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A comprehensive review is presented on the development and state of the art of colorimetric and

fluorometric sensor arrays. Optical arrays based on chemoresponsive colorants (dyes and nanoporous
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pigments) probe the chemical reactivity of analytes, rather than their physical properties. This provides a
high dimensionality to chemical sensing that permits high sensitivity (often down to ppb levels),

impressive discrimination among very similar analytes and exquisite fingerprinting of extremely similar
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1 Introduction and classes of chemical
sensors

As a species, we are visual creatures and underappreciate the
olfactory sense. Nonetheless, even humans can recognize and
discriminate more than 10000 different odorants." Molecular
recognition by the primary olfactory system derives its specificity
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mixtures over a wide range of analyte types, both in the gas and liquid phases.

in an entirely different manner than the usual lock-and-key
substrate-enzyme specificity. Instead, olfactory specificity ori-
ginates from pattern recognition of the responses of several
hundreds of highly cross-reactive olfactory receptors. Indeed,
for land-based animals, there are typically about 1000 active
olfactory receptor genes, which represents roughly 3% of our
entire genome!>*

Development of rapid, sensitive, portable and inexpensive
systems for identification of a wide range of toxic gases, vapors,
and aqueous solutions has become an urgent societal need and
has important applications ranging from the chemical work-
place to the general population. New approaches to chemical

sensing'? with improved discriminatory powers are essential
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to eliminate false positives for the monitoring of toxic gases at
sub-ppm levels."® In 1982, Persaud and Dodd"® tried to mimic
the olfactory system using semiconductor transducers; this was
one of the first artificial devices to successfully discriminate
among a wide variety of odors without the use of highly specific
receptors, ie., an electronic nose.

The long history of visual indicators in analytical chemistry
has led to the development of optical sensor arrays as an
alternative to electronic sensors. There has been much recent
progress in this “optoelectronic nose” approach,>' %! and
we will present here an overview of the recent progress in
colorimetric and fluorometric sensor arrays, examine the meth-
ods of analysis of the high dimensional data so obtained, and
review important and diverse applications. We also discuss
previous limitations of sensor arrays and prior electronic nose
technology and comment on the recent successes in over-
coming those failings. Finally, we will examine the emerging
trends that are likely to impact the development of new optical
Sensor arrays.

Optical sensor arrays provide a facile, efficient, and sensitive
approach for the rapid detection and identification of wide
range of chemical substrates based on colorimetric or fluores-
cent changes quantified by digital imaging.”**”” Every optical
sensor array must contain both an active center that can
interact strongly with desired analytes and an intense chromo-
phore or fluorophore that is strongly coupled to that active
center.'* It is the intermolecular interactions of analytes with
the active center, often through strong chemical interactions
rather than simple physical adsorption, that results in a colori-
metric or fluorometric change (i.e., chemoresponsive). Using a
chemically diverse array of such chemo-responsive colorants,
one generates a pattern that is an optical fingerprint for
any odorant or mixture of odorants.>'>*®** The colorants
are cross-reactive, but the pattern of the array response is
unique: in this manner, olfactory-like responses are converted
into an easily monitored optical output, thus acting as an
optoelectronic nose.
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1.1 Chemical sensors

There is an increasing demand to measure the chemical
environment both inside our own bodies and in our surround-
ing environment. The healthy function of the human body is
dependent on various chemical processes; thus, in situ monitor-
ing is of crucial importance, e.g., the chemical composition of
patient blood samples in medical diagnosis. The impact of the
environment on living systems similarly is of critical interest,
and analysis of types and amounts of a wide range of toxins,
pollutants, and even naturally occurring chemical species
becomes of increasing importance.

Such analyses and diagnostic methods need suitable sensors.
A sensor is a device that converts an input signal from a stimulus
into a readable output signal."*?® The input signal can be any
measurable characteristic such as quantity or physical variation,
while the output is ultimately an electrical signal. Small and
inexpensive sensors enable mass production and widespread
application.>® Indeed, the development of new sensor technol-
ogy faces the dilemma of trying to create sensors that are both
increasingly sensitive and increasingly robust. Just as position
and momentum are canonical variables, one may argue that
beyond a certain point, the more sensitive a sensor becomes,
inherently the less robust it can be. As we shall see, one path
around this dilemma is the development of disposable sensors,
thus unlinking the opposing demands.

Chemical sensors respond to the chemical environment
(i.e., interactions with molecular species), rather than the
physical environment (e.g., temperature or pressure). Chemical
sensors can therefore be categorized into two major groups:
those that discriminate among analytes based on physical
properties (e.g., molecular weight, vapor pressure, etc.) and
those that measure chemical properties (e.g., reactivity, redox
potential, acid-base interactions, etc.). Chemical sensors can
also be grouped by their signal transduction methods into three
classes: (1) electrical and electrochemical, (2) thermometric,
and (3) optical. We will focus on this last class of sensors as
array components, but let us first briefly overview all three
sensor transduction classes.

1.2 Electrical and electrochemical sensors

An electrical sensor is a resistive or capacitive measurement
device that responds to analyte interactions with receptor layer
of sensor. In a sense, the olfactory receptors of the vertebrate
olfactory system are a large array of bioelectrical sensors.***" In
chemical sensing, electrical and electrochemical sensors are
nearly indistinguishable. Both intrinsically involve the inter-
action of chemical analytes with an electrical circuit and
resistance, capacitance, current, or voltage as the monitored
response.' >3

In attempts to mimic the olfactory system, a wide variety
of electrical and electrochemical sensors have been explored,
including metal oxide semiconductors (e.g: SnO,),>* metal oxide
semiconductor field effect transistors (FET) (e.g Ga,05)*”” and
chemical field-effect transistors (ChemFET),***° conductive polymer
sensors™*® of both intrinsically conductive (e.g. polythiophenes)*! and
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composite types (e.g. carbon-black polymer composite),'* and
coated quartz vibrators or acoustic wave sensors.*” In general,
electrical sensors rely fundamentally on physical adsorption
as the primary interaction between the chemical analytes and
the electrically active surface; this reliance on physical adsorp-
tion, however, inherently provides for sensitivity to change in
humidity, which remains a huge problem for both laboratory
and especially field use.>®%'%?8 In addition, aging of the sur-
face of electrical sensors can induce significant baseline drift.®

Most recently, tremendous efforts have been developing
with low dimensional nanomaterials as highly sensitive sensor
transducers: e.g., nanowires, nanotubes, nanofibers, graphene
and single (or few) layer two-dimensional materials.**>! In
large part, the potential for high sensitivity comes from the
extreme surface area to mass ratios intrinsic to low dimen-
sional materials, which permit extraordinary sensor exposure
to analyte interactions. Selectivity remains key, however, to
the future success of such systems for chemical or biomedical
sensor applications.

Electrochemical sensors®>~>°

are also extremely diverse and
can be used for a wide range of applications, but are beyond
the scope of this review. The reader is referred to recent
reviews on applications in environmental,>*° clinical,®*~** bio-
sensing,***>**7%” food**°® and biohazard agent®® analyses.

1.3 Thermometric sensors

The mechanism of transduction in thermometric sensors relies
on the measurement of the local heat change from specific
chemical reactions or adsorption events involving the analyte.
Thermometric sensors are constructed by coating a catalytic
sensor layer on the surface of a thermometer. In this case, the
interaction of a target analyte with a chemical sensor can
generate or consume heat that is then measured by sensitive
thermistor (i.e., semiconductors with strongly temperature-
dependent conductivity).”®”* Thermometric sensors most
commonly utilize enzymatic reactions with high enthalpy
changes.”®”>”7* Due to the simplicity of the thermal biosensing
approach (e.g., there is no need for labeling reactants), this
method can be considered as a suitable replacement for
other signal transduction methods that require a sophisticated
cascades of reaction steps.

A wide range of applications (e.g. detection of sucrose,”
glucose,”®” uric acid,® insulin,®" and lactate®* by suitable immo-
bilized enzymes) have been reported for thermometric biosensors.
Moreover, a multi-analyte determination method has been per-
formed by thermal biosensors using MEMS thermopiles.”®5384

1.4 Optical sensors

Optical sensors use visible or ultraviolet light to interrogate
sensors for analysis. Optical sensors can be represented in
general terms as a wavelength selectable light source, the
sensor material itself interacting with analytes, and a light
detector (Fig. 1). What the detector monitors varies by techni-
que (e.g. refractive index, scattering, diffraction, absorbance,
reflectance, photoluminescence, chemiluminescence, etc.), can
cover different regions of the electromagnetic spectrum, and

This journal is © The Royal Society of Chemistry 2013
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Fig. 1 General arrangement of spectroscopic measurements: (A) light reflec-
tion; (B) light refraction; (C) light absorption; (D) fluorescent emission. Repro-
duced with permission from ref. 85.

can allow measurement of multiple properties (e.g. intensity of
light, lifetime, polarization, etc.).”®®> The focus of this review,
however, is on optical sensor arrays that use absorbance,
reflectance or fluorescence array detectors (i.e., digital cameras
or scanners).

Colorimetry (i.e., quantitative measurement of absorbance
or reflectance spectra) is, of course, one of the oldest of
analytical techniques,®® and colorimetric sensors stretch back
even before the beginnings of chemistry (e.g., squeeze a lemon
into tea) with straightforward ‘“naked-eye”” quantitation. Colori-
metric detection is a fairly simple technique, and the advent of
universal digital imaging has given it new and exciting possi-
bilities. We will use the general term colorimetry to include
simple three color (i.e., RGB) imaging, hyperspectral imaging
(i.e., more color channels), and full spectrophotometry (i.e.,
hundreds of color channels with nm resolution).

Fluorometry (i.e., the quantitative measurement of fluores-
cence spectra, cf. Fig. 2)*7®° can provide excellent sensitivity
and fluorescent sensors often have some advantages (e.g.,
sensitivity, depending upon the background fluorescence),
although at the cost of a more sophisticated experimental
apparatus.”® Fluorescence-based approaches and fluorescence
parameters (e.g. Stokes shift, fluorescence intensity and aniso-
tropy, emission and excitation spectra, and fluorescence life-
time) can provide substantial flexibility as an analytical
approach.’™* Fluorescence techniques can be divided into
three main classes: intrinsic fluorescent,’> ¢ extrinsic fluores-
cent,”*”*® and displacement or differential®*™'®® probes.

Fig. 2 Partial Jablonski diagram for absorption, fluorescence, and phosphores-
cence. Reproduced with permission from ref. 104.
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Fig. 3 Switching on fluorescence of 9,10-bis((1-aza-4,7,10,13,16-pentaoxacylo-
octadecyl)methyl)anthracene by binding of guest molecules. hv, excitation light;
hv/, fluorescent emission. Reproduced with permission from ref. 107.

Optical chemical sensors must perform two functions: they
must both interact with analytes and subsequently report on
such interactions (e.g., by changing color). While many dyes
and fluorophores do so intrinsically, there are also many other
“artificial receptors” (i.e., compounds capable of supramolec-
ular interactions) that are not spectroscopically active. For
example, crown ethers, cryptands, cyclodextrins and -calix-
arenes often have excellent molecular recognition capabilities
to selectively bind analytes of interest (especially cations, often
anions, and sometimes neutral organics),'°*°"1%1%¢ byt they
are often spectroscopically inert. Such complexing agents can
be covalently modified to incorporate a suitable chromophore
or fluorophore, which can then report on analyte binding.

For example, the linkage of an anthracene fluorophore with
a crown ether receptor creates a diamine sensor for detecting
food spoilage.'®” In the absence of guest molecules (diamines
such as putrescine or cadaverine), the fluorescence of anthra-
cene is ‘switched-off’ by photo-induced electron-transfer; when
a diamine is bound, however, fluorescence intensifies substan-
tially (Fig. 3).

2 Optical sensor array concepts

The olfactory system permits differentiation among a huge
numbers of chemical compounds and complex mixtures over
an enormous range of concentrations. This kind of molecular
recognition could not utilize the usual model of biospecificity,
i.e., the lock-and-key mechanism of enzyme-substrate inter-
action. The olfactory receptors represent the exact opposite of
that kind of specificity and show highly cross-reactive, non-
specific interactions with odorants. Molecular recognition
instead occurs through the pattern of response from hundreds
of different types of olfactory receptor epithelia cells (each of
which expresses only a single one of the hundreds of olfactory
receptors found in our genome), as analyzed by the olfactory
bulb and the brain.

2.1 Importance of intermolecular interactions

In applying this concept of cross-reactive pattern recognition to
artificial chemical sensing, the importance of intermolecular
interactions become predominant. Fundamentally, chemical
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Fig. 4 The range of intermolecular interactions on a semi-quantitative energy
scale. Such interactions are a continuum from the very weakest van der Waals
and dispersion forces to the very strongest covalent or ionic bonds.

sensing is molecular recognition, and molecular recognition
is the consequence of interactions between molecules.*®%**°
The classification and strengths of inter-molecular interactions
are well established (Fig. 4) and form a complete continuum
from the weakest of interactions that are manifest only near 0 K
to the strongest of covalent or ionic bonds. There is a seamless
range from bond formation and ligand coordination, electro-
static ion-ion and proton acid-base interactions, hydrogen-
bonding, halogen bonding, charge-transfer and n-n molecular
complexation, dipolar and multipolar interactions, and van der
Waals interactions (e.g., physical adsorption).

Remarkably, nearly all prior electronic nose technology
relies essentially exclusively on van der Waals and physical
adsorption, the weakest and least selective of forces between
molecules. As we will argue here, colorimetric sensor arrays
provide a successful method of dealing with the dilemma of
sensor sensitivity vs. robustness. In many ways, colorimetric
sensor arrays revisit the earlier, pre-electronic era of analytical
chemistry,"**™** updated by the addition of modern digital
imaging easily quantified by digital imaging.”'”"'*"'® and
pattern recognition techniques (discussed in Section 3).

The advantage of stronger interactions for sensor arrays is
both the obvious one of greater inherent sensitivity and the
more subtle one of great chemical specificity. Ligation of Lewis
base analytes (e.g. amines, thiols, etc.) gives bond enthalpies
from ~40 to ~200 kJ] mol™". In contrast, the enthalpy of
physical adsorption of analytes (e.g., onto metal oxide surfaces)
or absorption (e.g, into polymers) is only ~5 to 20 k] mol .
The effective equilibrium constant for physical adsorption will
typically be only about 5 x 10~ as large as that for ligation to
metal ions. Even more importantly, stronger interactions bring
a much wider range of chemical interactions than simple
physisorption, and consequently one may access a much higher
dimensionality and improve one’s ability to discriminate
among very similar analytes or complex mixtures of analytes.

Based on their recognition elements properties, the sensors
used in an array will span a range of molecular specificity. At
one end, there are individual sensors that are nearly completely
promiscuous, i.e., highly cross-reactive; these include polymers

This journal is © The Royal Society of Chemistry 2013
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and polymer blends with optical reporters embedded that
adsorb analytes primarily based on hydrophobicity."”**® Pro-
miscuous sensors can contribute to the sum of an array’s
response, but are insufficient in and of themselves to provide
the differential selectivity most desirable for chemical sensor
arrays. At the other extreme, there are highly selective artificial
receptors that are specific for one or perhaps one closely related
class of analytes. While this class of sensor can produce high
specificity for specific analytes, alone they too will not make a
sensor array capable of dealing with a wide range of analytes
and mixtures;''® furthermore, the synthesis of such selective
artificial receptors can be complex and problematic. The opti-
mal optical sensor array will therefore incorporate a range of
colorimetric or fluorometric sensors from the promiscuous to
the monogamous.

One sees exactly this range of receptors and receptor
response in the olfactory system. The nose is a sensitive array
of sensors able to distinguish many types of volatile analytes,
but it is not equally sensitive to all analytes. The limits of
detection of human olfaction are well known'*® and span a
range of more than 10°. Consider the human olfactory detec-
tion limits for the simplest of analytes, those with one methyl
group and one other functionality, as shown in Fig. 5. Olfactory
response to methane thiol is over 1 million times stronger than
that of methanol, methylamine is bound more than 100000
times more strongly than methanol, and the range from ethane
to methane thiol is 10”. Van der Waals forces, hydrogen
bonding, and sterics cannot account for such a large range
for comparably sized molecules. It has been suggested'' that
the olfactory receptors (ORs) are, in large fraction, metallo-
proteins, and that metal ion (Cu”, Zn*?, etc.) ligation of strong

Fig. 5 Human olfactory thresholds for detection of a series of comparable
molecules with the structure HC3-X.

This journal is © The Royal Society of Chemistry 2013
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Lewis base analytes (e.g., thiols, amines, phosphines, carboxylic
acids, etc.) likely contributes substantially to the binding of
many analytes by the ORs. In fact, Suslick and coworkers'**
discovered a highly conserved tripodal binding site in roughly
70% of all ORs sequences, and a very recent report from
Matsunami and coworkers'® confirms the crucial role of
copper ions in at least one mouse OR.

2.2 Design requirements of an optical sensor array

There are two fundamental design requirements for a colori-
metric or fluorometric sensor array: (1) the chemo-responsive
dye or fluorophore must contain a center to interact with
analytes, and (2) this interaction center must be strongly
coupled to an intense chromophore or fluorophore. The first
requirement implies that it would be highly advantageous for
the interaction to be more than simple physical adsorption and
involve other, stronger chemical interactions.

Based on the significant intermolecular interactions respon-
sible for optical changes, one may divide chemoresponsive dyes
into roughly five separate (albeit slightly overlapping) classes:
(1) Lewis acid-base dyes (i.e., metal ion containing dyes), (2)
Brensted acidic or basic dyes (i.e., pH indicators), (3) dyes with
large permanent dipoles (i.e., zwitterionic, solvatochromic, or
vapochromic dyes) for detection of local polarity and hydrogen
bonding, (4) redox responsive dyes, and (5) chromogenic aggre-
gative colorants (including simple ionic sulfides and plasmonic
nanoparticle precursors). In addition, one may also consider
environmental modifications to provide shape selectivity,
either by modifying the dye peripheral superstructure or by
molecularly imprinted polymers. The original colorimetric
sensor array’”'**'?* made use of porphyrins and metallopor-
phyrins as sensors, utilizing primarily aspects of Lewis and
Brensted acid-base dyes; as discussed later, the range of sensors
has broadened significantly over the past decade. An example of
a 36 spot sensor array for use with gas phase analytes is shown in
Fig. 6.

For gas phase sensing, a colorimetric sensor array is simply
digitally imaged before and during exposure to any volatile
analyte, odorant, or complex mixture of odorants. The imaging
is mostly commonly achieved with an ordinary flatbed scanner,
but one may also use digital cameras, portable handheld read-
ers, and even cell phones; constancy of illumination is, of
course, important.

Fig. 6 Anexample of a 6 x 6 colorimetric sensor array and its cartridge packing
for use with gas phase analytes.

Chem. Soc. Rev., 2013, 42,8649-8682 | 8653
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Fig. 7 Image of the 36-dye colorimetric sensor array (left) before exposure and
(middle) during exposure to ammonia at its IDLH (immediately dangerous to life
or health concentration). (right) Subtraction of the two images yields a difference
vector in 108 dimensions (i.e., 36 changes in red, green, and blue color values);
this vector is usefully visualized using a difference map, which shows the absolute
values of the color changes. For purposes of display to increase the color palate,
the color range of difference maps are usually expanded.

From the digital images, a difference map (Fig. 7) is easily
generated by digital subtraction, pixel by pixel, of the image of
the array before and after exposure: red value after exposure
minus red value before, green minus green, blue minus blue.
Averaging of the centers of the spots (typically ~200 pixels)
avoids artifacts from non-uniformity of the dye spots, especially
at their edges. The other advantage of using the differences in
RGB colors is that it tends to cancel out discrepancies in
printing because the color differences are only a weak function
of variation of the dye concentration or spot intensity from
array to array.'**

The resulting data is inherently digital (simply a vector of 3N
dimensions where N = total number of spots) and all quantita-
tive and statistically analysis is done directly from the digital
difference vectors. The color difference maps are useful pri-
marily for convenient visualization of color changes of the dye
array; note that the color values are the absolute values of the
differences and that expansion of the color space is useful for
visualization. Note also that color difference maps shown
throughout this review are generally from different arrays and
therefore should only be compared within a single figure.

The choice of the individual sensor dyes in an optical sensor
array is governed empirically by its intended use. One must
consider if this array is meant for a broad range of analyte
detection and discrimination or will it have a more specialized
application. Keep in mind that the great power of optical
sensors is their ability to probe the chemical properties of
analytes through intermolecular interactions other than physi-
cal adsorption. If one uses only optical probes that measure
local polarity (e.g., solvatochromic or vapochromic fluorescent
probes doped into various polymers) then one has lost this
opportunity. Potential analytes vary in their chemical proper-
ties: hydrophilicity, solubility, redox, hydrogen bonding, Lewis
donor-acceptor, and proton acidity and basicity of target ana-
lytes need to be considered. In general, an optimal sensor array
for general sensing purposes will incorporate as much chemical
diversity among the individual sensors as possible. Given the
likelihood of metal ion binding sites in the olfactory receptors
themselves,*""** incorporation of metal ion-containing dyes
into optical sensor arrays can make an important contribution
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to construction of a chemo-responsive sensor array. One must
also consider possible interferents presented by ambient,
complex environments. Finally, the stability of the dyes used
in the array and their quantitative magnitude of response must
of course be considered.

2.3 Classes of colorimetric and fluorometric sensors

2.3.1 Lewis acid-base dyes (i.e., metal ion containing dyes)

Lewis acid dyes. Most strongly odiferous compounds are
Lewis bases: thiols, phosphines, amines, carboxylic acids. Not
coincidentally, these are also among the most common volatile
metabolites of microorganisms; arguably, the primary function
of the olfactory system is to keep us (and our digestive system)
away from high concentrations of bacteria and other microbes,
and hence the location of our nostrils immediately above the
mouth! If one desires a sensor for the detection of such Lewis
bases, then Lewis acids are the obvious solution, consistent
with the likely involvement of metal ions in the olfactory system
itself."?"2?

Among Lewis acid dyes, metalloporphyrins (with different
metals and different peripheral substituents) are a natural
choice for the detection of metal-ligating vapors because of
their open coordination sites for axial ligation, their large
spectral shifts upon ligand binding, and their intense colora-
tion. Indeed, the difference in color of scarlet red arterial blood
and the purple of venous blood is an example of the colori-
metric detection of dioxygen as it ligates to a metalloporphyrin
(i.e., the iron heme of hemoglobin). In addition, it is well
recognized that porphyrins show significant solvatochromic
effects resulting in distinguishable colorimetric changes before
and after interactions with a wide range of both ligating volatile
organic compounds (VOCs) (e.g., amines, thiols, phosphines,

Fig. 8 Molecular structures of some representative chemoresponsive or chromo-
genic dyes containing Lewis acid metal ions.

This journal is © The Royal Society of Chemistry 2013
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phosphites, thiols, etc.) and even weakly-interacting vapors
(e.g., arenes, halocarbons, or ketones).'” Metalloporphyrins
are therefore nearly ideal for colorimetric'®'*'”'*> or fluoro-
metric”'*¢ (for d'° metals primarily) detection of metal-ligating
vapors. A set of representative structures is shown in Fig. 8.

Shape and size selective metalloporphyrins. In addition to
color change, another distinguishing feature with metallo-
porphyrins is one’s ability to modify their periphery and
provide shaped pockets to restrict access to the metal center.
This capability was first developed by Collman and coworkers**”
with the picket-fence porphyrins used for reversible O, binding to
Fe(u) porphyrins and later expanded by many others. Of special
interest was Suslick’s development of bis-pocket porphyrins*>**>°
for selective hydroxylation of terminal methyl and methylene
groups of alkanes and the selective ligation demonstrated on
the first dendrimer decorated porphyrins'*®**' by Moore and
Suslick. This type of thermodynamic selectivity is desirable for
colorimetric sensors, as equilibrium binding to shape-selective
metalloporphyrins can distinguish very similar molecules from
the same chemical class (e.g., branched vs. linear amines).

A relatively new class of shape-selective metalloporphyrins
was developed by Sen and Suslick."**'** A family of bis-pocketed
porphyrins containing siloxyl groups on the ortho positions of a
tetraphenyl porphyrin core has been shown in Fig. 9. The family
contains porphyrins with six, seven, and eight tert-butyldimethyl-
silyl groups (denoted as Zn(SicPP), Zn(Si;OHPP), and Zn(SigPP)),
giving a set of metalloporphyrins with very similar electronic
characteristics but differing steric encumbrance about the
metal binding site. Zn(Si¢PP), for example, has a binding
pocket of ~4 A, greatly restricting the bonding site. These zinc
complexes were sensitive to the shape and size of Lewis basic
analytes; binding constants for a series of amines were found to

Fig. 9 Bis-pocketed zinc siloxylporphyrins for shape-selective discrimination of
Lewis base analytes. Upper: chemical structures. Lower: molecular models (frame-
work side view and space-filled top-view) of Zn(SigPP).

This journal is © The Royal Society of Chemistry 2013
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be controllable over a range of 10" to 10” relative to Zn(TPP)"*?

and used in a colorimetric array to distinguish among alkyl

amines.'?*

Lewis acid sensors for anion detection. The coordination
chemistry of anions was a long overlooked area of inorganic
chemistry. The biological and medical importance of many
anions, from the simple (Cl~, F~, HPO, %, PO, >, etc.) to the
complex (ATP, lipid anions, nucleic acids, etc.), has demanded
and received much greater attention in recent years.'>> The
supramolecular chemistry of anions also plays essential roles in
catalysis and environmental sciences.

There has been tremendous recent effort in the design of
anion receptors for sensing by colorimetric or fluorometric
means. The use of Lewis acid dyes for the detection of anions
has been an active area of research and has been extensively
reviewed recently.'®'*¢7'%> There are, however, unique chal-
lenges to these studies because anion complexation is quite
different from that of metal cations, largely because of the
relatively large size of anions and the omnipresence of protons
in aqueous media. Anion receptors can be neutral or positively
charged and in general anion-receptor interactions are domi-
nated by electrostatics and hydrogen bonding. It is common to
link a chromogenic or fluorescent reporter moiety to a specific
chelating receptor, but one may also use fluorescent Lewis
acids directly.

Displacement assays, dyes with urea, thiourea, or naphtha-
limide sites, or metal ion containing dyes (especially of lantha-
nide and labile d® and d'° transition metal ions) have all been
explored especially heavily as anion binding sites for both

Fig. 10 Upper: a sampling of traditional complexometric indicators. Lower:
Eriochrome Black T in aqueous solution.
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colorimetric and luminescent detection. Work on colorimetric
and fluorometric sensors for specific anions is important, but
mostly beyond the scope of this review.

Lewis base sensors for cation detection. Chelating and macro-
cyclic ligands are, by definition, Lewis bases. Modern supra-
molecular chemistry finds its origins in the design of crown
ethers, cryptands, etc. and their size specific binding of metal
146 However, the use of semi-specific chelating Lewis acid
dyes for colorimetric sensors of metal ions, so-called complexo-
metric indicators'*”**® (Fig. 10), dates back more than 150 years.

Complexometric indicators are used to chelate metal ions
while simultaneously inducing a color change. These chromo-
genic or ionochromic dyes are designed to bring about a
specific color change in the interaction with metal cations.
Classical complexometric indicators (many of which are natural
products also used as histological stains and some of which
date back to the early 1800s) may have greater or lesser degrees
of specificity: for example, calcein and Eriochrome Black T are
used to detect Ca*?, Mg*?, and Al**; hematoxylin for Fe™ and
Al"®; murexide for Ca*®, Cu', Ni‘?, and rare earth ions; and
xylenol orange for Ga™, In*?, and Sc*. Traditionally, complexo-
metric titrations were displacement reactions, starting with the
metal ions bound to the indicator and then displaced by the
addition of EDTA, so that the free dye (rather than the metal ion
complex) served as the endpoint indicator. Recent interest in
metal ion sensors have taken advantage of the cross-reactivity
of complexometric indicators to generate solution based
arrays, for example using a microtiter plate or an immersed
membrane*®"*? for simple identification of single metal ions

ions.

in water.

2.3.2 Bronsted acidic or basic dyes (i.e., pH indicators).
The origins of chemistry as a discipline are closely tied to our
fascination with “pretty colors” and the importance of the dye
industry to early chemists can hardly be overstated."”*™"*> Many
dyes, of course, change their colors depending on the pH.
Litmus (7-hydroxyphenoxazone) was available even to alche-
mists in the Medieval times and literally means “colored moss”
in Old Norse (litmus is produced by lichens, particularly
Roccella tinctoria). There are, of course, dozens of pH indicators
derived from natural products, especially the anthocyanin
oxonium dyes from blueberries to grapes to red cabbage to
rhubarb (Fig. 11).

Synthetic pH indicators received enormous effort during
the first half of the 20th century,"*® but even today substantial

Fig. 11 Some naturally occurring pH indicators. Litmus is from a lichen, delphinidin
from cabernet sauvignon, and cyanidin from blueberries.
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Fig. 12 A sampling of representative pH indicator dyes.

interest in new formulations (including sol-gel encapsulated
indicators and indicators suitable for intra-cellular use in vivo)
continues.”>"**'>” An immense variety of organic chromophores
(e.g- azo dyes, nitrophenols, phthaleins, sulfophthaleins, aniline-
sulfophthaleins, triphenylmethane dyes, etc.) were created largely
to measure the pH of aqueous solutions or as histological stains
for biomedical applications.""*'*® The pK, values among various
pH indicators for aqueous solutions range, of course, from below
0 to 14. The chemical diversity of some pH indicator dyes that
have been used in colorimetric sensor arrays is shown in Fig. 12.

2.3.3 Solvatochromic and vapochromic dyes. Dyes whose
dipole moments are significantly different between their
ground and excited states will show color changes depending
upon the polarity of their environment: i.e., solvatochromism.
If the excited state has a larger dipole moment, it will be more
stabilized relative to the ground state in a more polar environ-
ment and vice versa. Nearly all dyes inherently show some
solvatochromism. For “solvatochromic” dyes, these changes
in dipole moments are very large, leading to impressive color or

Fig. 13 Brooker's merocyanine dye, (1-methyl-4-[(oxocyclohexadienylidene)-
ethylidene]-1,4-dihydropyridine), and its solvatochromic shifts in various solvents.
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fluorescence changes that depend upon the polarity of the
solvent in which the dye is dissolved (Fig. 13).

Common classes of solvatochromic dyes include the
merocyanines, azobenzenes, oxazones, thiazines, nitro-amino-
substituted polythiophenes, and pyridinium N-phenolate betaine
dyes. A common feature of most solvatochromic dyes is that they
are “push-pull” systems (Fig. 11) with a strong zwitterionic
component to their electronic structure, i.e., a large conjugated
n system with strong electron donor groups at one end and strong
electron withdrawing groups at the other.

Several solvent polarity scales'*® have been based on the
wavelength shifts of optical transitions of solvatochromic dyes,
including Kosower’s and Brooker’s early studies, Reichardt’s
ET™°7% and Taft’s n*'®%'%° scales. Solvent polarity is very
much a multi-parameter property, involving dipolar, quadru-
polar, and multi-polar interactions, hydrogen bonding dona-
tion and acceptor properties, Lewis acid-base interactions, etc.
Thermodynamic and theoretical analysis of the origin and
meaning of solvation, solvent polarity, and solvatochromism
continue actively;'®¢™% especially useful are thorough compar-
isons among all related multiparameter descriptions of solvent
polarity.159’167’17°’171
arrays, the use of polymers doped with a solvatochromic dye
(often Nile red) as a reporter on swelling of the polymer by

absorbed analytes has been heavily used for optical fiber
6,172,173

Of particular interest for optical sensor

Sensors.

A separate class of solid-state materials that provide a
colorimetric response to solvent vapors are referred to as
vapochromic or vapoluminescent solids.’”**”> These are most
commonly porous coordination complexes, particularly of
square planar Pt(n) d® compounds. The vapochromism is
triggered by intercalation of solvent molecules into the porous
crystals and the color and luminescence changes derive from
changes within the solids from weak interactions including
coordination of solvent molecules to the metal centers, metallo-
philic contacts, n-r stacking, hydrogen bonding, and general
non-specific host-guest interactions; these interactions can
lead to changes in the ordering of excited states, leading to
large luminescent differences. A particularly striking example
has been recently reported using triarylboron-functionalized
phenylacetylide platinum(u) square planar complexes.'”® Chiral
vapochromic materials have also been used for identification of
enantiomeric vapors.'”” Because vapochromism requires inter-
calation into the interstices of crystalline materials, the
response time can be somewhat slow (although controllable,
perhaps, using nanocrystalline morphologies), and the weak
interactions responsible can also lead to limited sensitivity of
these materials as sensors.

2.3.4 Redox indicator dyes. Oxidation/reduction (redox)
indicators are colorimetric reagents which show a distinct
color change at a specific electrode potentials. These are all
organic compounds exhibiting reversible redox reactions. Exam-
ples include anilinic acid, diphenylamine, eriogreen, m-cresol-
indophenol, methylene blue, and nile blue."'”*"%

Due to the fact that the majority of redox indicators engage a
proton as a participant in their electrochemical reactions, redox
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Fig. 14 Representative structure of some common pH-independent redox dyes.

indicators are sometimes divided into two groups separating
those that are dependent on pH and those that are not. In order
to make an optical sensor for sensitive detection of hydrogen
peroxide (i.e. in the concentration range of 10~ % to 10~ mol L),
a redox indicator (e.g. Meldola blue) was used in a sol-gel layer.'®°
In order to have sensitive detection of triacetone triperoxide
(TATP) vapor (i.e. in the range of 50 ppb to 10 ppm), a colorimetric
sensor array based on redox dyes including Lissamine Green B,
o-dianisidine, diphenyl amine, N-phenyl-1,4-phenylenediamine
and N,N’-diphenyl-1,4-diphenyldiamine (Fig. 14) was constructed
by Lin and Suslick."®" Using a method of hydrolyzing TATP vapor
to constituent acetone and hydrogen peroxide, the array was
capable of detecting concentrations of TATP vapor down to 2 ppb.

2.3.5 Chromogenic aggregative colorants. Chromogenic
colorants whose color is altered by aggregative phenomena
has become an area of massive recent development, especially
for biosensing.'®*'®* Processes that cause aggregation, disper-
sion, or formation of colloidal materials generate changes in
color and fluorescence through various mechanisms, ranging
from simple absorbance and scattering by colloidal solids to
plasmonic absorbance to quenching of attached or adsorbed
fluorophores. The simple precipitation of metal salts or forma-
tion of metal nanoclusters on reaction with thiols and sulfides
goes back to the earliest qualitative spot tests."*""*?

The recent cutting edge is represented by control over the
nanostructure of optical sensors. For example, gold nanoparticle
(NP) agglomerates that efficiently quench adsorbed fluoro-
phores; analyte binding can disperse such nanoparticle agglo-
merates and create a fluorescence turn-on. Judicious choice of
NP functionalization and of fluorophore provides a versatile
platform for solution phase sensing.

2.3.6 Displacement strategies for fluorescent probes. There
are three general classes of fluorescent indicators for chemical
sensing in solution: (1) intrinsic probes (where the sensor is
itself fluorescent), (2) conjugated or extrinsic probes (where a
fluorophore is conjugated to the sensor binding site and its
fluorescent properties modulated by analyte binding), and (3);
displacement, dissociation, or differential probes (where the
analyte competitively binds to an artificial or natural receptor
that also binds a fluorophore),”®0%103:18
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Fig. 15 lllustration of a displacement strategy using serum albumin as a non-
specific receptor and fatty acid as an analyte displacing a fluorescent indicator.
Dyes are initially bound in disparate hydrophobic binding sites which lead to
differential sensing ability. Reproduced with permission from ref. 186.

Displacement probe strategies require some sort of reversi-
ble interaction between a receptor (natural or artificial) and a
reporting fluorophore/chromophore; the binding of the reporter
molecule must modify the fluorescence or color the reporter.
The receptor can be either specific for one class of analytes or
more cross-reactive.

Indicator displacement assays (IDA) use a parallel set of
multiple not-too-selective displacement probes, often referred
to as differential selectivity, to generate a pattern of response
not unlike the colorimetric sensor arrays already discussed.
This approach has been particularly well explored by the Anslyn
group.'®7'% The potential disadvantage of displacement stra-
tegies, of course, is diminished sensitivity because there is an
inherent competition between the analyte and the already
bound fluorescent or colorimetric reporter.

One normally thinks of sensor arrays as single physical solid
devices: a printed array on a polymer membrane or a bundle of
fiber optic probes, etc. Displacement strategies, however are
generally limited to solution phase sensing and do not lend
themselves easily to a solid-state sensor array platform that
could be immersed in a solution of analytes. Instead, solution
phase array sensing is carried out by a parallel analysis of
multiple aliquots of the analyte solution, each with an added,
different homogeneous probe, e.g. using microwell plates with
a microwell fluorescent scanner.

Kubarych, Adams, and Anslyn used a set of commonly
available proteins with a set of fluorophores as non-specific
probes for hydrophobic molecules."®® In this case, non-specific
hydrophobic binding interactions were used with an indicator
displacement strategy to provide multiple diverse probe sites
within a single protein molecule, as shown schematically in
Fig. 15. This led to the ability to differentiate among several
different hydrophobic species including fatty acids and food oils.

2.3.7 Molecularly imprinted optical sensors. One way to
improve optical sensor resistance to interferents is the applica-
tion of a molecular imprinting technique.'®” The molecular
imprinting is a process which can rapidly synthesize polymers
with differential selectivity to targeted analytes, which include
both molecular and ionic species as well as enantiomers"%*>
In general terms, one includes a non-polymerizing analyte in
the monomer solution during polymerization. The templating
analyte is then exhaustively removed from the resulting polymer.
This molecularly imprinted polymer (MIP) must be sufficiently
crosslinked to retain internal structural integrity, but not so
rigid as to prevent template removal. As with displacement
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Fig. 16 A representative scheme of an molecularly imprinted polymer sensor
array that uses a dye-displacement strategy to give an easily visualized and
unique colorimetric response pattern for each analyte used with permission from
ref. 189.

assays, MIP sensors face the problems of specificity and are
also generally limited to solution phase sensing.

As an example, Shimizu and coworkers'® constructed a sensi-
tive, selective receptor array with a molecular imprinting proce-
dure which was able to classify different amines (Fig. 16). They
applied a dye-displacement strategy for rapid and versatile
measurable colorimetric response. The presence of molecularly
imprinted polymers (MIP) with high cross-reactivity as detec-
tion elements provided a specific response for each analyte.

2.4 Substrate considerations

2.4.1 Printed arrays. While the choice of chemoresponsive
dye or fluorophore will dominate the effectiveness of any
optical sensor array, the functionality of the array will also be
influenced by the substrate and morphology of the substrate
upon which the colorant is placed. Sensitivity, reliability, accu-
racy, response time, susceptibility to interferents, and shelf-life
of the array can be heavily influenced.

A wide variety of solid supports have been used for colori-
metric and fluorometric array construction. The desired proper-
ties of such substrates include inertness towards gases and
liquids, high surface area (to incorporate sufficient colorant),
optical transparency or high reflectivity, and stability over a
wide pH range.'®*®3>8%15¢ A gsimple method for array manu-
facture involves printing dye formulations on the surface of
reverse phase silica gel plates, acid-free paper, or porous
polymer membranes made out of a material such as cellulose
acetate or polyvinylidene difluoride (PVDF). Robotic pin printers
serve this function particularly well (Fig. 17). Ink-jet printing
works well for a limited number of sensors, and spin-coating"*®
can also be used, but is difficult for multiple spot arrays.

A major shortcoming of many chemical sensors is their
sensitivity to changes in ambient humidity.®® For any real world
application, changes in humidity from day to day or from indoors
to outdoors can involve changes of tens of thousands of ppm in
water vapor concentration. Any significant response to humidity
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Fig. 17 A robotic pin printer (upper) with a slotted pin printing array (lower) is
capable of printing hundreds of sensor arrays per hour.

can prove lethal for detection of ppm concentrations of VOCs.
The use of hydrophobic materials (e.g;, PVDF membranes) as
colorimetric or fluorometric sensor array substrates can be highly
advantageous in reducing array response to humidity over a wide
range (10 to >95% relative humidity)'*'”"*'%719 and can even
permit the use of such arrays in aqueous solutions.'*®

For sensing applications, soluble, molecularly-based dyes
are deposited as a viscous film or on a high surface area
membrane or solid, and the analytes can gain access to the
colorant with an acceptable response time. In contrast, pig-
ments (which by definition are insoluble colorants) are not
generally permeable to analytes and therefore reactive only
on their outermost surfaces, which dramatically reduces any
colorimetric or fluorometric response to the presence of ana-
lytes. Molecular dyes, however, often have limited shelf-life as
sensors, particularly when incorporated into viscous films or
polymers due to crystallization (and consequent loss of analyte
accessibility to the colorant centers).**°

Porous sol-gel glasses can also provide excellent matrices
for chemically responsive colorants,5>1°¢201:202 Ap effective
nanoporous pigment sensor can be made by adding chemo-
responsive dyes to ormosils prepared from suitable silane
precursors in low volatility solvents,'®97,200:203:204 1n addition,
the physical and chemical properties of the matrix (e.g., hydro-
phobicity, porosity) can be easily altered using organically
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Fig. 18 (a) Image of a printed array, 2.5 x 2.5 cm. (b) RGB values of a linescan
across the centre of a typical spot. Used with permission from ref. 200.

modified sol-gel (i.e., “ormosil”’) formulations, and different
silane precursors are needed depending on the solubility of the
dye. The use of these porous pigments significantly improves
the stability and shelf-life of the colorimetric sensor arrays
and permits direct printing onto non-permeable polymer sur-
faces.'6200:203:205 Aqditionally, we have observed that the matrix
may serve as a preconcentrator, improving the overall sensitivity.
Digital image analysis shows that printing of these nanoporous
pigments have a uniform color distribution across the center of
the spot (Fig. 18).>°° Reproducibility of the optical densities of
printed spots is excellent, and chemical sensing experiments
generally use the difference between before-exposure and dur-
ing-exposure image, which further reduces errors in the pattern
analysis. It is also important that image analysis of printed
spots utilize the average RGB values of the center portion of the
printed spots to eliminate artifacts from the spot edges."*
The development of optically based chemical sensing plat-
forms has increasingly employed substrates manufactured with

Fig. 19 SEM micrographs of a 1 mm diameter spot of a porous ormosil pigment
printed on PET film: (a) top surface and (b) energy dispersive spectroscopic (EDS)
elemental mapping (Si Ka); (c) cross-section and (d) EDS elemental mapping
(Si Kar). Used with permission from ref. 200.
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Fig. 20 TEM micrograph of porous ormosil pigment showing the 50 to 200 nm
pore structure created in these ormosil xerogels. Used with permission from
ref. 200.

advanced processing techniques, and the control of over sensor
morphology, micro- and nano-structure must be characterized.”*
Scanning electron microscopy has shown that the nanoporous
pigment films are typically ~3-4 um thick with uniform silicon
content throughout the spot, and transmission electron micro-
graphs reveal the pore structure of these ormosil films (Fig. 19
and 20), which assist in mass-transport, and are responsible for
the fast response times observed during sensing experiments
(90% response generally occurs in <2 minutes).>*

Another means of generating nanoporous pigments has been
reported. Bang et al.>*® prepared silica microspheres using tetra-
methoxysilane (TMOS) and methyltrimethoxysilane precursors
(MTMS) in which chemoresponsive pH and solvatochromic dyes
were incorporated with an ultrasonic-spray aerosol-gel synthesis
method.**®

2.4.2 Fiber optic arrays. A powerful alternative, especially
for fluorescent sensors, is the use of fiber optic arrays. Almost
twenty years ago, Walt and co-workers began developing multi-
fiber optical bundles as cross-reactive or multi-receptor high-
density sensor arrays.>”” In this technique, bundles of very
small silica fiber-optic cables are chemically etched to create a

Fig. 21 General strategy used for creating bead microarrays using etched fiber-
optic bundles. Types A, B, and C (blue, green, and red respectively) indicate the
types of self-encoded beads, while the insets represent a typical time-based sensor
response to an exposed analyte. Reproduced with permission from ref. 210.
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Fig. 22 SEM images of etched fiber-optic bundles. (a) Optical fiber-based array
with hexagonal pits contains 50 000-60 000 fibers; inset shows magnified views
of the individual fibers (bright dots); (b) microwells etched into the individual
fibers and surrounded by cladding; darker gray circles correspond to the ends of
the optical fibers defining the bottom of each well; (c) beads loaded into wells.
Reproduced with permission from ref. 173.

2-dimensional array of microwells, which are used to hold a
random distribution of beads containing individual fluorescent
probes. In order to ameliorate the loss of physical position as a
useful measurable property, these beads are functionalized with
optical encoding elements so as to identify themselves during
the analysis. A graphical explanation of this process is shown in
Fig. 21 and SEM images of the final arrays are shown in Fig. 22.

For achieving simultaneous, multi-analyte, high-density, and
high-throughput sensing analysis, the optical fiber-based arrays
were developed using optical fiber bundles that comprise thou-
sands of individual single-core fibers which are individually
modified with a diverse sensing chemistry using a random
assembly method. In general, the fiber arrays (with total size of
around 1 mm) contain a few thousand up to a hundred thousand
individual fibers with size of 2-10 um prepared by selective
etching of the polished array in acid solution®*® (Fig. 22). This
engineered structure enables individual wells to be recognized by
the optical fiber defining its base, providing a high-density array
of micro-wells that can be simultaneously and independently
interrogated by light. Excitation light is introduced into the
unfunctionalized end of the fiber; emission signals from indivi-
dual sensors return through the fiber and are magnified and
projected onto a charge-coupled device (CCD) camera, leading to
the simultaneous observation of all sensors.>*’

These fiber-based fluorescent sensors have found impressive
use in biosensing’®"'#> for immobilization of desired bio-molecular
172211212 single molecule detection,*>*'* and even whole
on the fibers.”"”*'® Living cells and beads containing
biological recognition elements are loaded into the micro-wells
(with the volume of femtoliter).2%*'%22

SENSOors,
cellg215:216

3 Statistical analysis and modeling

Chemical property space has a very high dimensionality because
of the large number of different chemical properties that are
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largely orthogonal to one another (e.g., Lewis acid-base,
Bronsted acid-base, redox, electrophilicity, nucleophilicity,
hydrogen bonding, polarity, etc.). To differentiate among all
possible volatile compounds and the huge assembly of possible
mixtures of those compounds requires highly multidimen-
sional data representing a wide range of chemical properties
space. Fundamentally, this is why the olfactory system evolved
to incorporate hundreds of highly cross-reactive receptors: the
combinatorials of the responses of those cross-reactive sensors
provides the high dimensional data used by the olfactory bulb
for pattern recognition of odorants.

If one bases a sensor array on physical properties, however,
there is a very limited dimensionality to the resulting data.
Physical adsorption-absorption will dominate any interaction
of analytes either with simple surfaces (e.g., metal oxide elec-
trical sensors or chemFETs, etc.) or with polymer coatings (e.g.,
coated quartz microbalances, conductive or composite polymer
sensors, etc.). The primary contributions to physisorption (van der
Waals, weak hydrogen bonding, polar interactions) are roughly
equivalent to what chemists refer to as “hydrophobicity”.

As a consequence, one of the dirty little secrets of electronic
noses is that they are only rarely multidimensional arrays in a
statistical sense.>®'® The sensor may be a physical array (e.g., an
array of ten or twenty different metal oxides or a dozen different
conductive polymer composites), but that does not in and of
itself make the sensor a multidimensional array for analytical
or statistical purposes. In general, in such physical arrays, there
is in fact only one overwhelming dominant dimension that
contains >90% of the total variance among analytes: most
often, that dimension is essentially hydrophobicity. As a con-
sequence of this intrinsic low dimensionality, most conven-
tional electronic nose technology is not able to distinguish
among large libraries of similar complex mixtures.

Low dimensional data does have some advantages. Statisti-
cally, analysis is simplified, but often at the cost of more
limited discriminatory abilities. The primary advantage of
relying on weak analyte-sensor interactions such as physical
adsorption is improved reversibility, especially over short per-
iods of time, but even this is a two edged-sword: the reversi-
bility comes directly from the weakness of the interaction,
which implies diminished sensor sensitivity!

In contrast, sensor arrays based on chemical properties
have intrinsically a much higher dimensionality. Having a high
dimensionality has the advantage of much greater ability, at
least in principle, of being able to differentiate among analytes
with much greater discriminatory power. The disadvantage of
limited reversibility for strong interactions can be overcome by
making the sensor array disposable, as we have already dis-
cussed, and is counterbalanced by the improvement in sensi-
tivity and improved limits of detection.

The greater dimensionality, however, must also involve a
more sophisticated approach to statistics than that which
chemists are often comfortable.>?* The inherent problem with
high dimensionality is that the analytical volume increases
much more rapidly than the available data, so the datasets
are often formally “sparse” compared to the total size of the
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parameter space. In addition, this ‘“curse of dimensionality”
creates difficulties for function approximation, model fitting,
information extraction, as well as computation.?** Statistic
methods for multidimensional data all share the common
goals of displaying multidimensional data effectively, evaluat-
ing data sets, and predicting the identity of unidentified
samples based on a known library.

There are a variety of statistical methods available to deal
with high dimensional data well beyond the scope of this
review.”***** We will give an overview here only of the three
most common approaches: hierarchical cluster analysis (HCA),
principal component analysis (PCA), and linear discriminant
analysis (LDA).

In general, for chemometric data there are two distinct
statistical approaches: clustering vs. classification.>**>** Cluster
analysis essentially tells one what resembles what, e.g., how close
the vectors representing data are to one another in a high
dimensional space. Classification analysis, on the other hand,
attempts to predict to which category (among a fixed number of
known categories) any particular (new) datum belongs.

Statistical methods can be either biased, in which case the
evaluation algorithm is told of the class identities of individual
cases, or unbiased (or model-free), where all cases are evaluated
identically regardless of class identity. Unbiased methods are
typically used to evaluate a data set to provide a semi-quantitative
idea of the quality of the data set and follow simple, straight-
forward algorithms. Biased methods, on the other hand, can
provide significantly more power and utility with a concomitant
increase in complexity, but at the cost of demanding datasets
for which one already knows the answers. Biased methods can
be predictive, allowing for class assignment of new experi-
mental cases by using a training set.

3.1 Hierarchical cluster analysis (HCA)

HCA is an agglomerative clustering technique whereby clusters
are determined from the Euclidean distance between experi-
mental data. In its simplest form, nearest-neighbor points are
paired into a single cluster which is then paired with other
nearest-neighbor points or clusters until all points and clusters
are connected to each other, shown schematically in Fig. 23.>>%%*°
The most common clustering criterion used in HCA is Ward’s

Fig. 23 Schematic representation of a hierarchical cluster analysis (HCA) of
multidimensional data (shown in only two dimensions on the left) that forms a
dendrogram based on clustering of those experimental measurements (shown
on the right).
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Fig. 24 The effect of noisy data in dendrograms showing two classes of data,
red and blue with one mis-clustering shown as a red square. These two
dendrograms are mathematically identical and represent exactly the same data:
the order of connectivity is not relevant on the y-axis. At first glance, however, the
red square data appears much further out of place in the dendrogram on the left
compared to the dendrogram on the right.

Fig. 25 Dendrogram from HCA of the colorimetric array responses to 100 common
organic compounds at full vapor pressure at 300 K. Reproduced with permission
from ref. 10 and 114.

minimum variance method, which minimizes the total within-
cluster variance.

The resultant dendrogram shows connectivity and some
measure of the distance between each of the pairs. In the
context of chemical analyses, these two important pieces of
data answer two questions: connectivity explains relationship
similarity, i.e. ‘what species/samples are similar to each other?’
and distance explains magnitude, i.e. ‘how similar are they?’.

There are three primary limitations to the HCA technique. The
first involves fundamental limitations of all unbiased methods:
HCA is not easily capable of predictive analysis. Second, dendro-
grams created using HCA must be re-created with each addition
of a new analyte, so comparing dendrograms (even with a very
similar data set) is typically only useful for rough qualitative
purposes, i.e. ‘What does this new sample look most like?’. The third
limitation is that of interpretation of noisy data. One must be
cognizant that the dendrograms are essentially “mobiles” and
that rotations around clustering axes do not represent mean-
ingful differences between dendrograms, as shown in Fig. 24:
mis-clustering of noisy data can be easily misinterpreted.
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Despite these limitations, dendrograms provide a straight-
forward method of displaying cluster similarity semi-quantitatively.
A representative example containing 100 VOCs is shown as
Fig. 25; it is worth noting that similar chemical classes cluster
tightly together, which is a consequence of the reactivity of the
particular sensor array.

3.2 Principal component analysis (PCA)

PCA is a dimensional reduction technique that condenses the
variance among several possibly-correlated dimensions by
creating a new orthogonal set of dimensions using linear
combinations of the initial dimensions. These new dimensions
(also called directions, components, etc.) are ranked such that
the first dimension explains the largest amount of data variance,
the second dimension explains the second largest, and so on.
One typically seeks a number of new orthogonal dimensions
sufficient to encompass at least 95% of the variance. Plots using
the resulting set of principal components are often easier to
visualize than the original data set, but only if the original dataset
is actually low dimensional in a statistical sense. As discussed
earlier, electronic nose data often requires only two or perhaps
three principal components to express the true variability among
the data, regardless of the number of different sensors in the
physical array. For low dimensional data, PCA therefore provides
a straightforward method of displaying sample set variability, i.e.
‘how similar are these species/samples to each other?’.

As we shall see in Section 3, when dealing with a large
number of analyte classes, a sensor array designed to probe a
large reactivity space (i.e., an array with high dimensionality in
a statistical sense) is highly desirable. If one is examining a
narrow class of analytes, however, then apparent high dimen-
sionality of a sensor array, regardless of the number of actual
physical sensors, becomes indicative of large amounts of noise
relative to total variance: in such cases, in the absence of noise,
the theoretical maximum dimensionality is equal to the lesser

Fig. 26  PCA score plot showing two-dimensional separation of multiple classes
of redox-active analytes generated from triacetone triperoxide vapor (concen-
tration labels only) and other redox-active analytes. Circled areas represent 95%
confidence intervals. Note that only two dimensions were required to reach
94.9% variance, implying a small chemical reactivity space probing only one or
two primary reactivity properties; this particular sensor array used several two-
electron redox-sensitive dyes encapsulated in a xerogel matrix and was not
designed with other reactivity properties in mind. Reproduced with permission
from ref. 181.
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of either the number of sample classes or the size of the
chemical reactivity space.

As a consequence, the dimensionality of one’s data is not
determined directly by the number of different sensors in one’s
array. As an example, Lin and Suslick'®' designed a colori-
metric array containing 16 redox-sensitive dye formulations to
detect specifically strong oxidants and peroxy-based explosives
and was not designed with other reactivity properties in mind.
This array probes only a small chemical reactivity space, and
the PCA reveals that only two dimensions (n.b., not 16) were
required to reach 95% variance, as shown in Fig. 26.

Since principal components are combinations of individual
array component responses, the number of dimensions required
for 95% variance provides information about the range of analyte-
sensor interactions being probed; an array that probes only pH,
for example, may only have one dimension required to reach 95%
variance, while an array that probes pH, hydrophobicity, dipole
moments, film permeability, and nucleophilicity can be expected
to require at least five dimensions. PCA is thus a powerful tool for
evaluating sensor arrays, especially those with multiple disparate
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Fig. 27 (a) A scree plot of data from a colorimetric sensor array tested with
100 VOCs, showing high dimensionality: 22 dimensions required for >95% total
variance. (b) A scree plot from a colorimetric sensor array tested with 14 natural
and artificial sweeteners, showing low dimensionality: 2 dimensions required for
>95% total variance. It can be inferred that the chemical reactivity space of the
sensor array interacting with VOCs is large, while that used in the array for
artificial sweeteners is small, with pH being a primary component. Reproduced
with permission from ref. 114 and 226.
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Fig. 28 PCA score plot showing red and blue classes and three unknown
experimental points A, B, and C. Circled areas represent 95% confidence intervals.
By using a dataset with good separation (left), it can be inferred that green circle
A belongs to the blue class, and grey circle B does not belong to either the blue or
red classes. Using a dataset with poor separation (right), orange circle C cannot
be unambiguously identified despite appearing to be significantly closer to other
members of the red class, with the dashed line representing an obvious (by eye)
separation between the two classes.

components, as it allows some insight into the sensor’s ‘“‘chemical
reactivity space”, ie. the number and possibly identities of
chemical interactions being probed by the sensor array. A scree
plot, showing the cumulative contributions of each principal
component, provides a quantitative measure of the contributions
of different orthogonal reactivities to the variance of the array
response (Fig. 27).

Like HCA, PCA is an unbiased method that is best suited for
evaluation of data sets rather than prediction. PCA, however,
can make rudimentary prediction methods possible, especially
if the data set is low dimensional and has a large separation
among sample classes. If the data set does not have a large
separation, however, PCA may not adequately be able to predict
the identity of an experimental sample. Examples of these are
shown as Fig. 28.

3.3 Linear discriminant analysis (LDA)

Like PCA, linear discriminant analysis (LDA) is a dimensional
reduction technique that constructs a set of orthogonal dimen-
sions used to describe the data; LDA, however, seeks to find a
set of dimensions that best separates data into already known
classes, rather than simply describing the total variance. Unlike
HCA or PCA, LDA is a biased method; statistical analysis using
LDA requires inputting a class label for each sample. Compo-
nents of each dimension are ranked in order to maximize the
ratio of between-sample variance to within-sample variance; i.e. it
ranks components based on their signal to noise ratio as
compared among differing sample classes.

LDA can be used to predict the identity of unknown samples
by using a training set, similar to PCA. However, because the
dimensional components are optimized to maximize differ-
entiability, LDA will show better ability to differentiate among
sample classes. A general example of this improvement is
shown as Fig. 29.

The primary weakness of LDA is related to sample size. All
statistical methods require multiple observations in order to
determine any useful data (e.g. mean, variance, etc.); LDA is
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Fig. 29 Score plots comparing data analyzed with PCA (left) and LDA (right).
Circled areas represent 95% confidence intervals. The most obvious separation by
eye in the PCA plot is along dimension A, which is orthogonal to dimension B; this
is used as the first dimension in LDA analysis and is a visualization of the
between-sample variance. Orange circle C is clearly identified as being in the
red class using LDA, while identification is ambiguous using PCA.

Fig. 30 LDA score plot showing separation among five serum proteins at 25 nM
concentration. Circled areas represent 95% confidence intervals. Reproduced
with permission from ref. 227.

unique among the three methods presented here, however, as
sample class covariances must also be determined in order to
allow for comparison among classes. Because of this, the
covariance matrix tends to be unstable when sample size is
not significantly larger than the number of sample classes
being analyzed, and this is more problematic for high dimen-
sional data;*** consequently, LDA can give drastically fluctuat-
ing results with small sample sizes (compare to PCA or LDA,
which can be unreliable with small sample size, but not unstable).
A representative example of a two-component LDA plot is shown
as Fig. 30.

As an improvement on LDA, tensor discriminant analysis
(TDA) is an array generalization of LDA better able to take
advantage of high dimensionality. More precisely, tensor dis-
criminant analysis is used to classify multi-way array measure-
ments (ie., “tensor measurements”), rather than one-way
vector measurements.”*®*?° For example, the data collected
using colorimetric sensor arrays can be viewed as a 3-way tensor
with the first way corresponding to choice of the dye, the
second way corresponding to the effects of the color changes

228-230

8664 | Chem. Soc. Rev., 2013, 42,8649-8682

View Article Online

(i.e., AR, AG, AB, which are not fully independent for any one
dye), and the third way corresponding to time progression
(for kinetic responses).”** The general strategy of tensor dis-
criminant analysis is to find orthogonal linear classifiers, which
are essentially linear combinations of the three-way inter-
actions of the effects of the dye spot choice, the three color
changes of each spot (i.e., AR, AG, AB), and the temporal
evolution, to maximize the ratio of between-class variation to
within-class variation. Tensor discriminant analysis can greatly
improve the sensitivity, specificity, and computational effi-
ciency of discriminant analysis method because of the dimen-
sionality reduction. For example, if there are 36 dyes, then LDA
would have to deal with 36 x 3 = 108 dimensions, whereas TDA
would reduce that to 36 + 3 = 39 dimensions, thus eliminating
69 dimensions (i.e., 108 — 39).

4 Applications of optical sensor arrays
4.1 Discrimination of volatile organic compounds

The colorimetric sensor array first developed by Rakow and
Suslick used an array of different metalloporphyrins exclusively
for the visual identification of different families of organic
vapors.'” Ligation of analytes to metalloporphyrins induced
large color changes that were used for their identification.
The sensor array was able to respond to a wide range of organic
compounds such as alcohols, amines, ethers, phosphines, phos-
phites, thioethers, thiols, arenes, halocarbons and ketones, often
with sensitivities below 1 ppm and importantly, without response
to change in humidity. Using different metalloporphyrins with a
wide range of chemical hardness and ligand-binding affinities as
well as solvatochromic effects allowed differentiation among a
wide range of volatile analytes.

By broadening the types of sensors in the colorimetric array
to include shape selective bis-pocketed porphyrins, pH indica-
tors, and solvatochromic dyes to a total of 24 sensors, Rakow
et al."™>* were able to demonstrate highly selective discrimination
among very closely related amines, with sub-ppm sensitivities.

Fig. 31 Color-difference maps for a family of 12 amines using a 24 spot
colorimetric sensor array containing shape selective bis-pocket metalloporphyrins.
Reproduced with permission from ref. 134.
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Discrimination among linear alkyl amines, and even isomeric
amines was possible, as shown in Fig. 31. Similar arrays were
tested by Tang et al.®*' and by Luo et al.>**> who were able to
demonstrate limits of detection for trimethyl amine and ammo-
nia, respectively, below 50 ppb.

With further expansion of the array to 36 colorimetric
sensors, Suslick and coworkers™* were able to demonstrate
error-free discrimination among 100 different VOCs with com-
mon organic functionalities including primary, secondary,
tertiary, and aromatic substituents of amines, arenes, alcohols,
aldehydes, carboxylic acids, esters, hydrocarbons, ketones,
phosphines, and thiols. The array discriminates among VOCs
by probing a wide range of intermolecular interactions, includ-
ing Lewis acid-base, Brgnsted acid-base, metal ion coordina-
tion, hydrogen bonding, and dipolar interactions. LODs are
analyte dependent and were not determined in this study, but
were generally in the low ppbv range for amines, carboxylic
acids, thiols, and phosphines. The sensitivity of the array to
bases and acids is a result of the strong metal-analyte inter-
actions, either by metal ligation (i.e., coordination or dative
bonding) or by Brensted acid-base interactions. Weakly coor-
dinating vapors such as esters, ketones, alcohols, arenes, and
hydrocarbons show a lower response, just as the mammalian
olfactory system.

Importantly, by proper choice of dyes and substrate, the
array is essentially non-responsive to changes in humidity. A
selection of the difference maps of a representative subset of
24 VOCs are presented in Fig. 32.

The PCA of the dataset representing the full 100 VOCs shows
an extraordinarily high level of dispersion by the colorimetric
sensor array: 14 dimensions are required to define 90% of the
total variance, 22 dimensions for 95% of the total variance, and
40 dimensions for 99% (Fig. 27).

Most remarkably, because the colorimetric sensor array is
based on analyte-array chemical reactivity, chemical class
information becomes readily available from the data analysis.***
Fig. 32 shows the familial similarities of the color difference

Fig. 32 Colorimetric array response to VOCs visualized as color difference maps.
Shown are 24 representative VOCs after equilibration at their vapor pressure at
295 K. Reproduced with permission from ref. 114.
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maps of alkyl amines vs. aromatic amines vs. carboxylic acids vs.
aldehydes vs. phosphines, simply by inspection. The more
detailed analysis afforded by HCA shows how well that chemical
class information can be revealed (Fig. 25).

While these colorimetric sensor arrays work exceedingly well
for reactive volatiles, they have not had especially high sensitivity
to less reactive vapors. For example, common VOC indoor air
pollutants (e.g., aromatic hydrocarbons, chlorocarbons, other
organic solvents) are generally not especially reactive and are
not detected at low concentrations. Lin, Jang, and Suslick
recently reported"® a dramatic improvement in the sensitivity
of colorimetric sensors for the detection and identification of
such less-reactive VOCs by the use of a disposable pre-oxidation
technique in which the analyte-stream was passed through an
oxidation tube (of chromic acid on silica) before reaching the

Fig. 33 Left: schematic illustration of the preoxidation technique. A Teflon tube
is packed with chromic acid to pretreat the gas flow containing a VOC before it is
passed over the colorimetric sensor array. Center and right: responses to p-xylene
at IDLH concentrations without (center) and with (right) pre-oxidation tube.
Reproduced with permission from ref. 19.

Fig. 34 HCA dendrogram for 20 commonly found indoor pollutant VOCs at
their IDLH concentrations and a control. All experiments were run in quintupli-
cate with 30 mg chromic acid on silica as the pre-oxidation reagent; no
confusions or errors in classification were observed in 105 trials. Reproduced
with permission from ref. 19.
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array (Fig. 33). Preoxidation of VOCs produces reactive species
such as carboxylic acids, phenols, and aldehydes which have a
stronger interaction with the colorimetric sensor array. This
results in a ~300-fold enhancement of sensitivity with a con-
comitant increase in discrimination ability.

Since each VOC produces a different mixture of oxidized
derivatives, the array response to these more reactive volatile
by-products provides a unique, but much more sensitive,
signature for the initial VOC. 20 commonly found VOC pollu-
tants in indoor air were examined as representative analytes
and all were discriminable by HCA, as shown in Fig. 34, both at
their immediately dangerous to life or health (IDLH) and at
their permissible exposure limit (PEL).

4.2 Toxic industrial chemicals

Toxic industrial chemicals (TICs), by their very nature, are
chemically reactive. The toxicities inherent in toxic industrial
chemicals derive from a very wide range of specific chemical
reactivities that affect multiple systems within living organ-
isms. Some acute toxins target specific, critical metabolic
enzymes (e.g., HCN inhibits cytochrome ¢ oxidase while phos-
gene inhibits pulmonary function); some cause cell lysis in
the lungs creating pulmonary edema (e.g., HCI, HF) and others
are potent oxidants or reductants that can target various bio-
systems. There is an obvious need for rapid, sensitive identifi-
cation, and determination of TICs,**? yet we have no small and
inexpensive technology for personal dosimetry of TICs in the
chemical workplace or by first responders to industrial fires or
chemical spills.

Prior electronic nose technology, which utilizes weak analyte-
sensor interactions, have had a limited ability to detect com-
pounds at low concentrations relative to analyte saturation vapor
pressure and therefore are often unable to detect TICs at their
IDLH (immediately dangerous to life or health), PEL (permissible

Table 1 List of toxic industrial chemicals at their IDLH (immediately dangerous
to life or health) and PEL (permissible exposure limit) concentrations compared to
limits of detection extrapolated using data collected at 20% PEL concentration'®”

Extrapolated
TIC IDLH (ppm) PEL (ppm) LOD (ppm)
Ammonia 300 50 0.08
Arsine 3 0.05 0.01
Chlorine 10 1 0.01
Diborane 15 0.1 0.01
Dimethylamine 500 10 0.01
Fluorine 25 0.1 0.01
Formaldehyde 20 0.75 0.12
Hydrogen chloride 50 5 0.02
Hydrogen cyanide 50 10 0.02
Hydrogen fluoride 30 3 0.02
Hydrogen sulfide 100 20 0.08
Hydrazine 50 1 0.01
Methylamine 100 10 0.01
Methyl hydrazine 20 0.2 0.01
Nitric acid 25 2 0.02
Nitrogen dioxide 20 5 0.03
Phosgene 2 0.1 0.01
Phosphine 50 0.3 0.01
Sulfur dioxide 100 5 0.06
Trimethylamine 200 10 0.03
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exposure limit) concentrations. In addition, interference from
large environmental changes in humidity or temperature
remains highly problematic.

Colorimetric sensor arrays, however, are exceptionally well
designed for the detection, identification and quantification of
TICs due to their reliance on analyte chemical reactivity. Suslick
and coworkers in a series of papers'>°7:?32%* developed the use
of nanoporous sol-gel pigments for the chemoresponsive ele-
ments of an extremely sensitive colorimetric sensor array. They
selected high hazard TICs from the reports of the NATO Inter-
national Task Force 25 and 40>** and examined the ability of
their array to discriminate among the 20 TICs shown in Table 1.

The sensor array was able to discriminate without error
among these 20 TICs at both their IDLH concentration within
two minutes of exposure and at PEL concentration within five

Fig. 35 Color difference maps of 20 representative TICs at their IDLH. Reproduced
with permission from ref. 204.

Fig. 36 HCA dendrogram for 20 TICs at IDLH concentrations and a control. All
experiments were performed in septuplicate; no confusions or errors in clustering
were observed in 147 trials. Reproduced with permission from ref. 197.
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Fig. 37 Limits of recognition for TIC identification. Left: the effect of concen-
tration on array response to NHs, SO,, and HCN. Right: HCA of a subset of TICs
demonstrates a limit of recognition well below 5% of the PEL. Reproduced with
permission from ref. 204.

minutes of exposure; HCA showed no mis-clustering errors and
jackknifed LDA gave an error rate below 0.7% out of 147 trials
(Fig. 35 and 36). Limits of detection limits (listed in Table 1)
were generally well below the PEL (in most cases below 5% of
PEL) and are typically in the low ppb range. The colorimetric
sensor array was not responsive to changes in humidity or
temperature over a substantial range. The array performed well
in the presence of various common potential interferents and
has shown excellent stability and reproducibility.

While LODs are defined absolutely with respect to S/N, that
only defines when one can determine that some analyte is
present. Limits of recognition are much more important, but
they are also library dependent. Fig. 37 demonstrates a limit of
recognition for a subset of TICs is well below 5% of their PEL,
which becomes of interest for epidemiological studies. Consis-
tent with the array’s ability to discriminate among many
possible TICs over many possible concentrations, PCA and
LDA confirmed the high dimensionality of the colorimetric
sensor array with 17 PCA dimensions required to capture
95% of the variance."®’

Several reports of more specialized arrays for specific subsets
of TICs have also been published. For example, Sen et al>**
developed a disposable colorimetric sensor array which can
detect H,S concentrations in the range of 50 ppb to 50 ppm at
ambient temperature. Bang et al.>*> prepared nanoporous silica
microspheres incorporating chemoresponsive dyes and used an
array of these to detect and quantify ammonia gas at its IDLH
(immediately dangerous to life or health), PEL (permissible
exposure limits), and 0.1 PEL concentrations with a reported
LOD of 100 ppb. Sen, Kim and coworkers?*® expanded their work
to a sensor array for ammonia, chlorine, hydrogen chloride and
sulfur dioxide. This sensor is able to rapidly measure IDLH
concentrations (100 ppm) of SO, with a response time of about
30 s. Hou et al.>*” also report a very similar portable device for
toxic gas detection. The reported sensor includes a transparent
and hermetic gas of chlorine, sulfur dioxide, ammonia, benzene
and isoprene with LODs for some analytes in the ppb regime.

4.3 Explosives detection

Triacetone triperoxide (TATP), one of the most dangerous
primary explosives, has emerged as an explosive of choice for

This journal is © The Royal Society of Chemistry 2013
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Fig. 38 (a) Acid catalyzed decomposition of TATP. (b) Color difference maps of
TATP vapor at concentrations specified after 5 min (top row) and 10 min (bottom
row) of exposure. Reproduced with permission from ref. 181.

terrorists in recent years. TATP is easily produced by an acid
catalyzed reaction of acetone with hydrogen peroxide.**® Owing
to lack of UV absorbance, fluorescence or facile ionization,
TATP is difficult to detect directly.>*® Techniques that are able
to detect generally require expensive instrumentation, need
extensive sample preparation, or cannot detect TATP in the
gas phase. Lin and Suslick’®" reported a new method for
determination of TATP vapor using a colorimetric sensor array.
In this method, the gas stream containing TATP vapor is
decomposed by a solid acid catalyst (Amberlyst 15) and the
resulting H,O, vapor, being kinetically much more reactive, is
easily detected by redox indicators (Fig. 38).

TATP was detectable even at very low concentrations using
this technique, with an LOD below 2 ppb (i.e., <0.02% of its
saturation vapor pressure). Common potential interferences
(e.g., humidity, personal hygiene products, perfume, laundry
supplies, volatile organic compounds, etc.) did not generate an
array response, and the array could also differentiate TATP
from other chemical oxidants (e.g., hydrogen peroxide, bleach,
t-butylhydroperoxide, peracetic acid) (Fig. 26).

Kostesha, Alstrgm et al.*****' have reported very briefly on a
colorimetric sensor array capable of detection of explosives’
vapors, but no details were given on dyes used in their array. In
this work, classification ability of K-nearest neighbor (KNN),
artificial neural networks (ANN) and sparse logistic regression
(SLR) methods were compared.

4.4 Aqueous analytes

If a colorimetric sensor array is printed on a hydrophobic
membrane and the dye formulations sufficiently hydrophobic,
then upon immersion into an aqueous solution containing organic
compounds, the sensor array will respond to the volatile vapors of
solutes. Zhang and Suslick'®® prepared a simple colorimetric sensor
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Fig. 39 Color change profiles with the base-sensitive sensor array for represen-
tative aqueous solutions of organic compounds (all amines 10 mM, all others
50 mM, in pH 7 phosphate buffer). Reproduced with permission from ref. 199.

array that was able to probe different organic compounds at
very low concentrations (below 1 pM) in water. As shown in
Fig. 39, unique fingerprints were observed for a wide range of
dissolved organic compounds.

Monitoring toxic metal ions in water has also been accom-
plished using a nanoporous pigment array. Feng et al.’>*
reported a CSA for identification trace heavy metal ions (includ-
ing Hg, Pb, Cd, Zn, Ag, As, Ni and Cu) at waste water-discharge
standard concentrations. Suitable chemoresponsive dyes were
immobilized using ormosil formulations; in this case, five separate
probes were analyzed asynchronously through a filtration method
and organized into an array. Discrimination of heavy metal ions
was performed without interference of Na*, K', Ca®>*, Mg®" ions
and good repeatability and high stability was obtained for this
sensor.

Recognition of amino acids in aqueous solutions has also
been accomplished using a colorimetric sensor array. Dan-Qun
et al.>** used a 6 x 6 array to distinguish among amino acids
based on differences between their chemical properties and
specific residue structures. Ten natural amino acids including
glycine (Gly), valine (Val), methionine (Met), proline (Pro),
serine (Ser), tyrosine (Tyr), glutamine (Gln), glutamate (Glu),
lysine (Lys), and histidine (His) were identified within 5 min of
exposure at concentrations of 375 uM (Fig. 40).

Fluorescent displacement assays have also been used for
identification of amino acids in solution. For example, dansyl-
modified B-cyclodextrins bearing a metal binding site, with

Fig. 40 Average color change profiles of 10 amino acids visualized as color
difference maps. Reproduced with permission from ref. 242.
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pendant r-amino acids, were employed for selective identifi-
cation of unmodified amino acids in aqueous buffer at neutral
pH***?* and as enantioselective fluorescence sensors for the
discrimination of enantiomers of the amino acids valine and
proline. The best conditions to perform enantiomeric analyses 1
used fluorescence quenching by the copper(n)-amino acid
complexes in a fluorescence microplate reader.

Fluorometric displacement assays using complexometric
solution sensor arrays have been used for identification of
metal ions. In 2003, Mayr et al.">* developed an eight-component
fluorometric array for discrimination among five separate metal
cations using cross-reactive complexometric fluorophores in
solutions held in a microtiter plate. The wells were monitored
simultaneously using a CCD camera and a set of fiber-optic
cables to reduce the imaged area (Fig. 41). The fluorescence
decay profile of the indicator is referenced against the phosphor-
escence of an added inert reference dye at a different wavelength.
The source of illumination were blue LEDs, one for each well.
The assembly allows the detection of dye concentrations in the
nanomoles-per-liter range without amplification and the acqui-
sition of 96 wells simultaneously. Some discriminatory ability
was shown by this straightforward liquid-phase array, but lim-
ited statistical analysis was performed; classification accuracy of
82 to 93% was reported. A gray-scale image showing the raw

Fig. 41 (a) Fiber-optic adapter for fluorescent imaging of 96 well microtiter
plates; (b) schematic of the apparatus showing LED array illumination and CCD
camera detection. Reproduced with permission from ref. 152.

Fig. 42 Greyscale output of eight-component array after exposure to various
concentrations of metal ions. Analytes vary by column, and included some multi-
ion solutions; specific concentrations are given in ref. 152. Of note, columns 5-9
are set at 1 pM Ca?*, Cu?*, Ni%*, Zn?*, and Cd?* respectively. Reproduced with
permission from ref. 152.
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fluorescence response to several analyte sets are shown as
Fig. 42.

4.5 Applications to complex mixtures

4.5.1 Foods and beverages

Colorimetric sensor arrays. The analysis of complex mixtures
presents a difficult challenge even for the most sophisticated
analytical techniques, and the ability to discriminate among
closely similar such mixtures often remains problematic. Foods
and beverages are characteristic in the complexity of their
compositions. A component by component analysis is generally
unwanted and often impractically difficult, given the hundreds
of different compounds found in edible materials. Instead, one
is more interested in questions of authenticity, contamination,
and food processing quality control. For these goals, the sort of
fingerprinting that sensor arrays provides can prove extremely
valuable.

Coffee provides a readily available archetype of such highly
multicomponent systems. While unroasted, green coffee contains

Fig. 43 HCA for 10 commercial coffees and a control. All experiments were run
in quintuplet trials; no confusions or errors in classification were observed in 55
trials. Abbreviations: Maxwell House Original Roast, MHOR; Folgers Grande
Supreme Decaf, FGSD; Eight O'Clock Hazel Nut, EOHN; Maxwell House Original
Roast Decaf, MHORD; Starbucks Sumatra Roast, SSR; Starbucks Columbian Roast,
SCR; Starbucks Espresso Roast, SER; Folgers Columbian Roast, FCR; Café Mai
Traditional, CMT; Eight O’Clock Columbian Roast, EOCR; the number indicates
nth trial; Control = no coffee present.
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more than 300 volatile compounds, while more than 1000 volatile
compounds have been identified for roasted coffee including
carboxylic acids, alcohols, aldehydes, alkanes, alkenes, aromatics,
esters, furans, ketones, lactones, oxazoles, phenols, pyridines,
pyrazines, pyrroles, thiazoles, and thiophenes.>**>*” Further-
more, the roasting of coffee beans is highly dynamic, and the
processes that develop the flavor and aroma of coffee are
strongly time and temperature dependent.

Suslick, Feng and Suslick®*® made use of the same sensor
array developed for TIC identification to the analysis of coffee
aromas. The color changes of the sensor array were used as a
digital representation of the array response and analyzed with
standard statistical methods. PCA revealed that the sensor array
has exceptionally high dimensionality with 18 dimensions
required to define 90% of the total variance and 25 dimensions
for 95%. In quintuplicate runs of ten commercial coffees and
controls, no confusions or errors in classification by HCA
were observed in 55 trials (Fig. 43). In addition, the effects of
temperature and time in the roasting of green coffee beans
were readily observed and distinguishable with a resolution
better than 10 °C and 5 min, respectively.

Zhang and Suslick had earlier applied a very similar
approach to commercially available soft drinks using an early
version of their array containing only 25 chemically responsive
dyes printed on a hydrophobic membrane.**® Fourteen com-
mercial soft drinks were analyzed and facile identification of all
of the soft drinks was readily achieved using comparison of the
color change profiles or a PCA score plot (Fig. 44) Using a HCA
dendrogram, the misclassification rate was <2%, and even
very similar sodas were easily differentiated. In addition, the
monitoring of soft drinks as they degas or upon dilution
also proved to be possible. This work demonstrated the
potential of colorimetric sensor array technology for quality

Fig. 44 PCA score plot using the three most important principal components
based on the data for the analysis of all soft drinks. The resolution between
classes is in fact much better than can be shown by these three principal
components which account for only 65.7% of the total variance. Abbreviations:
A&W RB, AQW™ Root Beer; CD TW, Canada Dry® Tonic Water; CD CS, Canada
Dry® Club Soda; LC SW, LaCroix® Sparkling Water.
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Fig. 45 Colorimetric array analysis of a complex mixture: headspace analysis of
various beers compared to 5% ethanol in carbonated water. Brands in red are
lagers, brands in green are ales. Reproduced with permission from ref. 10.

assurance/control applications of sodas and perhaps other
beverages as well.

In a similar application, Zhang et a showed that colori-
metric sensor arrays were able to differentiate among 18 brands
of beer. Differentiation between ales and lagers (Fig. 45) was
without error, and even among very similar beers proved
straightforward with an error rate of identification <3%. In
addition, differentiation of pristine beer from the effects of
watering or de-carbonation proved possible. These results
suggest that colorimetric sensor arrays may prove useful for
QA/QC applications.

Ya et al.”®' also analyzed five commercial baijiu (a Chinese
distilled alcoholic beverage) using a simple colorimetric artifi-
cial nose. The presence of chemoresponsive dyes containing
porphyrins and porphyrin derivatives provided a unique pattern
of color changes in response to baijiu. With the aid of PCA and
HCA, classification of types of baijiu was done according to their
trace components. Using linear discriminant analysis (LDA),
flavor styles were determined with 100% accuracy.

Y. T. Chang and co-workers have developed spectrophoto-
metric microplate assays>**>~>° for evaluation of tap and bottled

l 250

water using 45 dyes including pH indicators, metal ion com-
plexometric indicators, and substituted quinone dyes known to
be responsive to various organic and inorganic species. By
monitoring the optical spectra of the microwell plates, they
were able to classify water samples in terms of their place of
origin, metal ion content, and carbohydrate content.
Detection and quantification of sugars and sweeteners is
very important in real-time food quality. Musto, Lim, and
Suslick®?®*%728 have developed colorimetric sensor arrays for
detection and quantification of sugars and artificial sweeteners
by immobilizing suitable chemoresponsive dyes in insoluble
nanoporous pigments. The sensor array was able to accurately
determine 14 sugars and sweeteners at millimolar concentra-
tions at pH 7.4 (Fig. 46). The concentrations of sugars and
sweeteners could also be determined over at least a five-fold
range, and glucose concentrations were measurable over the
full range of clinical importance for blood sugar determina-
tions. The sensor array worked as well in tea infusions. Ghosh
et al.>>® applied the same concepts later to a microplate liquid
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Fig. 46 Colorimetric sensor array for sugars. (a) Color difference maps for 14
representative natural and artificial sweeteners (10 mM) and one control. (b)
Hierarchical clustering analysis dendrogram for aforementioned sweeteners; zero
misclassifications were observed in 100 trials. Reproduced with permission from
ref. 226.

ensemble of boronic acid derivatives and pH indicators with
similar success and were able to show quantitative analysis of
sugar concentrations.

Monitoring of food freshness, especially of meats, poultry and
fish, are an obvious application of sensor arrays. Huang et al.>*°
constructed a colorimetric sensor array by printing the nine
chemoresponsive dyes on a reverse phase silica gel plate. These
dyes were sensitive to volatile compounds produced during
spoilage of fish. PCA and neural network techniques were
applied for classification of the degree of spoilage, allowing
evaluation of the fish freshness with the accuracy of 87.5%.
Recently Salinas et al.”®' reported an optoelectronic nose con-
structed of 16 pigments able to identify the age of chicken meat.

Indicator displacement assays. Anslyn and co-workers have
developed a general displacement strategy using serum-albumin
as a differentially selective receptor capable of binding both
fluorescent reporters and a variety of non-polar analytes (e.g.,
fatty acids). The resultant probe was able to differentiate among
fatty acids (palmitic acid, oleic acid, stearic acid, and linoleic
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Fig. 47 PCA plot showing differentiation among several fatty acids (A) and food
oils (B). Reproduced with permission from ref. 186.

Fig. 48 General scheme used for discrimination of wine flavonoids. Differential
sensing ability is provided by several peptide sequences used with an indicator
displacement strategy. Modified from ref. 262.

acid) and among edible oils (sunflower oil, hazelnut oil, canola
oil, extra virgin olive oil, and peanut oil)."*® A graphical repre-
sentation of their data using PCA is shown as Fig. 47, showing
clear distinction among analyte species. It is worth noting that
the PCA is very strongly dominated by a single component
(~90% of total variance), and that dimension essentially repre-
sents the hydrophobicity of the analytes.

In a similar concept, Anslyn and coworkers used a set of
metallo-histidine peptides in order to discriminate among
polyphenol-based wine flavonoids.*** In this indicator displa-
cement assay, the probes were based on replacement of a
catechol dye from a Cu®* center bound to the peptide; the
design strategy (shown as Fig. 48) is quite straightforward and
specific due to significant structural similarity between the
indicator dye and chosen analytes. The resulting discrimina-
tion, however, was only moderate.

Much more impressive results were obtained by the same
group using a diversified set of colorimetric indicators and

This journal is © The Royal Society of Chemistry 2013
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Fig. 49 Linear discriminant score plot from spectroscopic data from synthetic
receptor displacement indicator assays. Modified from ref. 263.

synthetic boronic acid and guanidinium functionalized recep-
tors.”®® The authors showed the ability of the array to discriminate
malate, tartrate and citrate and then using spectrophotometric
data at three wavelengths (the indicator maxima), they were able
to discriminate accurately among six different red wines, as
shown in Fig. 49. In contrast with the earlier paper,”®> these more
chemically diverse displacement assays provide a much higher
dimensionality of data (three dimensions include 88% of the
discriminatory power) and a much improved distinction between
the wines.

4.5.2 Proteins. There have been several recent studies
reported on the optical sensor array identification of single
proteins in solution. While it is not clear what application
single protein identification may have, in some cases the
approaches are intellectually clever. One may hope that such
arrays might prove useful for detecting a specific rogue protein
against a constant complex mixture as found in plasma; cross-
reactive sensor arrays, however, are unlikely to be able to
achieve such a goal at biomedically relevant concentrations.
Such tests remain to be reported.

For colorimetric sensor arrays, Hou et al.>®* tested an array
modeled closely on Suslick’s work using a series of porphyrins
and indicator dyes capable of rapid interaction with proteins.

Fig. 50 PCA from a 36 dye colorimetric sensor array (a) for seven individual and
mixed proteins and (b) for six natural vs. thermally denatured (Dn) proteins.
Reproduced with permission from ref. 264.

Chem. Soc. Rev., 2013, 42,8649-8682 | 8671


http://dx.doi.org/10.1039/c3cs60179j

Published on 04 October 2013. Downloaded by University of Illinois - Urbanaon 12/01/2015 21:44:57.

Fig. 51 lllustration of competitive binding between protein and quenched
green fluorescent protein—-gold nanoparticle complexes and protein aggregation,
which leads to fluorescence or further quenching. Reproduced with permission
from ref. 270.

The array produced distinct patterns in response to each
protein which permitted accurate identification of the pure
and mixed proteins as well as denatured proteins. Fig. 50 shows
two dimensional PCA plots which show excellent discrimina-
tion among the proteins, especially given that only ~ 64 to 82%
of the total variance is captured in a two dimensional plot.
Remarkably, one is able to discriminate thermally denatured
proteins from the native form rather easily.

In another example of a pseudo-array data analysis using
sequential array sensing of parallel solutions, displacement or
differential assays have also been used to identify protein
solutions. The Rotello group generated multiple differential
sensing parallel arrays using gold nanoparticles with the aim of
discriminating among a variety of biological samples; this work
has been both succinctly**>?*%® and exhaustively reviewed.>*”>%
Several different fluorophores have been used. The interaction
of analytes with nanoparticles adds additional unique character-
istics, as shown schematically in Fig. 51.

For detection of seven common proteins (bovine serum
albumin, cytochrome ¢, alkaline phosphatase, acid phospha-
tase, subtilisin A, lipase, and B-galactosidase) Rotello et al.>”*
prepared a sensor array based on six cationic functionalized
gold nanoparticles (AuNPs) and an anionic PPE (poly(p-phenyl-
eneethynylene)) polymer. The fluorescence of PPE polymer was
quenched by interactions of AuNPs with polymer, but addition
to a protein solution displaced the polymer and enhanced the
observed fluorescence. By using different functionalization, one
could alter the protein affinity to the surface of nanoparticles
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and, thus, producing distinct fluorescence response patterns.
Fluorescence responses to individual proteins were fingerprinted,
giving a detection limit of 4 to 215 nM depending on protein size.

Of particular note, Rotello used a gold nanoparticle-
fluorophore system made from gold nanoparticles conjugated
to green fluorescent protein (GFP-NP) to act as the displaced
indicator. Using a protein as the displaced indicator is a
straightforward method of discriminating among peptide-
based analytes due to the molecular similarity between the
incoming analyte and the displaced probe. This method was
used for discrimination among several types of human serum
proteins (Fig. 52),>’° and then in a subsequent publication to
mammalian cells,?”? as discussed in the last section.

Li et al.?” used a set of functionalized Fe nanoparticles to
discriminate among several proteins. This work used only two

Fig. 52 Fluorescent displacement sensing using multiple solutions doped with
five GFP-NP sensors for five serum proteins (25 nM) at pH 7.4. Reproduced with
permission from ref. 270.

Fig. 53 LDA score plot showing discrimination among 10 separate proteins.
Note the complete dominance by one dimension (factor 1), showing that the
discrimination ability comes nearly exclusively from a single dimension. Repro-
duced with permission from ref. 273.
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probes for discrimination, leading to an inherently low maxi-
mum dimensionality. In practice, the discrimination ability of
the probes comes almost exclusively from a single dimension,
as shown in Fig. 53. The authors state that surface charge,
protein size, and surface hydrophobicity all play roles in dis-
crimination of these species; they may all contribute in a
composite sense to the principal component, but the one-
dimensional nature of the data establishes that this is not truly
an array sensor. The origin of the specificity is not clear;
proteins with very similar pI values are differentiated, and there
is no correlation with protein size or surface charge. A more
detailed data about surface hydrophobicity may provide some
further insight.

4.5.3 Intra-cellular sensing using ratiometric fluorometry.
In a sense, the use of two or more fluorophores in a single
probe is also array sensing. So ratiometric fluorescent probes,
where one has two fluorophores excited at the same wave-
length, but emitting at different wavelengths, permits an
array-like response that is self-calibrating. Let us examine a
few recent examples of intra-cellular sensing using ratiometric
fluorometry.

Intra-cellular temperature probes provide an interesting
example. Small local temperature changes may have significant
effects on the cellular signaling pathways and their nanoparticle
uptakes;>”*>” thus, the development of novel temperature nano-
sensors may prove very useful for intra-cellular profiling and
imaging. Peng et al.>’® prepared a ratiometric type of fluorescent
nanoparticles with a green and a red fluorescence from a single
wavelength excitation; these nanoparticles showed the capability
of monitoring temperature variations in the physiological temper-
ature range (i.e. 25-45 °C), as illustrated in Fig. 54.

Fig. 54 (a) Schematic representation of temperature-sensing nanoparticles
containing a random dispersion of Eu-DT (structure shown as b) and OASN
(structure shown as ¢) in a silylated poly(methyl methacrylate) matrix (BTD-
PMMA), which is covered with a silica outer shell; (d) ratiometric fluorescence
response; (e) temperature calibration plot. Reproduced with permission from
ref. 278.
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Fig. 55 (a) Schematic representation of the ratiometric pH sensing nanogel; (b)
spectrum showing the pH-dependent absorption of bromothymol blue in aqu-
eous solution at pH 5.0, 7.0, and 9.0 (gray curves), and absorption and emission
spectra of coumarin 6 (C6) and Nile Red (NR) in ethanol; (c) fluorescence spectra
of the ratiometric pH-responsive nanogels at 450 nm excitation at various pH
values from 4.92 t0 9.18; (d) pH calibration plot from the ratio of the fluorescence
intensities at 620 nm and 500 nm of the ratiometric nanogels. Reproduced with
permission from ref. 280.

Monitoring of the pH inside live cells is also of importance for
probing living cell functions.””® Peng et al.”®*° employed ratiometric
fluorescent nanogels for monitoring pH variations (Fig. 55). The
hydrogel was prepared from polyurethane containing both hydro-
philic and hydrophobic domains,®®' thus the nanogel chains
rearranged to form a three-dimensionally stable nanostruc-
tures®®>*%* when placed in water. It is noteworthy to mention that
the volume of the nanogels were not affected by pH, so the
efficiency of FRET was constant during in vitro pH sensing. The
developed pH probe is suitable for monitoring the pH in the range
of 6-8. Fig. 55b shows the fluorescence emission spectra of the
nanogels at various pH values upon excitation at 450 nm. Calcula-
tion of the ratio of the observed emission intensities of the dyes in
various pH values is presented in Fig. 55, showing around nine
fold variation in the ratio on going from pH 5 to pH 9.

A final example simultaneously measured oxygen content
and pH value in bacterial cultures (Pseudomonas putida),
Kocincova et al.*®* prepared and employed a “dual” sensor
based on organosilica microparticles (for oxygen sensing) and
polymethacrylate derivative embedded into a polyurethane
hydrogel (for pH sensing).

4.5.4 Detection and identification of bacteria. The detec-
tion and identification of bacteria are pressing problems in
both medicine and industry. Bacterial infections are involved in
food poisoning, hospital-acquired infections, and other areas
that are of great concern for public health, and sepsis remains
one of the leading causes of death even among first world
nations.”®*>*®*® In industry, many products must be screened
after manufacture for bacterial contamination before they
may be released and as a consequence regulation of the food
industry must be particularly stringent.”®”**® Existing methods
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Fig. 56 (a) Color difference maps and time response profile resulting from
colorimetric sensor array exposure to a growing culture of E. coli, American Type
Culture Collection (ATCC) #25922. (b) The color change values versus time plotted
for all color channels (AR, AG, and AB values for each spot, ie., 108 color
channels) at each time point. (c) Color difference maps for 10 different bacterial
strains resulting from colorimetric sensor array exposure to Petri dish growing
cultures after 480 min. Reproduced with permission from ref. 298.

Fig. 57 PCA score plot using the three most important principal components
based on 164 trials of 10 bacterial strains and controls. The resolution between
bacterial classes is in fact much better than can be shown by any three-
dimensional PCA plot because the first three principal components account for
only 79% of the total variance. » S. aureus; ¢ MRSA; e S. epidermidis; e S. sciuri;

P. aeruginosa; o E. faecium; e E. faecalis; » E. faecalis VRE; « E. coli 25922; e E. coli
53502; e control. Reproduced with permission from ref. 298.

for identification of pathogenic bacteria are limited by the
necessity of long culturing times, the need for highly trained
laboratory personnel, or the requirement of expensive and
high-maintenance equipment.?892%*

Bacteria stink: that is, they produce volatile organic com-
pounds (VOCs) to which the mammalian olfactory system is
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highly responsive. Consequently, an experienced microbio-
logist can readily identify many bacteria by smell. Applications
of prior electronic nose technology, however, have been limited
by the low dimensionality of traditional sensor arrays (e.g., metal
oxides) and have achieved only modest success, even when
attempting to classify small numbers of bacterial species.”*>>%”

Using a disposable colorimetric sensor array, Carey et a
were able to identify different species and specific strains of
human pathogenic bacteria based on volatile compounds pro-
duced during bacterial growth. In 164 trials monitoring bacterial
growth as a function of time, they were able to identify 10 strains
of bacteria including Enterococcus faecalis and Staphylococcus
aureus and their antibiotic-resistant strains during 10 hours of
culture time with 98.8% accuracy as evaluated by jackknifed LDA
using timestacked data. Fig. 56 shows the color difference maps
and time evolution of the array response to the head-gas mixture
produced in sealed Petri dishes. Fig. 57 shows a PCA score plot
using the three most important dimensions, which account for
only 79% of the total variance.

Rotello and co-workers used an aqueous solution based
displacement assay to identify bacteria in liquid growth media
using the fluorescence quenching of fluorophores attached to
gold nanoparticles.”® They made use of cationic gold nano-
particles with conjugated polymer fluorophores as their differ-
ential fluorescence probe, whose response is dictated by the
binding strength of the bacterium to the gold nanoparticle. By
manipulating the surface chemistry of gold nanoparticles and
the constitution of the conjugated polymer, they generated
array-like data (albeit one solution at a time). Nine bacterial
species and 3 strains of E. coli were examined in 64 trials with a
95% accuracy of classification by LDA (Fig. 58).

The immobilized fluorescent bead strategy that Walt
developed for use with microwelled optical fiber bundles (dis-
cussed earlier) has also been recently applied to bacterial
identification. Fixed arrays of this sort are difficult to reuse

l 298

Fig. 58 LDA score plot for the fluorescence response patterns to bacteria as
determined from solution displacement assays using gold nanoparticle displace-
ment assays. The first two dimensions contain 96.2% of the variance. Reproduced
with permission from ref. 299.
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Fig. 59 False color images of raw three-component microbead array responses
to three strains of E. coli. Each column is one strain. Top row (a—-d) shows the
identity of the beads from their fluorescence, while bottom row (e-h) shows
intensity response to the exposed analyte as a gray scale. The array is ~25 x
25 um. Modified from ref. 300.

multiple times, in part due to photobleaching. Walt and
coworkers have attempted to address this problem by using a
free bead strategy;*°° using optical trapping, the arrays are
re-created between each use. Since the methods of signal
transduction are identical to those used in the immobilized
bead strategy, it is expected that performance will be similar.
A false-color image showing raw data output using this method
is shown as Fig. 59 for detection of three strains of E. coli.

4.5.5 Cancer and disease diagnosis. Optical sensor arrays
also have begun to find applications to medical diagnosis of
disease. Different cell line produce different volatile meta-
bolites, as discussed early with bacteria; this applies to any
rapidly growing cells, and in principle the breath is in equili-
brium with the volatiles produced within the body. Breath
analysis has a long history as an underutilized diagnostic
tool;**' % limitations in analytical tools that are sufficiently
sensitive, specific, or inexpensive have limited this approach in
clinical or hospital applications. Electronic noses®***%3%* have
certainly been examined for breath analysis, especially for
diagnosis of lung cancer and of respiratory infections with
some limited success. Colorimetric sensor arrays of the type
developed in Suslick’s lab for bacterial identification®*® too,
have had some preliminary clinical success for breath diagno-
sis. Point of care diagnosis of bacterial sinusitis, as one
example, has achieved classification accuracy as high as 90%
in initial studies at the University of Pennsylvania medical
school.’>®® Lung cancer screening using breath analysis has also
been reported by Mazzone et al.*** at the Cleveland Clinic with
promising initial results. In a study with 229 subjects (92 with
lung cancer), individuals with different histologies could be
accurately distinguished from one another (86.4% for adeno-
carcinoma vs. squamous cell carcinoma), and the accuracy of
breath biosignatures could be optimized by incorporating
clinical risk factors.***

In an entirely different approach to cell differentiation, it is
not surprising that different cell lines interact differently with
different nanoparticles®**% and that those interactions are
strongly affected by the chemical nature of the nanoparticle
surfaces, particularly as biomolecules adsorb onto nanoparticle

surfaces forming a “protein corona”.?%93!
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Fig. 60 The six nanoparticle ligand structures used for mammalian cell discri-
mination. Differential sensing ability derives from displacement of GFP from the
nanoparticles to release GFP in the presence of species with differential relative
affinities for the gold nanoparticle with various surface ligands (NP1 through
NP6). Reproduced with permission from ref. 272.

Taking advantage of nanoparticle-whole cell interaction,
the parallel soluble fluorescent displacement assays that
Rotello et al?’>?'*3" have developed for protein identifi-
cation also have been applied to differentiation between
normal and cancerous whole cells. For example, green fluor-
escent protein coated gold nanoparticles array were used
to differentiate types of mammalian cancer cells (HeLa
(cervical), HepG2 (liver), MCF-7 (breast), and NT2 (testis)).**?
The nanoparticle surface ligand structures for mammalian
cell discrimination are shown as Fig. 60. A score plot sum-
marizing the array’s discrimination ability””> is shown as
Fig. 61.

Fig. 61 LDA score plot showing clear differentiation between healthy and
metastatic mammalian cells and among cells from various organs. The blue/red
shading is meant to delineate healthy/normal and metastatic/tumor cells.
Reproduced from ref. 272.
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5 Limitations, opportunities, and future
challenges

The primary limitation of a sensor array, including the mamma-
lian nose, is that it gives a composite response to complex
mixtures. One does not get a component by component analysis
from cross-reactive sensor arrays. Most chemists naturally
assume that the goal with any complex mixture is to achieve a
complete quantitative analysis of each component. But in fact,
for multi-component analytes, there are generally multiple ana-
lytical goals: one often wants to know is this mixture the same as
that one, is there one (or a few) component(s) that have changed
against a constant complex mixture, is this mixture genuine or
counterfeit, was this material processed correctly or not?

The primary strength of a sensor array, including the mam-
malian nose, is that it gives a composite response to complex
mixtures. The ability to fingerprint complex mixtures is often
greatly simplified by such a composite response. With recent
advances in optical sensor arrays, exquisite fingerprinting of
extremely similar mixtures or single analytes has been achieved
over a wide range of analyte types.

Another characteristic of sensor arrays that probes chemical
properties of analytes, rather than physical properties, is non-
uniform intrinsic response to analytes. This too is a good news—
bad news story. The good news is that most analytes of concern
(e.g., toxic gases) are, essentially by definition, highly reactive
and therefore easily detected, even at sub-ppm concentrations.
This eliminates many of the problems of false-positives asso-
ciated with traditional electronic nose and solid state chemical
sensors. The bad news is that some analyses are interested in
less reactive analytes. One solution, developed only recently, is
to pre-react the analyte stream to produce, for example, partial
oxidation products that are more reactive and therefore more
easily analyzed by chemoresponsive sensors.’® More selective
methods of ‘activating” these analytes, especially in the
presence of a high concentration of interferents, would add
significantly to the capabilities of current optical sensor arrays
for gas analysis.

The alternative of incorporating even more promiscuous
optical sensors has some merit as well; the difficulty is that
the weak interactions usually used in monitoring such proper-
ties (e.g., physisorption onto surfaces, absorption into poly-
mers) generally lead to lower sensitivity (e.g., solvatochromic
shifts of polymer adsorbents are typically undetectable below
~0.1% of the saturation vapor pressure of an analyte).

For heterogeneous optical arrays designed for liquid sen-
sing, contamination of analyte solutions due to probe solubility
is a major problem. One is caught in a dilemma for solid state
optical arrays that are to be immersed in liquids: the solvates
must have access to the sensor medium, but the sensor dyes
must not dissolve into the liquid. In principle, one may over-
come this problem by immobilization of dyes into sol-gel
formulations, but in practice immobilization is sometimes
imperfect.

Solution phase array sensing is carried out by a parallel
analysis of multiple aliquots of the analyte solution, each with
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an added, different homogeneous probe, e.g. using microwell
plates. This is a cumbersome procedure, and one that should
yield to improved technology using heterogenization of the
soluble probes, including covalent attachment to the probe
substrate.

All in all, however, one can only be impressed by the
development of optical sensor arrays over the past decade.'”
Colorimetric sensor arrays have demonstrated excellent
potential for complex systems analysis in real-world applica-
tions and provide a novel method for discrimination among
closely similar complex mixtures.

The commercialization of optoelectronic nose technology is
underway in several companies and one expects that significant
markets are likely to develop in the future.
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