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Institut Curie, CNRS-UMR168, UPMC, 26 rue d’Ulm, 75005 Paris, France

published in Theoretical Population Biology, 93:38-51 (2014)

Abstract

Recent studies have shown that gene families from different functional categories have been preferentially expanded either
by small scale duplication (SSD) or by whole-genome duplication (WGD). In particular, gene families prone to dominant
deleterious mutations and implicated in cancers and other genetic diseases in human have been greatly expanded through
two rounds of WGD dating back from early vertebrates. Here, we strengthen this intriguing observation, showing that
human oncogenes involved in different primary tumors have retained many WGD duplicates compared to other human
genes. In order to rationalize this evolutionary outcome, we propose a consistent population genetics model to analyze the
retention of SSD and WGD duplicates taking into account their propensity to acquire dominant deleterious mutations. We
solve a deterministic haploid model including initial duplicated loci, their retention through sub-functionalization or their
neutral loss-of-function or deleterious gain-of-function at one locus. Extensions to diploid genotypes are presented and
population size effects are analyzed using stochastic simulations. The only difference between the SSD and WGD scenarios
is the initial number of individuals with duplicated loci. While SSD duplicates need to spread through the entire population
from a single individual to reach fixation, WGD duplicates are de facto fixed in the small initial post-WGD population
arising through the ploidy incompatibility between post-WGD individuals and the rest of the pre-WGD population. WGD
duplicates prone to dominant deleterious mutations are then shown to be indirectly selected through purifying selection
in post-WGD species, whereas SSD duplicates typically require positive selection. These results highlight the long-term
evolution mechanisms behind the surprising accumulation of WGD duplicates prone to dominant deleterious mutations
and are shown to be consistent with cancer genome data on the prevalence of human oncogenes with WGD duplicates.

Keywords: Population Genetics Models, Whole-Genome Duplication, Small Scale Duplication, Dominant Deleterious
Mutations, Purifying Selection

1. Introduction

Gene duplication has long been recognized as a ma-
jor source of genetic innovation in the course of evolu-
tion through the retention and divergence of specific gene
duplicates arising by chance (Ohno, 1970; Holland et al.,
1994; Sidow, 1996). Gene duplicates are also thought to
confer some mutational robustness against loss-of-function
mutations (Winzeler et al., 1999; Gu et al., 2003; Kamath
et al., 2003; Gu, 2003). Conversely, however, the dupli-
cation of genes prone to dominant deleterious mutations,
such as gain-of-function mutations, is expected to lead to
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an enhanced susceptibility to genetic diseases and, hence,
be opposed by purifying selection (Furney et al., 2006;
Blekhman et al., 2008; Cai et al., 2009). Yet, surpris-
ingly, such “dangerous” gene families prone to dominant
deleterious mutations have often been greatly expanded by
duplication in the course of evolution, see e.g. (Ise et al.,
2000; Esteban et al., 2001).

In particular, gene families frequently implicated in can-
cer and other genetic diseases in vertebrates have been
greatly expanded through two rounds of whole-genome du-
plication (WGD) dating back from the onset of jawed ver-
tebrates (Singh et al., 2012). By contrast, gene families
lacking such a susceptibility to dominant deleterious mu-
tations have been more typically expanded through small
scale duplication (SSD) (Singh et al., 2012). More gener-
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ally, gene duplicates originated from SSD or WGD events
have been shown to exhibit antagonist retention patterns,
with gene families expanded through WGD having typi-
cally few additional SSD genes and, vice versa, for gene
families expanded mostly through SSD which exhibit few
additional retained duplicates from WGD (Makino and
McLysaght, 2010; Huminiecki and Heldin, 2010; Singh
et al., 2012). This implies that the mode of duplication
through SSD or WGD events directly impacts the selec-
tion process of gene duplicates. Hence, their retention can-
not be explained by the same ad hoc selection mechanism
independent of the SSD or WGD modes of duplication.

These different retentions of SSD and WGD duplicates
have been frequently associated to dosage balance con-
straints (Birchler et al., 2001; Veitia, 2002; Papp et al.,
2003; Aury et al., 2006; Makino and McLysaght, 2010).
However, extensive statistical analysis combining multiple
properties of human genes (such as dosage balance con-
straints, association to cancers and genetic diseases and
expression levels) have recently demonstrated (Singh et al.,
2012) that the retention of WGD duplicates in vertebrates
is more directly related to their susceptibility to dominant
deleterious mutations than to dosage balance constraints
or expression levels.

In this paper, we further strengthen this observation,
showing that human oncogenes involved in different pri-
mary tumors have retained many WGD duplicates as com-
pared to other human genes. This intriguing observation
on the different retention patterns of WGD and SSD du-
plicates calls for a consistent population genetics model
taking into account their propensity to acquire dominant
deleterious mutations. To this end, we propose such a
model focusing first on a simple, analytically tractable ap-
proach valid for large population sizes, before resorting
to numerical simulations to analyze the consequences of
stochastic fluctuations arising from finite population size.
In particular, in order to analyze the retention of SSD
versus WGD duplicates, we first use a simple deterministic
model of two duplicated loci with neutral fixable genotypes
in a haploid population of fixed size N and uncoupled mu-
tation/selection dynamics. The only difference between
SSD and WGD scenarios concerns the initial condition for
each mode of duplication: the SSD case corresponds to a
gene duplication in the genome of a single individual in the
initial population, while the WGD case implies the genome
duplication of all individuals in the small initial popula-
tion arising through WGD. This is because WGD also in-
duce a speciation event due to the ploidy incompatibility of
the post-WGD individuals with the rest of the pre-WGD
population. Although simplified, the asymptotic solutions
of this deterministic population genetics model allow to
capture the main evolutionary process responsible for the

different retention of SSD versus WGD duplicates caused
by dominant deleterious mutations. This haploid model
is also extended into a simplified diploid model with three
neutral haplotypes and one dominant deleterious haplo-
type. Then, to go beyond deterministic solutions for large
populations, we use the formalism of one-step-process mas-
ter equations and stochastic simulations to analyze the
effect of finite population sizes on the retention of SSD
versus WGD duplicates. All in all, this population genet-
ics model supports the idea that the enhanced retention
of “dangerous” WGD duplicates prone to dominant dele-
terious mutations is an indirect consequence of the initial
speciation events triggered by WGD and the ensuing pu-
rifying selection in post-WGD species.

These results are then compared to the retention biases
of SSD versus WGD duplicates for gene families with onco-
genic properties and responsible for a broad range of pri-
mary tumors in human. Our application to genomic data
will focus on the example of human oncogenes for which
increasing amounts of data have recently become available
from large scale cancer genome sequencing studies. Yet,
unlike typical models on cancer genomics, e.g. (Michor
et al., 2004; Merlo et al., 2006; Beerenwinkel et al., 2007;
Bozic et al., 2010), our analysis of driver mutations from
cancer genome data will not aim at modeling the in situ
proliferation and selection of tumor cells within healthy
tissues. Instead, it will concern the long-term evolution
mechanisms that favored the surprising retention of WGD
duplicates prone to dominant deleterious mutations in ver-
tebrate genomes.

2. Model

We model the fixation of gene duplicates following ei-
ther a SSD or a WGD event. In the following, we will first
assume an haploid deterministic model to limit the num-
ber of two-locus combinations and stochastic effects to be
considered. Extensions to diploid models and stochastic
effects due to finite population size will then be analyzed
in some details. Finally, the analytical and numerical so-
lutions of these deterministic models will be compared to
simulations of the corresponding stochastic population ge-
netics models.

2.1. Haploid model for SSD and WGD duplicate retention

We start from the duplication event A→ AA in a hap-
loid genome, assuming that the newly duplicate gene is
initially functionally redundant (Force et al., 1999; Lynch
and Force, 2000a; Lynch and Conery, 2000; Lynch et al.,
2001). Therefore, we assign to the initial (unstable) geno-
type with two redundant duplicated loci AA◦ a neutral
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fitness parameter w◦ = 1. Then, we will consider three
possible mutation-selection scenarios, corresponding to the
emergence of three different phenotypes from the initial
genotype AA◦, with mutation rates ν−, ν?, ν+, and fit-
ness parameters w−, w? and w+, Fig.1. Classical mod-
els suggest three alternative outcomes in the evolution
of duplicate genes (Force et al., 1999; Lynch and Force,
2000a; Lynch and Conery, 2000; Lynch et al., 2001; Zhang,
2003). i) One copy may become silenced by the accumu-
lation of degenerative mutations and eventually become
non-functionalized, while the other (fully functional) copy
is retained. In our model, this corresponds to a neutral
phenotype due to a loss-of-function of one of the dupli-
cates (AA−) with neutral fitness w− = 1. ii) Both copies
may be reciprocally preserved through the fixation of com-
plementary loss-of-subfunction mutations, which results in
a partitioning of the tasks of the ancestral gene. This
means that if duplicate genes loose different subfunctions,
then they must complement each other by jointly retain-
ing the original function. In our model, this corresponds
to a neutral or possibly beneficial phenotype correspond-
ing to the retention of two non-equivalent duplicated loci
through sub-functionalization (AA?) with a resulting fit-
ness w? = 1 + s? > 1. iii) One copy may acquire a
novel beneficial function while the other retains the orig-
inal function, but the incidence of beneficial mutations is
negligible compared to the frequency of other mutations
and for this reason we do not include this possibility in
our model. In addition to these classical scenarios, we
specifically address the case of gain-of-function mutations,
that lead to an enhanced activity of the gene and are as-
sociated to a dominant deleterious phenotype. This is in
particular the case of oncogenes and genes with autoin-
hibitory protein folds. Dominant deleterious mutations
drastically reduce the fitness of the individual and cor-
respond in our model to a deleterious phenotype due to
constitutive gain-of-function mutations on one of the du-
plicates (AA+) with a fitness decrement w+ = 1− s+ < 1,
Fig.1. Sub-functionalization of the duplicated loci (AA?)
implies, in principle, mutations at both loci, which can no
longer individually perform all functions of the ancestral
gene A (Hughes, 1994; Lynch and Force, 2000b). By con-
trast, loss-of-function (AA−) and gain-of-function (AA+)
genotypes are assumed to retain a functional copy of the
ancestral gene A. However, while this functional copy can
mask the deleterious effect of loss-of-function mutations in
AA−, resulting in neutral fitness w− = 1, it is unable to
mask the deleterious effect of gain-of-function mutations
in AA+, resulting in a fitness decrement, w+ = 1−s+ < 1.
For simplicity in this haploid model, we will not distinguish
on which copy the loss-of-function and gain-of-function
mutations occur, assuming, in particular, that the loss-

of-function mutations on either duplicate copy are equiv-
alent to the ancestral genotype with a single gene copy,
AA− ≡ A−A ≡ A.

2.2. Deterministic solutions for neutral sub-
functionalization

Let us first illustrate the main theoretical results of this
paper, using a simple deterministic model for the fixa-
tion of SSD versus WGD duplicates assuming that the two
fixable genotypes, AA− and AA?, have a neutral fitness,
w− = 1 and w? = 1, respectively (i.e. AA+ with w+ < 1
cannot be fixed in the limit of large population, N →∞).
We will further assume, in this section, a population genet-
ics model with an uncoupled mutation/selection dynam-
ics. While somewhat simplified, this deterministic haploid
model allows to capture the main evolutionary process re-
sponsible for the differential retention of SSD versus WGD
duplicates caused by deleterious gain-of-function muta-
tions. Besides, as we will show in the subsequent sections
2.3 and 2.4, more advanced population genetics models,
including more realistic diploid genotypes, or stochastic
effects due to finite population size, exhibit in fact very
similar asymptotic solutions in the limit of large popula-
tions.

In the following, we note φ◦(t), φ+(t), φ−(t) and φ?(t)
the fractions of individuals in the population with the cor-
responding genotypes for the duplicated loci, AA◦, AA+,
AA− and AA?. We then write down the simplest noiseless
population genetics model linking these genotypes with
uncoupled mutation/selection dynamics as,

dtφ◦ = (w◦ − w̄)φ◦ − (ν+ + ν− + ν?)φ◦

dtφ+ = (w+ − w̄)φ+ + ν+φ◦

dtφ− = (w− − w̄)φ− + ν−φ◦

dtφ? = (w? − w̄)φ? + ν?φ◦ (1)

where w̄(t) =
∑
i wiφi(t) is the average fitness of the popu-

lation. In particular, noting S =
∑
i φi, one can check that

dtS = w̄(1 − S) leads to the expected constant, S(t) = 1
at all time, providing that S(t = 0) = 1 is taken as ini-
tial condition. Using w̄ =

∑
i wiφi = 1 − s+φ+ in the

case of neutral fixable genotypes for the duplicated loci
(w? = w− = 1), this system can be expressed as

dtφ◦ = s+φ+φ◦ − (ν+ + ν− + ν?)φ◦

dtφ+ = (s+φ+ − s+)φ+ + ν+φ◦

dtφ− = s+φ+φ− + ν−φ◦

dtφ? = s+φ+φ? + ν?φ◦ (2)

The solutions for φ◦(t), φ−(t) and φ?(t) can thus be ex-
pressed in terms of a time integral Φ+(t) of the fraction
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φ+(t) of the population with deleterious gain-of-function
mutations at the duplicated loci, as

φ◦(t) = εe−νf tΦ+(t)

φ−(t) =

(
εν−
νf

(
1− e−νf t

)
+ 1− ε

)
Φ+(t)

φ?(t) =
εν?
νf

(
1− e−νf t

)
Φ+(t)

Φ+(t) = exp

(∫ t

0

s+φ+(t′)dt′
)

where νf = ν+ + ν− + ν? is the total rate of mutations
with functional effect (i.e., gain- or loss-of-function or sub-
functionalization) and ε = φ◦(0) is the initial fraction of
individuals in the population with duplicated loci, AA◦.
The remaining individuals present only a single functional
locus, A, which is assumed to be equivalent to the loss-of-
function mutation, AA−, at either duplicated locus, i.e.
φ−(0) = 1 − φ◦(0) = 1 − ε, whereas φ+(0) = 0 and
φ?(0) = 0. As a WGD event leads to a concomitant
speciation event due to the ploidy incompatibility with
pre-WGD individuals, it implies that all individuals of the
post-WGD population have a duplicated genome, corre-
sponding to the case ε = 1. By contrast, a SSD event does
not typically lead to a speciation leaving a single individ-
ual with one (or a few) duplicated gene(s) in the post-SSD
population corresponding to ε ' 1/N � 1. Note that ε
is also the expected fixation rate in absence of mutation,
if all fixable genotypes are neutral, Πe = ε. Hence, using
the asymptotic condition, φ−(∞) + φ?(∞) = 1, for the
fractions of individuals with the only fixable genotypes in
the large population size limit, corresponding to the loss
of one duplicate (AA−) or the retention of both duplicates
through sub-functionalization (AA?), we obtain,

Φ+(∞) =
νf

νf − εν+

and thus the asymptotic fraction of sub-functionalized du-
plicated loci becomes,

φ?(∞) =
εν?

νf − εν+

Note, that the same result is obtained if the fitness pa-
rameters are rescaled by the average fitness, wi → wi/w̄,
which only affects transient regimes but not asymptotic
distributions.

For neutral fixable genotypes, AA− and AA? (w− =
w? = 1), φ?(∞) corresponds to the expected fixation rate
of AA? in the population by coalescence, Π? = φ?(∞).
Thus, we obtain the following expressions for SSD dupli-
cates with Π

SSD

e = ε = 1/N � 1 and WGD duplicates

with Π
WGD

e = ε = 1,

Π
SSD

? ' ν?
νf

Π
SSD

e =
ν?

ν+ + ν− + ν?
Π

SSD

e

Π
WGD

? =
ν?

νf − ν+
Π

WGD

e =
ν?

ν− + ν?
Π

WGD

e (3)

Hence, the mutation rate, ν+, leading to deleterious phe-
notypes with decreasing fitness (w+ < 1) favors the elimi-
nation of “dangerous” duplicates after SSD events, as ex-
pected. However, the same mutation rate leading to dele-
terious phenotypes (ν+) does not appear in the fixation
rate of gene duplicates following a WGD-induced speci-
ation event. It implies that the mechanism of purifying
selection does not contribute to the elimination of “dan-
gerous” duplicates in post-WGD populations following a
WGD-induced speciation event (ε = 1), unlike what hap-
pens in post-SSD populations without speciation (ε� 1),
as discussed in (Singh et al., 2012).

Thus, from Eq. [3], we find a different fixation of dupli-
cates through WGD and SSD events favoring, somewhat
counterintuitively, the retention of WGD duplicates prone
to dominant deleterious (e.g. gain-of-function) mutations,

Π
WGD

? /Π
WGD

e

ΠSSD

? /ΠSSD

e

' νf
νf − ν+

(4)

Indeed, for genes prone to deleterious gain-of-function mu-
tations (ν+ & ν−+ ν?, i.e. νf > νf − ν+) we find a signif-
icantly enhanced retention of duplicates through WGD as
compared to SSD events (Π

WGD

? /Π
WGD

e > Π
SSD

? /Π
SSD

e ). By
contrast, for most genes which lack gain-of-function muta-
tions (ν+ � νf ), we find a comparable retention of neutral

duplicates through WGD and SSD events (Π
WGD

? /Π
WGD

e '
Π

SSD

? /Π
SSD

e ). This effect of dominant deleterious muta-
tions on the retention of WGD duplicates (Eq. [4]) is
the main result of this study, which rationalizes, from a
population genetics perspective, empirical evidences avail-
able from the literature, as will be shown below in the
section 3.4 analyzing the prevalence of human oncogenes
with WGD duplicates from recent cancer genome data.

2.3. Extension to diploid models

The extension of the previous haploid model to a diploid
model including epistatic interaction and recombination
between four different alleles at each duplicated locus im-
plies a combinatorial proliferation of two-locus diploid
genotypes, such as A◦A−/A+A◦, A◦A?/A+A−, etc.

In addition to these multiplicity of diploid states, we
also expect further complications due to the process
of duplication-driven speciation proposed in (Werth and
Windham, 1991; Lynch and Force, 2000a), see Discussion.
Indeed, reciprocal gene loss at duplicated loci (i.e. A−A◦
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or A◦A−) has been shown to lead to duplication-driven
speciation due to the interbreeding barriers between indi-
viduals having lost different copies of the duplicated loci.
This is because the diploid combination of haplotypes with
reciprocal loss of duplicates, A◦A−/A−A◦, readily recom-
bines to yield a double mutant haplotype, A−A−, and ul-
timately a non-functional diploid genotype A−A−/A−A−,
which effectively lowers the interspecific compatibility be-
tween individuals coming from subpopulations carrying
primarily the A◦A− or the A−A◦ haplotype. Similar sub-
population structures are expected to arise from indepen-
dent breakings of symmetry in the divergence of multi-
ple alleles at duplicated loci, such as with the two func-
tional haplotypes A−A◦ and A◦A? (with functional A◦,
non-functional A− and sub-functional A?) which lead, af-
ter recombination, to the non-functional diploid genotype,
A−A?/A−A?.

To circumvent these complications in analyzing the
retention of a single or two gene copies with multiple
alleles at duplicated loci, we will in fact consider only
one breaking of symmetry and reciprocal gene loss
scenario below, while keeping in mind that alternative
scenarios can exist and possibly co-exist as different
subpopulations or species, see Discussion. This amounts
to simplifying the actual two-locus four-allele diploid
system into an effective one-locus four-allele diploid
system, based on the four haplotypes introduced earlier,
i.e. AA◦, AA−, AA+ and AA?. If we further assume, for
simplicity, that there is no difference between maternal
and paternal inherited haplotypes, we are left to con-
sider only ten diploid combinations of these haplotypes,
i.e. AA◦/AA◦, AA◦/AA−, AA◦/AA+, AA◦/AA?,
AA−/AA−, AA−/AA+, AA−/AA?, AA+/AA+,
AA+/AA?, AA?/AA?.

We can then study the effects of the dominant deleteri-
ous phenotype caused by the AA+ haplotype, assuming,
otherwise, a neutral fitness for all diploid combinations
without AA+. This leads to the following marginal fitness
for each haplotype,

wi = w◦i (1− φ+) + w′iφ+,

where w◦i = 1 and w′i = 1 − hs+ for i = ◦,−, ? and
w◦+ = 1 − hs+ and w′+ = 1 − s+, where h is the dom-
inance coefficient of the heterozygous diploid genotypes
including one haplotype AA+. In particular, h = 1 cor-
responds to a simple dominant deleterious mutant, while
h = 1/2 corresponds to a co-dominant deleterious mutant
with additive deleterious effects for the AA+/AA+ diploid
genotype. This leads to the average marginal fitness of the
population,

w̄ =
∑
i

φiwi = 1− 2hs+φ+ + s+(2h− 1)φ2
+

and the relative marginal fitness for each haplotype,

w+ − w̄ = −hs+ + s+(3h− 1)φ+ − s+(2h− 1)φ2
+

wi − w̄ = hs+φ+ − s+(2h− 1)φ2
+,

for i = ◦,−, ?.
Thus, if the fraction of dominant deleterious haplotype

AA+ remains small in the population, φ+ � 1, as ex-
pected and confirmed by simulations (see section 3.1), we
retrieve the same population genetics system as for the
haploid model studied earlier, Eqs. [1,2], in the case of
dominant deleterious mutations (h = 1) or in the case of
incomplete dominance (0 < h < 1), if the fitness decre-
ment is rescaled as s+ → s+h

−1. If we further assume
that the dominance coefficient h can be approximated as
the average fraction of dominant deleterious mutations,
i.e., h ' ν+/νf , then Eq.[4] leads to the following reten-
tion rate of WGD duplicates with dominance coefficient h
in diploid genomes,

Π
WGD

? (h) ' Π
WGD

? (0)

1− h
(5)

Hence, with these simplifications, the two-locus, four-
allele diploid system of duplicated loci behaves essentially
like a one-locus, four-allele haploid system. This is the
population genetics model that we will further consider
below to study the stochastic effects in populations of finite
size and coupled mutation/selection dynamics.

2.4. Extension to stochastic effects in small populations

We now consider a stochastic approach to describe the
dynamics of a population of fixed size N , based on the
generalization to more realistic coupled mutation/selection
dynamics such as the Moran model (Moran, 1958).

We use a one-step process master equation formalism
between K > 2 alleles (Appendix A), in the context of the
one-locus, four-allele haploid system introduced in section
2.1. Each sub-population j of size nj (

∑K
j=1 nj = N)

has transition rates Wij(n1, · · · , nK) = (nj/N)
∑
k β

(j)
ik nk

from allele j to allele i, where nj/N is the probability that
one individual with the allele j is randomly chosen to die

and β
(j)
ik nk is the rate at which one individual with allele k

is chosen to reproduce and mutate into the allele i, given
that an individual with allele j has been chosen to die.
This general expression enables to include both coupled
and uncoupled mutation/selection dynamics depending on

the definition of the reproduction/mutation rates β
(j)
ik .

Three main population genetics models have been stud-
ied in the literature: two models with coupled muta-
tion/selection processes correspond to the first and sec-
ond Moran models (Moran, 1958) with mutations occur-
ring either before or after selection, respectively. The first

5



Moran model essentially selects on the lifespan of adults
rather than their reproductive success, while the second
Moran model amounts to a gametic selection independent
of death rate, see Appendix A. By contrast, the uncou-
pled mutation/selection model outlined in the section 2.1
amounts to use, as model parameters, “average” muta-

tion rates ν̄ij =
∑
k 6=i β

(j)
ik φk, for j 6= i, and “average”

selection rates w̄i =
∑
j β

(j)
ii φj and w̄(i) =

∑
k β

(i)
kkφk, see

Appendix A. Uncoupled mutation/selection models have
been frequently used in recent years for multiallelic sys-
tems (Eldon and Wakeley, 2006; Muirhead and Wakeley,
2009; Etheridge and Griffiths, 2009; Etheridge et al., 2010;
Vogl and Clemente, 2012).

These different mutation/selection models can then be
applied to study the fixation of gene duplicates following
either a SSD or a WGD event. To this end, we consider the
multiallelic model with the four different alleles introduced
earlier in section 2.1 (K = 4, Fig. 1) corresponding to
the initial (unstable) duplicate state AA◦ as well as the
three alleles arising through mutations from AA◦, namely,
AA− ≡ A, AA+, and AA?. The rates of mutations from j
to i then correspond to ν̄ij = ν̄i◦(i 6=◦) = νi with i = ?,−,+.

In fact, when all fitness parameters are neutral except
for the fitness disadvantage of dominant deleterious mu-
tants (i.e. w◦ = w− = w? = 1 and w+ = 1 − s+,
where s+ � 1), the two coupled mutation/selection mod-
els by Moran (Moran, 1958) lead to very similar determin-
istic equation systems as the uncoupled mutation/selection
model of Eqs. [1,2] in the large population size limit
(N � 1), see Appendix B.

Extensions to adaptive selection of duplicates with w? >
1 are discussed in the Result section 3.3.

2.5. Stochastic simulations

We performed stochastic simulations of the birth, death
and mutation processes for the three population genetics
models outlined above and corresponding to the one-step
process master equation detailed in Appendix A. For each
of the four alleles k = {AA◦, AA+, AA−, AA∗}, we keep
track of a random variable nk(t) representing the number
of individuals with allele k and fitness wk at time t. We
subdivide one generation into small time steps of length
δt and update the frequency of each allele after every such
time step.

We first consider the model with uncoupled selection
and mutation, corresponding to Eqs. [1,2] in the deter-
ministic limit of large population size. In each time step,
the number of offspring bk with allele k is obtained from
a binomial distribution with mean nkwkδt. We then ran-
domly remove a number of individuals dk from the sub-
population of allele k, so as to keep the overall popu-

lation size constant,
∑
k n
′
k =

∑
k(nk + bk − dk) = N ,

where n′k = nk + bk − dk > 0 corresponds to the up-
dated size of the sub-population k, after birth and death
steps. Finally, the stochastic mutations are generated in-
dependently from the selection process for the n′AA◦ in-
dividuals in the unstable duplicate allele class AA◦ with
mutation probability p′k = νkδt from allele AA◦ to allele
k where νk is the corresponding mutation rate per gen-
eration. The sub-population sizes are then updated to
nAA◦(t + δt) = n′AA◦ −

∑
kmk for the AA◦ allele and to

nk(t+ δt) = n′k +mk for k = AA−, AA+, AA?, where mk

represents the number of individuals mutated from allele
AA◦ to the allele k. The time step δt is typically chosen
in the range of 0.01− 0.1 generation.

In the case of the Moran models with coupled muta-
tion/selection, the transition Wij removes one individual
from class j (i.e. j → j − 1) and replicates one individual
of class i (i.e. i → i + 1) in the time step δt, taking into
account the coupling between birth, death and mutation
at the same time. At each time step the transition rates

Wij(n1, · · · , nK) = (nj/N)
∑
k β

(j)
ik nk are computed with

the coefficients β
(j)
ik from the corresponding Moran models,

with either mutations before selection (model 1) or muta-
tions after selection (model 2). The transition j → i is
then chosen stochastically according to its rate Wij lead-
ing to the population updates nj = nj−1 and ni = ni+1,
and a time increment δt = (

∑
ijWij)

−1 summed over all
possible transitions.

In the case of the Moran model controlling death rate,
we choose the death rate λk = w−1

k , that approximates
to λk ' 1 for k = AA◦, AA?, AA− and λk ' 1 + s+ for
k = AA+, in the limit of small s+, 0 < s+ � 1.

The mutation and selection parameters of the models
are chosen in agreement with the available estimates in
the literature (Lynch, 2010). The total mutation rate in
the germline of vertebrates such as mouse or human is of
the order of 1−4×10−8 per nucleotide site per generation
(Lynch, 2010). Taking an average gene length of 1000 to
1500 nt leads to an average mutation rate of νf = 4×10−5

mutation per gene per generation. As the rate of sub-
functionalization ν? is expected to be a small fraction of
νf , we assume ν? = νf/10 = 4×10−6 per gene per genera-
tion, which corresponds to a fixation rate of about 10% of
typical duplicates after WGD (according to Eq. [3] with

Π
WGD

e = ε = 1 and νf � ν+), in agreement with the
average retention of ohnologs from each round of WGD
at the origin of vertebrates, see section 3.4.2. In addi-
tion, we assume that the local rates of gain-of-function and
loss-of-function mutations vary depending on the gene lo-
cal susceptibility to gain-of-function versus loss-of-function
mutations at each position with a constant averaged sum

6



across all genes, ν+ + ν− = νf − ν? = 3.6× 10−5 per gene
per generation. Hence, in the following, we will simply as-
sign increasing values to ν+, while keeping the sum ν−+ν+

fixed. The selective disadvantage sd of a deleterious allele
is known to be typically in the range of sd ' 10−3/10−2

(Lynch, 2010), thus, the value of the selection coefficient
s+ for the dominant deleterious mutant AA+ is chosen as
s+ = 0.05 to emphasize its deleterious phenotypic effect.
Finally, we start either with a single individual with a SSD
duplicate, leading to ε = 1/N for the SSD scenario, or with
all individuals with WGD duplicates, leading to ε = 1 for
the WGD scenario.

3. Results

3.1. Fixation rates for neutral sub-functionalization

We first performed stochastic simulations to compute
the fixation rate of gene duplicates through neutral sub-
functionalization (w? = 1), in order to study the differ-
ent retention of SSD versus WGD duplicates in the cases
that, in the large population size limit, correspond to the
deterministic system, Eq.[2]. We analyze the probability
of fixation for the allele AA? as a function of the ratio
ν+/νf , which measures the “dangerousness” of the gene
duplicates, that is their susceptibility to dominant delete-
rious mutations. Fig. 2 shows the results comparing SSD
and WGD scenarios. The simulations are performed for
the uncoupled mutation/selection model and a population
size ranging from N = 103 (violet) to 105 (red). For a
given ratio ν+/νf , the simulated fixation rate is averaged
over 102 to 104 (WGD) or 106 to 107 (SSD) fixation tra-
jectories and the standard deviations are shown as error
bars. For Ns+ � 1 (i.e. N � 20, see next section 3.2
on finite size effects), the strong fitness disadvantage s+

prevents the fixation of the allele AA+, and leads to an
eventual competition between two neutral alleles where
the fixation rate Π? corresponds to the allele frequency in
the asymptotic limit, φ?(∞), as given by Eq. [3],

Π
WGD

?

ε
=

ν?
νf

1

1− ν+/νf

Π
SSD

?

ε
=

ν?
νf

(6)

As the ratio ν?/νf is kept fixed at the value 0.1, the two

theoretical curves for Π
WGD

? /ε and Π
SSD

? /ε become simple
functions of the ratio ν+/νf and are plotted as continuous
red lines in Fig. 2.

The comparison between WGD and SSD scenarios for
large population size N > 105 gives interesting insights

into the retention of “dangerous” duplicates prone to gain-
of-function mutations. First, the retention of neutral du-
plicates AA? is associated to a low fixation rate for both
SSD and WGD duplicates lacking dominant deleterious
mutations (corresponding to the region ν+/νf → 0). Con-
versely, for gene duplicates prone to dominant deleteri-
ous mutations (corresponding to ν+/νf → 1− ν?/νf ), the
retention of neutral duplicates AA? is clearly enhanced
after WGD events for all population sizes (N > 103),
while the retention of such “dangerous” SSD duplicates
becomes lower than their WGD counterparts for N > 104

and reaches a limit independent of ν+/νf for N > 105.
These results are in agreement with the predictions of the
initial simplified deterministic model for large population
(Eq. [3]) and support the idea that WGD events have ef-
fectively favored the expansion of gene families prone to
dominant deleterious mutations.

Note, however, that the agreement of the asymptotic al-
lele frequency with the fixation rate only holds for large
enough population size in the SSD scenario. The discrep-
ancy at lower population sizes is due to finite size effects
that allow the initial unstable duplicate AA◦ to reach fix-
ation by drift before the mutations actually occur, hence,
making the duplicates’ fixation rate converge towards the
WGD scenario. These finite size effects, which are the hall-
mark of population genetics, are analyzed in more details
in the next section 3.2.

3.2. Finite size effects

The emergence of finite size effects in the fixation rate
of SSD duplicates is clearly visible on Fig. 2. Their in-
terpretation requires, however, a detailed analysis of the
consequences of stochastic noise on the evolutionary dy-
namics of a population of finite size N . We consider sep-
arately the WGD and SSD scenarios, below, illustrating
the average fixation trajectories in Figs. 3 and 4 for dupli-
cates with a very high susceptibility to dominant deleteri-
ous mutations, ν+/νf = 0.825, to emphasize the different
evolutionary scenarios of the proposed population genetics
model.

In the WGD case, the effect of stochastic sampling is
only visible for a very small population size (N = 102,
Fig. 3), when drift can outcompete purifying selection
(Ns+ ' 1) and results in a non-negligible fixation of the
deleterious allele AA+ (green dotted line) and a simultane-
ous reduction of the frequencies of the other fixable alleles
AA? (red dotted line) and AA− (black dotted line). Then,
as the population size increases above N = 103, the condi-
tion Ns+ � 1 is always satisfied, leading to the expected
fixation rates of the deterministic limit, Fig. 2A (i.e. for
a negligible fixation of the deleterious allele AA+). Yet,
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we expect some additional stochastic effects on the pop-
ulation dynamics due to the discretization of frequencies
if δφ±s+ ≡ s+/N & ν±, that is s+ & Nν±. In practice,
this condition delays the transient dynamics of the sim-
ulated trajectories with respect to the deterministic solu-
tion (Fig. 3). However, as N increases from 103 to 106,
the large population condition is more and more verified,
s+ � Nν±, leading to average stochastic trajectories (red,
blue and black lines) that eventually converge to their de-
terministic solutions (orange lines), for N = 106.

In the SSD case, stochastic noise affects not only the
transient dynamics but also the fixation rate of SSD du-
plicates for a wider range of population sizes, Fig. 2B.
A detailed analysis based on the comparison with the
WGD case is shown in Fig. 4. In the WGD scenario with
N > 103, finite size effects affect only the transient dynam-
ics, as discussed above. By contrast, in the SSD scenario,
drift caused by stochastic sampling in small population re-
sults in the spreading of the initial AA◦ duplicates to the
whole population before they have the chance to mutate
into other alleles, leading to a population dynamics after
SSD that resembles the WGD scenario, Fig. 4 (top). This
effect is evident and strong for population size N = 103,
where the average simulated trajectories for SSD essen-
tially reduce to the corresponding trajectories for WGD,
after proper rescaling by ε = 1/N . For increasing pop-
ulation size, this effect weakens and the fixation rates of
SSD duplicates become lower than for WGD duplicates
for N > 104 and eventually reach their asymptotic limit
at N > 105 for SSD duplicates prone to dominant delete-
rious mutations, Fig. 2B and Fig. 4 (bottom).

3.3. Extension to adaptive sub-functionalization

The previous sections 3.1 and 3.2 demonstrate that the
fixation of neutral SSD duplicates by drift is at most equals
to the initial fraction of SSD duplicates in the popula-

tion, that is Π?

SSD

6 ε ' 1/N , which is further reduced

to Π?

SSD

' ν?/(νfN) for large population, as the ini-
tial AA◦ duplicates can be lost through loss-of-function
or gain-function mutations before they become fixed as
AA? through sub-functionalization, Fig. 2B.

Hence, the fixation of SSD duplicates by drift is clearly
inefficient and should be quite rare in large populations
(Otto and Yong, 2002; Kondrashov and Kondrashov,
2006). However, beneficial mutations are likely to be par-
ticularly important for adaptation (Fisher, 1930; Crow
and Kimura, 1965; Patwa and Wahl, 2008). Indeed, it
is easy to see that the fixation of SSD duplicates increases
rapidly if their retention is associated even to a small fit-
ness benefice (s? > 0) as shown on Fig. 5. A sharp rise

in the average fixation trajectories is obtained for increas-
ing values of the fitness parameter from s? = 0 (black),
10−4 (magenta), 10−3 (red) to 10−2 (blue). This demon-
strates that the fixation of SSD duplicates is strongly en-
hanced under positive selection compared to the low fix-
ation rates of neutral SSD duplicates by drift in large
population. Note, in particular, that the fixation rate

Π?

SSD

approaches the asymptotic value of the classical

two-allele models (Π?

SSD

= s?, Appendix C) times the
fraction of mutation rates leading to sub-functionalization,

i.e. Π?

SSD

' s? × ν?/νf = s?/10. This takes into ac-
count the fact that the sub-functionalized duplicates AA?
arise from the initial redundant duplicates AA◦ through
a mutation rate ν? ten times smaller than νf . The slight
discrepancy (increasing with increasing s?) of this esti-
mate from the simulated AA? fixation rate (Fig. 5) is
related to the fixation time of a new beneficial mutant,
tfix ' 1/s?. Indeed for increasing s?, tfix becomes shorter
and shorter such that no other AA◦ individuals, if present,
can significantly affect the dynamics of the fixation trajec-
tory, as they are unlikely to experience themselves sub-
functionalization mutations before the first AA? mutant
spreads through the entire population by positive selec-
tion. This reduces, in practice, the apparent initial frac-
tion of AA◦ alleles that effectively contribute to the fixa-
tion rate of AA? through positive selection. Alternatively,
positive selection might also favor the enhanced expression
levels of initial SSD duplicates prior to mutations (Otto
and Yong, 2002; Kondrashov and Kondrashov, 2006), lead-

ing to the classical result, Π?

SSD

= s? (Appendix C).
These results demonstrate that the fixation of SSD du-

plicates typically requires positive selection in large pop-
ulation, while a different mechanism based on purifying
selection governs the fixation of “dangerous” WGD dupli-
cates prone to dominant deleterious mutations following
WGD-induced speciation. Besides, as noted earlier (Singh
et al., 2012), we expect that the population bottleneck as-
sociated with WGD-induced speciation limits the efficacy
of the retention of beneficial WGD duplicates through pos-
itive selection.

3.4. Application to the prevalence of human oncogenes
with WGD versus SSD duplicates

The results of these population genetics models can be
applied to interpret the retention of WGD duplicates from
genes prone to dominant deleterious mutations, as out-
lined in the Introduction. Here, we define our datasets
of human oncogenes and ohnologs and illustrate this bi-
ased retention of WGD duplicates with the prevalence of
human oncogenes with WGD versus SSD duplicates in dif-
ferent human primary tumors.
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3.4.1. Identification of human oncogenes and ohnologs

Data on human oncogenes have recently become increas-
ingly available thanks to the numerous cancer genome se-
quencing projects covering a broad range of primary tu-
mors.

We obtained human oncogenes with mutations in differ-
ent primary tumors from the Catalogue of Somatic Muta-
tions in Cell (COSMIC) database (Forbes et al., 2011).
COSMIC holds data primarily from cancer genome se-
quencing projects, however, it lacks the information about
the dominance of mutations. Therefore, oncogene status
of COSMIC genes were obtained from multiple databases
including Cancer Census (Futreal et al., 2004) and Swis-
sProt (Magrane and UniProt Consortium, 2011), and di-
vided into two categories. First, we restricted our dataset
to experimentally verified and manually curated oncogenes
from Cancer Census (369) and SwissProt (223) and added
a limited set of COSMIC genes, restricted to genes with
at least 50 non-synonymous mutations including one re-
current non-synonymous mutation from all mutated sam-
ples in the COSMIC database (v64 release). Oncogene
status of COSMIC genes were obtained either from text
searches in OMIM (Hamosh et al., 2005), Ensembl (Flicek
et al., 2013), Entrez gene (Maglott et al., 2011), Gene
Cards (Safran et al., 2010) and Tumor Associated Genes
(Chen et al., 2013), or predicted following the procedure
described in (Bozic et al., 2010). We also constructed a
more extended dataset of oncogenes starting from COS-
MIC genes with at least 15 non-synonymous mutations
and one recurrent non-synonymous mutation. The re-
stricted dataset (Table 1) and extended dataset (Table 2)
include a total of 1,883 and 5,956 oncogene candidates,
respectively.

Human WGD duplicated genes or ohnologs were ob-
tained from (Makino and McLysaght, 2010) who used En-
sembl 52 release. These ohnolog pairs were mapped to
Ensembl 70 release using BioMart, leading to a total of
7,075 ohnologs. Following (Singh et al., 2012), SSD dupli-
cated genes were then identified by running an all-against-
all BLASTp (Altschul et al., 1997) using human protein
sequences from Ensembl 70 release. We identified the best
non-self hits (E-value < 10−7), and for all ohnolog genes,
we assessed whether their best non-self hit corresponds to
(one of) their ohnolog partner(s). If it is the case, the
ohnolog is regarded as a non-SSD ohnolog (5,653), oth-
erwise it is considered to have been duplicated by SSD
(1,422). For all non-ohnolog genes, if they have a signifi-
cant best hit paralog, they are considered to have experi-
enced a SSD (8,494) or else they are counted as non-SSD
genes (4,846).

3.4.2. Enhanced ohnolog retention in human oncogenes

Both restricted dataset (Table 1) and extended dataset
(Table 2) show that human oncogenes mutated in different
primary tumors have indeed retained an excess of ohnologs
dating back from the onset of jawed vertebrates. These en-
hanced ohnolog retentions are highly significant for both
datasets as compared to the average retention of ohnologs
in the whole human genome, i.e. 58.3 % vs 34.7 % for
the restricted dataset (P = 3.39 × 10−103, χ2 test, Ta-
ble 1) and 48.3 % vs 34.7 % for the extended dataset
(P = 4.41 × 10−109, χ2 test, Table 2). Interestingly,
mutated oncogenes from most primary tumors have even
higher ohnolog retention biases than the average over all
primary tumors, as some ohnolog oncogenes tend to ex-
hibit driver mutations in multiple primary tumors.

By contrast, human oncogenes are only slightly depleted
in SSD duplicates, as compared to the average SSD reten-
tion in the whole human genome, for the restricted dataset,
i.e. 43.9 % vs 48.6 % (P = 5.35× 10−5, χ2 test, Table 1).
No significant SSD bias is even observed on the extended
dataset, i.e. 49.3 % vs 48.6 % (P = 0.29, χ2 test, Table 2).

These results are consistent with the evolutionary model
proposed in the present paper. They predict that the re-
tention of WGD duplicates should be enhanced for genes
prone to dominant deleterious mutations as for the hu-
man oncogenes considered in the above datasets, Tables 1
& 2, while the retention of SSD is predicted to be largely
independent of dominant deleterious mutations, requiring
instead positive selection of higher expression levels or ad-
vantageous mutations, as outlined in the previous section
3.3 as well as in earlier studies (Otto and Yong, 2002; Kon-
drashov and Kondrashov, 2006).

In order to be more quantitative in comparing the avail-
able experimental data on WGD duplicates of human
oncogenes with the proposed model, it is however neces-
sary to translate the observed fraction of ohnologs, fs, for
a gene class s into an average ohnolog retention rate, ps,
over the two rounds of WGD that occurred at the onset
of jawed vertebrates. This can be done through a simple
mean field approximation, leading to the following expres-
sion, ps = 2/fs−1−

√
(2/fs − 1)2 − 1 (Singh et al., 2012).

Hence, the observed fraction of ohnologs for human onco-
genes, fonc = 58.3%, corresponds to an average ohnolog
retention rate of ponc = 21.5% at each round of WGD
for the restricted dataset, while the fraction of ohnologs
for the extended dataset, f ′onc = 48.3%, corresponds to
an average ohnolog retention rate, p′onc = 16.3%, at each
round of WGD. Similarly, the reference over the whole hu-
man genome, which corresponds to the observed fraction
of ohnologs, fref = 34.7%, leads to an average ohnolog
retention rate, pref = 10.6%, at each round of WGD, as
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assumed in the Model section 2.5. Thus, it implies that
the observed ohnolog retention bias of human oncogenes
(i.e. 16.3− 21.5% vs 10.6%) is consistent with an average
degree of dominance, h ' 0.35− 0.5, according to Eq. [5],
i.e., 0.163− 0.215 ' 0.106/(1− h).

4. Discussion

It has long been recognized that gene duplicates located
at separate loci favor the emergence of new species (Werth
and Windham, 1991; Lynch and Force, 2000a). This re-
sults from a progressive incompatibility between mating
partners undergoing reciprocal gene silencing of different
duplicate copies, as outlined above in the section 2.3 on the
extension to diploid models. In particular, the efficiency of
such speciation mechanism is expected to increase with the
number of genes simultaneously duplicated in a genome
and, therefore, to be most effective after WGD events in
the course of evolution (Werth and Windham, 1991). In
particular, such interspecific incompatibilities after WGD
are likely responsible for the radiations of species that have
been reported in plant genomes, such as in angiosperms at
early Cretaceous some 140 MY ago (De Bodt et al., 2005),
as well as in animal genomes, such as in early jawed verte-
brates some 500 MY ago and subsequently in teleost fish
some 300 MY ago (Kuraku and Meyer, 2010).

By contrast, the reciprocal effect of speciation on the
selection of specific gene duplicates, which is the subject
of the present paper, has been largely overlooked so far.
This is because the fixation of a SSD duplicate is typically
thought to be faster than the emergence of a new species,
implying that the fixation of single gene duplicates in a
population typically precedes speciation events. Yet, it
is no longer the case when gene duplicates arise through
WGD rather than SSD events (Innan and Kondrashov,
2010). This is because successful WGD are necessarily
coupled to a concomitant speciation event, due to the
ploidy mismatch between pre- and post-WGD relatives.
The subsequent elimination of many WGD duplicates in
post-WGD species then unfolds over tens to hundreds mil-
lions of years starting from post-WGD populations with
already fixed ohnolog duplicates. In particular, this initial
fixation of ohnologs is expected to enable the retention of
gene duplicates that would have been normally eliminated
through purifying selection following an SSD event in the
genome of a single individual.

This is especially the case for SSD duplicates of genes
prone to dominant deleterious mutations, such as SSD of
oncogenes, which are expected to be eliminated by puri-
fying selection, before they can be fixed in a population.
Conversely, WGD duplicates prone to dominant delete-
rious mutations have been preferentially retained in the

human genome. This was shown in (Singh et al., 2012) for
gene families implicated in cancer and other genetic dis-
eases, that have been greatly expanded at the two rounds
of WGD dating back from the onset of jawed vertebrates,
by contrast to gene families lacking such a susceptibility
to dominant deleterious mutations.

In the present study, we analyzed in more details the
prevalence of human oncogenes with WGD duplicates from
the available cancer genome data on a broad range of pri-
mary tumors. We performed a quantitative comparison of
the model and the observed ohnolog retention bias of hu-
man oncogenes. The only adjustable parameter used to fit
the data corresponds to the average degree of dominance
of human oncogenes, which is estimated to be in the range
of h ' 0.35−0.5. Although no large scale measurement of
the degree of dominance of human oncogenes is currently
available from the literature, the inferred estimate seems
rather consistent with a number of independent reports
on the average and variance of dominance coefficients in
other organisms (Deng and Lynch, 1996; Vassilieva et al.,
2000; Deng et al., 2002; Fry and Nuzhdin, 2003; Zhang
et al., 2004; Phadnis and Fry, 2005; Agrawal and Whitlock,
2011). While the reported average degrees of dominance
are relatively low (e.g., h ' 0.1− 0.2), their typical distri-
butions appear to be quite broad across gene classes, mak-
ing our estimate for human oncogenes rather expected for
gene classes prone to dominant deleterious mutations (i.e.,
h ' 0.35 − 0.5). But beyond this consistent fitting value
for oncogenes, an interesting outcome of this analysis is
to provide a theoretical rationale linking their mutational
effects at vastly different time scales, from the effect of
somatic mutations in tumor progression to the long-term
evolution of vertebrate genomes through germline muta-
tions and purifying selection in post-WGD species since
early vertebrates.

From a broader context, the selection of gene mutants
with slightly deleterious mutations has a long history start-
ing with the nearly neutral theory devised by Ohta (Ohta,
1972). According to the nearly neutral theory, slightly
deleterious mutations inevitably accumulate by drift in
small populations, thereby, reducing the average fitness
and, potentially, the population size itself. This implies
that more deleterious mutations might become fixed and,
in extreme cases, lead to the extinction of the population
through mutational meltdown, for species with less than a
few hundreds remaining individuals (Lande, 1994).

In conclusion, beyond this accumulation of slightly dele-
terious mutations, we propose that the specific role of
WGD-induced speciation should also be taken into account
to interpret the enhanced retention of the most “danger-
ous” WGD duplicates prone to strongly deleterious muta-
tions with dominant phenotypes. This suggests that not
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only slightly deleterious but also strongly deleterious mu-
tations have impacted the long-term evolution and organ-
ismal complexity of vertebrates following their early two
rounds of WGD.

All in all, these findings rationalize, from an evolution-
ary perspective, the surprising accumulation of WGD and
not SSD duplicates in gene families frequently implicated
in genetic disorders and cancers.
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Appendix A. General stochastic models using a
master equation

We present in this Appendix a general approach to de-
scribe the stochastic dynamics of a population of fixed size
N , based on a generic one-step process master equation for
K alleles A1,· · · ,AK (K > 2) governing the probability,
P (n1, · · · , nK , t), of observing ni individuals with allele
Ai at time t (with

∑
i ni = N), as

∂P

∂t
=

K∑
i,j=1

(E−1
i E1

j − 1)Wij({nk})P ({nk}, t)

where E±1 is the “step operator” (van Kampen, 2007) such
that E±1

i f(ni) = f(ni±1) and Wij({nk}) is the transition
rate from allele j to allele i, which can be expressed in
terms of the numbers of individuals with the different al-
leles as,

Wij(n1, · · · , nK) =
nj
N

∑
k

β
(j)
ik nk

where nj/N is the probability that one individual with

allele j is randomly chosen to die, while β
(j)
ik nk is the rate

at which one individual with allele k is chosen to reproduce
and mutate into allele i, given that an individual with
allele j has been chosen to die. In particular, this general
expression enables to include either coupled or uncoupled
mutation/selection dynamics depending on the definition

of the transition rates β
(j)
ik , see below.

Following the van Kampen’s expansion (van Kampen,
2007), we apply the following transformation ni = Nφi +

N
1
2 ξi to the master equation, where φi(t) correspond to

the noiseless deterministic solutions of the dynamics in the
large population size limit N � 1, while the new variables
ξi, which will replace ni in the master equation, correspond
to the stochastic noise in ni for a finite size population.

Accordingly, the distribution P (n1, · · · , nK , t) is now
written as a function of ξi as, P (n1, · · · , nK , t) =
Π(ξ1, · · · , ξK , t). The one-step operator E±1

i changes ni
into ni ± 1 and therefore ξi into ξi ±N−1/2, so that

E±1
i = 1±N−1/2 ∂

∂ξi
+

1

2
N−1 ∂2

∂2ξi
± · · ·

while the time derivative ∂tP (n1, · · · , nK , t) is taken with
constant ni, leading to

∂P

∂t
=
∂Π

∂t
−N 1

2

∑
i

dφi
dt

∂Π

∂ξi

Hence the master equation in the new variables ξi takes
the form of an expansion in N−1/2,

∂Π

∂t
−N 1

2

∑
i

dφi
dt

∂Π

∂ξi

=

K∑
i,j=1

[
N−

1
2

( ∂

∂ξj
− ∂

∂ξi

)
+

1

2
N−1

( ∂

∂ξj
− ∂

∂ξi

)2

+ · · ·
]

[
Nφj

∑
k

β
(j)
ik φk +N

1
2 (φj

∑
k

β
(j)
ik ξk + ξj

∑
k

β
(j)
ik φk)

+ ξj
∑
k

β
(j)
ik ξk

]
Π

The largest terms of orderN
1
2 cancel each other out if φi(t)

are taken as the solutions of the deterministic equations,

dφi
dt

= φi
∑
k

(β
(k)
ii − β

(i)
kk )φk − φi

∑
l;k 6=l

β
(i)
lk φk

+
∑
j,k 6=i

φjβ
(j)
ik φk

which leads to the following deterministic equations in the
three main population genetics models described in the
literature,

• 1- The first Moran model (Moran, 1958) of coupled
mutation/selection processes with mutations occur-
ring before selection, which is assumed to control
death rates. This is a selection on the lifespan of
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adults rather than their reproductive success,

β
(j)
ik = λjνik, for k 6= i,

β
(j)
ii = λj(1−

∑
l 6=i

νli),

dφi
dt

= φi

(∑
k

λkφk − λi

)
(A.1)

−φi
∑
l 6=i;k

νliλkφk +
∑
j,k 6=i

φjλjνikφk

where νik corresponds to the probability to experience
a mutation from k to i at the time scale of death rate
λj .

• 2- The second Moran model (Moran, 1958) of cou-
pled mutation/selection processes with mutations oc-
curring after selection, which is assumed to control
birth rates. This is a gametic selection with a death

independent rate β
(j)
ik ≡ βik,

β
(j)
ik ≡ βik = νikwk, for k 6= i

β
(j)
ii ≡ βii = (1−

∑
l 6=i

νli)wi,

dφi
dt

= φi

(
wi −

∑
k

wkφk

)
(A.2)

−φiwi
∑
l 6=i

νli +
∑
k 6=i

νikwkφk

where νik corresponds to the probability to experience
a mutation from k to i at the time scale of birth rate
wk.

• 3- The case of uncoupled mutation/selection outlined
in the first section which amounts to use “average”
mutation rates ν̄ij and “average” selection rates w̄i
and w̄(i) as model parameters, as frequently used
in recent years (Eldon and Wakeley, 2006; Muirhead
and Wakeley, 2009; Etheridge and Griffiths, 2009;
Etheridge et al., 2010; Vogl and Clemente, 2012),

ν̄ij =
∑
k 6=i

β
(j)
ik φk, for j 6= i

ν̄ii = 0,

w̄i =
∑
j

β
(j)
ii φj ,

w̄(i) =
∑
k

β
(i)
kkφk

dφi
dt

= φi(w̄i − w̄(i))− φi
∑
l

ν̄li +
∑
j

ν̄ijφj

Appendix B. Four-allele models of SSD versus
WGD retention

In this Appendix, we apply the three mutation/selection
models defined in Appendix A to study the fixation of
gene duplicates following either a SSD or a WGD event.
We consider the four different genotypes described in the
main text: the initial (unstable) duplicates, AA◦, and the
three alleles arising by mutation from AA◦, i.e. AA− ≡ A,
AA+ and AA?. The mutations with functional effect are
therefore occurring from allele j = ◦ to i = +,−, ? with
probabilities (or rates) νij = νi◦(i6=◦) = νi for i = +,−, ?.
For the first Moran model where mutations occur before
selection, the deterministic system of equations becomes

dtφ◦ = φ◦(λ̄− λ◦)− νf λ̄φ◦
dtφ− = φ−(λ̄− λ−) + ν−λ̄φ◦

dtφ+ = φ+(λ̄− λ+) + ν+λ̄φ◦

dtφ? = φ?(λ̄− λ?) + ν?λ̄φ◦,

where λ̄ =
∑
k λkφk. For the second Moran model where

mutations occur after selection,

dtφ◦ = φ◦(w◦ − w̄)− νfw◦φ◦
dtφ− = φ−(w− − w̄) + ν−w◦φ◦

dtφ+ = φ+(w+ − w̄) + ν+w◦φ◦

dtφ? = φ?(w? − w̄) + ν?w◦φ◦,

where w̄ =
∑
k wkφk. For the case of uncoupled se-

lection/mutation we retrieve the initial uncoupled muta-
tion/selection dynamics of Eq. [1],

dtφ◦ = φ◦(w◦ − w̄)− νfφ◦
dtφ− = φ−(w− − w̄) + ν−φ◦

dtφ+ = φ+(w+ − w̄) + ν+φ◦

dtφ? = φ?(w? − w̄) + ν?φ◦

The structure of these equations is the same for all models
and the differences come from the specific choices of the
parameters in the transition rates. The two Moran models
can be compared using λk = w−1

k .
In the limit of small fitness decrement caused by delete-

rious mutations, s+ � 1, all three models lead to the same
approximate equation system between the four alleles and,
therefore, to very close deterministic solutions. However,
the stochastic effects encompassed in the full distribution,
solution of the master equation, are not accessible analyt-
ically in the case of four alleles. Yet, the corresponding
population genetics system with only two alleles can be
solved exactly, as first shown in (Moran, 1958), and can
bring insights on the competition between the two main
fixable alleles of our four-allele system (i.e. AA− and AA?)
as shown in Appendix C, below.
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Appendix C. Exact results for two-allele stochas-
tic models

We consider the continuous time, one-step process mas-
ter equation for death-birth and mutation stochastic pro-
cesses between only two alleles A and a in a haploid pop-
ulation of fixed size N, with n A-individuals and (N − n)
a-individuals. This equation does not include any approx-
imation, unlike the diffusion equation that is valid in the
limit of large populations and small selection, and allows
to obtain an exact analytical solution in terms of hyperge-
ometric functions for any values of the model parameters.
Moreover, we will show below that it is possible to retrieve
classical results of the Wright-Fisher model (Ewens, 1979)
as approximations.

The one-step transition rates correspond to the proba-
bility density for the system to change its number of indi-
viduals with allele A from n to n + 1 or n − 1 during an
infinitesimal time dt,

W (n→ n+ 1) = W+(n)

W (n→ n− 1) = W−(n)

while W (n → n ± k) = 0 if |k| > 1. The master equation
governing the probability, P (n, t), of observing n individ-
uals with allele A at time t, is given by

∂tP (n, t)

= (E−1 − 1)W+(n)P (n, t) + (E1 − 1)W−(n)P (n, t)

= W+(n− 1)P (n− 1, t)−W+(n)P (n, t)

+W−(n+ 1)P (n+ 1, t)−W−(n)P (n, t)

where E±1 is the one-step operator. Using the follow-
ing transition rates, W±(n), for the three models outlined
above, we obtain,

• 1- For the first Moran model (Moran, 1958) of coupled
mutation/selection with mutations occurring before
selection which controls death rates,

W+(n) = µ
(N − n)

N

[
n(1− ν1) + (N − n)ν2

]
W−(n) = µ

n

N

1

(1 + s)

[
(N − n)(1− ν2) + nν1

]
where µ is the equal birth-death rate of each allele
and ν1 [resp. ν2] the mutation probability from allele
A to a [resp. from a to A]. The factor 1/(1+s) implies
a reduced (s > 0) or enhanced (s < 0) death rate of
allele A.

• 2- For the second Moran model (Moran, 1958) of cou-
pled mutation/selection with mutations occurring af-
ter selection which controls birth rates,

W+(n) = µ
(N − n)

N

[
n(1 + s)(1− ν1) + (N − n)ν2

]
W−(n) = µ

n

N

[
(N − n)(1− ν2) + n(1 + s)ν1

]
where 1 + s is now the gain (s > 0) or loss (s < 0) of
reproductive success of allele A.

• 3- For the uncoupled mutation/selection model with
averaged transition parameters outlined above,

W+(n) = µ (N − n)
n

N
(1 + s) + (N − n)u2

W−(n) = µ n
(N − n)

N
+ nu1

where u1 [resp. u2] is the mutation rate from allele A
to a [resp. from allele a to A].

Introducing the rescaled mutation rates ν1 = u1/µ and
ν2 = u2/µ for the uncoupled mutation/selection model
leads to a common form for all three models,

W+(n) = µ
(N − n)

N

(
nA+ +B+

)
W−(n) = µ

n

N

(
nA− +B−

)
where A+ = 1 − ν1 − ν2, B+ = Nν2, A− = −(1 − ν1 −
ν2)/(1 + s), B− = N(1 − ν2)/(1 + s), for the first Moran
model; A+ = (1 − ν1)(1 + s) − ν2, B+ = Nν2, A− =
−(1 − ν1(1 + s) − ν2), B− = N(1 − ν2), for the second
Moran model and A+ = 1 + s, B+ = Nν2, A− = −1,
B− = N(1 + ν1), for the uncoupled mutation/selection
model.

The corresponding master equation can then be solved
by introducing the generating function,

φ(z, t) =
∑
n

znP (n, t),

which leads to the following differential equation (using
the boundary conditions W+(N) = W−(0) = 0),

∂tφ(z, t) = (z − 1)
∑
n

W+(n)znP (n, t)

+ (z−1 − 1)
∑
n

W−(n)znP (n, t)
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N

µ
∂tφ

= (z − 1)
(
A+z∂z(Nφ− z∂zφ) +B+(Nφ− z∂zφ)

)
+ (z−1 − 1)

(
A−z∂z(z∂zφ) +B−z∂zφ

)
= (z − 1)

[
A+
(
(N − 1)z∂zφ− z2∂2

zφ
)

+B+(Nφ− z∂zφ)−A−
(
∂zφ+ z∂2

zφ
)
−B−∂zφ

]
= (z − 1)

[(
−z2A+ − zA−

)
∂2
zφ+(

(A+(N − 1)−B+)z −A− −B−
)
∂zφ+B+Nφ

]
The stationary solutions correspond to the following ho-
mogeneous second order ordinary differential equation(

−z2A+ − zA−
)
∂2
zφ+

[
A+(N − 1)−B+)z

−A− −B−
]
∂zφ+B+Nφ = 0

which can be transformed into the hypergeometric differ-
ential equation through the rescaling z → −zA−/A+, see
(Abramowitz and Stegun, 1964),

z(z − 1)∂2
zφ+ ((α+ β + 1)z − γ) ∂zφ+ αβφ = 0

where α = −N , β = B+/A+, γ = 1 + B−/A−. The
only acceptable solution is a polynomial of finite degree
N corresponding to the following hypergeometric function
(as α = −N is a negative integer),

φs(z) = 1 +

N∑
n=1

(α)n(β)n
(γ)n

(1 + s)n

n!
zn

where (u)n is the Pochhammer symbol, (u)n = u(u +
1) · · · (u+ n− 1) = Γ(u+ n)/Γ(u). These stationary solu-
tions can be rewritten, using the Γ function, as,

φs(z) =

N∑
n=0

(
N

n

)
Γ(δ1 − n)Γ(δ2 + n)

Γ(δ1)Γ(δ2)
(1 + s)nzn

where

δ1 = 1− γ = −B−/A− = N(1 + ν1) > N

δ2 = β = B+/A+ = Nν2/(1 + s)

for the parameters of the uncoupled mutation/selection
model above. This leads to the exact stationary distri-
bution, Ps(n), of individuals with allele A, for all n =
0, . . . , N and δ1 and δ2 expressions valid for any popula-
tion size N , fitness increment s and mutation rates ν1 and
ν2,

Ps(n) =

(
N

n

)
(1 + s)n

Γ(δ1 − n)Γ(δ2 + n)

Γ(δ1)Γ(δ2)

This expression holds, however, only if the arguments of
the Γ functions are different from zero (i.e. δ1, δ2 6= 0,
δ1−n 6= 0, δ2 +n 6= 0). This means that the Moran model
in absence of mutations cannot be derived as the limit of
this exact stationary distribution for ν1, ν2 → 0. To re-
trieve this case, the partial differential equation for the
probability generating function has to be directly rewrit-
ten for the suitable transition rates W±(n, ν1 = 0, ν2 = 0),
which are equivalent for all three models (up to a rescal-
ing of time scale for the first Moran model). The sta-
tionary solution has the form, φs(z) = ΠNz

N + Π0,
and can be solved, following (Houchmandzadeh and Val-
lade, 2010), leading to ΠN = (1 − σn0)/(1 − σN ), Π0 =
(σn0 − σN )/(1 − σN ), where σ = 1/(1 + s) and n0 is the
initial number of A-individuals in the population. In par-
ticular, the well-known result for the fixation probability
in an haploid populations is readily retrieved as an ap-
proximation for a small selection coefficient s, noting that
σN = en log σ ' e−ns,

ΠN =
1− e−sn0

1− e−sN

In particular, the probability of fixation of a new arisen
mutant (n0 = 1) in a large population reduces to ΠN ' s.

Using the exact solution of Eq. C.1 and the Stirling’s ap-
proximation for large factorials (Γ(z+ 1) = z! ' ez ln z−z),
in addition to low fitness gain s � 1 and mutation rates
ν1, ν2 � 1, then leads to the approximation,

Ps(p) ' (1 + s)Np(1− p)Nν1−1 pNν2−1,

where p = n/N . This allows to recover the well-known
approximate solution of the Wright-Fisher model (Ewens,
1979) for a diploid population (N = 2Ne) with non-
overlapping generation,

Ps(p) ∝ w̄2Nep4Neν
′
2−1(1− p)4Neν

′
1−1

with w̄ = 1 + ps and 2ν′i = νi due to the difference in the
distribution of offspring between the overlapping and non-
overlapping generation models. Note that this factor 2 can
be readily recovered in the uncoupled model assigning µ as
the equal birth-or-death rate of each allele per generation
and thus, µ/2, as the rate of a-death-A-birth process in
W+(n) and, similarly, as the converse rate of A-death-a-
birth process in W−(n).
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Table 1: Restricted set of oncogenes with WGD or SSD duplicates for different human primary tumors. Human oncogenes
mutated in different primary tumors have significantly retained an excess of WGD duplicates as compared to the average retention of ohnologs
in the whole human genome, i.e. 58.3 % vs 34.7 % (P = 3.39 × 10−103, χ2 test). Conversely, human oncogenes are only slightly depleted in
SSD duplicates as compared to the average SSD retention in the whole human genoma, i.e. 43.9 % vs 48.6 % (P = 5.35× 10−5, χ2 test). Data
are shown for the restricted dataset, see section 3.4.1 for details.

Human Primary Tumors # of genes # of WGD % of WGD WGD χ2 p-value # of SSD % of SSD SSD χ2 p-value

Reference (All protein coding genes) 20415 7075 34.7 % Reference 9916 48.6 % Reference

All primary tumors 1883 1098 58.3 % 3.39×10−103 827 43.9 % 5.35×10−05

Lung 1832 1068 58.3 % 2.46×10−100 811 44.3 % 2.28×10−04

Large intestine 1827 1066 58.3 % 1.75×10−100 806 44.1 % 1.38×10−04

Endometrium 1692 1005 59.4 % 1.80×10−101 748 44.2 % 3.29×10−04

Kidney 1600 957 59.8 % 3.03×10−99 698 43.6 % 7.52×10−05

Ovary 1551 928 59.8 % 2.05×10−96 680 43.8 % 1.94×10−04

Skin 1528 899 58.8 % 8.77×10−88 699 45.7 % 0.03
Prostate 1475 870 59.0 % 8.02×10−86 663 44.9 % 5.37×10−03

Breast 1456 867 59.5 % 1.26×10−88 639 43.9 % 3.48×10−04

Upper aerodigestive tract 1159 697 60.1 % 2.98×10−74 539 46.5 % 0.16
Urinary tract 1029 602 58.5 % 3.80×10−58 465 45.2 % 0.03
Central nervous system 996 601 60.3 % 4.57×10−65 435 43.7 % 1.99×10−03

Pancreas 993 596 60.0 % 2.61×10−63 431 43.4 % 1.12×10−03

Haematopoietic and lymphoid tissue 941 569 60.5 % 3.65×10−62 424 45.1 % 0.03
Stomach 639 369 57.7 % 1.38×10−34 293 45.9 % 0.17
Cervix 629 342 54.4 % 2.73×10−25 318 50.6 % 0.32
Liver 392 243 62.0 % 5.74×10−30 173 44.1 % 0.08
Oesophagus 359 211 58.8 % 7.77×10−22 168 46.8 % 0.50
Autonomic ganglia 119 61 51.3 % 1.41×10−04 62 52.1 % 0.44
Biliary tract 71 49 69.0 % 1.17×10−09 27 38.0 % 0.08
Soft tissue 53 39 73.6 % 2.59×10−09 12 22.6 % 1.59×10−04

Table 2: Extended set of oncogenes with WGD or SSD duplicates for different human primary tumors Human oncogenes mutated
in different primary tumors have significantly retained an excess of WGD duplicates as compared to the average retention of ohnologs in the
whole human genome, i.e. 48.3 % vs 34.7 % (P = 4.41×10−109, χ2 test). By contrast, no significant SSD bias is observed in human oncogenes
as compared to the average SSD retention in the whole human genome, i.e. 49.3 % vs 48.6 % (P = 0.29, χ2 test). Data are shown for the
extended dataset, see section 3.4.1 for details.

Human Primary Tumors # of genes # of WGD % of WGD WGD χ2 p-value # of SSD % of SSD SSD χ2 p-value

Reference (All protein coding genes) 20415 7075 34.7 % Reference 9916 48.6 % Reference

All primary tumors 5956 2879 48.3 % 4.41×10−109 2934 49.3 % 0.29

Lung 5853 2827 48.3 % 1.20×10−106 2891 49.4 % 0.21
Large intestine 5799 2809 48.4 % 8.20×10−108 2850 49.1 % 0.38
Endometrium 5231 2563 49.0 % 2.57×10−105 2562 49.0 % 0.56
Kidney 4481 2233 49.8 % 4.00×10−101 2177 48.6 % 0.99
Skin 4257 2101 49.4 % 2.58×10−90 2119 49.8 % 0.12
Ovary 4200 2101 50.0 % 2.92×10−97 2052 48.9 % 0.71
Prostate 3984 1973 49.5 % 1.47×10−86 1980 49.7 % 0.15
Breast 3714 1903 51.2 % 4.39×10−100 1748 47.1 % 0.07
Upper aerodigestive tract 2860 1460 51.0 % 8.65×10−76 1463 51.2 % 0.01
Urinary tract 2451 1234 50.3 % 6.66×10−60 1176 48.0 % 0.56
Pancreas 2344 1188 50.7 % 9.04×10−60 1126 48.0 % 0.60
Central nervous system 2288 1195 52.2 % 7.96×10−70 1094 47.8 % 0.47
Haematopoietic and lymphoid tissue 1984 1049 52.9 % 3.42×10−65 957 48.2 % 0.76
Stomach 1407 669 47.5 % 2.93×10−24 728 51.7 % 0.02
Cervix 1332 636 47.7 % 1.01×10−23 657 49.3 % 0.58
Liver 890 477 53.6 % 1.63×10−32 426 47.9 % 0.67
Oesophagus 691 347 50.2 % 8.26×10−18 354 51.2 % 0.16
Autonomic ganglia 269 123 45.7 % 1.36×10−04 145 53.9 % 0.08
Biliary tract 109 72 66.1 % 5.63×10−12 42 38.5 % 0.04
Soft tissue 87 56 64.4 % 5.76×10−09 29 33.3 % 0.004
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Figure 1: Haploid model for the retention of gene duplicates. The model consists of two initial duplicated loci AA◦ in a haploid
population with mutation rates (νi) towards deleterious gain-of-function mutants (AA+ with w+ = 1−s+ < 1), neutral loss-of-function mutants
at a single locus (AA− with w− = 1) and neutral or beneficial fixed duplicates through sub-functionalization (AA? with w? = 1 + s? > 1).
The only difference between the two duplication scenarios is the initial fraction ε of individuals with duplicated loci, which is ε ' 1/N in the
post-SSD population of size N , while it is ε ' 1 in the post-WGD population arising through WGD-induced speciation. This WGD-induced
speciation results from the ploidy incompatibility between post-WGD individuals and the rest of the pre-WGD population. See main text for
model details.
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Figure 2: Theoretical and simulated fixation rates of WGD and SSD duplicates. The theoretical and simulated fixation rates of
gene duplicates through neutral sub-functionalization (w? = 1) are plotted for (A) WGD and (B) SSD scenarios as a function of the ratio
ν+/νf , which measures their susceptibility to dominant deleterious mutations. In the stochastic simulations, the uncoupled mutation/selection
model is used and the different population sizes are N = 103 (diamonds, violet), 104 (squares, magenta) and 105 (triangles, red). The selection
coefficient for the deleterious allele AA+ is s+ = 0.05, the total mutation rate is νf = 4 × 10−5 per gene per generation and the rate of
sub-functionalization is ν? = 4× 10−6 per gene per generation. For a given ratio ν+/νf , the simulated fixation rate is averaged over 102 to 104

(WGD) and 106 to 107 (SSD) fixation trajectories and the standard deviations are shown as error bars. For each WGD or SSD scenario, the
theoretical curves for the fixation rate are obtained from the deterministic uncoupled model, Eq. [6], and represented as a continuous red line
(the dotted line is the theoretical curve for the other scenario). Finite size effects are clearly visible for the SSD scenario at small population
size. For N = 103 (diamonds, violet), the simulated fixation rates for SSD essentially reduce to the corresponding fixation rates for WGD.
Yet, for increasing population size (N > 104, squares, magenta), the fixation rates of SSD duplicates prone to dominant deleterious mutations
(ν+/νf > 0.5) become lower than for the corresponding WGD duplicates and eventually reach the SSD asymptotic limit, ν?/νf , for N > 105

(continuous red line).
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Figure 3: Population size effect on WGD fixation trajectories. The effect of population size on the fixation trajectories of alleles AA◦
(blue), AA+ (green), AA− (black) and AA? (red), is studied for WGD populations of increasing size, N = 102, 103, 104, 105 and 106. The
selection and mutation parameters are s+ = 0.05 and ν+ = 3.3 × 10−5, ν? = 4 × 10−6 and ν− = 3 × 10−6, in order to analyze the fixation
trajectories of WGD duplicates with strong susceptibility to dominant deleterious mutations (ν+ � ν−). The fixation trajectories are averaged
over 102 to 104 trajectories. Finite population size affects both transient frequencies and final fixation rates for N = 102 (dotted lines),
corresponding to Ns+ ' 1, but only the transient frequencies for N > 103, reaching eventually the deterministic trajectories (orange lines) for
N = 106, corresponding to Nν± � s+, see main text.
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Figure 4: Comparison of fixation trajectories for WGD versus SSD duplicates. The effect of population size on the fixation
trajectories of alleles AA◦ (blue), AA− (black) and AA? (red), is compared for WGD (left) and SSD (right) scenarios. The selection and
mutation parameters are s+ = 0.05 and ν+ = 3.3 × 10−5, ν? = 4 × 10−6, ν− = 3 × 10−6, as in Fig. 3. The SSD fixation trajectories are
averaged over 106 to 107 trajectories. The finite size only delays the fixation trajectories of WGD duplicates for small population size before
converging to the deterministic solution for N = 106 (orange line). By contrast, finite size effects affect both the trajectories and the fixation
rates of SSD duplicates, which are similar to the WGD scenario for N = 103 (top), before the AA? (red) and AA− (black) allele trajectories
invert themselves for N = 104 to eventually reach the SSD asymptotic limit (orange) for N = 106 (bottom).
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Figure 5: SSD fixation requires positive selection in large populations. Lines of the same color represent the decreasing AA◦ average
frequencies (left) and the corresponding increasing AA? average frequencies (right), for increasing values of the fitness benefice (s?) of the fixed
duplicates AA? with s? = 0 (black), 10−4 (magenta), 10−3 (red) and 10−2 (blue). The population size is N = 105 and all other parameters
are the same as in Fig. 4. The frequency of the fixed duplicates AA? increases rapidly with a small fitness benefice (s? > 0) demonstrating
that the fixation of SSD duplicates, which is inefficient by drift in large populations, is strongly enhanced under positive selection. Note that
the fixation rate Π? approaches the asymptotic value of the classical two-allele models (Π? = s?, Appendix C) times the fraction of mutation
rates leading to sub-functionalization, i.e. Π? ' s? × ν?/νf = s?/10, see section 3.3.
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