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Introduction 

The afferent innervation of the gastrointestinal (GI) tract consists of intrinsic and extrinsic 

sensory neurons that respond to nutrients, chemicals or mechanical stimuli within the 

gut lumen.  Most stimuli do not interact directly with the afferent nerves but instead 

activate specialised cells in the epithelium in a process of sensory transduction.  It is 

thought that one of the first steps in this process is the release of serotonin (5-HT) from 

the enterochromaffin (EC) cells (for reviews on the sensory transduction process, see 

Raybould, 2002; Bertrand, 2003; Blackshaw et al., 2007; Gershon & Tack, 2007; Grundy, 

2008).  The EC cells are a sub-type of enteroendocrine (EE) cells which are found 

among the enterocytes of the intestinal epithelium.  The EC cells are responsible for the 

production and storage of the largest pool of 5-HT in the body (Erspamer, 1954; 

Gershon & Tack, 2007).  Released 5-HT can act on the intrinsic nerves (reviewed by 

Schemann, this issue) and vagal endings (reviewed by Zagorodnyuk et al, this issue).  

This review will focus on the role of 5-HT in sensory transduction and examine how the 

EC cell produces and releases 5-HT.  We will explore recent developments that have 

helped to elucidate some of the proteins that allow EC cells to sense the luminal 

environment.  Finally, we will highlight some of the findings from new studies using 

electrochemical techniques which allow the real-time recording of 5-HT concentrations 

near to the EC cell.    

 

5-HT is an important paracrine signalling substance in the GI tract 

Serotonergic transmission from the raphé nuclei acts on most brain areas while enteric 

neurons utilise 5-HT for some reflexes and synaptic potentials (e.g., Monro et al., 2002; 
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Monro et al., 2005).  It is, however, the non-neuronal EC cells that produce, store and 

release the largest pool of 5-HT in the body (Erspamer, 1954; Gershon & Tack, 2007).  

5-HT released from the EC cells modulates a large number of GI reflexes in health and 

disease (for reviews see Furness et al., 1999; Kirkup et al., 2001; Bertrand, 2003; 

Grundy & Schemann, 2005).  5-HT and other EE cell mediators, such as cholecystokinin 

(CCK) or adenosine-5'-triphosphate (ATP), are thought to act in concert to initiate or 

maintain motor and secretory patterns tuned to the contents and to the region of 

intestine.  For example, mechanical stimuli applied to the mucosal epithelium releases 

5-HT into the lumen which enhances peristaltic reflexes (e.g., Bülbring & Crema, 1959; 

Kirchgessner et al., 1992; Foxx-Orenstein et al., 1996; Grider et al., 1996; Linden et al., 

2003; O'Hara et al., 2004). Similarly, nutrients - such as short or long chain fatty acids, 

peptides, glucose - or chemical stimuli (e.g., acid, base) seem to act at the epithelial 

border by causing release of 5-HT from the EC cells or other sensory mediators from the 

EE cells (Raybould, 2002; Bertrand, 2003; Blackshaw et al., 2007; Gershon & Tack, 

2007; Grundy, 2008). 

 

<Figure 01> 

 

The release of 5-HT from the EC cells is not always beneficial.  A very high level of 

release is one of the main causes of symptoms such as the diarrhoea associated with 

cholera (Lundgren, 1998; Turvill et al., 2000), the nausea due to chemo- or radiation 

therapy (Sanger, 1990) or the flushing and heart palpitations associated with carcinoid 

tumours (McCormick, 2002).  The central position of EC cells in these symptoms has led 

to the proposal that they contribute to similar problems associated with chronic intestinal 

diseases such as inflammatory bowel disease (IBD) or irritable bowel syndrome (IBS).  
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This has led to a great deal of interest in the effects of inflammation on EC cells and the 

5-HT they release (e.g., Lomax et al., 2006; Mawe et al., 2006; Keating et al., 2008).  

Interestingly, it is not always clear from individual measures of 5-HT levels or EC cell 

numbers if the overall availability of 5-HT goes up or down in such cases.  For example, 

in early studies of ulcerative colitis (UC) patients, the numbers of EC cells decreased 

(e.g., Verity et al., 1962), while in later studies the numbers of EC cells increased (e.g., 

El-Salhy et al., 1997).  More recently, Coates et al (2004) have found that the number of 

EC cells decreased in patients with severe UC but found no change in mild UC or in 

tissues from irritable bowel syndrome (IBS) patients.  In contrast, Dunlop et al found an 

increase in mucosal 5-HT turnover in post-infectious IBS (Dunlop et al., 2005). 

 

Animal models of inflamed bowel have also yielded conflicting results.  In a 

trinitrobenzene sulfonic acid (TNBS) model of mouse colitis, Linden et al (2005a) 

showed increased 5-HT availability due to a decrease in serotonin reuptake transporter 

(SERT)-dependent 5-HT uptake with no change in EC cell numbers, while previous 

studies of TNBS models of guinea-pig colitis and ileitis found an increase in EC cell 

numbers (Linden et al., 2003; O'Hara et al., 2004).  On the other hand, a consistent 

finding of these studies was that levels of SERT expression were decreased.  The 

central role of SERT in controlling 5-HT availability is highlighted in a new study by 

Bischoff et al showing that rats lacking SERT have a much more severe TNBS induced 

colitis (Bischoff et al., 2009).  

 

Several recent studies have explored the immunological link between inflammation and 

5-HT availability.  Wang et al have shown that during parasitic infection a Th2-based 

mechanism causes an increase in the number of EC cells and the amount of 5-HT 
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(Wang et al., 2007).  In support of this, Motomura et al have shown that a Th2-mediated 

inflammation causes similar changes as compared to a Th1 mediated inflammatory 

response to the same parasitic infection (Motomura et al., 2008).  Taken together these 

studies show that disease state such as inflammation can strongly regulate 5-HT 

availability.  

 

The production, release, uptake and degradation of 5-HT in the 

intestine 

The EC cells produce 5-HT from the dietary amino acid L-tryptophan using the rate 

limiting enzyme tryptophan hydroxylase (TpH) (Verbeuren, 1989). In the gastrointestinal 

tract TpH isoform 1 has been localized to EC cells (Yu et al., 1999) while the second 

isoform, TpH2, has been localized to enteric neurons and central raphé neurons 

(Walther et al., 2003).  TpH1 converts L-tryptophan to 5-hydroxytryptophan (5-HTP).  

The non-rate limiting enzyme L-amino acid decarboxylase (L-AADC), contained in EC 

cells, then converts 5-HTP to 5-HT (Hakanson et al., 1970; Verbeuren, 1989).  Newly 

produced 5-HT is packaged into granules/vesicles by the vesicular monoamine 

transporter 1 (VMAT1); this isoform is specific for EC cells and a small proportion of 

adrenal chromaffin cells (Rindi et al., 2004; Schafermeyer et al., 2004).  5-HT is released 

mainly from the granules stored near the basal border of the EC cell, but some studies 

have also identified granules near the apical membrane (Nilsson et al., 1987) and 

demonstrated that 5-HT can be selectively released into the lumen (Ahlman et al., 1981; 

Forsberg & Miller, 1982; Fujimiya et al., 1998b) and found in the faeces (Fukumoto et al., 

2003; Tsukamoto et al., 2007).  What causes the release of 5-HT will be covered in detail 

in later sections of this review. 
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<Figure 02> 

 

5-HT released from the granules stored near the basal border of the EC cell enters the 

lamina propria where it can interact with nerve terminals, immune cells and can be taken 

up into the blood by the platelets.  The EC cells are in constant migration from the crypt 

to the tip of the villus (e.g., O'Hara & Sharkey, 2007); one consequence of this is that no 

close contacts with nerve terminals or immune cells can be maintained.  Indeed close 

contacts between EC cells and other structures are not common in the first place (Wade 

& Westfall, 1985).  Thus to affect the nerve terminals, 5-HT must be released in a 

paracrine manner.  The high concentrations of 5-HT released from the EC cell can 

activate the intrinsic or extrinsic sensory nerve terminals via 5-HT3 receptors (Hillsley et 

al., 1998; Bertrand et al., 2000), while at lower concentrations it activates 5-HT4 or 

5-HT1P receptors (Grider et al., 1996; Pan & Gershon, 2000).  Many in vitro studies have 

shown that these receptors are important for the initiation or propagation of enteric 

reflexes such as peristalsis (Kadowaki et al., 1996; Tuladhar et al., 1997; Grider et al., 

1998; Jin et al., 1999) or secretion (Sidhu & Cooke, 1995; Cooke et al., 1997a, b). 

 

The actions of 5-HT are terminated by uptake via the serotonin re-uptake transporter 

(SERT - a Na+/Cl- dependent transporter) into epithelial cells (Martel et al., 2003).  This 

is the same SERT protein that is found in platelets, enteric neurons and central raphé 

neurons (Gershon, 2004).  SERT is the target for important therapeutic drugs such as 

fluoxetine and paroxetine, members of the serotonin-selective re-uptake inhibitor family.  

SERT has been localized to many intestinal epithelial cells using immunohistochemistry 

(Wade et al., 1996) and northern blot analysis (Chen et al., 1998), and appears to be 
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present in the apical and basal membranes of the epithelial cell (Gill et al., 2008).  The 

SERT gene is subject to a number of naturally occurring polymorphisms in the coding 

and promoter regions, some of which have been linked to the symptoms of Irritable 

Bowel Syndrome (IBS) (e.g., Yeo et al., 2004) or to the pharmacogenomics of IBS 

treatment (Camilleri et al., 2002; Scherl & Frissora, 2003).  A novel splice variant of 

SERT has been identified that is specific for the intestinal epithelium (Linden et al., 

2005b; Linden et al., 2009) but has yet to be linked to disease.   

 

Once SERT has brought 5-HT into the epithelial cells it is degraded to 5-

hydroxyindoleacetic acid (5-HIAA) by monoamine oxidase A (MAOA), an enzyme 

localised to all epithelial cells of the intestine (Egashira & Waddell, 1984; Rodriguez et 

al., 2001).   Alternatively, 5-HT released into the lamina propria may enter the portal 

circulation and be found either as free 5-HT or within platelets (via the actions of SERT).  

As the portal circulation is processed by the liver the free 5-HT is rapidly degraded by 

liver enzymes.  About one third is degraded by MAOA to 5-HIAA which is commonly 

detected in urine.  The remaining two thirds of 5-HT is degraded to the metabolite 

5-HT-O-glucuronide (Gershon et al., 1989; Verbeuren, 1989).  Importantly, 5-HT taken 

up by platelets is protected from degradation in the liver and enters the general 

circulation. 

 

<Figure 03> 

 

Co-storage of other bioactive compounds in EC cells 

5-HT is co-stored in the EC cells with a variety of other paracrine/hormone substances.   
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EC cells contain the vesicle storage protein chromogranin A (CGA); CGA is also 

expressed in most of the other enteroendocrine cells (Facer et al., 1985; Rindi et al., 

2004).  Once VMAT1 has transported 5-HT into the vesicle, CGA is thought to bind to it 

allowing high concentrations of 5-HT to be stored inside the granules, as has been 

demonstrated for adrenaline in chromaffin cells (Montesinos et al., 2008).  The presence 

of CGA allows EC cells to be identified using a silver reaction, a process which is still in 

use today (Grimelius, 2004).  Interestingly, CGA can also be released with 5-HT 

(Okumiya & Fujimiya, 1999) and may be cleaved into an active hormone form (Curry et 

al., 2002), though the physiological relevance for this in the intestine has not been 

established.  Of the additional substances contained in EC cells, perhaps most important 

is melatonin.  5-HT is a precursor for melatonin synthesis and many EC cells have been 

shown to contain melatonin (Bubenik, 2002) and to release it to cause physiological 

effects (Sjöblom & Flemström, 2003).  Another interesting transmitter contained in EC 

cells is gamma-aminobutyric acid (GABA).  Of the epithelial cell types, GABA is present 

only in the EC cells (Oomori et al., 1992) and as such it has been used as a marker to 

help in the enrichment of EC cell cultures (Schafermeyer et al., 2004).  It also seems 

likely that ATP, or a related purine, is co-stored with 5-HT.  Recently discovery of 

vesicular nucleotide transporter (Sawada et al., 2008), which transports ATP into 

vesicles, should allow definitive studies on this matter. 

 

There are a variety of other substances that are in EC cells but have an unclear 

physiological role or were originally thought to be in EC cells but were later shown not to 

be.  The relatively newly discovered gut hormone uroguanylin is present in all EC cells 

(Perkins et al., 1997) while the related peptide guanylin was originally proposed to be in 

EC cells (Cetin et al., 1994), but further study showed this was due to the guanylin 

antibody cross-reacting with uroguanylin (Perkins et al., 1997).  EC cells have also been 
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shown to contain the opioid precursor dynorphin (Cetin, 1988).  Motilin was proposed to 

be contained in EC cells (Pearse et al., 1974) but later research suggests this is not the 

case (Forssmann et al., 1976; Fujimiya et al., 1998a). Substance P was initially reported 

to be in some EC cells (Heitz et al., 1976), however, later studies either found only a 

small amount (Alumets et al., 1977) or none (Sokolski & Lechago, 1984).  The story of 

substance P is still unclear as it has again been reported to be released from EC cells 

(Simon et al., 1992), and a posthumous review of the work of Vittorio Erspamer suggests 

that it is stored in the EC cells of some species and in some EC cell derived tumours 

(Severini et al., 2002; Grundy, 2008). 

 

EC cell transduction machinery 

There are two ways that stimuli in the intestinal lumen may be detected by the afferent 

nerve terminals located in the lamina propria.  First, they may be ferried across the 

epithelium by specific transport proteins, as are most nutrients once they are broken 

down.  Once across, these stimuli could interact with specialised receptors on the nerve 

terminal.  This is the mechanism hypothesised by Liu et al (1999) for glucose and it is 

clear that capsaicin directly activates afferents through TRPV1 receptors.  Second, 

receptors and transduction machinery may exist on the luminal aspect of EE cells or 

other specialised cells within the mucosal epithelium.  The sensory mediators these cells 

release are known to act on receptors on the afferent terminals (Blackshaw et al., 2007).   

As alluded to previously in this review, this is the sensory transduction process which we 

believe most stimulants act through.    

 

In support of this second mechanism, there is evidence for taste transduction machinery 
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on intestinal epithelial cells.  The presence of the taste G-protein α-gustducin has 

recently been shown in some EE cells (Hass et al., 2007; Sutherland et al., 2007).  

Similarly, sub-sets of EE cells (including EC cells) have been shown to contain taste 

receptors (T1R and T2R), second messenger systems (PLCβ2) and channels (TRPM5) 

that form part of the taste transduction machinery normally associated with the tongue 

(Dyer et al., 2005; Bezençon et al., 2007; Sutherland et al., 2007; Kidd et al., 2008; 

Mace et al., 2009; Young et al., 2009).  Recently, Nozawa et al (2009) have shown that 

TRPA1, the receptor for pungent compounds such as mustard, is also expressed by EC 

cells.  A good review of this very active area of research is Rozengurt and Sternini 

(2007).   

 

The evidence for functional transduction machinery of the other senses in the GI tract is 

not as convincing as that for taste.  Hofer et al (1999) showed that the G-protein 

transducin, present in the eye and in some taste receptors, was also present in GI 

epithelium.  More recently, Mace et al have confirmed this and have shown that 

transducin can couple to taste machinery (Mace et al., 2009).  A recent study by Braun 

et al has shown that some of the smell machinery is present in the gastrointestinal tract 

(Braun et al., 2007).  In particular, a subset of olfactory receptors was detected, a finding 

that was supported by Kidd et al who showed that activation of these receptors 

stimulated 5-HT release from EC cells (Kidd et al., 2008). 

 

Glucose sensing in the GI tract is apparently more complicated than for other nutrients.  

It has been linked to taste receptors (Mace et al., 2009) but it has also been linked with 

the mechanisms of glucose sensing used by the pancreatic β-cells (Raybould, 2002; 

Raybould et al., 2004).  Thus far, KATP (Kirchgessner et al., 1996), Na+/glucose 
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co-transporter 1 (SGLT1) (Liu et al., 1999; Kidd et al., 2008) and glucose transporter 2 

(GLUT2) (Mace et al., 2007) have all been found to play roles.  For a short review of the 

glucose sensing machinery in the GI tract, please see Dyer et al (2007).   

 

5-HT release from the EC cell 

Much of the mechanistic data on how EC cells work has come from Racké, Schwörer 

and colleagues who over the years have described 5-HT overflow from in vitro segments 

of intestine from a variety of small and large animals (for review, see Racké et al., 1996). 

They found that 5-HT release is generally via an external Ca++-dependent process 

utilising L-type calcium channels (Forsberg & Miller, 1983).  However, upon muscarinic 

receptor activation 5-HT release can occur by utilising calcium from internal stores.  

Release of 5-HT can also be evoked by agonists at a variety of receptors such as 

adrenoceptors, muscarinic receptors or 5-HT3 autoreceptors, while release can be 

inhibited by activation of GABAA, nicotinic or somatostatin (SST) 2 receptors or 5-HT4 

autoreceptors (Gebauer et al., 1993).  

 

The 5-HT measured using these traditional overflow methods is the sum of the output of 

many EC cells measured many minutes after release has occurred and is far from the 

site of action; thus, temporal and spatial information is lost.  It is not surprising then that 

other techniques have been used in an attempt to look at the activity of only a few EC 

cells at a time.  Studies of calcium transients in small numbers of EC cells show clearly 

that apparently identical EC cells respond to transmitter or calcium channel agonist 

differently (Satoh et al., 1995; Lomax et al., 1999; Satoh et al., 1999); although for the 

most part the pharmacological features found by Racké and Schwörer have been 
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supported.   

 

Studying single EC cells in vitro has been difficult as they are a relatively small 

proportion of the epithelial cells, perhaps 1 - 3% in human (Bose et al., 2000; Coates et 

al., 2004).  In addition, there are many other types of EE cells with similar structural 

properties (Wade & Westfall, 1985).  A successful approach at enriching the EC cells 

has used techniques originally developed for the histamine containing EC-like cells of 

the stomach (Oh et al., 2005).  Using successive sucrose gradients, Schafermeyer et al 

were able to enrich the EC cell fraction (Schafermeyer et al., 2004) and more recently 

this technique has been used by Doihara et al (2009).  Kidd et al have succeeded in 

enriching the EC cells using fluorescence-activated cell sorting techniques to the point 

that gene chips could be used to show expression of some taste machinery mRNA (Kidd 

et al., 2006; Modlin et al., 2006; Kidd et al., 2008).  Finally, Braun et al have purified 

human EC cells isolated by laser micro-dissection (Braun et al., 2007). 

 

A further attempt to look at single cells has utilised an EC cell model, the BON cell, 

which is derived from a metastatic human carcinoid tumour of the pancreas (Evers et al., 

1994).  BON cells have been used as a model of EC cell function (Christofi et al., 2004; 

Tran et al., 2004) and to investigate the release of 5-HT by D-glucose application or 

mechanical stimulation (Kim et al., 2001a; Kim et al., 2001b).  Recent studies have 

questioned the value of the BON cell as an EC cell model (Siddique et al., 2009) and 

have instead used a cell line derived from a human carcinoid tumour of the small 

intestine (KRJ-I) (Kidd et al., 2008).  Other models include a human pancreatic 

endocrine cell line (QGP-1) (Doihara et al., 2009) and a rat pancreatic delta cell line 

(RIN14B) (Nozawa et al., 2009).  Finally, there is the potential for a promising new model 

of the EC cell from work being done using the 'immortoMouse' (Whitehead & Robinson, 
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2009). 

 

 

Electrochemical detection of 5-HT release 

Another successful approach to examining only a few EC cells at a time has been to use 

electrochemical techniques to record 5-HT levels near the EC cells in real time.  These 

techniques have been commonly used to record, for example, adrenaline release from 

chromaffin cells (Chow et al., 1992), dopamine release from the caudate nucleus, 

noradrenaline release from the thalamus (Gerhardt et al., 1984) and 5-HT from the 

raphé nucleus (Daws et al., 2005).  When molecules of a transmitter such as 5-HT are 

oxidised the transfer of electrons can be detected and quantified.  This provides a direct 

and accurate measure of the number of molecules (i.e., the concentration) at the 

electrode tip (e.g., see Benzekhroufa et al., 2009).  Generally carbon fibre electrodes 

have been used, but boron-doped diamond-coated platinum electrodes have also been 

used successfully (Bian et al., 2007; Patel et al., 2007).  

 

In the GI tract electrochemical techniques have been used to record 5-HT release 

selectively and quantitatively.  Steady state levels of 5-HT near the mucosal surface 

have been measured and mechanically evoked 5-HT release has been determined.  The 

function of SERT and its contribution to the endogenous 5-HT signal can also be 

measured.  Together, these data allow the availability of 5-HT in healthy GI tissues to be 

assessed in real time and compared with that in diseased tissues.  As these 

electrochemical techniques are relatively new in the GI field it is worth reviewing some of 

the evidence supporting its utility in detecting 5-HT released from EC cells. 
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Is 5-HT detected selectively by electrochemical techniques? 

Given the number of substances that are contained in EC cells, and in other EE cells, it 

is important to know that 5-HT can be detected selectively using electrochemical 

techniques.  One way to determine if compounds other than 5-HT are present and will 

contribute to the oxidation current recorded is to use cyclic voltametric techniques.  

Cyclic voltammetry ramps the voltage at the electrode while recording the current.  5-HT 

starts to oxidise at a specific voltage (usually around +300 mV) and when the voltage 

ramp reaches this potential much of the 5-HT on the electrode surface will oxidise 

producing a clear peak in the oxidation current.  Another way to ensure that 5-HT is 

detected selectively is to coat the electrode with a thin film of Nafion, an anionic 

exchange resin that repels anionic species such as ascorbic acid or the metabolite 

5-HIAA, and attracts the cationic 5-HT.   

 

<Figure 04> 

 

In each species tested to date, it has been shown that 5-HT is the major peak at lower 

oxidation potentials (< +500 mV).  5-HT peaks have been observed from the ileal 

mucosa of guinea pig (Bertrand, 2004), rat (Bertrand et al., 2008c) and mouse 

(Bertrand, 2006b) and the colon of mouse (Bertrand et al., 2008e).  The catechols or 

dopamine oxidise at a lower potential than 5-HT but have not been observed during 

recordings made near the mucosa.  As the voltage is ramped to around +700 mV a 

second peak is often observed from the mucosa.  It could be that the signal is due to 

melatonin which can also be released from the EC cells.  In support of this, the second 
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peak mirrors the 5-HT time course including run down, and exogenous melatonin 

oxidises at the same potential as the second peak seen from the mucosa (Bertrand, 

2004).  Recent preliminary work has confirmed that melatonin is released during 

electrochemical experiments (Patel, 2008) and has shown that the level of endogenous 

melatonin at the mucosal surface is increased in aged mice (P. Bertrand, unpublished 

data).  As melatonin treatment has been shown to improve age-related changes in gall-

bladder (Gomez-Pinilla et al., 2006), the role of endogenous melatonin in gastrointestinal 

function may be a ripe new area of research.  

 

Can the concentration of 5-HT be determined near the EC cell? 

The concentration of 5-HT near the mucosal surface can be calculated based on the 

linear relationship between oxidation current and 5-HT concentration, using the current 

produced by known concentrations of exogenous 5-HT to calibrate this relationship.  It is 

worth highlighting the fact that the concentration of 5-HT detected depends on how close 

the electrode is to the site of release, the EC cell.  The minimum concentrations that can 

be detected away from the mucosa are less the 100 nM.  As the electrode is brought 

close to, or touching, the mucosal epithelium, 5-HT concentrations rise to over 1 M.  

Although the signal to noise ratio is very good, there are several problems and criticisms 

inherent in actually touching the epithelial surface with the electrode (see Vanden 

Berghe, 2008).  Other studies looking at adult and neonatal guinea pig ileum (Bian et al., 

2007; Patel et al., 2007) and at BON cells (Braun et al., 2007) have not routinely 

converted oxidation current to 5-HT concentration, so we can not directly compare with 

previous studies (e.g., Bertrand, 2004).   

 

<Figure 05> 
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What information do electrochemical recordings give?  

As this is a new technique in the GI tract, it is important to ask what electrochemical 

recordings can tell us about the role of serotonin.  Thus far electrochemical studies have 

measured steady state levels of 5-HT at the mucosal surface, and measured the kinetics 

of evoked 5-HT release following mechanical stimulation of the EC cells.  5-HT levels 

have been measured near the mucosal surface from a variety of animals (Bertrand, 

2004, 2006b; Bian et al., 2007; Patel et al., 2007; Bertrand et al., 2008a; Bertrand et al., 

2008c) and human surgical specimens (Bertrand et al., 2008b). 

 

<Figure 06> 

 

Steady state levels of 5-HT detected electrochemically reflect the amount of 5-HT that is 

trapped in the unstirred layer.  This level of 5-HT represents a steady state between 

escape into the bulk solution (the lumen) and reuptake by SERT into the epithelial cells 

(more about SERT below).  As an example, the steady state levels of 5-HT in mouse 

colon are about 2 M, lower than that found in the mouse ileum (Bertrand, 2006b) or in 

the ileum of other species such as rat (Bertrand et al., 2008c) or guinea-pig (Bertrand, 

2004) and similar to known distributions of EC cells (Sjölund et al., 1983).   

 

Mechanical compression of the epithelium is a challenge to the EC cell and so the 

mechanosensory function of the EC cell can be tested.  When a glass rod  (Bian et al., 

2007) or the electrode itself (Bertrand et al., 2008c) is used to stimulate the EC cells an 

increase in the levels of 5-HT are detected.  In addition, a contraction of the circular or 
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longitudinal muscle is a mechanical stimulus for 5-HT release (Bertrand, 2006a).  The 

peak concentration of mechanically evoked 5-HT release is usually 2-4 times that of the 

steady state levels.  For example, peak levels of 5 HT released in mouse colon are 

approximately 7 M in response to compression of the mucosa versus 2 M at steady 

state (i.e., the steady state levels were approximately 30% of peak compression levels).  

In mouse ileum compression evoked 10 M peak 5-HT while steady state levels were 

6 M (Bertrand, 2006b). 

 

5-HT uptake by SERT can be detected electrochemically 

The actions of 5-HT in the GI tract are terminated by uptake via the SERT which is 

located in most epithelial cells (e.g., Gill et al., 2008).  As noted above, the levels of 5-HT 

reflect a steady state between escape into the luminal solution and transport by SERT 

into the enterocytes.  Using electrochemical techniques, it is possible to infer SERT 

function in real time from GI tissues.  Blockade of SERT with a reuptake inhibitor such as 

fluoxetine can increase peak levels of compression-evoked 5-HT release and can 

prolong the decay time of these responses.  Furthermore, there is an increase in steady 

state levels of 5-HT near the mucosa (Bian et al., 2007; Bertrand et al., 2008c) and an 

increase in the decay times of exogenously applied 5-HT (pressure ejected onto the 

surface of the mucosa) (Bertrand et al., 2008c).  In contrast, is seems that blockade of 

SERT does not increase the peak level of 5-HT detected following contraction-evoked 

release (Bertrand et al., 2008c).   

 

<Figure 07> 
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What can the electrochemical determination of 5-HT concentration tell us 

about receptor activation? 

Electrochemical methods allow the accurate measure of the absolute concentrations of 

5-HT near the mucosa and, by extension, near the afferent nerve terminals that control 

GI function and sensation (Keating et al., 2008).  The absolute concentration of 5-HT 

near the nerve terminal is important because this may substantially alter the activation or 

desensitization of serotonin receptors on afferent nerve terminals, or on the EC cells 

themselves.  For example, the peak concentration of 5-HT measured from mouse colon 

was approximately 7 M, high enough to activate the 5 HT3 receptor (Bertrand et al., 

2008a; Bertrand et al., 2008e).  The ligand-gated 5-HT3 receptor can only be activated 

by relatively high (> 1M) concentrations of 5-HT and to be exposed to these high 

concentrations, the receptor must be close to the site of 5-HT release.  Near the EC cell 

concentrations are high while far from the receptor concentrations are lower as a result 

of dilution and reuptake.  However, these lower concentrations of 5-HT are not inactive 

as all other 5-HT receptors are G-protein coupled requiring much lower (> 5 nM) 

concentrations of 5-HT for activation.  Thus, we can speculate that the actions of 5-HT 

through the clinically important 5-HT4 receptor could be far from the site of 5-HT release.   

 

Are electrochemical methods sensitive to changes in 5-HT availability 

during development or disease? 

Recent studies have used electrochemical techniques to explore the availability of 5-HT 

in animal models of development and disease.  Bian et al has shown that mechanically 

stimulated release of 5-HT is increased by blockade of SERT in adult but not neonatal 

guinea pig ileum (Bian et al., 2007).  This suggests that SERT levels are lower in 
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neonatal ileum, a finding that was supported with western blot analysis (Bian et al., 

2007).  The levels of 5-HT may increase during aging.  Preliminary data has shown a 

50% increase in 5-HT release from aged mice (21 months) compared to young mice (3-5 

months)(P. Bertrand unpublished observations).  Similarly, electrochemical determination 

of 5-HT availability has been seen to increase in a mouse model of inflammation 

(Bertrand et al., 2008a).  During DSS-colitis, the levels of 5-HT detected by 

electrochemical methods were almost doubled that found in inflamed tissues.    

 

It will be interesting to see how functional measures of 5-HT availability, such as the 

electrochemical methods described here, compare to anatomical or genetic analyses in 

a variety of disease states. Taken together, electrochemical determinations appear to be 

a useful adjunct to traditional methods of measuring 5-HT availability.  

  

How important is 5-HT to GI tract function? 

As this review is about 5-HT as a sensory mediator or paracrine substance it is fair to 

ask how important 5-HT is in the greater scheme of GI tract control.  It has been known 

for years that experimentally reducing 5-HT content in the GI tissues does not cause as 

dramatic a reduction in enteric reflexes as one might predict.  For example, Bülbring and 

Lin (1958) showed that 5-HT overflow dropped by 90% during sustained peristalsis but 

that fluid transport only dropped by 50%.  Adding the precursor 5-HTP increased 5-HT 

output but actually decreased fluid transport (Bülbring & Lin, 1958).  Similarly, depletion 

of EC cell 5-HT by parachlorophenylalanine (pCPA) (Weber, 1970) did not affect 

gastrointestinal transit of a charcoal meal (Pourgholami & Goshadrou, 1995).  Further, 

genetically reducing 5-HT availability does not cause death or a lack of GI function (Lrp5 
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over expression, Yadav et al., 2008), (knockout of TpH1, Walther et al., 2003).  

 

Putting aside the inherent dangers of using genetic models which allow developmental 

plasticity to occur, it is fair to say that a decrease in 5-HT availability does not cause 

severe long-term GI tract dysfunction.  There are several reasons why this may be the 

case.  First, as noted 5-HT is one of many GI hormones released from EE and EC cells.  

It is clear that these hormones have individual as well as overlapping functions; thus, 

they can act in concert and act as a backup.  Second, the GI tract is well known for its 

ability to adapt and change to the environment.  Unlike most organs of the body, the GI 

tract is subject to an ever-changing chemical environment.  Many of the toxins now used 

to block synaptic or neuromuscular transmission could well have been ingested 

accidentally by past generations (e.g., hyoscine/belladonna) and so the GI tract has 

developed to overcome the problem of ingested toxins.  Thus, while too much 5-HT can 

be toxic (e.g., following chemotherapy), it seems that with too little 5-HT life still goes on 

thanks to these alternative mechanisms.  Does this mean measuring 5-HT levels is not 

important for understanding the physiology or pathophysiology of the GI tract?  No, on 

the contrary it means that 5-HT is a useful marker for a variety of disease states.  The 

system of enzymes and transporters that produce and package 5-HT, and the EC cells 

and their host of proteins which control the release of 5-HT, are part of a highly 

adaptable system.  

 

Future directions 

Research on serotonin and EC cells in the GI tract has gained momentum in the last 10 

years.  We believe that some of the most exciting developments relate to the isolation 
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and genetic analyses of EC cells, and to the evoked release of 5-HT by a wide variety of 

stimulants with subsequent detection using electrochemical techniques. 

 

The enrichment of EC cells has now been accomplished by several groups using 

centrifugation, cell sorting and laser micro-dissection.  In addition, several new cell lines 

have been characterised and are as good as, if not better than, the venerable BON cell 

line.  The final step may be to generate a transgenic mouse with EC cell-specific 

expression of a fluorescent protein, as has been done with GLP containing L-cells 

(Reimann et al., 2008) and CCK cells (Samuel et al., 2008).  The enrichment of EC cells 

has allowed a global survey of EC cell genes to be carried out (Kidd et al., 2006).  These 

studies have identified a host of potential sensory transduction components including 

receptors for taste and smell (Kidd et al., 2008), and have opened up the potential for 

comparative studies with diseased tissue (Kidd et al., 2007).   

 

There is a need to re-examine what stimulants cause EC cells to release 5-HT.  Previous 

studies have found many nutrients and other stimuli evoke 5-HT release (Racké et al., 

1996) but whether this was due to a direct effect on the EC cell is not clear.  The genetic 

clues gleaned recently have directed the choice of potential stimulants to be tested while 

the enrichment of EC cells has provided a clear target upon which to test.  Well known 

compounds such as mustard (Nozawa et al., 2009) or caffeine (Kidd et al., 2008), as 

well as odorants found in roses or raspberries (Braun et al., 2007) reliably evoked 5-HT 

release.  Perhaps a more important goal will be to translate these insights into useful 

information about the physiology or pathophysiology of the EC cell.  In this respect, 

electrochemical techniques may be useful as they can provide a continuous readout of 

EC cell activity within whole tissues and during normal function.  The challenge here will 
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be to embed these sensors in the GI tract chronically and to expand the types of sensory 

mediators that they can detect.  In the end, the EC cell is only one of several sub-types 

of EE cell, each with an important role in paracrine signalling.  

 

Conclusions 

The GI tract senses the luminal contents and signals to the extrinsic and intrinsic nerves 

in the wall of the gut.  The EC cell plays a key role in helping to transduce these signals 

by converting chemical, nutrient or mechanical stimuli into the release of 5-HT.  All 

proteins for the production, uptake and degradation of 5-HT are known.  However, many 

exciting new findings have highlighted the role 5-HT plays in disease and uncovered the 

ways in which 5-HT release is controlled.  Proteins once thought specific for taste or 

other sensory transduction systems have been implicated in controlling 5-HT release 

from EC cells.  New techniques have allowed the genetics of enriched EC cells to be 

studied and electrochemical techniques have provided new insight into the kinetics of 5-

HT release.   
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Figure Legends 

Figure 1.  Side view of the intestinal wall showing the different layers.  Top, a 

diagram showing a section of intestine with two villi highlighted and shown in detail 

below.  These layers are, from the top: the mucosal epithelium (EPI) which contains the 

enterocytes and the enteroendocrine (EE) cells - specialised epithelial cells that contain 

neuroactive substances located in secretory granules.  Several types of EE cell are 

depicted (different colours) including the 5-HT containing enterochromaffin (EC) cell 

(depicted releasing 5-HT near to afferent nerve terminals into the underlying lamina 

propria). The submucosal plexus (SMP) is next, with the cell bodies of secretomotor, 

vasodilator, and a population of intrinsic sensory neurons.  The circular muscle (CM), 

followed by the myenteric plexus (MP) which contains the cell bodies of motor neurons, 

interneurons and a population of intrinsic sensory neurons; and finally, the longitudinal 

muscle (LM). 

 

Figure 2.  The production of 5-HT by the enterochromaffin (EC) cell.  A diagram of a 

single EC cell (centre) with surrounding epithelial cells.  The beginning of the synthesis 

pathway for 5-HT is represented at the top of the cell where dietary tryptophan is 

converted to 5-hyroxytryptophan (5-HTP) by the rate-limiting enzyme tryptophan 

hydroxylase 1 (TpH1).  5-HTP is then converted to 5-HT by the enzyme L-amino acid 

decarboxylase (L-AADC).  Newly produced 5-HT is packaged into granules/vesicles by 

the vesicular monoamine transporter 1 (VMAT1).  5-HT is released mainly from the 

granules stored near the basal border of the EC cell (depicted), but studies have also 

identified granules near the apical membrane where release may also take place.  Once 

released, 5-HT can be transported into surrounding epithelial cells by the serotonin 
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reuptake transporter (SERT) and degraded to 5-HIAA by monoamine oxidase A (MAOA; 

located in mitochondria).   

 

Figure 3.  The cycle of 5-HT from the GI tract to liver and general circulation.  Once 

released by the enterochromaffin (EC) cell, there are several possible routes that 5-HT 

may take.  5-HT released into the lumen may escape into the bulk solution (where it can 

be detected in the faeces) or may be taken up by the epithelial cells via the serotonin 

reuptake transporter (SERT).  5-HT released into the lamina propria (where it can 

interact with nerve terminals) may also be taken up into the enterocytes by SERT or may 

enter the blood.  5-HT in the blood is present as free 5-HT or is taken up by platelets via 

SERT.  The portal circulation is first processed by the liver before the blood enters the 

general circulation.  Free 5-HT in the blood is rapidly degraded by MAOA (to 5-HIAA) or 

by glucuronidases, while 5-HT in platelets is protected from degradation.  Thus, under 

normal conditions, only 5-HT stored in platelets enters the general circulation. 

 

Figure 4.  5-HT can be detected selectively in the presence of other transmitters.  

A-C are cyclic voltammetry traces taken with the carbon fibre electrode touching the 

base of an organ bath during equilibration of drugs.  All traces were taken with a scan 

rate of 0.47 V/s and are from the same electrode - background has not been subtracted.  

The bath solution was flushed with fresh physiological saline between panels.  The 

region of the ramp from -350 mV to +920 mV is shown.  The scale in panel C applies to 

all traces and the vertical dotted lines denote the time/voltage at which the peak current 

was produced.  A. Two traces taken with adrenaline (ADR - 40 M) alone (upper) with a 

peak current at +200 mV, and (lower) adrenaline with the addition of 5-HT (0.5 M) with 

a peak current at +360 mV.  B. Melatonin (MEL - 120 M) alone (upper) with a peak 
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current at +710 mV and with the addition of 5-HT (0.5 M; lower) with a peak current at 

+380 mV.  C. Ascorbic acid (AA - 250 M) alone with a peak current at +200 mV (upper) 

and with the addition of 5-HT (0.5 M; lower) with a peak current at +350 mV.  Note that 

oxidation potentials will be offset when different styles of electrochemical electrodes are 

used (e.g., Bian et al., 2007; Patel, 2008). 

 

Figure 5.  Effect of electrode position on 5-HT concentration in guinea pig ileum.  

A. Spontaneous contraction of the circular muscle (CM) and release of 5­HT from guinea 

pig ileum.  In the top traces the electrode was held ~200 m above the mucosal surface.  

Only threshold concentrations of 5-HT were detected (<100 nM).  In the same 

preparation, when the electrode was lowered to within ~100 m, 5-HT concentrations 

more than doubled.  B. Stretch activated release of 5-HT with the electrode in contact 

with the mucosa yielded 10 M 5-HT.  In contrast, with the electrode 200 or 100 m 

away, 5-HT concentrations fell to 200 to 100 nM (traces from A. re-scaled to match the 

scale in B.).   

 

Figure 6.  A comparison of 5-HT levels detected electrochemically near the 

intestinal surface of animal models and human.  'Peak' refers to the peak 

concentration of the compression-evoked 5-HT release.  SS refers to the steady state or 

background levels of 5-HT detected near the surface of the intestinal epithelium.  

Broadly speaking, the levels of compression-evoked 5-HT release varied between 10 

and 25 M while steady state levels varied between 2 and 10 M.  From the left, tissues 

examined were: human sigmoid colon (H-SigC) (Bertrand et al., 2008b); guinea pig 

ileum (GP-Ileum) (Bertrand, 2004, 2006a); mouse ileum (M-Ileum) (Bertrand, 2006b); 

mouse distal colon (M-DC) and mouse dextran sulphate sodium colitis (DSS M-DC) 
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(Bertrand et al., 2008a); rat ileum (R-Ileum) and obese rat ileum (Fat R-Ileum) (Bertrand 

et al., 2008d). 

 

Figure 7.  Overview of how the uptake of 5-HT may affect its actions.  Left: serotonin 

re-uptake transporter (SERT) present in many intestinal epithelial cells. Right: 

enterochromaffin (EC) cell and endogenous 5-HT release. Bottom: nerve terminal from 

the intrinsic and extrinsic sensory nerves containing serotonin receptors, for example the 

5-HT3 receptor.  5-HT released from the EC cell might act directly on the sensory nerve 

terminals and then might be taken up by SERT.  Alternatively, a large proportion of 

released 5-HT might be taken up directly by SERT before it has a chance to act on the 

sensory nerves. Evidence from recent electrochemical studies suggests that small 

amounts of endogenous 5-HT can act directly on the nerve terminal (5-HT3 receptor 

depicted) before being taken up by SERT.  However, 5-HT released in large amounts 

may, in part, be taken up by SERT before acting on the nerve terminals.  A primary role 

of SERT may be to control the background levels of 5-HT.  This is important because 

background levels of 5-HT control the balance between activation and desensitization of 

serotonin receptors. 
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