shows neuroprotection
orized reproduction of this article is prohibited.
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even when given 3–4 h post-TBI), (3) better overall

clinical trial design and (4) incorporation of clinical TBI

biomarkers as guidance for drug response [60�]. These are

not small challenges, but the diversity and novelty of

emerging neuroprotective agents give TBI researchers

and clinicians a sense of much-needed optimism.
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