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Net atomic charges (NACs) are widely used in all chemical sciences to concisely summarize key information

about the partitioning of electrons among atoms in materials. The objective of this article is to develop an

atomic population analysis method that is suitable to be used as a default method in quantum chemistry

programs irrespective of the kind of basis sets employed. To address this challenge, we introduce a new

atoms-in-materials method with the following nine properties: (1) exactly one electron distribution is

assigned to each atom, (2) core electrons are assigned to the correct host atom, (3) NACs are formally

independent of the basis set type because they are functionals of the total electron distribution, (4) the

assigned atomic electron distributions give an efficiently converging polyatomic multipole expansion, (5)

the assigned NACs usually follow Pauling scale electronegativity trends, (6) NACs for a particular element

have good transferability among different conformations that are equivalently bonded, (7) the assigned

NACs are chemically consistent with the assigned atomic spin moments, (8) the method has predictably

rapid and robust convergence to a unique solution, and (9) the computational cost of charge partitioning

scales linearly with increasing system size. We study numerous materials as examples: (a) a series of

endohedral C60 complexes, (b) high-pressure compressed sodium chloride crystals with unusual

stoichiometries, (c) metal–organic frameworks, (d) large and small molecules, (e) organometallic

complexes, (f) various solids, and (g) solid surfaces. Due to non-nuclear attractors, Bader's quantum

chemical topology could not assign NACs for some of these materials. We show for the first time that

the Iterative Hirshfeld and DDEC3 methods do not always converge to a unique solution independent of

the initial guess, and this sometimes causes those methods to assign dramatically different NACs on

symmetry-equivalent atoms. By using a fixed number of charge partitioning steps with well-defined

reference ion charges, the DDEC6 method avoids this problem by always converging to a unique

solution. These characteristics make the DDEC6 method ideally suited for use as a default charge

assignment method in quantum chemistry programs.
1. Introduction

Net atomic charges (NACs) are a ubiquitous concept in all
chemical sciences. It is difficult to imagine chemistry being
learned at either an introductory or advanced level without
some reference to NACs.1 For example, the pH scale measuring
hydrogen ion activities in solution embodies the concept of
hydrogen atoms carrying positive NACs. In biochemistry, many
cellular functions depend on the transport of charged atoms
eering, New Mexico State University, Las

ail: tmanz@nmsu.edu

(ESI) available: Summary of alternative
ed; summary of integration routines;
vex functional NACs; ow diagrams for
can be read using any text editor or the
dable from http://jmol.sourceforge.net)
ges, atomic dipoles and quadrupoles,
DOI: 10.1039/c6ra04656h
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such as K+, Na+, Ca2+, and Cl� across cell membranes.2 Exper-
iments measuring the water molecule's dipole moment imply
a negative NAC on its oxygen atom and a positive NAC on each
of its two hydrogen atoms.3 NACs also play an important role in
solid state physics, where oxygen atoms in solid oxides carry
negative NACs to enable oxygen ion transport.4 Zwitterions,
which are widely encountered in amino acids, illustrate that
important chemical behaviors depend not only on the overall
molecular charge but also on the net charges of local regions
within a molecule.5

Our overall objective is to develop an atomic population
analysis method with characteristics suitable for use as
a default method in popular quantum chemistry programs.
This requires the method to maximize broad applicability and
minimize failure. The algorithm should converge rapidly and
reliably to a unique solution with low dependence on the basis
set choice. The assigned NACs, atomic spin moments (ASMs),
and other atoms-in-materials (AIM) properties should be
RSC Adv., 2016, 6, 47771–47801 | 47771
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Table 1 Nine desirable features (performance goals) we have chosen
for assigning NACs

(1). Exactly one assigned electron distribution per atom
(2). Core electrons remain assigned to the host atom
(3). NACs are functionals of the total electron density distribution
(4). Assigned atomic electron distributions give an efficiently converging
polyatomic multipole expansion
(5). NACs usually follow Pauling scale electronegativity trends
(6). NACs for a particular element have good transferability among
different conformations that are equivalently bonded
(7). The assigned NACs are chemically consistent with the assigned
ASMs
(8). Predictably rapid and robust convergence to a unique solution
(9). Computational cost of charge partitioning scales linearly with
increasing system size
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chemically consistent, accurately describe electron transfer
directions, and correlate to experimental data for reference
materials.

Existing atomic population analysis methods are not well-
suited for use as a default method in quantum chemistry
programs: (1) Mulliken6 and Davidson-Löwdin7 population
analyses do not have any mathematical limits as the basis set is
systematically improved toward completeness, and they are not
directly applicable to plane-wave basis sets.8 (2) Bader's
quantum chemical topology (QCT) has many theoretically
desirable properties, but it can lead to non-nuclear attractors
that produce undened NACs.9 (3) Electrostatic potential tting
methods (e.g., ESP,10 Chelp,11 Chelpg,12 REPEAT13) do not have
good conformational transferability and assign unreasonable
charge values to some buried atoms.13–17 Including constraints
(e.g., RESP13,14 methods) improves this, but the form of these
constraints is exible leading to numerous possible charge
values. Simultaneously tting across multiple conformations is
an another possible solution, but this requires computing
electron distributions for many different system geometries.17

Also, nonporous systems do not possess a surface outside which
to t the electrostatic potential. (4) The original Hirshfeld (HD)18

method, which is based on neutral reference atom densities,
usually underestimates NAC magnitudes.19–22 While the Itera-
tive Hirshfeld (IH) method improves the NAC magnitudes,21 it
exhibits the bifurcation problem described in Section 2.4. (5)
The Charge Model 5 (CM5) was parameterized to give NACs that
approximately reproduce static molecular dipole moments.20,23

The CM5 charges include an empirical correction to the HD
NACs.20,23 The main limitation of CM5 is that it only partitions
the integrated number of electrons for each atom, and thus
cannot be used to compute AIM properties such as atomic
multipoles, bond orders, etc. (6) Because Atomic Polar Tensor
(APT)24 and Born effective charges25 require computing system
response properties (via perturbation theory or atomic
displacements), they are not well-suited for use as a default
atomic population analysis method. (7) The Natural Population
Analysis (NPA),8 Natural Bond Orbital (NBO),26 Adaptive Natural
Density Partitioning (ANDP),27 Intrinsic Atomic Orbital,28

Intrinsic Bond Orbital,28 and several related approaches29

provide chemically meaningful localized atomic and bonding
orbitals. These approaches have a number of advantages,
including the recovery of heuristic chemical bond forming
concepts. In the near future, modications of some of these
methods might emerge with sufficiently wide applicability and
convergence robustness to be used as default methods in
quantum chemistry programs. Recently, some of these methods
have been tested on a limited number of periodic or semi-
periodic materials,29–32 but not yet on enough materials to
draw denite conclusions about their suitability for being used
as a default method for analyzing dense solids. Because these
methods require generating localized orbitals, using plane-
waves or other delocalized basis functions poses a challenge
for their application.30

In this article we present a new atomic population analysis
method, called DDEC6, that is a renement of the Density
Derived Electrostatic and Chemical (DDEC) approach. This
47772 | RSC Adv., 2016, 6, 47771–47801
method is an explicit functional of the electron and spin
distributions with no explicit basis set dependence. We devel-
oped the DDEC6 charge partitioning algorithm using a scien-
tic engineering design approach that resembles the process
used to build airplanes. Similar to constructing an AIM parti-
tioning, there is more than one conceivable way to build an
airplane. One could make an airplane longer or shorter, for
example. Yet, it is not accurate to say airplane design (or AIM
partitioning design) is an arbitrary process, because the scien-
tic method is utilized. Like airplanes, our AIM partitioning
method has been scientically engineered to meet chosen
performance goals. This involved a process of constructing and
testing prototypes to rene the design until all performance
goals were achieved. When a new airplane is designed, proto-
types are built and tested in wind tunnels to determine which
shapes achieve appropriate li, minimize drag, and respond
favorably to air turbulence. Not only should an airplane y, but
it should take off and land smoothly, have good fuel efficiency,
and so forth. All of these aspects are tested when developing
a new airplane design. Our process for building an AIM parti-
tioning method is similar. Specically, we built and tested
prototypes to improve the control, efficiency, accuracy, and
robustness. We made extensive comparisons to experimental
data during this development process.33

This scientic engineering design approach requires
choosing performance goals. Table 1 lists nine desirable
features we chose for assigning NACs. The rst criterion is to
assign exactly one electron distribution per atom in the mate-
rial. This criterion is fullled by many but not all charge
assignment methods. For example, Bader's QCT yields non-
atomic electron distributions in materials with non-nuclear
attractors.9,34,35 The second criterion is to assign core electrons
to their host atom. This criterion is not appropriate for APT and
Born effective charges that quantify the system's response to
nuclear displacements. Methods that directly t the electro-
static potential without regard for atomic chemical states also
do not satisfy this criterion. Since a goal of AIM methods is to
describe atomic chemical states, they should preferably assign
core electrons to the host atom. The third criterion is to assign
NACs as functionals of {r(~r)}. The main purposes of our NACs
This journal is © The Royal Society of Chemistry 2016
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are to convey information about charge transfer between atoms
and to approximately reproduce the electrostatic potential
surrounding a material. Since charge transfer between atoms
cannot occur without effecting r(~r) and r(~r) determines the
electrostatic eld surrounding the material, it makes sense to
construct the NACs as functionals of {r(~r)}. The fourth criterion
is to assign atomic electron distributions to give an efficiently
converging polyatomic multipole expansion. Polyatomic
multipole expansions including multipolar and charge pene-
tration terms of arbitrarily high order provide a formally exact
representation of the electrostatic potential.36–41 In practice, this
expansion is normally truncated at some nite order; therefore,
we wish to reproduce the electrostatic potential with good
accuracy using the leading terms of the polyatomic multipole
expansion. The h criterion is the assigned NACs should
usually follow Pauling scale electronegativity trends. The Paul-
ing scale electronegativity was parameterized to describe typical
electron transfer directions in chemical bonds, where higher
electronegativity elements typically take electrons from lower
electronegativity elements.42,43 The sixth criterion is that NACs
for a particular element have good transferability among
different conformations that are equivalently bonded. We
choose this criterion, because one of our goals is to assign NACs
with good conformational transferability that are well-suited to
construct exible force-elds for classical atomistic simulations
of materials. The seventh criterion is that the assigned NACs
should be chemically consistent with the assigned ASMs. We
will have more to say about this seventh criterion in Section 5.4.
The eighth criterion is that the AIM distributions should have
predictably rapid and robust convergence to a unique solution.
The ninth criterion is that the computation cost of charge
partitioning should ideally scale linearly with increasing system
size. This criterion is desirable to have the method's computa-
tional cost remain competitive as the number of atoms in the
unit cell increases.

As a point of clarication, we intend that these criteria
should be satised across a broad range of materials encom-
passing molecules, ions, nanostructures, solid surfaces, porous
solids, nonporous solids, and other complex materials. Notably,
developing a reliable method for charge partitioning in dense
periodic solids is not simply the task of adding periodic
boundary conditions to a charge partitioning method initially
developed for small molecules. Small molecules are comprised
mainly of surface atoms with few buried atoms. In contrast,
dense solids are comprised mainly of buried atoms with few
surface atoms. Therefore, charge assignment methods that
work well for surface atoms but poorly for buried atoms are
problematic for bulk solids. Currently, the most commonly
used charge partitioning method for dense solids is Bader's
QCT.44 Because two charge partitioning methods that give
practically equivalent results for molecules with lots of surface
atoms sometimes produce spectacularly different results when
applied to dense solids,19 correlations between NAC methods
for molecular test sets should not be extrapolated to dense
solids. In summary, charge partitioning in dense solids is an
intrinsically more difficult problem than charge partitioning in
small molecules.
This journal is © The Royal Society of Chemistry 2016
The remainder of this article is organized as following.
Section 2 presents an overview of charge partitioning operators,
atoms-in-materials methods, the DDEC approach, and the
bifurcation or ‘runaway charges’ problem. Section 3 presents
the theory and equations dening the DDEC6method. Section 4
summarizes computational details for the quantum chemistry
calculations, electrostatic potential expansion, and Ewald
summation. Section 5 contains the performance test results: 5.1
Convergence speed, 5.2 Atomic dipole magnitudes, 5.3
Conformational transferability and accuracy for reproducing
the electrostatic potential, 5.4 Quantifying the consistency
between assigned NACs and ASMs, 5.5 Retaining core electrons
on the host atom and assigning exactly one electron distribu-
tion per atom, and 5.6 NACs usually follow electronegativity
trends. Section 6 contains our conclusions.

2. Theory of atoms in materials
2.1 Charge partitioning operators

Chemical systems are comprised of atomic nuclei surrounded
by an electron cloud. This electron cloud can be computed
using quantum chemistry calculations. Throughout this article
we use the Born–Oppenheimer approximation, in which the
electron cloud is assumed to equilibrate rapidly with respect to
the nuclear motions. The NAC for atom A (qA) equals its nuclear
charge (zA) minus the number of electrons assigned to it (NA):

qA ¼ zA � NA. (1)

Herein we use the same notation as previously, except we use
(L1, L2, L3) instead of (k1, k2, k3) to specify a translated image of
atom A: “Following Manz and Sholl,45 we begin by dening
a material as a set of atoms {A} located at positions {~RA}, in
a reference unit cell, U. For a nonperiodic system (e.g., a mole-
cule), U is any parallelpiped enclosing the entire electron
distribution. The reference unit cell has L1 ¼ L2 ¼ L3 ¼ 0, and
summation over Ameans summation over all atoms in this unit
cell. For a periodic direction, Li ranges over all integers with the
associated lattice vector~vi. For a nonperiodic direction, Li ¼ 0
and~vi is the corresponding edge of U. Using this notation, the
vector and distance relative to atom A are given by

~rA ¼~r � L1~v1 � L2~v2 � L3~v3 � ~RA. (2)

and rA¼ |~rA|.”19 In this article, we are only interested in studying
time-independent states of chemical systems. For such systems,
a time-independent electron distribution

r(~r) ¼ hJel|r̂(~r)|Jeli (3)

can be theoretically computed or experimentally measured46,47

where Jel is the system's multi-electronic wavefunction within
the Born–Oppenheimer approximation and r̂(~r) is the electron
density operator.

Before considering specically how to partition the electron
density operator among atoms in a material at each spatial
position, we rst consider various schemes that partition only
the integrated number of electrons. Electrostatic potential
RSC Adv., 2016, 6, 47771–47801 | 47773
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tting (ESP,10 Chelp,11 Chelpg,12 REPEAT13) methods optimize
NACs by minimizing the root-mean-squared-error (RMSE) over
a chosen set of grid points located outside thematerial's van der
Waals surface. The APT charge quanties the change in dipole
moment due to the displacement of a nucleus.24 APT and
related dipole-change-derived NACs are useful for representing
infrared (IR) spectra intensities.48 In periodic materials, Born
effective and related charge methods quantify the change in
electric polarization due to the displacement of a nucleus and
its periodic images.25 A key limitation of electrostatic potential
tting, APT, and Born effective charges is that they are not
designed to retain core electrons. For example, the Born effec-
tive charge of Ti in the cubic phases of BaTiO3, CaTiO3, SrTiO3,
and PbTiO3 ranges from 6.7 to 7.2, which exceeds the nominal
number of 4 valence electrons for a free Ti atom.49 CM5, which
uses HD charges as input, was parameterized to give NACs that
approximately reproduce static molecular dipole moments.20

The CM5 NACs do a much better (but not perfect) job of
retaining core electrons on the host atom.20,23 The Voronoi
deformation density (VDD) method assigns NACs according to
the integral of the deformation density (i.e., the difference
between r(~r) and a sum of spherically symmetric neutral refer-
ence atoms) over the Voronoi cell enclosing each atom.50

AIM methods partition the electron distribution at each
spatial position subject to the constraints

Q
�
~r
�
¼ r
�
~r
�
�
X
A;L

rA

�
~rA

�
/0 (4)

rA(~rA) $ 0 (5)

where
X
A;L

means
X
A

X
L1

X
L2

X
L3

denoting summation over

all atoms in the material, and rA(~rA) is the electron distribution
assigned to atom A. Because r(~r) $ 0, constraint (4) allows

fA(~rA) ¼ rA(~rA)/r(~r) (6)

to be interpreted as the probability of assigning an electron at
position~r to atom A. AIMmethods include HD,18 IH and related
charge partitioning methods,21,51–54 Iterated Stockhold Atoms
(ISA),55,56 DDEC,19,45 radical Voronoi tessellation,57,58 etc. There
has been some debate on how to best dene the atomic prob-
ability factors, {fA(~rA)}. The ISA method optimizes the set of
atomic electron density distributions {rA(~rA)} to resemble their
spherical averages {ravgA (rA)}.55,56 The HD18 and IH21 methods
optimize {rA(~rA)} to resemble a set of spherical reference atoms
{rrefA (rA)}. Nalewajski and Parr59 and Parr et al.60 argued for the
HD denition based on information theory and philosophical
considerations with the {fA(~rA)} considered as noumenons.
Matta and Bader argued for a denition based on Virial
compartments describing experimentally observed additive
property relationships.61 Bader's quantum chemical topology
(QCT) partitions the electron cloud into non-overlapping
compartments that satisfy the Virial theorem because they
have zero-ux surfaces: Vr$dn̂ ¼ 0 where dn̂ is the differential
surface normal unit vector.62–64 Because non-atomic Bader
compartments exist in materials with non-nuclear attractors,9
47774 | RSC Adv., 2016, 6, 47771–47801
Bader's QCT is not strictly a partition into atomic electron
distributions. However, Bader's QCT has historically been
categorized with AIM methods, because it pioneered the theo-
retical development of the AIM concept.62–65 For the study of
electrides, a non-nuclear attractor describing the electron ion
would normally be considered an advantage.34

2.2 Fundamentals of vectorized charge partitioning

We use the term vectorized charge partitioning to denote the class
of AIM charge partitioning methods for which the relative
probability of assigning electrons at position~rA to atom A can be
represented in terms of some spherically symmetric atomic
weighting factor, wA(rA):

rA(~rA)/r(~r) ¼ wA(rA)/W(~r) (7)

where

W
�
~r
� ¼X

A;L

wAðrAÞ: (8)

We call this vectorized charge partitioning, because for each
atom wA(rA) forms a one-dimensional array of wA values corre-
sponding to a series of rA values. The whole quest to dene the
charge partitioning method thus reduces the problem of
nding a three-dimensional array of fA(~rA) values for each atom
to that of nding a one-dimensional array of wA(rA) values for
each atom. This reduction in parameter space from three to one
degrees of freedom per atom makes vectorized charge parti-
tioning computationally efficient, because one-dimensional
rather than three-dimensional arrays need to be computed
and stored for each atom.

A key use of NACs is to construct point-charge models to
regenerate the electrostatic potential in classical molecular
dynamics and Monte Carlo simulations.66 From Gauss's Law of
Electrostatics it directly follows that the electrostatic potential
exerted outside a spherically symmetric charge distribution is
identical to an equivalent point charge placed at the sphere's
center. Hence, it is wise to assign approximately spherically
symmetric atomic electron distributions

rA(~rA) z ravgA (rA) (9)

so that a point-charge model comprised of the NACs will
approximately reproduce the electrostatic potential
surrounding the material. This can be accomplished by making

W(~r) z r(~r) (10)

for then eqn (7) simplies to

rA(~rA) z wA(rA). (11)

If eqn (10) is true everywhere in the system, then eqn (9) and (11)
are also true everywhere in the system. This will make a point-
charge model constructed from the NACs approximately
reproduce the electrostatic potential surrounding the material.
Thus, satisfying eqn (10) is a key objective.
This journal is © The Royal Society of Chemistry 2016
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The differential path action dS allows us to study conver-
gence properties of vectorized charge partitioning methods:19

dS ¼
X
A

þ
drA
�
~rA
�
ln
�
z
�
~rA
��

d3~rA (12)

where

z
�
~rA
�¼ rA

�
~rA
�
W
�
~r
�

wAðrAÞr
�
~r
� : (13)

Stationary points of the path action S ¼ ÐdS occur where

dS

drA
�
~rA
� ¼ ln

�
z
�
~rA
�� ¼ 0 (14)

for every atom, which yields eqn (7) as the only solution(s).19

Due to its path dependence, S is not a functional of {rA(~rA)}. The
path action S is a kind of mapping that takes a path in {rA(~rA)}
optimization space as its input and returns a real number as its
result. In practice, only the differential path action dS needs to
be considered.

A second key purpose of NACs is to represent the chemical
states of atoms in materials. This requires the assigned {rA(~rA)}
to have atomic-like properties. The spherically averaged elec-
tron distributions of isolated atoms decay approximately expo-
nentially with increasing rA $ 2 Å:

d2 ln
�
r
avg
A ðrAÞ

�
drA2

z 0 for rA $ 2 Å: (15)

To maximize the transferability of atomic chemical properties
between isolated atoms, molecules, porous solids, solid
surfaces, non-porous solids, and nano-structures, the atomic
electron distributions in materials should be assigned to
approximately follow eqn (15).

Another key consideration is the number of electrons
assigned to each atom should resemble the number of electrons
contained in the volume of space dominated by that atom. The
volume of space dominated by atom A is dened as the spatial
region for which rA(~rA) > rB(~rB) for every B s A. If the wA(rA) for
anions are too diffuse in ionic crystals, this might cause too
many electrons in the volume of space dominated by the cations
to be mistakenly assigned to the anions. As shown in Section
5.5, this can lead to situations where the total number of elec-
trons assigned to the cations is even lower than their number of
core electrons. To avoid this mistake, some care should be given
to quantify how many electrons are in the volume of space
dominated by each atom. The number of electrons assigned to
each atom should then be optimized to resemble this value,
subject to additional optimization criteria.

To maximize chemical transferability, it is desirable to have
each atom in a material resemble a reference ion of the same
element having similar (but not necessarily identical) net
charge. For example, a Na1+ ion in a material should resemble
a Na reference ion having a charge of approximately +1.
Therefore, we use reference ions to construct part of the atomic
weighting factors, {wA(rA)}.

The HD method uses neutral atoms as the reference states:18
This journal is © The Royal Society of Chemistry 2016
wHD
A (rA) ¼ rrefA (rA, q

ref
A ¼ 0). (16)

The extremely poor performance of the HD method can be
explained by the fact that in partially or totally ionic systems r(~r)
does not approximately equal the sum of neutral atom
densities:

r
�
~r
�
sWHD

�
~r
� ¼X

A;L

rrefA

�
rA; q

ref
A ¼ 0

�
: (17)

Thus, eqn (9)–(11) are not consistently satised by the HD
method. Consequently, the HD NACs usually give a poor
representation of the electrostatic potential surrounding
a material. The IH method improves upon the HD method by
using self-consistently charged reference states:21

wIH
A (rA) ¼ rrefA (rA, q

ref
A ¼ qA). (18)

While the IH method offers a clear improvement over the
HD method, the performance of the IH method is still not
optimal. Specically, the IH method does not accurately
account for the relative contraction or expansion of each
ionic state due to its local environment. For example, an
atomic anion in an ionic crystal is usually more contracted
than the corresponding isolated atomic anion, because the
cations in the ionic crystal provide charge balance and elec-
trostatic screening that reduces electrostatic repulsion
between excess electrons in the bound atomic anion. While it
is possible to use charge-compensated reference ions in the
IH method,53,67 the overall accuracy of constructing W(~r) z
r(~r) is still limited in the IH method by using a single set of
reference ions that do not respond to their local environ-
ment. This problem is overcome in the DDEC3 and DDEC6
methods by conditioning the reference ion densities to
match the specic material. This conditioning describes the
contraction or expansion of reference ions in response to
their local environment while still only requiring a single
reference ion library as input.19

Eqn (10) will be fullled across the widest variety of systems
if {wA(rA)} are themselves derived from partitions of r(~r). The ISA
method is an early example of a charge partitioning scheme in
which {wA(rA)} are derived from a partition of r(~r).55,56 In the ISA
method,

wISA
A (rA) ¼ ravgA (rA). (19)

Although the ISA method clearly fullls eqn (9)–(11), the ISA NACs
have poor conformational transferability and are chemically
inaccurate for many materials (especially, non-porous mate-
rials).19,45,68–70 In Section 3 below, we construct a new charge par-
titioning scheme, called DDEC6, that combines electron
localization, reference ion weighting, and spherical averaging to
create an accurate and robust charge partitioning method.
2.3 The Density Derived Electrostatic and Chemical (DDEC)
approach

The DDEC approach optimizes {wA(rA)} to simultaneously
resemble reference ion states and {ravgA (rA)}.19,45 Making {wA(rA)}
RSC Adv., 2016, 6, 47771–47801 | 47775
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resemble reference ion states maximizes the chemical trans-
ferability of the assigned {rA(~rA)} and NACs, while making
{wA(rA)} resemble {ravgA (rA)} causes the NACs to approximately
reproduce the electrostatic potential surrounding the
material.19,45

Three variants of the DDEC method have been previously
published.19,45 In the DDEC/c1 and DDEC/c2 methods, the
atomic weighting factors are dened by

wDDEC/c1,c2
A (rA) ¼ (rrefA (rA, q

ref
A ¼ qA))

c(ravgA (rA))
1�c (20)

with cDDEC/c1 ¼ cDDEC/c2 ¼ 1/10.45 During the iterative updates,
the reference ion charges are updated to match the AIM
charges, as done for the IH method. The reference ions,
{rrefA (rA, q

ref
A )}, are computed using charge compensation and

dielectric screening.45 In the DDEC/c1 method, charge
compensation and dielectric screening were modeled by
computing the reference ion densities for atoms placed in
a periodic array with a uniform compensating background
charge.45 In the DDEC/c2 method, charge compensation and
dielectric screening were modeled by computing the reference
ion densities for atoms enclosed by a spherical charge
compensation shell.45 For anions, the shell radius and
compensating charge are carefully selected to minimize the
system's total energy.45 For cations of charge +q, the compen-
sating charge is �q and the shell radius is the average radius of
the outermost q occupied Kohn–Sham orbitals of the isolated
neutral atom.45 We recently reported a complete set of these
charge-compensated reference ions for all elements atomic
number 1 to 109.71 In the DDEC3 method, these reference ion
densities are smoothed to ensure the following.19 (1) Each
smoothed reference ion density, r�refA (rA, q

ref
A ), decreases mono-

tonically with increasing rA.19 (2) For a particular rA value,
r�refA (rA, q

ref
A ) decreases with increasing qrefA .19 (3) The difference

r�refA (rA, q
ref
A ) � r�refA (rA, (q

ref
A + 1)) decreases monotonically with

increasing rA.19 The DDEC6 method introduced in this article
uses the same smoothed reference ion library as the DDEC3
method.

In this article, the term charge partitioning functional
means a functional F whose stationary points yield the cor-
responding atomic charge distributions. A point is
a stationary point if and only if the full derivative of F is zero:
dF ¼ 0. This requires all of the rst-order partial and varia-
tional derivatives of F with respect to the independent vari-
ables and functions, respectively, to be zero. Nalewajski and
Parr showed the HD method minimizes the charge parti-
tioning functional

FHD ¼
X
A

þ
rA
�
~rA
�
ln

 
rA
�
~rA
�

rrefA

�
rA; q

ref
A ¼ 0

�
!
d3~rA þ

ð
U

G
�
~r
�
Q
�
~r
�
d3~r

(21)

where G(~r) is a Lagrange multiplier enforcing constraint (4).59

Later, Bultinck et al. showed the ISA method minimizes
a similar charge partitioning functional where ravgA (rA) appears
instead of rrefA (rA, q

ref
A ¼ 0):70
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F ISA ¼
X
A

þ
rA
�
~rA
�
ln
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�
~rA
�

r
avg
A ðrAÞ

!
d3~rA þ

ð
U

G
�
~r
�
Q
�
~r
�
d3~r: (22)

A functional or path action is convex if and only if its
curvature is non-negative. Smooth convex functionals and path
actions have a unique minimum. Both the ISA and non-iterative
Hirshfeld charge partitioning functionals are convex and
possess a single minimum leading to unique solution.70

The DDEC/c1,c2 methods minimize the partial derivative of

F ¼
X
A

þ
rA
�
~rA
�
ln

0
B@ rA

�
~rA
��

rrefA

�
rA; q

ref
A

��c�
r
avg
A ðrAÞ

�1�c

1
CAd3~rA

þ
ð
U

G
�
~r
�
Q
�
~r
�
d3~r (23)

with respect to {rA(~rA)} while holding the {qrefA } constant if
{qrefA } ¼ {qA}.45 Most importantly, eqn (23) is emphatically not
a charge partitioning functional for the DDEC/c1,c2 methods.
Specically, minimizing F does not automatically enforce the
constraint {qrefA } ¼ {qA}. This constraint can be enforced by
simply replacing {qrefA } with {qA} in eqn (23), but minimizing the
resulting functional does not yield the weighting factors shown
in eqn (20). Instead of directly replacing {qrefA } with {qA} in eqn
(23), the constraint {qrefA } ¼ {qA} could be enforced using the
method of Lagrange multipliers to yield a completely equivalent
result that once again does not reproduce eqn (20). Therefore,
the object to be minimized for the DDEC/c1,c2 methods is not
the functional shown in eqn (23), but rather Manz's path action
S described in the previous section. This can be a potential
source of confusion, because the rst paper on the DDEC/c1,c2
method predated the introduction of the path action S and
relied on partial (not proper) minimization of eqn (23).45 With
the introduction of the path action S, this earlier approach that
was not completely variational should be abandoned.

The same problem has also occurred in early literature on
the IH method that predated Manz's path action S. Specically,
setting c ¼ 1 in eqn (23) does emphatically not yield a charge
partitioning functional for the IH method, because it fails to
properly impose the constraint {qrefA } ¼ {qA} employed in the IH
method. Enforcing {qrefA } ¼ {qA} via a direct substitution in eqn
(23) or through the addition of Lagrange multipliers to eqn (23)
does not yield the IH weighting factors, but rather yields a new
AIM method whose performance was not as good as the IH
method.54 The object to be minimized for the IH method is the
path action S. Interestingly, a proposed proof72 that the IH
method always converges to a unique minimum (independent
of the starting conditions) is invalid, because it was based on
partial (not proper) minimization of eqn (23) rather than using
the correct object to be minimized. In the following section, we
present specic examples of materials for which the converged
IH NACs depend on the initial guess, thus proving the IH
optimization landscape is sometimes non-convex.

The DDEC3 method was introduced to improve the accuracy
of charge partitioning in dense solids containing short bond
This journal is © The Royal Society of Chemistry 2016
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lengths.19 For these materials, the DDEC/c1,c2 methods yielded
extremely poor results.19 The DDEC3 method improved the
accuracy by introducing reference ion conditioning (see Section
3.1) and a constraint forcing the wA(rA) tails of buried atoms to
decay at least as fast as exp(�1.75 rA).19 The DDEC3 method
starts with the same reference ion library as the DDEC/c2
method. DDEC3 smooths these reference ions to improve the
optimization landscape curvature.19 Finally, the reference ion
weighting, cDDEC3¼ 3/14, was set to a theoretically derived value
that achieves a balance for all materials.19
2.4 The bifurcation or ‘runaway charges’ problem

The ‘runaway charges’ problem was rst noted for the DDEC/c2
method in the paper by Manz and Sholl introducing the DDEC3
method.19 The DDEC3 method was introduced to correct this
problem for dense materials by introducing reference ion
conditioning and constraints preventing the tails of buried
atoms from becoming too diffuse.19 The DDEC3 method
dramatically improved over DDEC/c2, but stopped short of
a provably convex optimization functional.19 Among the
hundreds of materials studied to date, we have only noticed one
system for which the ‘runaway charges’ problem still occurs for
the DDEC3 method: the H2 triplet state for a constrained bond
length of 50 pm. The discovery of one system with this problem
indicates other systems with this same problem probably exist.
The two H atoms in H2 are symmetrically equivalent in the
CISD/aug-cc-pvqz wavefunction and electron distribution. As
shown in Fig. 1, during DDEC3 partitioning the NACs diverged
from the initial values (HD charges) of +3.3 � 10�4 and �3.3 �
10�4 to nal converged values of +0.50 and �0.50 aer 37 iter-
ations. This indicates the optimization landscape contains
a bifurcation instability that leads to symmetry breaking. Only
tiny initial differences in the input density grid les determine
which of the two H atoms will head towards a NAC of +0.50
while the remaining one heads towards�0.50. The same type of
bifurcation instability also occurs for the IH method in some
dense solids. As shown in Fig. 1, during IH partitioning the
Fig. 1 Bifurcation (i.e., spontaneous symmetry breaking) during
DDEC3 and IH charge partitioning. This is called the ‘runaway charges’
problem.

This journal is © The Royal Society of Chemistry 2016
NACs of symmetry-equivalent atoms bifurcate from the initial
values (HD charges) of +4.8 � 10�4 and �4.8 � 10�4 to +0.97
and �0.97 for the Mn crystal and from +4.3 � 10�3, �5.4 �
10�3, �3.5 � 10�3, and +4.6 � 10�3 to �0.36, �0.39, �0.38, and
+1.1 for the Rh crystal before the VASP program gave up aer 150
charge cycles. (This IH analysis was performed in VASP 5.3.5
using the PBE73 functional.) Again, tiny differences in the initial
conditions determines which of the symmetry-equivalent atoms
will head towards the large positive NACs and which will head
towards the negative NACs.

To understand why previous DDEC and IH methods some-
times yield bifurcation, we now compute their optimization
landscape curvature. The path action's curvature is given by19

d2S ¼
X
A

þ
drA
�
~rA
�0@ drA

�
~rA
�

rA
�
~rA
� � dwAðrAÞ

wAðrAÞ þ dW
�
~r
�

W
�
~r
�
1
Ad3~rA: (24)

“If the curvature is positive everywhere, i.e., d2S > 0, then the
action has only one stationary point, and this stationary point is
its global minimum.”19 The solution lies within the search space
satisfying constraint (4). Restricting {rA(~rA)} to this valid search
space, X

A

drA
�
~rA
� ¼X

A

dr
�
~r
� ¼ 0: (25)

Let �S be the path action S restricted to paths lying inside this
valid search space. Combining eqn (24) and (25) yields the
optimization landscape curvature:

d2S ¼
X
A

þ
drA
�
~rA
�0@ drA

�
~rA
�

rA
�
~rA
� � dwAðrAÞ

wAðrAÞ

1
Ad3~rA: (26)

Substituting wmodel
A ¼ (rsome_ref

A (rA, qrefA ))c(ravgA (rA))
1�c as

a DDEC-style weighting factor yields the curvature

d2 �Smodel ¼ (1 � c)d2 �SISA + cd2 �Sref (27)

where

d2S
ISA ¼ d2F ISA ¼
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A
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��2

rA
�
~rA
� � ðdravgA ðrAÞÞ2
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(28)

d2S
ref ¼

X
A

þ0B@
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drA
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~rA
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� drA
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� vrsome_ref
A

�
rA; q

ref
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�
vqrefA
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1
CAd3~rA: (29)

Bultinck et al. previously proved the ISA curvature (eqn (28)) is
non-negative.70

Wenow consider several special cases. Case 1: The ISAmethod,
which corresponds to c ¼ 0. This case gives d2�SISA $ 0 (i.e.,
positive semi-denite curvature) indicating a convex optimization
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landscape with a unique solution. However, the optimization
landscape can be approximately at (d2�SISA / 0) in regions. Case
2: The non-iterative Hirshfeld method, which corresponds to c ¼
1 and dqrefA ¼ 0. This case gives

d2S
HD ¼ d2FHD ¼

X
A

þ0B@
�
drA
�
~rA
��2

rA
�
~rA
�

1
CAd3~rA . 0 (30)

for any |drA(~rA)| > 0. This positive denite curvature indicates
a convex optimization landscape with a unique solution.
Because the curvature is positive denite, the optimization
landscape is not approximately at anywhere. Case 3: The IH
method, which corresponds to c ¼ 1 and

dqrefA ¼ dqA ¼ �ÞdrA(~rA)d3~rA. (31)

Since {dqrefA } can be nonzero, the second term appearing in eqn
(29) might make d2�Sref negative. Consequently, we cannot
guarantee that d2�Sref is non-negative. From eqn (29), the con-
vexness or non-convexness of the IH method for a specic
material depends on the particulars of the reference ion set
used. Thus, under some conditions the IH method may have
a negative optimization curvature. This yields the bifurcation or
‘runaway charges’ problem shown in Fig. 1 and Table 2. Case 4:
The DDEC/c2 method, which corresponds to c ¼ 1/10 and
dqrefA as dened in eqn (31). This case has similar characteristics
to Case 3 and yields the bifurcation or ‘runaway charges’
problem for the same reason. Case 5: The DDEC3 method
improved over the DDEC/c2 method by increasing the d2�Sref

curvature term in eqn (29),19 but it stopped short of a provably
convex optimization landscape. Thus, under rare circumstances
(e.g., H2 triplet with 50 pm constrained bond length in Fig. 1) it
leads to the bifurcation or ‘runaway charges’ problem.

In the following sections, we introduce a new charge parti-
tioning method called DDEC6 that alleviates the ‘runaway
charges’ problem. Examining eqn (29), the iterative update of
qrefA by requiring the self-consistency condition qrefA ¼ qA yields
the possibility of negative optimization landscape curvature
and hence bifurcation. The DDEC6 method replaces the self-
consistency requirement qrefA ¼ qA with a new strategy for
computing qrefA . Within a magnied integration tolerance, the
DDEC6 NACs were symmetrically equivalent: �2.1 � 10�2 (H2

triplet), �1.8 � 10�5 (Mn solid), and �2.8 � 10�5, +1.5 � 10�4,
�7.4 � 10�5, and �4.7 � 10�5 (Rh solid).
Table 2 Effect of initial guess on the converged NACs for H2 triplet
distribution). Because the DDEC3 and IH results depend on the initial g
solution. Because the DDEC6 NACs follow a fixed protocol of seven cha
converged to the unique solution (�0.0209,0.0209). Also, the convex cha
of the starting guess

Run # Initial guess DDEC3 NACs

1 (0,0) (�0.5025,0.5025)
2 (0.5,�0.5) (0.5014,�0.5014)
3 (�0.5,0.5) (�0.5025,0.5025)
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The DDEC6 method cannot lead to ‘runaway charges’ in any
material, because it involves a prescribed sequence of exactly
seven charge partitioning steps. For purposes of illustration,
assume the initial symmetry breaking present in the input grid
les is some small positive amount 3. For purposes of illustra-
tion, let us further assume that during each subsequent charge
partitioning step the amount of symmetry breaking is multi-
plied by some nite factor K. Aer X charge partitioning steps,
the amount of symmetry breaking will thus be KX3. If X is small
or if |K|# 1, the amount of symmetry breaking will be a modest
multiple of 3. In the DDEC6 method, X ¼ 7, so that even when
|K| > 1 themagnitude of symmetry breaking can be contained as
long as 3 is small. By making the input density grids more
precise, the value of 3 and hence the nal DDEC6 symmetry
breaking (�K73) can be made as small as desired. On the other
hand, if X is large and |K| > 1, the symmetry breaking will be
profoundly severe (i.e., ‘runaway charges’). For the DDEC/c2,
DDEC3, and IH methods, X may be arbitrarily large leading to
‘runaway charges’ when |K| > 1. Since X is arbitrarily large for
these methods, the value of KX3 cannot be contained for |K| > 1
even if 3 is made a smaller positive number. Thus, improving
the input density grid precision does not necessarily alleviate
the ‘runaway charges’ problem for the DDEC/c2, DDEC3, and IH
methods.

We also tested a second strategy that solves the bifurcation
or ‘runaway charges’ problem by constructing the self-
consistent convex charge partitioning functional:
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(32)

kA is a Lagrange multiplier that enforces the constraint

Nval
A ¼ ÞrA(~rA) � Ncore

A $ 0. (33)

{rxed_refA (rA)} is a set of xed reference densities that is not
updated during the self-consistent cycles. Minimizing Fconvex

dF convex

drA
�
~rA
� ¼ ln

0
B@ rA

�
~rA
�

�
rfixed_refA ðrAÞ

�c�
r
avg
A ðrAÞ

�1�c

1
CAþ c� G

�
~r
�

� kA/0: (34)
with a 50 pm constrained bond length (CISD/aug-cc-pvqz electron
uess, they do not have a convex optimization functional or a unique
rge partitioning steps, they do not require any form of initial guess and
rge partitioning functional converges to a unique solution independent

IH NACs Convex functional NACs

(�0.5978,0.5978) (�0.0093,0.0093)
(0.5950,�0.5950) (�0.0093,0.0093)
(�0.5978,0.5978) (�0.0093,0.0093)
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gives the solution

wconvex
A (rA) ¼ ekA(rfixed_refA (rA))

c(ravgA (rA))
1�c. (35)

The curvature is

d2F convex ¼
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1
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(36)

Inserting eqn (28) into (36) yields

d2F convex $c
X
A

þ �drA�~rA��2
rA
�
~rA
� d3~rA (37)

which is positive denite if c > 0. Thus, the functional is convex
with a unique minimum. Through computational tests, we
found nearly optimal results are obtained by setting cconvex¼ 1/2.
We computed {rxed_refA (rA)} by applying the upper and lower
bound exponential decay constraints while minimizing
a distance measure between rxed_refA (rA) and rcondA (rA)hr(~r)/
rcond(~r)irA. (See Section S3 of the ESI† for computational details of
the Convex functional.) As shown by results in Section 3.1, the
overall performance of this method is slightly inferior to the
DDEC6 method.

We performed computational tests proving the bifurcation
or ‘runaway charges’ problem is associated with non-unique
minima on the optimization landscape. Table 2 summarizes
computational results for the H2 triplet system. For consistency,
all four methods compared used the same density grids, same
reference ion library,71 and same integration method. (This
integration method is explained in Section S2 of the ESI.†) The
pair of numbers (q1,q2) denote the charges associated with the
rst and second H atoms, respectively. The initial guess for the
IH and DDEC3methods is the starting reference ion charge. For
the DDEC3 method, the conditioned reference densities and
the wA(rA) were initialized to equal the starting reference ion
densities. For the Convex functional (eqn (32)), ravgA (rA) was
initialized to equal a reference ion density having the charge
listed as the initial guess. The DDEC3 and IHmethods exhibited
pronounced bifurcation, with the converged NACs highly
dependent on the initial guess. In contrast, the Convex func-
tional exhibited the unique solution (�0.0093,0.0093) inde-
pendent of the initial guess. Because the DDEC6 NACs follow
a xed protocol of seven charge partitioning steps, they do not
require any form of initial guess and converged to the unique
solution (�0.0209,0.0209). These results prove the DDEC3 and
IH methods do not have a convex optimization functional for
some materials.

3. The DDEC6 method

DDEC6 partitioning is always performed using an all-electron
density. For quantum chemistry calculations performed
using effective core potentials (also known as pseudopoten-
tials), the core electrons replaced by the effective core
potentials are added back in prior to DDEC6 partitioning.
This journal is © The Royal Society of Chemistry 2016
Also, throughout all stages of DDEC6 partitioning,
zero tolerances are used to avoid division by zero
errors. Specically, if-then loops were included to smoothly
handle attempted divisions by numbers with magnitudes
smaller than a chosen zero tolerance (e.g., 10�10). Here, we
present the DDEC6 steps and equations in a way that is
independent of the integration grids employed. Specic
integration procedures are described in Section S2 of the
ESI.†
3.1 Conditioning steps and the equivalent reference ion
weighting cequiv

The previous section demonstrated that using a xed number of
charge partitioning steps (e.g., X ¼ 7) can alleviate the ‘runaway
charges’ problem. In this section, we show how to construct
schemes having a xed number of charge partitioning steps
that achieve the DDEC goal of simultaneously optimizing
{rA(~rA)} to resemble the smoothed reference ion densities
{r�refA (rA, q

ref
A )} and the spherical average densities {ravgA (rA)}.

First, we review the meaning of ‘conditioning’. Conditioning
refers to the process in which some set of weighting functions—
let us call them by the generic name {rgenericA (rA)}—are used in
a stockholder partitioning to obtain a new set of spherically
averaged weighting factors, {rconditionedA (rA)}:

rconditionedA (rA) ¼ rgenericA (rA)hr(~r)/rgeneric(~r)irA (38)

rgeneric
�
~r
� ¼X

A;L

r
generic
A ðrAÞ (39)

where hirA denotes spherical averaging. We could perform
another conditioning step by reinserting rgenericA (rA) ¼
rconditionedA (rA) into the right-hand sides of eqn (38) and (39).
This process could be repeated until some desired number, c, of
conditioning steps have been performed. Starting with the
smoothed reference ions, r�refA (rA, q

ref
A ), a single conditioning step

produces

Yavg
A (rA) ¼ r�refA (rA, q

ref
A )hr(~r)/r�ref(~r)irA (40)
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�
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� ¼X

A;L
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�
rA; q

ref
A

�
: (41)

A second conditioning step produces

rdouble_condA (rA) ¼ r�refA (rA, q
ref
A )hr(~r)/r�ref(~r)irAhr(~r)/Yavg(~r)irA (42)

Y avg
�
~r
� ¼X

A;L

Y
avg
A ðrAÞ: (43)

Aer c conditioning steps,

rsome_ref
A ðrAÞ ¼ rrefA ðrAÞ

�D
r
�
~r
�.

rgeneric
�
~r
�E

rA

�c

(44)

where hrð~rÞ=rgenericð~rÞirA is a geometric average of all of the hr(~r)/
rgeneric(~r)irA style terms.

All of the previous DDEC schemes had

wA(rA) z (rsome_ref
A (rA))

c(ravgA (rA))
1�c. (45)
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Inserting eqn (45) into (7), taking the spherical average of both
sides, and rearranging yields

r
avg
A ðrAÞz rsome_ref

A ðrAÞ
D
r
�
~r
�.

W
�
~r
�E1=c

rA

(46)

In general, {rsome_ref
A (rA)} may be produced by conditioning the

smoothed reference ions r�refA (rA, qrefA ) a total of c times.
Substituting eqn (44) into (46) yields

r
avg
A ðrAÞz rrefA
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rA; q

ref
A

�D
r
�
~r
�.
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�
~r
�Ecþ1=c

rA

(47)

where the overbar denotes the (weighted) geometric average of
hr(~r)/rgeneric(~r)irA style terms (such as those appearing in eqn
(40), (42) and (46)). Comparing eqn (46) and (47), the equivalent
amount of reference ion weighting on a conditioning adjusted
basis is therefore

1

cequiv

¼ cþ 1

c
: (48)

We now discuss specic examples. Case 1: DDEC/c1 and
DDEC/c2methods used no reference ion conditioning (i.e., c¼ 0)
with c ¼ 1/10 to give cDDEC2equiv ¼ 1/10.45 Case 2: The HD and IH
methods use no reference ion conditioning (i.e., c¼ 0) with c¼ 1
to give cHD/IH

equiv ¼ 1. Case 3: The DDEC3 method uses one condi-
tioning step (i.e., c ¼ 1) with c ¼ 3/14 to give cDDEC3equiv ¼ 3/17. Case
4: The ISA method has two completely equivalent representa-
tions: either an innite number of conditioning steps (i.e., c¼N)
or c ¼ 0 to yield cISAequiv ¼ 0. (Exactly the same {rISAA (~rA)} are ob-
tained in either representation. In practice, the two representa-
tions are not distinguishable and have the same computational
algorithm.)

When developing the DDEC3 method, Manz and Sholl
showed that one conditioning step (i.e., c ¼ 1) combined with
c ¼ 3/14 yields an appropriate balance between reference ion
weighting and spherical averaging independent of the mate-
rial.19 A scheme containing a xed number of charge parti-
tioning steps can be constructed to yield a similar cequiv value.
Specically, if r�refA (rA, q

ref
A ) are conditioned four times to yield

{wDDEC6
A (rA)} (i.e., c ¼ 4 and c ¼ 1) and hence ve times to yield

the nal DDEC6 {ravgA (rA)}, this corresponds to cDDEC6equiv ¼ 1/5.
cDDEC3equiv ¼ 3/17 lies between this value of 1/5 and the value of
1/6 that would be obtained from a total of six conditioning
steps. We chose ve conditioning steps, because this is more
conservative. Increasing the number of conditioning steps leads
to a slight decrease in the atomic multipoles at the expense of
losing some of the chemical transferability. Yet even with ve
conditioning steps, we achieved DDEC6 atomic multipoles
approximately 2–5% lower inmagnitude on average (see Section
5.2) than the DDEC3 atomic multipoles. As explained in
subsequent sections, this is due to using an accurate xed
reference ion charge and a weighted spherical average during
some of the conditioning steps.

We now return to the bifurcation or ‘runaway charges’
problem demonstrated in the previous section. The rst
possible solution is to use a xed number of charge partitioning
steps. In other words, to use c ¼ 4 and c ¼ 1 for a total of ve
47780 | RSC Adv., 2016, 6, 47771–47801
conditioning steps: cDDEC6equiv ¼ 1/5. The second possible solution
is to use 0 < c < 1 where {rA(~rA)} are recovered by minimizing
a provably convex optimization functional or path action. For
example, Fconvex shown in eqn (32). Two conditioning steps (i.e.,
c¼ 2) are involved in computing {rxed_refA (rA)}. Using c

convex¼ 1/2
yields cconvexequiv ¼ 1/4. We programmed both of these strategies
and tested them for all systems described in this article. (Our
computational method for computing the Convex functional
NACs is described in Section S3 of the ESI.†) Both strategies
used identical {qrefA } values. Both strategies alleviated the
bifurcation or ‘runaway charges’ problem. While both
approaches yielded reasonable results, the rst approach
proved superior to the second. The rst approach allowed using
a weighted spherical average in place of a simple spherical
average during some of the conditioning steps. The second
approach required a simple spherical average during the self-
consistency iterations to prove convexness of the functional
(see eqn (36)). The rst approach was more computationally
efficient and converged in 7 charge cycles compared to 11–14
charge cycles for the second approach. As shown in Tables 3 and
4, the rst approach yielded slightly lower atomic multipole
moments on average, reproduced the electrostatic potential
slightly more accurately on average, and described electron
transfer trends in dense solids slightly more accurately on
average. Therefore, in the end we decided to go with the xed
number of charge partitioning steps (approach 1: DDEC6) as
opposed to minimizing Fconvex (approach 2).

Table 3 summarizes computational tests for six different
DDEC algorithms. The column labeled ‘Simple spherical
average’ uses an algorithm identical to the DDEC6 method,
except ravgA (rA) is used in place of rwavgA (rA). The performance of
this algorithm is substantially worse than DDEC6 but still an
improvement over DDEC3. The column labeled ‘Convex func-
tional’ uses the charge partitioning functional of eqn (32). The
Convex functional also did not perform as well on average as
DDEC6. The columns labeled ‘4 charge partitioning steps’ and
‘10 charge partitioning steps’ use an algorithm identical to the
DDEC6 method but stop aer 4 and 10 charge partitioning
steps, respectively, instead of the 7 charge partitioning steps
used in the DDEC6 method. The overall performance of the ‘4
charge partitioning steps’ and ‘10 charge partitioning steps’
algorithms were similar to that of the DDEC6 method. Speci-
cally, results for about half of the materials are improved upon
going from 7 to 4 charge partitioning steps, while results for the
other half of the materials are improved upon going from 7 to
10 charge partitioning steps. We chose 7 charge partitioning
steps for the DDEC6 method, because it offers a suitable
compromise.

The overall performance of each method was scored based
on twelve computational tests:

1. Squared correlation coefficient (R2) between computed
NACs and the X-ray photoelectron spectroscopy (XPS) core-
electron binding energy shis for the Ti-containing solids Ti,
TiB2, TiO, TiN, BaTiO3, TiCl4, PbTiO3, CaTiO3, SrTiO3, and
TiO2.33 R

2 closer to one indicates a stronger correlation.
2. The slope for a plot analogous to the le panel of the plot

in Section 5.2 where each charge model is compared to DDEC6.
This journal is © The Royal Society of Chemistry 2016



Table 3 Performance of different DDEC algorithms compared to DDEC6. Bold numbers indicate a result better than DDEC6. Italic numbers
indicate a result worse than DDEC6. Numbers neither bold nor italic are within�0.01 with respect to DDEC6 and are considered to be the same
as the DDEC6 values

DDEC6 (7 steps) DDEC3
4 charge
partitioning steps

10 charge
partitioning steps

Simple spherical
average Convex functional

R2 for Ti solids 0.704 0.360 0.739 0.671 0.704 0.718
Slope [R2] for atomic
dipoles (surface atoms)

1.000 [1.000] 1.046 [0.926] 1.119 [0.825] 0.956 [0.980] 1.041 [0.955] 1.061 [0.944]

Slope [R2] for atomic
dipoles (solids)

1.000 [1.000] 1.022 [0.950] 1.122 [0.950] 0.943 [0.987] 0.995 [0.995] 1.011 [0.987]

Mg NAC (for MgO) 1.465 2.012 1.312 1.508 1.473 1.436
Ru NAC (for Li3RuO2) �0.083 �0.172 0.193 �0.149 �0.195 �0.088
P NAC (for H2PO4

�) 1.622 1.800 1.656 1.586 1.682 1.673
Li NAC (for Li2O) 0.902 0.984 0.864 0.914 0.927 0.912
H NAC (for water) 0.395 0.417 0.418 0.381 0.410 0.414
Cl NAC (Imma Na2Cl) �1.628 �2.439 �1.972 �1.492 �1.679 �1.809
H NAC (H2 triplet) �0.021 �0.503 �0.004 �0.040 �0.019 �0.009
Li3 dipole error 0.645 0.900 0.420 0.666 0.771 0.635
Minutes (NaCl 54 atoms) 6.6 34.6 6.0 7.6 6.6 7.8
Score for the method 0 �12 0 0 �7 �5

Paper RSC Advances
A smaller slope (considered better) indicates smaller atomic
dipole magnitudes (mA) for the test set containingmostly surface
atoms.

3. The slope for a plot analogous to the right panel of the plot
in Section 5.2 where each charge model is compared to DDEC6.
A smaller slope (considered better) indicates smaller atomic
dipole magnitudes (mA) for the test set containing dense
materials.

4. The NAC of Mg in crystalline MgO.33 A NAC closer to �1.7
was considered better.

5. The NAC of Ru in crystalline Li3RuO2.33 A NAC closer to
�0.1 was considered better.

6. The NAC of P in the H2PO4
� molecular ion.33 A NAC closer

to �1.5 is considered better.
7. The NAC of Li in linear Li2O.33 A NAC closer to �0.87 is

considered better.
8. The NAC of H in the H2Omolecule.33 A NAC closer to�0.37

is considered better.
9. The NAC of Cl in the high-pressure Imma Na2Cl crystal. A

NAC closer to �1.35 is considered better.
10. The NAC of H in the H2 molecule (triplet state, 50 pm

constrained bond length, CISD/aug-cc-pvqz). A NAC closer to
zero is better.

11. The Li3 molecule dipole error (atomic units) quantied as
mA for the NAC model minus mA for the DFT-computed electron
Table 4 Comparison of accuracy for representing the electrostatic pote
and Zn-nicotinate MOF. The first column lists the source of the NACs use
The reported values are the RMSE in kcal mol�1 averaged across all confor

NACs

Carboxylic acids L

DDEC6 Convex functional D

Conformation specic 1.06 0.98 5
Conformation averaged 1.32 1.38 6
Low energy conformation 1.42 1.52 7

This journal is © The Royal Society of Chemistry 2016
distribution (PBE + D3 (ref. 74)/aug-cc-pvtz optimized geometry
and electron distribution). An error closer to zero is better.

12. The time in minutes required to perform charge analysis
on the NaCl crystal supercell containing 54 atoms running on
a single processor core in Intel Xeon E5-2680v3 on the Comet
supercomputing cluster at SDSC. This is the total wall time from
program start to program nish, including the input le
reading, core electron partitioning, valence electron partition-
ing, computation of multipole moments, output le printing,
etc.

The target values for tests 4, 5, and 9 (dense solids) are
charges that approximate the number of electrons in the
volume dominated by each atom and were chosen to approxi-
mate Bader charges.33 The target values for tests 6, 7, and 8
(molecules) are charges that will more closely reproduce the
electrostatic potential and were chosen to approximate ESP
charges.

NACs are oen used to construct force-elds for classical
molecular dynamics and Monte Carlo simulations. For these
applications, the NACs should approximately reproduce the
molecular electrostatic potential (MEP). Conformational trans-
ferability is important for the construction of exible force-
elds. Table 4 compares the accuracy of the DDEC6 and
Convex functional methods for reproducing the electrostatic
potential across various conformations of carboxylic acids, Li2O
ntial across multiple conformations of carboxylic acids, Li2O molecule,
d tomodel the electrostatic potential across the various conformations.
mations. For each comparison, the best value is shown in boldface type

i2O molecule Zn-nicotinate MOF

DEC6 Convex functional DDEC6 Convex functional

.76 5.80 2.99 3.31

.48 6.56 3.13 3.49

.17 7.36 3.39 3.84
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molecule, and Zn-nicotinate metal–organic framework. Results
listed under the ‘carboxylic acids’ column in Table 4 are the
averages for the previously published conformations of ve
carboxylic acids.19,33 The Li2O conformations span angles from
90� to 180� in 10� increments.33 The Zn-nicotinate conforma-
tions are described in Section 5.3. When NACs were optimized
specically for eachmolecular conformation, V(~r) was described
most accurately using the Convex functional for the carboxylic
acids and most accurately by the DDEC6 method for the Li2O
molecule and Zn-nicotinate MOF. When the conformation
averaged and low-energy conformation NACs were used to
construct point-charge models for every system conformation,
the DDEC6method reproduced V(~r) most accurately for all three
types of materials. This shows the DDEC6 NACs are more
accurate than the Convex functional NACs for reproducing V(~r)
across multiple system conformations. In summary, the DDEC6
NACs have better overall performance than the Convex func-
tional NACs.

Finally, we performed additional computational tests
proving the equivalence relations described in this section.
Specically, we also analyzed nearly all systems in this article
using c ¼ 1 and c ¼ 1/3 (yielding cequiv ¼ 1/4) and obtained
similar (but not strictly identical) results to the c¼ 2 and c¼ 1/2
case discussed above. The computational cost was increased to
�24 charge cycles for convergence.
3.2 Determining the DDEC6 reference ion charge value
(charge cycles 1 and 2)

The reference ion charge is the most signicant difference
between the DDEC6 and DDEC3 methods. In the DDEC3
method, the reference ion charge is the same as the AIM NAC:
qrefA ¼ qA. While setting qrefA ¼ qA has some theoretical appeal, it
also comes with an important disadvantage. In dense materials,
the diffuse nature of anions can cause the number of electrons
assigned to an anion to be much greater than the number of
electrons in the volume dominated by the anion. This causes
several related problems. First, NACs assigned with qrefA ¼ qA
may fail to assign core electrons to the proper atom in some
materials (see Section 5.5). Second, they do not properly
describe electron transfer trends in some materials.33 Third, the
correlation between NACs and core electron binding energy
shis will be weakened due to the overly delocalized assign-
ment of electrons to the anions (see Ti-containing compounds
in Table 3). Fourth, the accuracy of reproducing the electrostatic
potential may be slightly degraded in some materials for which
the anion charges are overestimated in magnitude.33

There are two competing philosophies of electrons
belonging to an atom: localized and stockholder atomic
charges. For localized atomic charges, electrons in the volume
dominated by an atom are assigned almost entirely to that
atom. Non-overlapping compartments, such as those encoun-
tered in Bader's QCT and Voronoi cell partitioning, are the most
extreme limit of localized charge partitioning.50,57,58,62,63 Local-
ized NACs (e.g., Bader or Voronoi cell NACs) convey useful
information about charge transfer trends and core-electron
binding energy shis, but they are not well-suited to
47782 | RSC Adv., 2016, 6, 47771–47801
reproducing the electrostatic potential surrounding a mate-
rial.19,33,45,75,76 On the other hand, stockholder-type charge par-
titioning schemes assign overlapping atomic electron
distributions.18 DDEC3 NACs, which do not incorporate local-
ized atomic charge information, are usually more accurate than
Bader NACs at reproducing V(~r) but suffer the problems
mentioned in the previous paragraph as shown in Section 5.5
and ref. 33.

To achieve the best of both worlds, the DDEC6 method uses
a xed reference ion charge consisting of a weighted average of
localized and stockholder charges. Specically, the DDEC6
reference ion charge value, qrefA , is set using the following
scheme:

qrefA ¼ q2,refA (49)

qs,refA ¼ (1 � ‘)qs,StockA + ‘qs,LocA , s ¼ {1,2} (50)

qi,Stock/LocA ¼ zA � Ni,Stock/Loc
A (51)

N
i;Stock=Loc
A ¼

þ
w

i;Stock=Loc
A ðrAÞ

Wi;Stock=Loc
�
~r
� r�~r�d3~r (52)

Wi;Stock=Loc
�
~r
� ¼X

A;L

w
i;Stock=Loc
A ðrAÞ (53)

w1,Stock
A (rA) ¼ r�refA (rA, 0) (54)

w1,Loc
A (rA) ¼ (r�refA (rA, 0))

4 (55)

w2,Stock
A (rA) ¼ r�refA (rA, q

1,ref
A ) (56)

w2,Loc
A (rA) ¼ (r�refA (rA, q

1,ref
A ))4. (57)

N1,Loc
A and N2,Loc

A are measures of the number of electrons in
the volume dominated by each atom. N1,Loc

A is computed using
the neutral atom reference densities (eqn (55)). N2,Loc

A is
computed using charged reference ions (eqn (57)). The fourth
power appearing in eqn (55) and (57) makes ws,Loc

A (rA) {s ¼ 1,2}
change continuously while also becoming negligible in the
volume of space for which r�refA (rA) < r�refB (rB). When using an
exponent of 4, the ratio r�refA (rA)/r�

ref
B (rB) ¼ 2 corresponds to

assigning 16 times higher density to atom A compared to atom
B at this grid point. This provides an appropriate balance
between transition sharpness and smoothness. Using an expo-
nent less (more) than 4 would cause the density transition
between atoms to be more gradual (sharper). An arbitrarily high
exponent would correspond to the limit of non-overlapping
atoms. Eqn (50) updates the reference ion charges by adding
a fraction ‘ of this localized charge to a fraction (1 � ‘) of the
stockholder charge based on minimizing the information
distance to the (prior) reference ion densities. The nal refer-
ence ion charge (eqn (49)) determined in this manner is
a compromise between counting electrons in the volume
dominated by each atom and counting electrons in proportion
to the (prior) reference ion densities.

The superscript numerals 1 and 2 refer to the charge cycle in
which that quantity is computed. The atomic weighing factors
This journal is © The Royal Society of Chemistry 2016
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for the rst charge cycle are computed using neutral reference
atoms (eqn (54) and (55)). The atomic weighting factors for the
second charge cycle are computed using eqn (56) and (57) based
on the results of the rst charge cycle. Each of the rst two
charge cycles rst computes Wi,Stock(~r) and Wi,Loc(~r) by a loop
over atoms and grid points to compute the sum in eqn (53).
Each of the rst two charge cycles then performs another loop
over atoms and grid points to compute Ni,Stock

A and Ni,Loc
A via eqn

(52). The stockholder, localized, and updated reference charges
are then computed via eqn (50) and (51). The rst charge cycle
yields the HD NACs: qHD

A ¼ q1,StockA . (Even though the CM5 NACs
are not used in DDEC6 charge partitioning, they were computed
at this stage using the HD NACs and the CM5 denition of
Marenich et al.20) The second charge cycle yields the DDEC6
reference ion charges (eqn (49)).

The fraction ‘ of localized atomic charge (qs,LocA ) used to
compute these xed reference ion charges was decided through
a scientic engineering design approach in which we tested
dozens of alternatives. (See Section S1 of the ESI† for a summary of
additional alternatives explored.) Table 5 compares results for ‘ ¼
0 to 1 in 1/6 increments. The accuracy was quantied using ve
tests:

1. Squared correlation coefficient (R2) between computed
NACs and the X-ray photoelectron spectroscopy (XPS) core-
electron binding energy shis for the Ti-containing solids Ti,
TiB2, TiO, TiN, BaTiO3, TiCl4, PbTiO3, CaTiO3, SrTiO3, and
TiO2.33 R

2 closer to one indicates a stronger correlation.
2. The NAC of the Co atom in solid CoO2 minus that in solid

LiCoO2. Simple chemical arguments and electron density
difference maps indicate this results should be signicantly
positive.23

3. The NAC of Mg in crystalline MgO.33 A NAC closer to �1.7
was considered better.

4. The root-mean-squared error (RMSE) in kcal mol�1 for
reproducing the electrostatic potential surrounding the H2O
molecule. A lower RMSE is better.

5. The root-mean-squared error (RMSE) in kcal mol�1 for
reproducing the electrostatic potential surrounding the H2PO4

�

molecular ion. A lower RMSE is better.
As shown in Table 5, some of these tests beneted from

small values of ‘ while others beneted from large values of ‘.
The minimum RMSE for H2O occurs near ‘ ¼ 2/3. Two of the
remaining four tests exhibited optimal performance for ‘ > 2/3,
Table 5 Effect of changing the fraction ‘ of localized to stockholder
charge when computing the fixed reference ion charge value. See the
main text for a description of the five tests. The best value for each row
is shown in boldface type

Fraction ‘ of localized charge in reference ion
charge

0 1/6 1/3 1/2 2/3 5/6 1

R2 Ti compounds 0.672 0.686 0.696 0.703 0.704 0.708 0.709
DCo NAC 0.126 0.116 0.097 0.081 0.052 0.023 0.007
Mg NAC in MgO 1.166 1.229 1.304 1.384 1.465 1.542 1.613
RMSE H2O 2.150 1.768 1.443 1.222 1.164 1.295 1.565
RMSE H2PO4

� 1.397 1.284 1.298 1.430 1.647 1.920 2.219

This journal is © The Royal Society of Chemistry 2016
while the remaining two tests exhibited optimal performance
for ‘ < 2/3. Therefore, we have chosen

‘ ¼ 2/3 (58)

as a suitable compromise to dene the DDEC6 method.
3.3 Computing the conditioned reference ion density
(charge cycle 3)

The next step (i.e., third charge cycle) is to compute the condi-
tioned reference ion densities, rcondA (rA). This conditioning
matches the reference ion densities to the specic material of
interest. First, a loop of over grid points and atoms is performed
to compute r�ref(~r) via eqn (41). Then another loop over grid
points and atoms is performed to compute YavgA (rA) via eqn (40).
In the DDEC6 method, each conditioned reference density,
rcondA (rA), is constrained to monotonically decrease with
increasing rA

fIðrAÞ ¼ drcondA ðrAÞ
drA

# 0 (59)

and to integrate to the number of electrons in the reference ion:

4I
A ¼

ðrcutoff
0

rcondA ðrAÞ4pðrAÞ2drA � zA þ qrefA /0: (60)

These constraints were introduced for theoretical appeal to
ensure expected behavior. In tests we performed, these
constraints had only a small effect on the NACs. They are not
present in the DDEC3 method.

{rcondA (rA)} is found by minimizing the functional

hI
�
rcondA ðrAÞ

� ¼ ðrcutoff
0

"�
rcondA ðrAÞ � Y

avg
A ðrAÞ

�2
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y

avg
A ðrAÞ

p
þ GI

AðrAÞfIðrAÞ
#
4pðrAÞ2drA � FI

A4
I
A (61)

where GI
A(rA) and FI

A are Lagrange multipliers enforcing
constraints (59) and (60), respectively. The minimum of hI is
found by setting

dhI

drcondA ðrAÞ ¼ 0: (62)

Inserting eqn (61) into (62) and using integration by parts to
simplify gives the solution

rcondA ðrAÞ ¼ Y
avg
A ðrAÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y

avg
A ðrAÞ

q �
FI

A þ dGI
AðrAÞ
drA

þ 2GI
AðrAÞ
rA

�
:

(63)

Because

d2hI

drcondA ðrAÞvrcondA ðr0AÞ ¼
4pðrAÞ2ddirac

�
rA � r

0
A

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y

avg
A ðrAÞ

p $ 0 (64)

it directly follows that hI(rcondA (rA)) is a convex functional.
Therefore, {rcondA (rA)} is uniquely determined for a given
{YavgA (rA)} input.
RSC Adv., 2016, 6, 47771–47801 | 47783
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Section S4.1 of the ESI† describes the iterative algorithm we
used to compute {rcondA (rA)}. This description includes an algo-
rithm ow diagram in Fig. S1 of the ESI.† Because our algorithm
cuts the size of the search domain by better than half in each
reshaping cycle, it is mathematically guaranteed to always
converge to the correct solution in a few reshaping cycles.

Aer computing {rcondA (rA)}, a loop over grid points and
atoms is performed to compute

rcond
�
~r
� ¼X

A;L

rcondA ðrAÞ: (65)

Then another loop over grid points and atoms is performed to
compute

sAðrAÞ ¼
*

rcondA ðrAÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rcond

�
~r
�q
+

rA

�	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rcond

�
~r
�q 


rA

��1

: (66)

3.4 Updating {wA(rA)} (charge partitioning steps 4 to 7)

First, we provide a brief overview of charge partitioning steps 4
to 7. The fourth through seventh charge partitioning steps
compute the weighted spherical average and enforce the expo-
nential tail constraints. Because it is advisable to enforce the
Nval
A $ 0 constraint only aer the exponential tail constraints

have already been enforced, the Nval
A $ 0 constraint is enforced

beginning with the h charge partitioning step. kA is the
Lagrange multiplier that enforces Nval

A $ 0. We now explain the
distinction between the terms ‘charge partitioning step’ and
‘charge cycle’. Here, the term ‘charge cycle’ refers to a sequence
of loops that involves computingW(~r) from {wA(rA)}, followed by
a stockholder partition (eqn (68)) to compute {NA}, and nally
the update of {wA(rA)}. Charge cycles that update {kA} but not any
other contributions to {wA(rA)} are part of the same ‘charge
partitioning step’. Thus, in general, each charge cycle follows
one of two paths: (a) if the value of update_kappa is FALSE, the
charge partitioning cycle follows path 6a in which the expo-
nential tail constraints are applied, and (b) if the value of
update_kappa is TRUE, the charge partitioning cycle follows
path 6b in which {kA} is updated. The rst charge cycle in
a charge partitioning step follows path 6a and the subsequent
charge cycles (if any) in a charge partitioning step follow path
6b. Fig. S2 in the ESI† is a ow diagram summarizing the
DDEC6 method.

Now, we provide the detailed sequence for charge parti-
tioning steps 4 to 7. The fourth charge cycle uses:

wA(rA) ¼ rcondA (rA). (67)

Initialize the following variables: update_kappa ¼ FALSE, com-
pleted_steps ¼ 3, charge_cycle ¼ 4, and {kA} ¼ {0.0}. The fourth
and later charge cycles use the following sequence of steps:

1. In the rst loop over grid points and atoms, the sum in eqn
(8) is computed at each grid point.

2. In the second loop over grid points and atoms, the
following quantities are computed:

rA(~rA) ¼ wA(rA)r(~r)/W(~r) (68)
47784 | RSC Adv., 2016, 6, 47771–47801
ravgA (rA) ¼ hrA(~rA)irA (69)

qðrAÞ ¼
* 

1� wAðrAÞ
W
�
~r
�
!
rA
�
~rA
�+

rA

(70)

*
wAðrAÞ
W
�
~r
�
+

rA

(71)

NA ¼ ÞrA(~rA)d3~rA. (72)

All of these quantities except {rA(~rA)} are stored.
3. A weighted spherical average density, rwavgA (rA), is then

computed:

r
wavg
A ðrAÞ ¼

qðrAÞ þ r
avg
A ðrAÞ
5

*
wAðrAÞ
W
�
~r
�
+

rA

1� 4

5

*
wAðrAÞ
W
�
~r
�
+

rA

(73)

Eqn (73) has the form of a weighted spherical average density

r
wavg
A ðrAÞ ¼

D
uA

�
~rA

�
rA

�
~rA

�E
rAD

uA

�
~rA

�E
rA

(74)

where rA(~rA) is weighted at each grid point proportional to

uA

�
~rA

�
¼
 
1� wAðrAÞ

W
�
~r
�
!

þ 1

5

*
wAðrAÞ
W
�
~r
�
+

rA

: (75)

Examining eqn (75), the relative weight assigned to each point is
bounded by

0.1 ( uA(~rA) < 1.2. (76)

The lower bound of �0.1 occurs, because it is not possible to
have hwA(rA)/W(~r)irA ¼ 0 if wA(rA)/W(~r) z 1 for any grid point on
the same radial shell. For a specic rA, positions with larger
wA(rA)/W(~r) receive smaller uA(~rA), and positions with smaller
wA(rA)/W(~r) receive larger uA(~rA). Thus, r

wavg
A (rA) weights portions

of rA(~rA) that overlap other atoms more heavily than those
portions that do not overlap other atoms. At this stage, we also
compute:

uA ¼ vNA

vkA
¼
ðrcutoff
0

4pðrAÞ2qðrAÞdrA: (77)

4. On the fourth charge cycle, update_kappa is not altered.
On the h and subsequent charge cycles, update_kappa is set
to TRUE if Nval

A < �10�5 electrons (e) for any atom. If update_
kappa is TRUE and the NA changes between successive charge
cycles were less than 10�5 electrons for each atom two consec-
utive times in a row then update_kappa is reset to FALSE and
{kA} is reset to {0.0}. Otherwise, the current value of update_
kappa is not altered. This sequence of steps has the effect of: (a)
setting update_kappa to TRUE when the number of valence
This journal is © The Royal Society of Chemistry 2016
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electrons is negative for any atom on the h and later charge
cycles, (b) setting update_kappa to FALSE when {kA} are
converged for a particular charge partitioning step, and (c)
starting each charge partitioning step with the initial guess {kA}
¼ {0.0}.

5. If the value of update_kappa is FALSE (i.e., {kA} are
converged for that charge partitioning step), then completed_
steps is incremented by +1. If completed_steps¼ 7, the iterative
charge cycles are nished and exit at this point.

6a. If the value of update_kappa is FALSE, then {wA(rA)} is
updated to impose the constraints

�2:5 bohr�1�
1� ½sAðrAÞ�2

�# dðlnðwAðrAÞÞÞ
drA

#
��1:75 bohr�1

��
1� ½sAðrAÞ�2

�
(78)

which are illustrated in Fig. 2.
(i) Constraint preventing buried tails from becoming too

diffuse: analogous to the DDEC3 method,19 GA(rA) is computed
to make sure the tails of buried atoms do not become too
diffuse. In the DDEC6 method, we set

sA(rA) ¼ rwavgA (rA) (79)

instead of the DDEC3 expression for sA(rA). The constraints

fIIðrAÞ ¼ dGAðrAÞ
drA

þ hlower
A ðrAÞGAðrAÞ# 0 (80)

hlowerA (rA) ¼ (1.75 bohr�1)(1 � (sA(rA))
2) (81)

4II
A ¼

ðrcutoff
0

ðGAðrAÞ � sAðrAÞÞ4pðrAÞ2drA/0 (82)

are imposed by minimizing the following optimization
functional

hIIðGAðrAÞÞ ¼
ðrcutoff
0

"
ðGAðrAÞ � sAðrAÞÞ2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sAðrAÞ

p
þ GII

AðrAÞfIIðrAÞ
#
4pðrAÞ2drA � FII

A4
II
A (83)
Fig. 2 Illustration of exponential decay constraints applied to wA(rA) in
the buried atom tails. The red curves are not drawn to scale.
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where GII
A (rA) and FII

A are Lagrange multipliers enforcing
constraints (80) and (82), respectively.19 hII(GA(rA)) is a convex
functional with the unique minimum:19

GAðrAÞ ¼ sAðrAÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sAðrAÞ

p �
FII

A þ dGII
AðrAÞ
drA

þ 2GII
AðrAÞ
rA

� GII
AðrAÞhlower

A ðrAÞ
�
: (84)

Section S4.3 of the ESI† describes the iterative algorithm we
used to compute {GA(rA)}. This description includes an algo-
rithm ow diagram in Fig. S3 of the ESI.† Because our algorithm
cuts the size of the search domain by better than half in each
reshaping cycle, it is mathematically guaranteed to always
converge to the correct solution in a few reshaping cycles.

(ii) Constraint preventing buried tails from becoming too
contracted: HA(rA) is then computed to make sure the tails of
buried atoms do not become too contracted. Specically, the
constraints

fIIIðrAÞ ¼ dHAðrAÞ
drA

þ h
upper
A ðrAÞHAðrAÞ$ 0 (85)

h
upper
A ðrAÞ ¼ 2:5 bohr�1�

1� ðsAðrAÞÞ2
� (86)

4III
A ¼

ðrcutoff
0

ðHAðrAÞ � GAðrAÞÞ4pðrAÞ2drA/0 (87)

are imposed by minimizing the following optimization
functional

hIIIðHAðrAÞÞ ¼
ðrcutoff
0

"
ðHAðrAÞ � GAðrAÞÞ2

2GAðrAÞ

þ GIII
A ðrAÞfIIIðrAÞ

#
4pðrAÞ2drA � FIII

A 4III
A (88)

where GIII
A (rA) and FIII

A are Lagrange multipliers enforcing
constraints (85) and (87), respectively. hIII(HA(rA)) is a convex
functional:

d2hIII

dHAðrAÞdHA

�
r0A
� ¼

4pðrAÞ2ddirac
�
rA � r0A

�
GAðrAÞ $ 0: (89)

The unique minimum is

HAðrAÞ ¼ GAðrAÞ
�
1þ FIII

A þ dGIII
A ðrAÞ
drA

þ 2GIII
A ðrAÞ
rA

� GIII
A ðrAÞhupper

A ðrAÞ
�
: (90)

In practice, HA(rA) can be easily found by starting with the initial
estimate Hest

A (rA) ¼ GA(rA) and enforcing constraint (85) by
recursively setting

Hest
A (rA) ¼ max(Hest

A (rA), H
est
A (rA � DrA)exp(�hupperA (rA)DrA)) (91)
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beginning with the second radial shell and continuing outward
until the last radial shell. Finally, HA(rA) is normalized to satisfy
constraint (87):

HAðrAÞ ¼ Hest
A ðrAÞ

ðrcutoff
0

GAðrAÞ4pðrAÞ2drAðrcutoff
0

Hest
A ðrAÞ4pðrAÞ2drA

: (92)

Comments on these exponential tail constraints:
Constraint (80) preventing the tails of buried atoms from
becoming too diffuse is the same for the DDEC3 and DDEC6
methods. The DDEC6 method adds constraint (85) to prevent
the tails of buried atoms from becoming too contracted. The
limiting exponent of 2.5 bohr�1 corresponds to wA(rA) in the
buried tail being cut in half for an rA increase of 0.277 bohr
(0.147 Å). There is no reason for wA(rA) to decrease more
rapidly than this in the buried tail. The integrals of the
optimization functionals hI,II,III in eqn (61), (83) and (88) have
similar forms, except that a square root appears in the
denominator of the rst integral in hI,II but not in hIII. This
exponent in the denominator of the rst integral of the
optimization functional is called the reshaping exponent.19 A
reshaping exponent x ¼ 1/2 is used in the optimization
functional hII (eqn (83)) that enforces constraint (80) pre-
venting tails of buried atoms from becoming too diffuse.19 A
reshaping exponent x ¼ 1/2 is also used in the optimization
functional hI (eqn (61)) that reshapes the conditioned refer-
ence ion densities. The value x ¼ 1/2 is appropriate for these
cases, because it shis electron density from the tail region
into the intermediate region where atoms interface.19 A
reshaping exponent x ¼ 1 is used in the optimization func-
tional hIII (eqn (88)) that enforces constraint (85) preventing
tails of buried atoms from becoming too contracted. Eqn (91)
implementing constraint (85) adds electron density to the tail
region thereby requiring density to be removed during
renormalization. Removing electron density during renorm-
alization with x < 1 is ill-behaved, because this will
completely deplete the electron density in the buried tail
region due to wA(rA)

x/wA(rA)[ 1 when wA(rA) � 1. Using x ¼ 1
avoids this problem.

6b. If the value of update_kappa is TRUE, then {kA} is
updated by setting

kA ¼ max(0, (koldA � Nval
A /uA)) (93)

where koldA is the value of kA before the update is applied. The
{wA(rA)} is then updated via eqn (96). For an individual charge
partitioning step, this process corresponds to minimizing the
functional

FDDEC6 ¼
X
A

þ
rA
�
~rA
�
ln

0
@ rA

�
~rA
�

HAðrAÞ

1
Ad3~rA þ

ð
U

G
�
~r
�
Q
�
~r
�
d3~r

�
X
A

kAN
val
A (94)
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where G(~r) and {kA} are Lagrange multipliers enforcing
constraints (4) and (33), respectively. Within an individual
charge partitioning step, the {HA(rA)} remain constant during
the update of {kA}. Consequently, the curvature is given by

d2FDDEC6 ¼
X
A

þ0B@
�
drA
�
~rA
��2

rA
�
~rA
�

1
CAd3~rA . 0 (95)

for any |drA(~rA)| > 0. This positive denite curvature indicates
a convex optimization landscape with a unique solution. For an
atomwithout any overlaps (i.e., isolated atomic ion limit), uA¼ 0
and the converged rA(~rA) is independent of kA. Therefore, when
uA is negligible (e.g., uA < 10�7) we set kA ¼ 0.0 to avoid division
by zero in eqn (93).

7. The updated atomic weighting factor is

wA(rA) ¼ ekAHA(rA). (96)

The charge_cycle is incremented by +1, and the calculation
returns to # 1 above to start the next charge cycle.
3.5 Summary of changes between DDEC3 and DDEC6
methods

Table 6 summarizes the ve differences between the DDEC3
and DDEC6 methods. First, the DDEC6 method uses xed
reference ion charge values rather than self-consistently
updating them as in the DDEC3 method. Second, the DDEC6
method uses c ¼ 4 and c ¼ 1 to yield a xed number of charge
partitioning steps with cDDEC6equiv ¼ 1/5. In contrast, the DDEC3
method uses a self-consistent iterative scheme with c ¼ 1 and
cDDEC3 ¼ 3/14 to yield cDDEC3equiv ¼ 3/17. Third, the DDEC6 method
uses a weighted spherical average in place of the simple
spherical average used in the DDEC3 method. Fourth, the
DDEC6 method incorporates constraints to make the condi-
tioned reference ion densities monotonically decreasing and to
integrate to Nref

A . Fih, the DDEC6 method adds a constraint to
ensure the buried tails of wA(rA) do not decay too quickly. Both
the DDEC3 and DDEC6 methods include the same constraint to
ensure the buried tails of wA(rA) do not decay too slowly. These
constraints make the buried tail of wA(rA) decay exponentially
with increasing rA.
4. Computational details
4.1 Quantum chemistry calculations

We performed periodic quantum chemistry calculations using
VASP77,78 soware. Our VASP calculations used the projector
augmented wave (PAW) method79,80 to perform all-electron
frozen-core calculations including scalar relativistic effects
with a plane-wave basis set cutoff energy of 400 eV. Calculations
specifying “2 frozen Na core electrons” or “10 frozen Na core
electrons” used PAWs for the Na atom including 2 or 10 frozen
core electrons, respectively. For all systems, the number of k-
points times the unit cell volume exceeded 4000 Å3. This is
enough k-points to converge relevant properties including
geometries and AIM properties (NACs, ASMs, etc.). Except for
This journal is © The Royal Society of Chemistry 2016



Table 6 List of differences between DDEC3 and DDEC6 methods

DDEC3 DDEC6

1 Reference ion charge Iteratively set to AIM charge:
qrefA ¼ qA

Non-iteratively set based on a
special partitioning: qrefA ¼ q2,refA

2 How spherical averaging is
incorporated

c ¼ 1, c ¼ 3/14, cDDEC3equiv ¼ 3/17 c ¼ 4, c ¼ 1, cDDEC6equiv ¼ 1/5

3 Type of spherical average used Simple Weighted
4 Constraints applied to each

conditioned reference ion density
— Monotonically decreasing with

increasing rA and integrates to
Nref
A ¼ zA � qrefA

5 Tail constraints applied to wA(rA)
during 4th and later charge cycles

Tails of buried atoms decay no
slower than exp(�1.75 rA)

Tails of buried atoms decay no
slower than exp(�1.75 rA) and
no faster than exp(�2.5 rA)
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the solid surfaces, geometry optimizations relaxed both the unit
cell vectors and ionic positions. The solid surface calculations
used the DFT-optimized bulk lattice vectors and relaxed the
ionic positions. Where noted, experimental crystal structures or
other geometries from the published literature were used. A
Prec ¼ Accurate (�0.14 bohr) electron density grid spacing was
used. Bader NACs were computed using the program of Hen-
kelman and coworkers.44

We performed non-periodic quantum chemistry calculations
using GAUSSIAN 09 (ref. 81) soware. ESP NACs were computed in
GAUSSIAN 09 using the Merz–Singh–Kollman scheme.10,82

Some materials mentioned in the developmental tests of
this article are studied in more detail in the sequel article.
These include H2O molecule, H2PO4

� molecular ion, form-
amide, Ti-containing solids, various Li2O molecular confor-
mations, B-DNA decamer, MgO solid, LiCoO2 solid, CoO2

solid, Li3RuO2 solid, Fe2O3 solid, ve carboxylic acids in
various conformations, natrolite, Mo2C surface slab with K
adatom, NaF surface slab, SrTiO3 surface slab, Pd crystal and
alloys with interstitial H atom, B4N4 cluster, BN nanotube, BN
sheet, Fe4O12N4C40H52 single molecule magnet with non-
collinear magnetism, Mn12-acetate single molecule magnet,
and the metal–organic frameworks ZIF-8, ZIF-90, IRMOF-1,
and large-pore MIL53(Al). The computational details (e.g.,
basis sets and exchange–correlation functional), geometries,
and full list of DDEC6 NACs for these materials are presented
in the sequel article.33
4.2 Electrostatic potential expansion: atomic multipole
moments and charge penetration terms

In this section, we review the basic principles of expanding the
electrostatic potential, V(~r), into atomic contributions. The
electrostatic potential is important for understanding interac-
tions in all chemical systems.83–85 AIM methods provide
a formally exact expansion of V(~r) by partitioning the total
electron distribution r(~r) into atomic electron distributions,
{rA(~rA)}:

V
�
~r
� ¼X

A;L

VA

�
~rA
�

(97)
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VA

�
~rA

�
¼ zA

rA
�
þ rA

�
~r 0
A

�
���~rA �~r 0

A

��� d3~r 0
A ¼ qA

rA
þ BA

�
~rA

�
þ CA

�
~rA

�
(98)

where BA(~rA) and CA(~rA) are terms due to atomic multipoles
(AMs) and penetration of the atom's electron cloud, respec-
tively.39,45,84,86,87 Outside rA(~rA), the charge penetration term
CA(~rA) vanishes reducing VA(~rA) to a multipole expansion.88

Although eqn (98) is formally exact for all AIM methods, in
practice BA(~rA) and CA(~rA) are truncated at some nite orders
leading to approximate V(~r) expansions.86,87,89 Therefore, AIM
methods providing more rapidly converging V(~r) expansions are
more convenient for constructing force-elds. For constructing
exible force-elds, the AIM NACs should preferably have good
conformational transferability. Alternative expansions of V(~r)
and system multipole moments based on distributed multipole
analysis and Gaussian density functions are given in the related
literature.36–38,40,41

For each system, we computed atomic multipoles up to
quadrupole order using well-known formulas. Atomic dipoles,

~mA ¼ �Þ~rArA(~rA)d3~rA (99)

mA ¼ |~mA| (100)

are the leading component of BA(~rA). Atomic quadrupoles have
the form

QT ¼ �ÞTArA(~rA)d
3~rA (101)

where T is a second degree polynomial. The ve linearly inde-
pendent quadrupole components can be expressed as (i) TA¼ (X
� XA)(Y� YA) for Qxy, (ii) TA¼ (X� XA)(Z� ZA) for Qxz, (iii) TA¼ (Y
� YA)(Z � ZA) for Qyz, (iv) TA ¼ (X � XA)

2 � (Y � YA)
2 for Qx2 � y2,

and (v) TA ¼ 3(Z � ZA)
2 � (rA)

2 for Q3z2�r2, where~RA ¼ (XA, YA, ZA)
is the nuclear position. The traceless atomic quadrupole tensor,
~~QA, is dened by ~~TA ¼~rA~rA � ðrAÞ2~~d=3, where ~~d is the identity

tensor. The three eigenvalues of ~~QA are independent of molec-
ular orientation and coordinate system, and they sum to zero.
For a spherical atom, all three quadrupole eigenvalues are zero.
However, three zero quadrupole eigenvalues does not mean the
RSC Adv., 2016, 6, 47771–47801 | 47787
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atom is necessarily spherical, because such an atom could have
non-zero dipole or higher order multipole (e.g., octapole)
moments that indicate deviation from spherical symmetry. An
oblate spheroidal density has one negative and two equal
positive quadrupole eigenvalues. A prolate spheroidal density
has one positive and two equal negative quadrupole eigen-
values. An ellipsoidal density can have three unequal quadru-
pole eigenvalues.

For nite clusters, molecules, and ions, the total dipole
moment, m ¼ |~m|, is given by

~m ¼
X
A

qA~RA þ
X
A

~mA: (102)

Therefore, a charge model including both NACs and atomic
dipoles reproduces ~m exactly to within a grid integration toler-
ance. A point-charge only model includes the rst term in eqn
(102) but neglects the atomic dipole terms. Unless a point-
charge only model is explicitly dened to reproduce ~m (or
higher order multipole) exactly, it will generally reproduce~m (or
higher order multipole) only approximately except in cases
where~m (or higher order multipole) is zero by symmetry.90 (The
general idea to constrain atom-centered point charges to exactly
reproduce the molecular dipole moment is impossible for
planar molecules placed in an electric eld perpendicular to the
molecule's plane. For this reason, we abandon the idea to
constrain atom-centered point charges to exactly reproduce the
system's dipole moment.) The total pth order multipole of
a nite cluster, molecule, or ion can be expressed as a sum over
NACs and atomic multipoles up to pth order.86,91

Spherical cloud penetration, Cavg
A (rA), is the leading term in

CA(~rA):

CA(~rA) ¼ Cavg
A (rA) + Cnon-spherical

A (~rA) (103)

C
avg
A ðrAÞ ¼

ðN
rA

r
avg
A

�
r0A
� 1

rA
� 1

r0A

!
4p
�
r0A
�2
dr0A: (104)

Eqn (104) is the well-known result arising from basic electro-
static principles. The tail of ravgA (rA) decays approximately
exponentially with increasing rA:

ravgA (rA) z e א�ב rA for rmin_fit # rA # rcutoff (105)

Inserting (105) into (104) yields,

C
avg
A ðrAÞy 4p

b2
ea�brA

�
1þ 2

brA

�
: (106)

To determine the parameters א and ב for each atom, the CHAR-

GEMOL program performed a linear least squares t of א�ב rA to
ln(ravgA (rA)) over the range rmin_t ¼ 2 Å to rcutoff ¼ 5 Å.19 The R-
squared correlation coefficient for this linear regression was
usually >0.99 indicating a nearly exact t. Previous studies have
used different variations of exponential or Gaussian decaying
densities (sometimes multiplied by polynomials in rA) or expo-
nential damping of the 1/r or multipole potential to provide
approximations of charge penetration energies.41,92–96

A charge model's accuracy for reproducing V(~r) can be
quantied by the root mean-squared error (RMSE) in the
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electrostatic potential quantied over a chosen a set of grid
points.11–13,15,19,97,98 The specic method we used to compute
RMSE is detailed in previous work and includes a constant
potential adjustment to equalize the average electrostatic
potentials (over the chosen set of grid points) of the charge
model and full electron distribution.13,19 The charge model may
include point charges, dipoles and/or higher order multipoles,
spherical cloud penetration, and/or aspherical cloud penetra-
tion terms. The relative root mean squared error (RRMSE) is the
RMSE for the charge model divided by the RMSE of a null
charge model having {VA(~rA)} ¼ 0.10,13,15,16,82 The RMSE and
RRMSE were computed over a uniform grid of points lying
between surfaces dened by ginner and gouter times the van der
Waals (vdW) radii. We set (ginner,gouter) ¼ (1.4,2.0) for non-
periodic materials and (ginner,gouter) ¼ (1.3,20.0) for periodic
materials.15,16,82 For three-dimensional materials containing
only nanopores (e.g., MOFs, zeolites), gouter ¼ 20.0 is sufficiently
large that the RMSE grid points span the entire pores. We used
the same UFF vdW radii as Campaña et al.13 (REPEAT program)
which are listed in the ESI† of Watanabe et al.15
4.3 Ewald summation

In the periodic materials, the Ewald summation method of
Smith, including NACs and (optionally) atomic dipoles, was
used to compute electrostatic potentials for RMSE calcula-
tions.99 This Ewald summation separates the Coulomb potential
into a short-range portion summed in real space and a long-
range portion summed in reciprocal space:

V(~r) ¼ Vshort-range(~r) + Vlong-range(~r) (107)

V short-range
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XLmax
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1
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(108)

We set the Ewald summation convergence parameter to aE ¼ p/
(10 Å). Enough real space replications of the unit cell were
included such that every point in the reference unit cell was
surrounded by at least 3/aE real space distance in all directions:

Lmax
i ¼ ceil

0
BB@ 3

aE

max
hsi

0
BB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
~vh$~vh

�
�
~vi$~vi

��
~vh$~vh

�
�
�
~vi$~vh

�2
vuuuut

1
CCA
1
CCA: (109)

This corresponds to an erfc(aErA)/rA cutoff of (aE/3)erfc(3) ¼ 6.9
� 10�7 bohr�1. The reciprocal lattice vectors are dened by

~ui ¼ 2p

�
~vh �~vj

�
~vi$
�
~vh �~vj

�; hsisj: (110)
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The reciprocal space summation encompassed integer multi-
ples bi of the corresponding reciprocal lattice vectors

~k ¼ b1~u1 + b2~u2 + b3~u3 (111)

k2 ¼ ~k$~k (112)

to yield the long-range portion of the electrostatic potential

V long-range
�
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�
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X
A

Xbmax
1
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1
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2
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3
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2
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�
sin
�
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��35
(113)

where~rA in eqn (113) is computed using (L1, L2, L3) ¼ (0, 0, 0).
The term (b1, b2, b3) ¼ (0, 0, 0) is excluded from the sum in eqn
(113). Vunit_cell is the unit cell volume. Our reciprocal space
cutoff
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includes at least all reciprocal space vectors having

0\
���~k���# 4

ffiffiffiffi
p

p
aE. Noting that each term in the reciprocal space

term includes exp(�k2/(4aE
2)) as a multiplier, our reciprocal

space cutoff corresponds to exp(�k2/(4aE
2)) z exp(�4p) z 3.5

� 10�6. Because it is a short-range effect, spherical charge

penetration can be included entirely in the real space summa-
tion using the analytic potential of eqn (106). While the spher-
ical cloud penetration effect is small over grid points used to
compute RMSE, it becomes increasingly important for smaller
rA values.
Fig. 3 The computational cost of DDEC3 and DDEC6 charge parti-
tioning scales linearly with increasing system size. Computation for
NaCl crystal (ambient pressure) performed with serial Fortran CHARGE-

MOL program executed on a single processor core in Intel Xeon E5-
2680v3 on the Comet supercomputing cluster at the San Diego
Supercomputing Center.
5. Performance tests
5.1 Convergence speed

DDEC charge and spin partitioning use a cutoff radius (e.g., 5 Å)
to achieve a computational cost that scales linearly with
increasing number of atoms in the unit cell aer the initial
electron and spin density grids have been generated.19,100 When
combined with a linearly scaling quantum chemistry program
(e.g., ONETEP), this provides computationally efficient charge
analysis even for systems containing thousands of atoms in the
unit cell.101,102 Fig. 3 plots the wall time for computing DDEC3
and DDEC6 NACs, atomic multipoles, and electron cloud decay
exponents for the NaCl crystal (ambient pressure) as a function
of the number of atoms in the unit cell. The unit cells con-
taining 16 and 54 atoms were constructed by forming 2 � 2 � 2
This journal is © The Royal Society of Chemistry 2016
and 3 � 3 � 3 supercells, respectively, that were used as input
for computing the density grid les in VASP. This calculation
utilized a volume of 2� 10�3 bohr3 per grid point. The wall time
in Fig. 3 begins when the CHARGEMOL program is rst entered
prior to reading the VASP density grid les and continues until
the moment aer the computed NACs, atomic multipoles, and
electron cloud decay exponents have been written to the
net_atomic_charges.xyz le. As expected, Fig. 3 shows the
required wall time depends linearly on the number of atoms in
the unit cell. Even though the computation was run on a single
processor core, only six minutes were required for DDEC6
charge analysis of the unit cell containing 54 atoms. This was
only one-h of the time required for DDEC3 charge analysis of
the samematerial. Much larger times are required for DDEC3 or
DDEC6 calculations reading in Gaussian basis set coefficients
(e.g., GAUSSIAN 09 generated .wfx les), because in such cases the
density grids must be explicitly computed within the CHARGEMOL

program.
The main difference in computational cost between DDEC3

and DDEC6 arises from the number of charge cycles required
for convergence. In fact, the electron partitioning scheme is the
only computational difference between DDEC3 and DDEC6. As
shown in Table 7, more charge cycles are required for DDEC3
convergence than for DDEC6 convergence. For all materials we
studied, fewer than 200 DDEC3 charge cycles were required.19

For all materials, seven DDEC6 charge partitioning steps are
required. More than one DDEC6 charge cycle per charge parti-
tioning step is required only when the NA $ Ncore

A constraint is
binding, because in this case {kA} must be iteratively computed.
For Cs@C60 with 54 simulated frozen core electrons, 18 DDEC6
charge cycles were required to complete the seven charge par-
titioning steps. All other materials we studied converged in
seven DDEC6 charge cycles. It is gratifying that the extra accu-
racy of DDEC6 compared to DDEC3 comes with a reduced
computational cost.
RSC Adv., 2016, 6, 47771–47801 | 47789



Table 7 Number of charge cycles to convergence for selected
systems

DDEC3 DDEC6

NaCl crystal (ambient pressure) 107–109a 7a

TiO solid 130 7
Mo2C slab with K adatom 87b 7
Fe2O3 solid 173b 7
Zn nicotinate MOF 75 7
Water molecule 37 7
DNA decamer 83 7
Linear Li2O molecule 52 7
Na3Cl (P4mmm crystal) 62,c 75d 7c,d

Fe4O12N4C40H52 noncollinear
single molecule magnet

90b 7

Cs@C60 51e 7e (18f)

a For unit cells containing 2, 16, and 54 atoms. b From ref. 19. c Using 10
frozen Na core electrons. d Using 2 frozen Na core electrons. e Using 46
frozen Cs core electrons. f Using 54 simulated frozen Cs core electrons
by treating 8 of the 9 PAW valence electrons as core.
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5.2 Atomic dipole magnitudes

To produce an efficiently converging atom-centered polyatomic
multipole expansion, the atomic dipoles and higher atomic
multipoles should not be too large in magnitude. Fig. 4
compares DDEC3 to DDEC6 atomic dipole magnitudes in
atomic units. The le panel contains the following materials
comprised almost entirely of surface atoms: (a) B4N4 cluster, (b)
BN nanotube, (c) h-BN sheet, (d) formamide (PW91 exchange–
correlation functional with 6-311++G** and planewave basis
sets), (e) the metal–organic frameworks IRMOF-1 (DFT-
optimized and X-ray diffraction geometries), large-pore MIL-
53(Al), ZIF-90, ZIF-8, Zn-nicotinate (PW91 optimized geom-
etry), and CuBTC, (f) ZrN4C52H72 organometallic complex, (g)
ZrO4N4C52H72 organometallic complex, (h) [GdI]2+ (SDD and
planewave basis sets), (i) the MgI, MoI, SnI, TeI, and TiI mole-
cules using both SDD and planewave basis sets, (j) [Cr(CN)6]

3�,
(k) the ozone singlet and triplet spin states using the PW91,
B3LYP, CCSD, SAC-CI, and CAS-SCF exchange–correlation
theories, (l) ozone +1 cation doublet (PW91, B3LYP, and CCSD
methods), (m) the Fe4O12N4C40H52 noncollinear single mole-
cule magnet, and (n) [Cu2N10C36H52]

2+ spin triplet. The right
panel contains the following dense materials: TiCl4 crystal,
SrTiO3 surface slab, Pnma NaCl3 crystal (2 frozen Na core elec-
trons), P4mmm Na2Cl crystal (2 frozen Na core electrons),
natrolite, NaF surface slab, Mo2C surface with K adatom, Cmmm
Na2Cl crystal (2 frozen Na core electrons), Pd crystal with
interstitial H atom, Pd3Hf crystal with interstitial H atom, Pd3In
crystal with interstitial H atom, Pd3V crystal with interstitial H
atom. The slopes of the best t lines constrained to have an
intercept of (0,0) were 1.0462 (1.0222) with R-squared correla-
tion coefficient ¼ 0.9263 (0.9496) for the surface atommaterials
(dense materials). This shows the atomic dipole magnitudes are
about 2–5% larger in magnitude for DDEC3 compared to
DDEC6. These small atomic multipoles allow DDEC6 NACs to
approximately reproduce V(~r) surrounding a material.

Why are the DDEC6 atomic dipole magnitudes slightly
smaller on average than those for the DDEC3 method? The
atomic dipole magnitude, mA, can be written as

mA ¼
������
þ0@wAðrAÞr̂A

0
@ r
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�
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�
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�� 1

1
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One strategy to slightly reduce mA is to make the assigned
{rA(~rA)} slightly less diffuse without signicantly altering r(~r)/
W(~r). Because the integral contributions in eqn (115) are
proportional to rA, minimizing the contributions for large rA
values will decrease mA. The DDEC6 anions are typically less
diffuse than the DDEC3 anions, because DDEC6 uses a partially
localized reference ion charge (qrefA ¼ q2,refA ) instead of the AIM
charge used as reference (qrefA ¼ qA) in DDEC3. A second strategy
for minimizing mA is to make r(~r)/W(~r) as close to 1 as feasible in
the bonding regions where atoms overlap. The integral contri-
butions in eqn (115) do not depend on wA(rA) in regions where
47790 | RSC Adv., 2016, 6, 47771–47801
atoms do not overlap signicantly, because wA(rA) z W(~r) in
those regions. The weighted spherical average, rwavgA (rA), weights
more heavily the regions where atom overlaps are substantial.
Thus, rwavgA (rA) makes r(~r)/W(~r) as close to 1 as feasible speci-
cally within the regions where atom overlaps are substantial.
This is precisely those regions where integral contributions to
mA can be suppressed. For this reason, using rwavgA (rA)-
substantially outperforms the simple spherical average,
ravgA (rA), for the purpose of minimizing mA. This reduction in mA

also causes the NACs to more accurately reproduce V(~r)
surrounding the material.

5.3 Conformational transferability and accuracy for
reproducing the electrostatic potential

For some applications, the preferred strategy is to use NACs
from quantum chemistry calculations to build an electrostatic
model in exible force-elds for classical molecular dynamics
and Monte Carlo simulations. Gas adsorption and diffusion in
porous crystalline materials is a common example.66 The
simulations of large biomolecules is another common
example.103 For these applications, exibility of the material
may play a key role.104 Thus, it is important for the NACs to
simultaneously have good conformational transferability and
approximately reproduce the electrostatic potential around the
material. This is a challenging criterion, because NACs directly
t to the electrostatic potential (without additional tting
criteria) oen have poor conformational transferability.14,17

Fig. 5 shows the Zn-nicotinate metal–organic framework
(MOF). This structure is comprised of one-dimensional pore
channels having an approximately square cross-section. The
electrostatic potential is most positive near the atomic nuclei
and becomes most negative near the pore centers. In Fig. 5,
a contour of electrostatic potential isovalue is displayed as
a green surface.

To assess the effects of framework exibility on the Zn-
nicotinate MOF, we performed an ab initio molecular
This journal is © The Royal Society of Chemistry 2016



Fig. 4 Comparison of DDEC3 to DDEC6 atomic dipole magnitudes. Left: Materials comprised almost entirely of surface atoms. Right: Dense
materials comprised mainly of buried atoms.

Fig. 5 The geometry-optimized Zn-nicotinate MOF with one-
dimensional pore channels. The lines mark the unit cell boundaries.
The pore cross-sections are approximately square. The green surface
corresponds to an electrostatic potential isovalue. The electrostatic
potential becomes more negative closer to the pore centers and more
positive closer to the atomic nuclei. Atom colors: C (gray), N (blue), O
(red), Zn (orange), H (pink).
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dynamics (AIMD) calculation in VASP. This AIMD simulation
used a planewave cutoff energy of 400 eV, the PAWmethod, and
PBE functional for 1200 femtoseconds (fs) with a time step of 1
fs. (Electronic energies were converged to 10�4 eV. A normal
precision grid was used, which had a 0.36 (0.18) bohr uniform
grid spacing along each lattice direction for the orbital (electron
density) fast Fourier transforms.) A canonical ensemble at T ¼
300 K was simulated using a Nosé thermostat.105 The Nosé
thermal coupling parameter105 was adjusted until the period of
thermal oscillations was approximately 16 fs (i.e., 16 time steps).
This gave reasonable temperature uctuations that preserved
the MOF's chemical integrity. A period of �250 fs was allowed
for thermal equilibration. Twenty-one conformations were used
for the subsequent charge analysis: the DFT-optimized
minimum energy geometry and 20 AIMD conformations cor-
responding to time steps 250, 300, 350, . 1200. For each of
these conformations, the valence and total all-electron densities
and electrostatic potential were generated in VASP using single-
point (xed-geometry) calculations with a PREC ¼ Accurate
(�0.14 bohr) grid.

Electrostatic potential tting NACs were calculated using the
REPEAT method and associated soware code by Campaña,
Mussard, and Woo.13 For the REPEAT method, NACs were t
outside surfaces dened by gR ¼ 1.0 and 1.3 times the atomic
vdW radii. As previously noted, REPEAT NACs are highly
sensitive to the particular value of this vdW multiplier gR.13,15,16

Campaña et al.13 recommended the value gR ¼ 1.0. Chen et al.
recommended the value gR ¼ 1.3.16

Table 8 summarizes electrostatic potential RMSE and
RRMSE values averaged over all 21 system conformations.
These were computed on a uniform grid dened by an inner
vdW multiplier of 1.3 and an outer vdW multiplier limited only
by the pore size. When using the conformation averaged NACs
and the conformation specic NACs, the REPEAT method
produced a more accurate representation of the electrostatic
potential than the DDEC6 NACs. By denition, electrostatic
potential tting methods (such as REPEAT) should produce
a more accurate representation of the electrostatic potential
than other types of atom-centered point charge models when
This journal is © The Royal Society of Chemistry 2016
using the conformation specic NACs. Including atomic dipoles
in the conformation specic NACs dramatically lowered the
DDEC6 RMSE from 2.99 to 0.55 kcal mol�1, which was even
better than the REPEAT values for both gR ¼ 1.0 and 1.3. This
means that for reproducing the electrostatic potential of a rigid
framework, the DDEC6 method including atomic dipoles
sometimes outperforms the REPEAT NACs. As shown in Table
8, including the spherical charge penetration term had negli-
gible effect. When using the low energy conformation NACs,
REPEAT with gR ¼ 1.0 yielded the lowest RMSE and RRMSE
values. For the low energy conformation NACs, the DDEC6
RSC Adv., 2016, 6, 47771–47801 | 47791
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RMSE and RRMSE values were between the REPEAT values
using gR ¼ 1.0 and 1.3.

Table 9 summarizes information about the conformational
transferability of the NACs. The DDEC6 NACs had excellent
conformational transferability with a mean unsigned deviation
(MUD) #�0.01 for each atom type. Moreover, the max and min
DDEC6 NACs for each atom type differed by <0.1 e. The REPEAT
method had better conformational transferability with gR ¼ 1.0
than with gR ¼ 1.3. For gR ¼ 1.0, three of the atom types
exhibited uctuations > 0.5 e as measured by the difference
between max and min NACs. For gR ¼ 1.3, the Zn NAC varied
from �0.49 to 1.38 across the different conformations, and two
of the other atom types also exhibited uctuations >1 e. With
the exception of atom type O(1), all of the min andmax values of
the DDEC6 NACs were between the min and max values of the
REPEAT NACs using gR ¼ 1.3. With the exception of atom types
C(6), O(1), and O(2), all of the min andmax values of the DDEC6
NACs were between the min and max values of the REPEAT
NACs using gR ¼ 1.0.

What are the implications of these results for developing
force-elds to reproduce the electrostatic potential surrounding
materials? If the goal is to reproduce the electrostatic potential
as accurately as possible surrounding a rigid material using an
atom-centered point-charge model without regard for the
chemical meaning of those NACs, then methods such as ESP,10

Chelp,11 or Chelpg12 for molecular systems or REPEAT13 for
periodic materials or the Wolf-summation technique of Chen
et al.16 are preferable, because these methods minimize RMSE
without regard for the chemical meaning of the NACs. If the
goal is to produce chemically meaningful NACs that reproduce
the electrostatic potential as accurately as possible surrounding
a rigid material, the DDEC6 method is preferable with or
without including atomic dipoles, because this method assigns
atomic electron distributions to resemble real atoms and
reproduce the electrostatic potential. For constructing exible,
non-reactive force-elds, NACs based on the low-energy struc-
ture or an average across multiple system conformations can be
used. Depending on the material and computational details,
Table 8 Average RMSE (kcal mol�1) and RRMSE of Zn-nicotinate
metal–organic framework at 21 different structural conformations.
The values in parentheses include spherical charge penetration effects

DDEC6
REPEAT
(gR ¼ 1.0)

REPEAT
(gR ¼ 1.3)M (M + SCP) D (D + SCP)

Using the conformation averaged NACs
RMSE 3.13 a 1.05 1.01
RRMSE 0.49 a 0.22 0.20
Using the conformation specic NACs
RMSE 2.99 (3.00) 0.55 (0.47) 0.65 0.60
RRMSE 0.47 (0.47) 0.10 (0.09) 0.11 0.10
Using the low energy conformation NACs
RMSE 3.39 (3.38) a 2.34 3.56
RRMSE 0.53 (0.53) a 0.40 0.66

a Not computed, because the variation in the molecular conformation
affects the orientation of the atomic dipoles.
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either the DDEC6, REPEAT13 (especially its extension to simul-
taneously t multiple conformations17), ESP,10 Chelp,11

Chelpg,12 or Wolf-summation technique16 may yield the more
accurate exible force-eld NACs.
5.4 Quantifying the consistency between assigned NACs and
ASMs

An AIM method should preferably yield chemically consistent
NACs and ASMs. For a special type of system, the consistency
between assigned NACs and ASMs can be quantitatively
measured. Consider a single neutral atom or a +1 atomic cation
having only one easily removable electron. For convenience, we
refer to these atoms or atomic ions as containing only one labile
electron. Next, consider an uncharged host system containing
only deeply bound electrons that are paired. If we combine the
atom or atomic ion having one labile electron with the host
system having paired electrons to form a weakly or ionically
bound endohedral complex, a portion of the labile electron's
density may be transferred to the host system's atoms. Since
there is only one labile electron in a background of strongly held
effectively paired electrons (in the endohedral and host system
atoms) and (optionally) strongly held like-spin unpaired elec-
trons (in the endohedral atom), the labile electron's spin cannot
be locally cancelled by any other electrons in the system. In this
case, the amount of electron density transferred from the
endohedral atom to the host system should equal the amount of
spin magnetization density transferred from the endohedral
atom to the host system. This leads to the following quanti-
cation of consistency

D ¼ ðqtotal �NACendohedralÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
charge transferred to host

þ ðMtotal �ASMendohedralÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
spin magnetization transferred to host

(116)

where qtotal $ 0 is the total system charge (in atomic units),
Mtotal$ 0 is the system's total spin magnetic moment (in atomic
units), and NACendohedral and ASMendohedral are the assigned
NAC and ASM of the endohedral atom in the endohedral
complex. In the ideal case, D / 0, because the single labile
electron should transfer equal amounts of spin magnetization
and negative charge to the host. This condition should also be
fullled in situations where a weakly bound endohedral atom
has approximately zero labile electrons. It is not necessarily
fullled in cases where the number of labile electrons exceeds
one, because in such cases the multiple labile electrons might
be transferred into orbitals of opposing spins leading to phys-
ically different amounts of transferred spin magnetization and
transferred negative charge. Nor should it be fullled in cases
where a strong covalent bond forms between the endohedral
atom and the host.

As specic examples, we consider the Li@C60, N@C60,
Cs@C60, Xe@C60, [Eu@C60]

1+, and [Am@C60]
1+ endohedral

fullerenes. The C60 host has only deeply held paired electrons.106

(Experiments show C60 has a rst ionization energy of 6.4–7.9
eV, an electron affinity of approx. 2.6–2.8 eV, and a rst optical
transition of approx. 3.2 eV.107–110) These complexes were chosen
as examples, because they span a wide range from light to heavy
elements having zero to one labile electrons. The Li and Cs
This journal is © The Royal Society of Chemistry 2016



Table 9 Average, maximum, minimum, and mean unsigned deviation of NACs for each atom type in Zn-nicotinate using DDEC6 and REPEAT
methods

Atom type

DDEC6 REPEAT (gR ¼ 1.0) REPEAT (gR ¼ 1.3)

Avg Max Min MUD Avg Max Min MUD Avg Max Min MUD

C(1) �0.12 �0.10 �0.14 0.007 �0.16 0.08 �0.36 0.09 �0.14 0.34 �0.50 0.18
C(2) �0.06 �0.05 �0.08 0.007 �0.06 0.17 �0.23 0.07 0.03 0.56 �0.20 0.11
C(3) �0.02 0.00 �0.04 0.007 0.05 0.25 �0.14 0.07 �0.04 0.32 �0.42 0.13
C(4) 0.08 0.10 0.05 0.012 0.14 0.33 �0.19 0.09 0.03 0.40 �0.42 0.17
C(5) 0.09 0.14 0.06 0.011 0.19 0.50 �0.05 0.11 0.20 0.77 �0.33 0.21
C(6) 0.56 0.58 0.52 0.013 0.37 0.51 0.20 0.06 0.26 0.59 0.04 0.13
H(1) 0.09 0.10 0.07 0.006 0.04 0.16 �0.03 0.03 0.10 0.26 �0.04 0.07
H(2) 0.10 0.11 0.08 0.004 0.03 0.11 �0.03 0.03 0.00 0.22 �0.37 0.08
H(3) 0.12 0.13 0.11 0.006 0.09 0.20 �0.04 0.04 0.05 0.28 �0.18 0.09
H(4) 0.12 0.14 0.11 0.004 0.08 0.18 0.00 0.03 0.12 0.30 �0.07 0.07
N �0.23 �0.21 �0.25 0.007 �0.37 �0.10 �0.63 0.11 �0.23 0.47 �0.68 0.24
O(1) �0.56 �0.53 �0.58 0.011 �0.39 �0.28 �0.49 0.04 �0.23 0.05 �0.51 0.13
O(2) �0.53 �0.50 �0.56 0.012 �0.41 �0.32 �0.51 0.03 �0.37 �0.21 �0.65 0.07
Zn 0.74 0.76 0.70 0.010 0.80 0.91 0.54 0.08 0.47 1.38 �0.49 0.33
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elements have a nominal s1 valence conguration; this outer s-
electron is donated to the Li@C60 and Cs@C60 systems as the
labile electron. The Eu1+ and Am1+ elements have a nominal f7s1

valence conguration; the half-lled f-shell is tightly held while
the outer s-electron is donated to the [Eu@C60]

1+ and
[Am@C60]

1+ systems as the labile electron. (Spectroscopic
experiments show Eu in Eu@C60 is in the +II oxidation state,
meaning the seven f electrons remain bound to the Eu
atom.111,112) Because Xe is a noble gas element, the Xe@C60

system has no labile electrons. Spectroscopic experiments show
that in N@C60, the endohedral N atom has a quartet spin state
analogous to the isolated N atom.113 This can be explained by
the high electronegativity of the N atom, which retains its three
unpaired electrons. Thus, we consider none of the electrons in
N@C60 to be labile.

We optimized the geometries and electron distributions of
these endohedral fullerenes in VASP using the PBE functional
with the PAW method and a 400 eV plane-wave cutoff. A 20 Å �
20 Å � 20 Å cubic unit cell was used. The positions of all atoms
in the system were optimized until the forces on every atom
were negligible. Due to the almost spherical nature of the C60

enclosure, only the equilibrium displacement of the endohedral
atom from the cage's center should be considered signicant.
Therefore, we did not attempt multiple initial geometries with
different angular variations in the endohedral atom's position.
Fig. 6 displays the optimized geometries. In Table 10, the
optimized offset is the distance of the endohedral atom from
the center of the C60 group. (The center of the C60 group was
computed by averaging the (x, y, z) coordinates of the carbon
atoms.) The N, Xe, and Cs atoms were located at the center of
the C60 group (within a computational tolerance). The central
position of the N atom and quartet spin state agree with elec-
tron paramagnetic resonance (EPR) and electron-nuclear
double resonance (ENDOR) experiments.113 As reviewed by
Popov et al., a wide variety of spectroscopic experiments show
the noble gas atom in Ng@C60 complexes (Ng ¼ He, Ne, Ar, Kr,
or Xe) resides at the cage's central position.114 The Cs@C60
This journal is © The Royal Society of Chemistry 2016
geometry optimization converged to an energy minimum
having a centrally located Cs atom, even though the calculation
was started using a non-zero offset of 0.46 Å. This shows the
central Cs position is at least a local (and perhaps global) energy
minimum. In the optimized structures, the Li, Eu, and Am ions
were displaced by >1 Å from the center. Our calculated offset for
Li@C60 is in good agreement with previous computational
studies.115,116 Prior calculations on neutral Eu@C60 and
Am@C60 complexes also indicate an off-center position.117–119

In Table 10, the mean absolute inconsistency between the
assigned NACs and ASMs is quantied as the average of the
absolute value of D for the six materials. Because CM5 is
a correction to the HD NACs, the CM5 method utilized the HD
ASMs. Among the four methods, the HD NACs and ASMs were
the most inconsistent with an average inconsistency of 0.6
electrons. The DDEC6 NACs and ASMs were the most consis-
tent with an average inconsistency of 0.15 electrons. The CM5
and Bader methods had intermediate performance. Because
the HD and DDEC6 ASMs were nearly the same, the poor
performance of the HD method must have been due to its
inaccurate NACs.

Examining the DDEC6 results in Table 10, �1 electron was
transferred from the Li and Cs atoms, leaving a Li1+ or Cs1+

cation in the center having negligible unpaired spin. The CM5
NAC of 1.468 for the Cs atom seems too high, because this
implies removal of some of its outer core electrons. The HD,
CM5, and DDEC6 methods all gave �0.3 electrons transferred
in the Xe system, but the Bader method gave �0.1 transferred
electrons in this material. All four methods gave the least
amount of electron transfer for the N system compared to
other systems. In the Eu and Am cationic systems, �0.4 elec-
trons were transferred from the endohedral metal atom to the
C60 host to give a NAC of �1.4 and an ASM of �7.4 for the
endohedral metal atom. Overall, these results demonstrate
reasonable consistency between the assigned DDEC6 NACs
and ASMs.
RSC Adv., 2016, 6, 47771–47801 | 47793



Fig. 6 Endohedral complexes used to test the charge and spin transfer
consistency. The N, Xe, and Cs atoms are approximately centered in
the C60 cage. The Li, Eu, and Am atoms attract to one side of the C60

cage. The sizes of the endohedral atoms are not drawn to scale.
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5.5 Retaining core electrons on the host atom and assigning
exactly one electron distribution per atom

We were rst motivated to improve upon the DDEC3 method by
a series of calculations on sodium chloride crystals having
unusual stoichiometries. Specically, we computed NACs for
the ten high-pressure crystal structures reported by Zhang
et al.120 and the ambient-pressure NaCl structure shown in
Fig. 7. We generated the electron density in VASP using the PBE
functional and (a) the experimental X-ray diffraction geome-
tries120 for the ten high-pressure crystals and (b) the PBE-
optimized geometry for the ambient-pressure Fm3m-NaCl. As
shown in Table 11 and Fig. 8, the DDEC3 NAC for at least one Na
atom is larger than +1.0 for the following cases: (a) 1.311 for
Na(3) atoms in Cmmm-Na2Cl crystal at 180 GPa, (b) 1.235 for
Na(1) and 1.295 for Na(2) atoms in Cmmm-Na3Cl2 crystal at 280
GPa, (c) 1.219 for Na atoms in Imma-Na2Cl crystal at 300 GPa, (d)
1.035 for Na(1) and 1.108 for Na(2) atoms in P4/m-Na3Cl2 crystal
at 140 GPa, (e) 1.063 for Na(1) atoms in P4/mmm-Na2Cl crystal at
120 GPa, (f) 1.078 for Na(1) atoms in Pm3-NaCl7 crystal at 200
Table 10 Computed NACs and ASMs for the enclosed atom in endohed

System Optimized offset (Å)
Total unpaired
electrons

HD

NAC A

Li@C60 1.52 1 0.323 0
N@C60 0.06 3 0.137 2
Xe@C60 0.01 0 0.293 0
Cs@C60 0.02 1 0.404 0

[Eu@C60]
1+ 1.10 8 0.542 7

[Am@C60]
1+ 1.19 8 0.608 7

Mean absolute inconsistency: 0.601

a Using 46 frozen Cs core electrons. b Using 54 simulated frozen Cs core
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GPa, (g) 1.136 for Na atoms in Pm3m-NaCl crystal at 140 GPa, (h)
1.140 for Na atoms in Pm3n-NaCl3 crystal at 200 GPa, and (i)
1.011 for Na atoms in Pnma-NaCl3 crystal at 40 GPa. Because
a neutral sodium atom has one electron in its valence shell, an
AIM-based NAC for a sodium atom in sodium-containing solids
should ideally be #+1.0. (Non-AIM-based NACs such as APT,
Born effective, and ESP charges are not expected to have this
property.) A Na NAC greater than +1.0 would indicate that some
electrons from the closed [1s22s2p6] shells are donated to other
atoms, but such a donation should be energetically unfavorable
under chemically relevant conditions due to the high ionization
energy of closed shell congurations. (For comparison, the rst
ionization energy of a Ne atom having 1s22s2p6 electron
conguration is 21.56 eV.121) Based on these results, we
concluded that the DDEC3 method overestimates atomic
charge magnitudes in some materials. If ten Na core electrons
are frozen, the DDEC3 NACs for the Na atoms are constrained to
be #+1.0 as shown in Table 11, but this is not a satisfactory
solution because we want NACs to be approximately indepen-
dent of the number of frozen core electrons.

This observation led us to explore numerous potential
modications to the DDEC method, which aer testing dozens
of potential modications culminated in the DDEC6 method.
As shown in Table 11 and Fig. 8, the DDEC6 NACs have the
expected behavior being #+1.0 for each of the Na atoms.
Moreover, the DDEC6 NACs were nearly insensitive to whether 2
or 10 frozen Na core electrons were used.

Bader's quantum chemical topology62–64 cannot be used to
compute NACs for some of these materials, because it assigns
compartments not belonging to any atom (or to multiple atoms
simultaneously) in the following cases: (a) Cmmm-Na2Cl crystal
at 180 GPa irrespective of the number of frozen Na core elec-
trons, (b) P4/m-Na3Cl2 crystal at 140 GPa irrespective of the
number of frozen Na core electrons, (c) P4/mmm-Na3Cl crystal at
140 GPa when using 10 frozen Na core electrons, and (d) P4/
mmm-Na2Cl crystal at 120 GPa when using 10 frozen Na core
electrons. Bader compartments for these four materials are
detailed in Table 12. As it should be, the assignment of these
Bader compartments was based on the full (i.e., valence +
(frozen) core) electron density, not simply the valence density
or the valence pseudodensity. At rst, one might propose
ral doped bucky-balls

CM5 Bader DDEC6

SM NAC NAC ASM NAC ASM

.002 0.566 0.899 0.000 0.903 �0.001

.816 0.118 0.013 2.886 0.142 2.854

.000 0.304 0.092 0.000 0.316 0.000

.002 1.468 0.917 �0.001 1.057a (1.000b) �0.002a

(�0.002b)
.501 1.050 1.566 6.879 1.368 7.515
.355 1.049 1.579 6.545 1.318 7.390

0.386 0.302 0.147

electrons by treating 8 of the 9 PAW valence electrons as core.
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Fig. 7 Sodium chloride crystal structures. The lines mark the unit cell boundaries.
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each non-nuclear attractor could be assigned to one of the
nearby atoms, but this is not satisfactory because in some
cases such an assignment cannot be made without destroy-
ing the crystal symmetry. For example, the P4/mmm-Na2Cl
crystal at 120 GPa (modeled with 10 frozen Na core electrons)
contains one non-nuclear attractor whose closest atoms are
the two equivalent Na(3) atoms; therefore, it is impossible to
assign this non-nuclear attractor to one of the closest atoms
without breaking the crystal symmetry. Alternatively, one
could propose to divide the electron density and/or volume of
each non-nuclear attractor amongst the nearby atoms in
This journal is © The Royal Society of Chemistry 2016
a way that preserves the system's symmetry, but it is not
presently clear whether this could be done in a way that
preserves most of the important properties of the Virial
compartments. Specically, each of the Bader compartments
satises the Virial theorem and behaves as an open quantum
system, but divided pieces of such compartments may
not.62,64 It might be possible that divisions of a non-nuclear
attractor could be made that satisfy the net zero ux condi-
tion (and Virial theorem) over each division volume but not
the local zero ux condition in the bounding surfaces, but it
is not presently clear whether such a partitioning would
RSC Adv., 2016, 6, 47771–47801 | 47795



Table 11 DDEC and Bader net atomic charges of sodium chloride crystals

Atom type Number of atoms DDEC3a DDEC6a Badera

Cmmm-Na2Cl crystal at 180 GPa
Na(1) 2 0.392 (0.319) 0.316 (0.334) e

Na(2) 2 0.566 (0.592) 0.547 (0.563) e

Na(3) 4 1.311 (1.000) 0.849 (0.842) e

Cl(1) 4 �1.790 (�1.455) �1.281 (�1.290) e

Cmmm-Na3Cl2 crystal at 280 GPa
Na(1) 2 1.235 (1.000) 0.954 (0.891) 0.780 (0.560)
Na(2) 4 1.295 (1.000) 0.871 (0.866) 0.643 (0.291)
Cl(1) 4 �1.912 (�1.500) �1.348 (�1.311) �1.033 (�0.571)

Imma-Na2Cl crystal at 300 GPab

Na(1) 8 1.219 (1.000) 0.814 (0.785) 0.676 (0.317)
Cl(1) 4 �2.439 (�2.000) �1.628 (�1.570) �1.351 (�0.633)

P4/m-Na3Cl2 crystal at 140 GPa
Na(1) 4 1.035 (1.000) 0.808 (0.777) e

Na(2) 1 1.108 (1.000) 0.956 (0.902) e

Na(3) 1 �0.461 (�0.396) �0.310 (�0.226) e

Cl(1) 4 �1.197 (�1.151) �0.969 (�0.946) e

P4/mmm-Na3Cl crystal at 140 GPa
Na(1) 1 �0.237 (0.184) �0.246 (�0.202) 0.06e

Na(2) 2 0.465 (0.466) 0.477 (0.480) 0.531e

Cl(1) 1 �0.693 (�0.749) �0.709 (�0.758) �1.122e

P4/mmm-Na2Cl crystal at 120 GPa
Na(1) 1 1.063 (1.000) 0.927 (0.889) 0.756e

Na(2) 1 �0.259 (�0.187) �0.242 (�0.201) 0.041e

Na(3) 2 0.541 (0.503) 0.487 (0.486) 0.511e

Cl(1) 2 �0.943 (�0.910) �0.830 (�0.830) �0.909e

Pm3-NaCl7 crystal at 200 GPac

Na(1) 1 1.078 (1.000) 0.899 (0.874) 0.883 (0.652)
Cl(1) 1 0.297 (0.260) 0.202 (0.196) 0.090 (0.088)
Cl(2) 6 �0.229 (�0.210) �0.184 (�0.178) �0.162 (�0.123)

Pm3m-NaCl crystal at 140 GPa
Na(1) 1 1.136 (1.000) 0.966 (0.916) 0.862 (0.673)
Cl(1) 1 �1.136 (�1.000) �0.966 (�0.916) �0.862 (�0.673)

NaCl crystal at ambient pressured

Na(1) 1 0.981 (0.978) 0.859 (0.848) 0.840 (0.829)
Cl(1) 1 �0.981 (�0.978) �0.859 (�0.848) �0.840 (�0.829)

Pm3n-NaCl3 crystal at 200 GPac

Na(1) 2 1.140 (1.000) 0.962 (0.909) 0.913 (0.653)
Cl(1) 6 �0.380 (�0.333) �0.321 (�0.303) �0.304 (�0.218)

Pnma-NaCl3 crystal at 40 GPac

Na(1) 4 1.011 (1.000) 0.842 (0.853) 0.815 (0.770)
Cl(1) 4 �0.718 (�0.709) �0.590 (�0.597) �0.530 (�0.501)
Cl(2) 4 0.105 (0.101) 0.054 (0.055) �0.030 (�0.028)
Cl(3) 4 �0.398 (�0.392) �0.307 (�0.311) �0.255 (�0.242)

a Values listed for 2 frozen Na core electrons; values in parentheses for 10 frozen Na core electrons. b Similar Bader NACs were reported previously in
ref. 122. c Similar Bader NACs were reported previously in ref. 120. d Na charge of 1.05 computed with IH/R3 all-electron reported previously in ref.
67. e Bader NACs cannot be reported because Bader analysis yields more compartments than atoms (see Table 12). For P4/mmm-Na3Cl crystal at 140
GPa and P4/mmm-Na2Cl crystal at 120 GPa, the Bader NACs for two Na frozen core electrons are listed but non-nuclear attractors occur for ten Na
frozen core electrons.
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Fig. 8 Largest magnitude Na atomic charges in compressed sodium
chloride crystals. These were computed using 2 frozen Na core
electrons. Based on chemical arguments, at least 10 electrons should
be assigned to each Na atom. The DDEC3 method gives many Na
atom charges >1, which indicates some electrons are not assigned to
the correct atom. The DDEC6 method fixes this problem.
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always have a unique denition even if constrained to
preserve the system's symmetry.

In materials for which there is a one-to-one correspondence
between Bader compartments and atoms (i.e., no non-nuclear
attractors), the Bader NACs are computed by integrating the
number of electrons over each compartment. In such cases, the
Bader method oen yields reasonable NACs for dense ionic
solids. Examining Table 11, the DDEC6 and Bader NACs using 2
frozen Na core electrons exhibited similar trends for all of the
sodium chloride crystals where the Bader NACs were dened. Of
Table 12 Bader compartment populations for crystals with non-nuclear

Compartment type Number of compartments

Population for Cmmm-Na2Cl crystal at 180 GPa
1 2
2 2
3 4
4 4
5 4

Population for P4/m-Na3Cl2 crystal at 140 GPa
1 4
2 1
3 1
4 4
5 1

Population for P4/mmm-Na3Cl crystal at 140 GPa
1 1
2 2
3 1
4 4

Population for P4/mmm-Na2Cl crystal at 120 GPa
1 1
2 1
3 2
4 2
5 1

a Values listed for 2 frozen Na core electrons; values in parentheses for 10

This journal is © The Royal Society of Chemistry 2016
particular interest, the Cl NAC was signicantly more negative
than�1.0 for some of the materials. The Bader NACs were more
sensitive than the DDEC6 NACs to whether 2 or 10 frozen Na
core electrons were used. For example, in Imma-Na2Cl crystal at
300 GPa the DDEC6 NAC for the Cl atom was �1.628 (2 frozen
Na core electrons) and �1.570 (10 frozen Na core electrons)
compared to the Bader Cl NAC of �1.351 (2 frozen Na core
electrons) and �0.633 (10 frozen Na core electrons). The reason
for this larger sensitivity of the Bader NACs on the number of
frozen core electrons is that according to an integration routine
now used in popular Bader analysis programs the frozen core
electrons are assigned wholly to the host atom while non-frozen
electrons crossing into neighboring Bader compartments are
divided amongst several atoms.44 This artifact could be removed
by partitioning all electrons (i.e., both frozen and non-frozen)
according to their density in each of the Bader compartments,
yet even so the sensitivity of the number of Bader compartments
on the number of frozen core electrons (e.g., P4/mmm-Na3Cl
crystal at 140 GPa and P4/mmm-Na2Cl crystal at 120 GPa) would
persist. Alternatively, one could choose a small number of
frozen core electrons to ensure the amount of frozen core
electron density spilling into neighboring compartments is
negligible. Consequently, Bader NACs with 2 frozen Na core
electrons are more reliable than those with 10 frozen Na core
electrons.

Interestingly, a recent computational study has predicted the
existence of even more high-pressure sodium chloride phases
with unusual stoichiometries.122 That study also performed
attractors

Enclosed atom Number of electronsa

Na(1) 10.416 (10.425)
Na(2) 10.326 (10.437)
Na(3) 10.260 (10.637)
Cl(1) 18.116 (17.623)
None 0.253 (0.308)

Na(1) 10.222 (10.392)
Na(2) 10.197 (10.340)
Na(3) 10.616 (10.543)
Cl(1) 17.955 (17.752)
None 0.456 (0.544)

Na(1) 10.940 (10.655)
Na(2) 10.469 (10.507)
Cl(1) 18.122 (17.871)
None (0.115)

Na(1) 10.244 (10.326)
Na(2) 10.959 (10.655)
Na(3) 10.489 (10.486)
Cl(1) 17.909 (17.776)
None (0.495)

frozen Na core electrons.
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Table 13 Spearman rank coefficient quantifying the ordering rela-
tionship between average DDEC6 NACs for each element and the
Pauling scale electronegativities

Material Elements
Spearman rank
coefficient

B-DNA C, H, N, Na, O, P 0.94
Cu2 pyridine complex2+ C, Cu, H, N 1.00
CuBTC C, Cu, H, O 0.80
Fe4O12N4C40H52

noncollinear SMM
C, Fe, H, N, O 1.00

Formamidea C, H, N, O 0.60
IRMOFb C, H, O, Zn 1.00
lp-MIL-53 Al, C, H, O 1.00
Mn12-acetate SMMc C, H, Mn, O 1.00
Natrolite Al, H, Na, O, Si 0.60
ZIF8 C, H, N, Zn 1.00
ZIF90 C, H, N, O, Zn 0.90
Zn nicotinated C, H, N, O, Zn 1.00
Zr bisperoxy complex C, H, N, O, Zr 1.00
Zr puckered bare complex C, H, N, Zr 1.00

a Formamide geometry optimized with B3LYP/6-311++G**. b IRMOF X-
ray structure. c Mn12-acetate single molecule magnet geometry
optimized with PBE/LANL2DZ. d Zn nicotinate geometry optimized
with PBE/planewave.
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Bader analysis on several high-pressure sodium chloride crys-
tals, but all but one of those computations were performed for
different pressures or different phases than the Bader charge
results presented here.122 The non-nuclear attractor for P4/m-
Na3Cl2 (at 125 GPa) and Cmmm-Na2Cl (at 200 GPa) was noted in
that study.122
5.6 NACs usually follow electronegativity trends

A method for computing NACs should accurately describe
electron transfer directions. Table 13 lists the Spearman rank
coefficient between DDEC6 NACs and Pauling scale electro-
negativity for 14 materials containing four or more different
elements. The Spearman rank coefficient quanties how well
two variables can be related by a monotonic function. A
Spearman rank coefficient of +1.0 (�1.0) indicates the two
variables are related by a perfectly monotonically increasing
(decreasing) function. A Spearman rank coefficient of 0.0 indi-
cates the two variables are not correlated at all. For each
material, the average DDEC6 NAC was computed for each
element. For each material, the elements were ranked from
highest to lowest electronegativity. For example, in B-DNA the
elements ranked according to electronegativity were 1. O, 2. N,
3. C, 4. P, 5. H, 6. Na. A linear least-squares regression between
the average NACs and the whole number electronegativity ranks
was then performed. The Spearman rank coefficient equals
Pearson's correlation coefficient R for this linear regression,
where 0 # R2 # 1 is the squared correlation coefficient.

Nine of the 14 materials had a Spearman rank coefficient of
1.00, indicating the average DDEC6 NACs followed exactly the
same order as the element electronegativities. The remaining
ve materials had Spearman rank coefficients between 0.60 and
47798 | RSC Adv., 2016, 6, 47771–47801
0.94, indicating the average DDEC6 NACs followed approxi-
mately but not exactly the same order as the element electro-
negativities. These results show DDEC6 NACs usually (but not
always) follow Pauling scale electronegativity trends. The
exceptions are not to be regarded as a deciency of either the
DDEC6 NACs or the Pauling scale electronegativities, because
element electronegativities can only describe the usual direc-
tion of electron transfer. The specic direction of electron
transfer is affected by the chemical environment. For example,
while electrons are usually transferred from carbon to the more
electronegative oxygen, experiments show carbon monoxide is
an exception with electron transfer from oxygen towards
carbon.123 Boron monouoride is another exception with elec-
trons transferred from uorine towards boron.124 Furthermore,
multivalent cations can sometimes acquire a positive NAC
greater than that of less electronegative monovalent cations,
because the multivalent cations may acquire a NAC greater than
+1. For example, the multivalent P, Al, and Si atoms in B-DNA
and natrolite acquired higher NACs than the monovalent Na
atoms.

6. Conclusions

The main utility of net atomic charges (NACs) is they concisely
convey important information about the electron distribution
in materials. Due to the continuous nature of the electron cloud
in a material, there is some exibility in how to partition the
total electron distribution among atoms-in-materials.125 In this
article, we introduced a new method, called DDEC6, for
dening atoms-in-materials and computing NACs in periodic
and non-periodic materials. The DDEC6 NACs are well-suited
both for understanding charge-transfer in materials and for
constructing exible force-elds for classical atomistic simula-
tions of materials. Our method can be applied with equal val-
idity to small and large molecules, ions, porous and non-porous
solids, solid surfaces, nanostructures, and magnetic and non-
magnetic materials irrespective of the basis set type used.
This broad applicability makes it ideally suited for use as
a default atomic population analysis method in quantum
chemistry programs. Actually incorporating DDEC6 into
popular quantum chemistry programs will require additional
work. For example, it might be desirable to implement DDEC6
on the same integration grid already used in the respective
quantum chemistry program.

We used a scientic engineering design approach to achieve
nine performance goals: (1) the total electron distribution is
partitioned among the atoms by assigning exactly one electron
distribution to each atom, (2) core electrons remain assigned to
the host atom, (3) NACs are formally independent of the basis
set type because they are functionals of the total electron
distribution, (4) the assigned atomic electron distributions give
an efficiently converging polyatomic multipole expansion, (5)
the assigned NACs usually follow Pauling scale electronegativity
trends, (6) NACs for a particular element have good trans-
ferability among different conformations that are equivalently
bonded, (7) the assigned NACs are chemically consistent with
the assigned ASMs, (8) the method has predictably rapid and
This journal is © The Royal Society of Chemistry 2016
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robust convergence to a unique solution, and (9) the computa-
tional cost of charge partitioning scales linearly with increasing
system size.

The DDEC6 method makes ve modications relative to the
DDEC3 method: (a) a xed reference ion charge is used based
on a weighted average of the electron population in a localized
atomic compartment and a stockholder partition, (b) the
conditioned reference ions are constrained to decay mono-
tonically with increasing rA and to integrate to the correct
number of electrons (Nref

A ¼ zA� qrefA ), (c) four conditioning steps
instead of (rsome_ref

A )c(ravgA )1�c are used to construct wA(rA), (d)
a weighted spherical average improves the effect of spherical
averaging during charge partitioning, and (e) the atomic
weighting factor wA(rA) is constrained to decay no faster than
exp(�2.5 rA) in an atom's buried tail.

We now summarize key computational results. We showed
for the rst time that the DDEC3 and IH methods sometimes
converge to non-unique solutions that depend on the starting
guess, because their optimization landscapes are sometimes
non-convex. For example, the DDEC3 and IH methods assigned
NACs that severely broke the molecular symmetry for the H2

triplet molecule with constrained 50 pm bond length. The
DDEC6 method removes this problem by using a xed reference
ion charge with a total of seven charge partitioning steps. For
a series of high-pressure sodium chloride crystals with unusual
stoichiometries, we found the DDEC3 method sometimes gives
NACs in excess of +1.0 for the Na atoms and Bader's quantum
chemical topology sometimes yields non-nuclear attractors
while the DDEC6 method exhibits neither of these problems.
For six endohedral fullerenes containing zero to one labile
electrons, the consistency between assigned NACs and ASMs
was quantied for the Hirshfeld, CM5, Bader, and DDEC6
methods. Among these four methods, the DDEC6 method gave
the most consistent agreement between assigned NACs and
ASMs. A study of various conformations of the Zn-nicotinate
MOF showed the DDEC6 NACs have excellent conformational
transferability and are ideally suited for constructing exible
force-elds to approximately reproduce the electrostatic
potential across various system conformations. Computational
tests for various molecular and solid materials showed the
DDEC6 atomic dipole magnitudes are slightly smaller on
average than the DDEC3 ones. This is desirable to produce an
efficiently converging atom-centered polyatomic multipole
expansion for reproducing the electrostatic potential
surrounding the material. The DDEC6 NACs also follow Pauling
scale electronegativity trends on average, but of course the
specic electron transfer direction between two elements is
affected by their chemical environment. Due to the fewer
number of required charge partitioning steps, DDEC6 charge
partitioning converges several times faster than DDEC3 charge
partitioning.

In summary, DDEC6 offers substantially improved accuracy
and lower computational cost than DDEC3. We therefore
recommend the DDEC3 method be replaced with the DDEC6
method. We performed additional computational tests of the
DDEC6 method across the wider set of materials described in
This journal is © The Royal Society of Chemistry 2016
the sequel article.33 All of those results agree with the ndings
presented here.
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