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A simple comparison between the exact and approximate correlation components U of the electron-
electron repulsion energy of several states of few-electron harmonium atoms with varying confine-
ment strengths provides a stringent validation tool for 1-matrix functionals. The robustness of this
tool is clearly demonstrated in a survey of 14 known functionals, which reveals their substan-
dard performance within different electron correlation regimes. Unlike spot-testing that employs
dissociation curves of diatomic molecules or more extensive benchmarking against experimental
atomization energies of molecules comprising some standard set, the present approach not only
uncovers the flaws and patent failures of the functionals but, even more importantly, also allows for
pinpointing their root causes. Since the approximate values of U are computed at exact 1-densities,
the testing requires minimal programming and thus is particularly suitable for rapid screening of new
functionals. © 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4936583]

. INTRODUCTION

The present implementations of the density matrix
functional theory (DMFT), in which the one-electron reduced
density matrix (also known as 1-matrix) T'(1’,1) plays
the central role,'® are not on par in accuracy with the
wavefunction-based methods of quantum chemistry and the
parameterizations of the relevant functionals are far less
sophisticated than those of their density functional theory
(DFT) counterparts. Paradoxically, this state of affairs, coupled
with the wealth of constraints that have to be satisfied by
the 1-matrix functionals,”'® bodes well for mathematical
rigor and sound physical basis of approximate formulations
of DMFT that are to emerge in the near future. Another
favorable circumstance stems from the fact that, unlike in
the case of DFT, the homogeneous electron gas does not
provide a convenient starting point for construction and
testing of DMFT-based approaches to the electron correlation
problem. Consequently, more realistic model systems have to
be employed in its place.

The two-electron harmonium atom, described by the
nonrelativistic Hamiltonian'!+12

N N

A= % DVt e Y - (1)

i=1 i>j=1

with N =2, is an archetype of quasi-solvable systems of
relevance to electronic structure theory. As such, it has
been repeatedly used in calibration and benchmarking of
approximate electron correlation methods, especially those
involving DFT."*"!° However, due to the simplicity of the
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expression for the ground-state energy of a two-electron
system in terms of its 1-matrix, the two-electron harmonium
atom is of no interest to the developers of DMFT. In contrast,
there are multiple reasons for which its congeners with
N > 2 are ideal model systems in this context.?’ First of all,
such atoms offer unlimited continuous tunability of extents
and relative strengths of the dynamical and nondynamical
electron correlation effects. Thus, for large values of w,
they are weakly correlated systems that, depending on N
and the electronic state, are described by either one or a
few Slater determinants.>! Conversely, at the w — 0 limit
of a vanishing confinement strength, their electrons exhibit
complete spatial localization and exclusively nondynamical
correlation.'!1222-25 The absence of a sudden Wigner crystal-
lization allows for smooth interpolation between these weak-
and strong-correlation regimes.?® Second, lacking the electron-
nucleus cusps in their wavefunctions, all harmonium atoms
are amenable to calculations involving basis sets of explicitly
correlated Gaussian functions that yield highly accurate
electronic properties.”’ Indeed, energies of several electronic
states of the three- and four-electron harmonium atoms are
presently known within ca. 1 phartree for arbitrary values
of w.”?° The respective 1-matrices and individual energy
components are also available from such calculations. Third,
exact asymptotics of these electronic properties are available
at both the weak- and strong-correlation limits,!~23-30-31
facilitating imposition of well-defined constraints upon the
DMEFT expressions for the total energy.

In summary, many-electron harmonium atoms are
well suited for robust validation of approximate 1-matrix
functionals. Although such a validation can be carried out in
multiple ways, the most convenient (and computationally
least expensive) approach relies on comparison between

©2015 AIP Publishing LLC
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the exact and approximate correlation components of the
electron-electron repulsion energy W. In Coulombic systems,
partitioning of W parallels that of the 2-matrix.>>* Thus, W
comprises the direct (Coulomb) and exchange components,
given by the expressions

= % // L(1L,1D)2,2) |7 = 7)™ dld2 (2)

and

K:_% // F(1L)TE IR -A" dld2, ()

respectively, and the remainder U due to electron correlation.
This reminder, which originates from the diagonal part
of the 2-cumulant matrix, is the only contribution to the
total energy not given by an explicit functional within
DMFT. Consequently, evaluation of the difference between
the (almost) exact U, obtained either from highly accurate
calculations or asymptotic expressions, and its approximate
counterpart computed with the exact I'(1’,1) (originating from
the same source as the exact U) offers a rigorous test of the
performance of a given functional that involves minimal (if
any) programming as no optimization of the 1-matrix is
required.

In this paper, we employ the aforedescribed validation
tool in a survey of the majority of the currently known 1-matrix
functionals. The origins of their flaws and patent failures are
elucidated.

Il. THE INVENTORY OF APPROXIMATE
1-MATRIX FUNCTIONALS

The 1-matrix functionals tested in this study fall into two
broad categories. The first of them encompasses expressions
for U that involve only the exchange integrals {K,,},
where Kp, = (Yp,(Dyq(2)|r, Ng(1)yY,(2)), computed with
the natural spinorbitals {zﬁ,,} (NOs) and the respective
occupation numbers {n,,}.34 This category includes the
following.

1. The functional introduced by Miiller® and later elaborated
by Buijse and Baerends,®

1
Uy = 3 Z (npng — \npng) Kpg. 4)
pa
2. The functional of Goedecker and Umrigar,*’-3
1
Ugy = 2 Z (npng —\npng) Kpqg. 5)
p#q

3. The functional of Csanyi and Arias,

1
UCA:_E Z \/nl,nq(l—np)(l—f’lq) Kpg. (©6)
pr4q

1. The PNOF1 functional, >34

J. Chem. Phys. 143, 214101 (2015)
4. The functional of Csanyi, Goedecker, and Arias,*

UCGA = % Z [npnq—\/
rq

5. The BBC1 functional,*!*2

Ussc1 = Uupp + Z 0(1 = 2n,) (1 = 2ng) \np ng Kpg,

nphy (2=np)(2-ny)

(N

P#q
(3)
where 6(¢) is the Heaviside step function.
6. The BBC2 functional,*!*?
1
Ussca = Uppc1 + 3 Z 6(2n, — 1)
p#q
x0Q2n, —1)(\npng —n,ng) Kpyg. )
7. The functional of Marques and Lathiotakis,*?
ap+aynpng
Uy = —— - 1| Kpq, 10
ML= Zn”n"(l+b1npnq ) pa (10)

where ap = 126.3101, a; = 2213.33, and b, = 2338.64.
8. The functional of Marques and Lathiotakis corrected for
self-interaction,*>**

1 ap+ayn,n
Umr-sic = _E Z npng (—pq - l) qus (1D

pewr 1+bin,n,
where ag = 1298.780, a; = 35114.4, and b; = 36412.2.
9. The power functional, >
1
Ur=3 D [npng = (pngy' ] Kpg. (12)
Pa

Although the sums in Egs. (4)-(12) run over (almost) all
pairs of NOs, only those with parallel spins contribute.
Despite their obvious shortcoming of neglecting correlation of
electrons with antiparallel spins, these expressions have been
employed in calculations on both closed- and open-shell sys-
tems.*7!

The genuine “JKL-only”3**? functionals of the PNOF
(Piris natural orbital functional) family obtain from
model reconstructions of the 2-cumulant matrix and
thus include the Coulomb integrals {J,,}, where J,,
= (Wp(Dyg(2)ry, N »(1)¥4(2)), in the approximate formulae
for U, allev1at1ng the aforementioned deficiency. Unfortu-
nately, the assumption of NOs possessing pairwise-identical
spatial parts limits the applicability of the PNOF functionals to
spin-unpolarized systems and species with all-parallel spins,
each of those two cases requiring a distinct expression for U.
For the sake of reader’s convenience, these expressions are
compiled below.

1
Upnor1 = 3 Z [”p ng = VpVglhphg+Q2npyng—Dnyng | Kpy (13)

pP#q
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for the spin-unpolarized systems and

Upnor1 =

oo W

Z(nf,—n,,)Km, (14)
P

for the high-spin ones.
2. The PNOF2 functional,>

1 1 _
Upnor2 = 5 Z (np — ”5,) Kpp— 5 Z [Vp vg hp hy + (SF1 — D ping hpng +1pvenp hg) +mpngnpng ]Jpq
P p*q

1
+§ [”pnq_(yp\[hp_np\/”_p)(vq\/hq_nq\/”_q)"'(z”pnq_1) V”p”q]qu (15)
P#q
for the spin-unpolarized systems and
1 -1
Upnor2 = ) Z [Vp v hp hg + (SE' = D(vp g hp g +1p v np hg) +1p1g 1p 1g |(Jpg = Kpg) (16)
pa

for the high-spin ones.
3. The PNOF3 functional,>®

1 1 _
Upnors = 5 Z (np - ”i) Kpp - 1 Z [vp vy hp hy + (SFI = 1) (vp11g hp g +1p Vg 1p hg) + 1 11g 1y g g

p P*q
1
* B Z [”p Ng = VpTlg +/ hpyng —=npvglnphg+ 2npng —1)+/n, nq]qu (17)

P*q
for the spin-unpolarized systems and
Upnorz =0 (18)
for the high-spin ones.

4. The PNOF4 functional,’’

1 1 _
Upnors = 5 Z (np = 1) Kpp = 5 Z [V va hp by + (55 = 1) (vp 11 hyp g + 101 vy 1y hg) + 105 11 1y g | pg
P p#q

1 _ s
+—Z vaq(hph,,— hph,,)+n,,77,,(npnq+ npnq)+sFl[1—sF— 1+—F(np—nq)]vp17thnq
2p¢q hp ng

_ s
+ 57! [I—SF—\/1+ - 2 (nq—np)]r]pvqn,,hq)l(pq (19)
p g

for the spin-unpolarized systems and

Upnors = Upnor (20)

for the high-spin ones.
5. The PNOF6 functional,’®

1 1
Upnors = 3 Z (np — nf,) Ky, — 3 Z [exp(=25F) vy Vg hp hg + Bpg Vplig + Bapp Vg + €xp(=25F) 11p Mg 1p g | g
I pEq

1
+ 3 Z (v,, vy | exp (=25F) hp hy — exp (=sF) | hp hy | + 1p 14 [ €Xp (—=25F) np 0y + exp (—sF) \ip g |

pP#q

TVpq [qu - \/(”p hg + Bpg) (hpng + Bpg) ] T 1pVq [qu - \/(”p hg + Bgp) (hpng + Bgp) ])qu 2y

for the spin-unpolarized systems and

1
Upnore = — = [exp (=25F)Vp Vg hp hg + BpgVp1lyg + Bapnp vq + exp(=2sp)npngnp nq](Jl,q -Kpq) (22)
2
Pq



214101-4 Cioslowski, Piris, and Matito

for the high-spin ones, where

J. Chem. Phys. 143, 214101 (2015)

By = ( — 5% exp (=2sF) + Z np [np hp +exp(—2sF) nf,])_l

p

X [n, +exp(=2sF) (hy — sF)|[hg + exp (=25F) (ng — sF)| hp ng. (23)

In Egs. (13)-(23), v, equals one when the pth NO belongs
to the set of the N natural spinorbitals with the greatest
occupation numbers (where N is the number of electrons);
otherwise, it equals zero. The other quantities are defined as

np=1-=v,, h,=1-n,, sF=annp. 24)
p

Two comments are in order here. First, because of
its pairwise coupling of occupation numbers, the PNOF5
approach® is not included in the present study. Second,
the presence of single-index terms in the expressions for
U pertinent to spin-unpolarized systems implies the lack of
invariance with respect to unitary transformations among NOs
with degenerate occupation numbers — the same problem that
afflicts some of the functionals of the first category.

lll. DETAILS OF CALCULATIONS

The set of validation tools employed in the present work
comprises the lowest-energy 2P_ and *P, states of the three-
electron harmonium atom and the lowest-energy 'D,,3P,, and
38_ states of the four-electron species in combination with 19
magnitudes of the confinement strength «w that span the range
from 1073 to 10°.2%%° The three-electron wavefunctions of the
2P_and *P, symmetries describe, respectively, the ground and
the first excited states for all confinement strengths. On the

(

other hand, the ground state of the four-electron harmonium
atom has the *P, symmetry for large values of w and >S_ for
small ones, the transition occurring at w ~ 0.024 091 9.%° The
D, state always lies above its 3P, counterpart.

In the case of the 2P_ and *P, states of the three-electron
harmonium atom, the values of the correlation component
U(w) of the electron-electron repulsion energy accurate to
within a few phartree have been published elsewhere.’!
Application of the same numerical methods to the results
of high-quality electronic structure calculations on the four-
electron species® produces the data listed in Tables I-III. The
computation of the NOs and their occupation numbers has
been described previously.®>

At the w — co limit of vanishing electron correlation, the
values of U(w) tend to constants that equal®'->!

98 967 _ 14«/5+ 4312 310 In(1 + V3)
135 135n 45 n 9m
~ —0.149 481001, (25)
2 64 16\/§+801n2_641n(1+\/§)
15 15n 157 3n 3n
~ —0.037933 367, (26)
41612 443 , 67412 60 In(l + V3)
5 135n 45 on n
~ —0.210 155924, 27)

TABLE 1. The Coulomb, exchange, and correlation components of the electron-electron repulsion energies of the

LD, state of the four-electron harmonium atom.?

w Jatx(w)=1,8/3(w) =JHB<‘U)=JB<I(‘U) Kaolw)= KBB(‘U) U(w)

1000 43.141 266 -22.197 854 -8.636071
500 30.455 349 -15.669914 -6.172 181
200 19.199 171 —9.877439 -3.985323
100 13.526 552 —6.958 008 —2.882509
50 9.516011 —4.893 624 —2.101 896
20 5.958 643 -3.061782 —1.407503
10 4.167 172 -2.138516 —1.055637
5 2.902 184 —1.485702 —0.804 504
2 1.783379 —0.906 700 -0.576873
1 1.223264 -0.615423 —-0.457 180
0.5 0.831403 -0.410474 —-0.366 884
0.2 0.491 092 —0.231455 —-0.276 380
0.1 0.325705 —0.144 669 -0.221710
0.05 0.213954 —0.087 269 -0.174972
0.02 0.121373 —0.042 626 —0.122989
0.01 0.078 588 —0.024 254 —0.090 860
0.005 0.050715 -0.013733 —-0.065 122
0.002 0.028 306 —0.006503 —-0.040335
0.001 0.018 158 -0.003713 —-0.027 465

2All values in hartree.
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TABLE II. The Coulomb, exchange, and correlation components of the electron-electron repulsion energies of
the 3P, state of the four-electron harmonium atom.?
w Jaa(w) Jpp(w) Jap(w) Kaoo(w) Kpp(w) U(w)
1000 93.008 124 12.560742 67.008 664 —42.746 677 —12.560229 —0.209 290
500 65.665 670 8.865790 47.302350 —-30.183 562 —8.865 067 —0.208932
200 41.404798 5.587243 29.816961 —19.035959 —-5.586 108 —-0.208 226
100 29.178 390 3.934970 21.005 052 —13.417624 -3.933378 —0.207436
50 20.534329 2766778 14.774 985 —9.444926 —2.764 550 —0.206 329
20 12.867011 1.730514 9.248786 -5.919992 —1.727 066 —0.204 168
10 9.005 784 1.208 582 6.465715 —4.143 653 —-1.203 827 —-0.201780
5 6.279 272 0.839956 4500418 —2.887936 —-0.833470 —0.198 484
2 3.867700 0.513792 2.762 001 —-1.774 624 —0.504 265 —-0.192 192
1 2.660 140 0.350409 1.891 486 —-1.214758 —-0.338043 —0.185436
0.5 1.814915 0.236077 1.282302 —0.820 685 —-0.220 637 —0.176 396
0.2 1.079 828 0.136943 0.753 144 —0.475 249 —0.117985 —-0.159978
0.1 0.721360 0.089 136 0.496 129 —-0.305781 —-0.068 972 —-0.143613
0.05 0.477742 0.057401 0.322946 —-0.191 126 —-0.038073 —-0.123918
0.02 0.273 685 0.032044 0.180723 —-0.098 028 -0.016717 —0.094 706
0.01 0.178013 0.020771 0.116010 —0.057 445 —-0.009 267 —-0.073 032
0.005 0.115072 0.013511 0.074404 —0.033 092 —0.005 332 —0.054 130
0.002 0.064 224 0.007 628 0.041282 —-0.015704 —-0.002 604 —0.034 834
0.001 0.041 182 0.004 928 0.026 380 —-0.008 877 —-0.001 504 —-0.024 313
#All values in hartree. The entries labeled J g(w) actually list the sums of two equal contributions J,g(w) and Jga(w).
and systems of diverse spin multiplicities in which only the
4 80 8v3 16012 128 In(1 +V3) dynamical electron cprrelation is pres?nt.
-t — - + - In contrast, faithful reproduction of the analogous
9 97 3n 3n 3n

~ —0.078 954 185,

(28)

forthe 2P_, *P,, 3P, and °S_ states, respectively, reflecting the
singly determinantal nature of the underlying wavefunctions.
The fidelity with which these constants are reproduced reflects
the performance of approximate 1-matrix functionals for

TABLE III. The Coulomb, exchange, and correlation components of the
electron-electron repulsion energies of the >S_ state of the four-electron
harmonium atom.*

w Jaa(w) Koo(w) U(w)

1000 160.375791 -59.760718 -0.078 815
500 113.264 846 —42.209 350 —0.078755
200 71.462 766 —26.635569 —0.078 639
100 50.395 597 —18.786 507 -0.078511
50 35.500157 —13.236518 -0.078 326
20 22.285777 -8.312 150 —0.077967
10 15.628 837 —-5.830637 —0.077563
5 10.925 499 -4.076432 —0.076 996
2 6.760 058 -2.521016 —0.075 881
1 4.669 020 —1.738458 -0.074 639
0.5 3.200003 —1.186941 —0.072903
0.2 1.914 169 —-0.701 637 —0.069 530
0.1 1.281760 -0.461413 —0.065 868
0.05 0.849 028 —-0.296 450 -0.061013
0.02 0.485 195 —0.158408 —0.052 641
0.01 0.314 876 —0.095 325 -0.045071
0.005 0.203 205 —-0.055810 -0.036971
0.002 0.113236 -0.026611 —0.026 582
0.001 0.072535 -0.014975 -0.019736

2All values in hartree.

asymptotics for the multideterminantal ' D, state, which reads
Uw) = —% % vw + -+ -, indicates the suitability of a given
functional for description of systems with the nondynamical
electron correlation due to degeneracy of the zeroth-order
wavefunction. Finally, the differences between the exact
and computed values of U(w) within the strong-correlation
regime of small w quantify the performance of approximate
functionals for quasi-classical systems that lack strongly
occupied NOs.?>?

For approximate expressions (4)-(12), the validation
encompasses all the five states in question. On the other hand,
for the functionals of the PNOF family, the test runs involve
only the P,, 'D,, and >S_ states due to the aforediscussed
restrictions on the spin multiplicity.

IV. RESULTS AND DISCUSSION

Several dichotomies are discernible in the performances
of the l-matrix functionals for the 2P_ ground state of
the three-electron harmonium atom (Table IV). Within the
weak-correlation regime, the MBB, GU, BBCI1, and BBC2
functionals reproduce the exact values of U with comparable
accuracy. What sets them apart, however, is the ability to
correctly describe the strongly correlated species. Here, the
GU functional fares the best, whereas the BBC1 and BBC2
estimates for U exhibit a sudden drop in accuracy for w < 1072
due to the “phase-switching” step functions present in Egs. (8)
and (9). The MBB, CA, and CGA expressions yield similarly
poor approximations to U. Paradoxically, the performance of
the ML and ML-SIC functionals, which is very unsatisfactory
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TABLE IV. The correlation components of the electron-electron repulsion energies of the 2P_ state of the

three-electron harmonium atom.

U (w) [mhartree]

w Exact MBB GU CA CGA BBCl1 BBC2 ML ML-SIC
1000 —-149.0 -151.8 -150.6 =23 -107.9 -150.9 -150.9 -333 -293.5
500 —148.8 -152.1 -150.4 =32 —-108.3 -150.9 -150.8 —46.3 -360.2
200 -148.4 -152.6 -150.0 -5.1 —-109.1 -150.7 —-150.5 -70.4 —415.5
100 —-148.0 -153.1 —-149.5 -7.1 -110.0 -150.4 -150.2 -93.6 —415.6
50 -147.4 —-153.8 —-148.6 -9.9 -111.1 -150.0 —-149.7 -119.0 -383.2
20 —146.2 —-154.9 -146.9 -15.4 -113.2 -149.0 —148.7 -146.5 -315.5
10 -144.9 -155.9 -145.0 -21.2 -115.4 -147.9 -147.4 -154.2 -261.9
5 —143.0 -157.0 —142.1 -28.8 -118.0 —-146.2 —-145.5 —-148.3 -213.6
2 -139.3 -158.2 -136.3 —42.3 -1223 -142.7 —-141.6 -127.2 -162.1
1 -135.1 -158.3 -129.7 -54.8 -125.6 -138.6 -137.1 -110.4 -133.3
0.5 -129.2 -156.7 -120.8 -68.4 -128.1 -132.5 -130.6 -98.9 -110.8
0.2 -117.9 -149.6 -104.7 -84.8 -127.7 -120.4 -117.9 -89.6 -85.5
0.1 —106.1 -138.9 -90.0 -92.1 -122.6 -107.4 —-104.5 =79.5 —-68.1
0.05 -91.6 -123.4 -74.4 -92.6 -112.3 -91.1 -88.0 —-66.6 -51.9
0.02 -69.9 -99.4 -56.7 -83.6 -93.4 —66.1 —-63.1 -50.6 -37.5
0.01 -53.9 -81.3 —46.3 =722 =71.1 -47.3 —44.6 -41.0 -32.2
0.005 —-40.0 -64.2 -37.3 -59.1 -62.1 -14.9 -12.6 -33.2 -27.6
0.002 -25.7 —45.2 -27.4 -42.9 —44.2 -6.3 -4.7 -24.9 -22.1
0.001 -17.9 -33.9 -21.4 -32.6 =333 -2.1 -0.9 -19.8 -18.4

TABLE V. The correlation components of the electron-electron repulsion energies of the *P, state of the

three-electron harmonium atom.

U(w) [mhartree]

w Exact MBB GU CA CGA BBCl1 BBC2 ML ML-SIC
1000 -37.9 -82.8 -82.6 -0.6 -58.7 -82.6 -82.6 -12.3 -117.6
500 -37.9 -82.9 -82.5 -0.8 -58.8 -82.6 -82.6 -17.2 -154.2
200 -37.9 -82.9 -82.3 -1.3 -59.0 -82.5 -82.4 -26.7 -202.0
100 -37.9 -82.9 -82.0 -1.8 -59.1 -82.3 -82.2 -36.6 -225.6
50 =379 -82.9 -81.7 -2.6 -59.2 -82.1 -81.9 -48.9 -230.2
20 -37.9 -82.8 -80.9 -4.0 -59.6 -81.6 -81.3 -67.0 -208.9
10 -37.9 -82.7 —-80.1 =55 -59.9 -81.0 -80.6 =785 -180.9
5 -37.9 -82.6 -78.9 -7.6 —-60.3 -80.1 -79.6 -84.2 -150.2
2 -37.9 -82.1 -76.6 -11.5 -60.9 -78.4 -77.6 -80.6 -113.2
1 -37.7 -81.5 -74.1 -15.4 -61.4 -76.6 =75.5 =71.8 -90.3
0.5 -37.5 -80.4 =70.7 -20.1 -61.9 -74.1 -72.6 -61.6 -72.4
0.2 -36.9 -71.8 —64.7 -27.3 -62.0 -69.3 -67.3 -50.5 -54.9
0.1 -35.9 -74.6 -58.9 -32.8 -61.3 -64.4 —61.8 —44.7 —44.5
0.05 -34.4 -69.9 -52.1 -37.4 -59.3 -58.1 -55.1 -39.2 -35.1
0.02 -31.0 -61.1 —42.1 -40.4 -54.0 -47.8 —44.5 -31.2 -23.9
0.01 -27.4 -53.9 -35.7 -40.2 —-49.1 -39.1 -35.9 -25.7 -19.7
0.005 -23.1 -46.3 -30.0 =377 —43.1 -30.1 -27.1 -21.4 -17.4
0.002 -17.2 -35.7 -23.2 -31.5 -34.1 -18.9 -16.5 -16.6 -14.3
0.001 -13.0 -28.3 -18.7 -25.9 -27.3 -12.0 -10.2 -13.5 -12.1

at the weak-correlation limit, improves significantly upon
weakening of the confinement, making them the most accurate
ones at the smallest values of w.

Inspection of the data compiled in Table V reveals an
entirely different situation for the *P, high-spin state where
none of the functionals involving solely the exchange integrals
is capable of producing reasonable approximations to U as
w — oo. Their performance for the strongly correlated species

is somewhat better with only the BBC1, BBC2, ML, and
ML-SIC expressions being reasonably accurate.

Due to its multi-determinantal character, the ' D, state of
the four-electron harmonium atom turns out to be particularly
challenging for the “K-only” functionals. In fact, a rough
agreement with the exact data is observed only for the GU,
ML, and ML-SIC approximate values of U within the strong-
correlation regime (Table VI). The positive-valuedness of the
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TABLE VL. The correlation components of the electron-electron repulsion energies of the 'D, state of the

four-electron harmonium atom.

U(w) [mhartree]

w Exact MBB GU CA CGA BBCl1 BBC2 ML ML-SIC
1000 -8636.0 -14600.8 -43342 -110248 -141499 -11824.6 -11824.6 -2239.1 -738.6
500 -61722 -103784 -3128.8 -7823.2 -10046.3 -8341.2 -83412 -1609.7 -7253
200 39853 —-66319 -2058.8 —-4983.2 -6405.6 -5250.7 -5250.7 -1066.8 —730.9
100 -2882.6 47439 -1519.0 -35533 -4571.1 -36934 -36934 -807.8 -717.1
50 -2101.9  -3409.1 -1136.7 -254277 -32744 -2592.8 -2592.8 -6374 -672.5
20 -1407.5 -22250 -7959 -16482 -21249 -16171 -1617.1 4979 -5729
10 -1055.6 -16285 —-6224 -1199.6 -15465 -11265 —-11265 —4264 -4844
5 -804.5 -1206.7 -497.5 -885.0 —1138.5 -780.9 -780.9 -3659 -399.1
2 -576.9 -831.9  -381.8 -610.1 -771.8 —476.8 -476.8 -291.8 -303.7
1 —457.2 -641.6  -318.2 —474.8 -596.6 -326.0 -326.0 2422 -247.7
0.5 -366.9 -5043  -267.0 -381.1 —467.7 -221.8 -221.8 -202.6 -202.6
0.2 -276.4 -375.1 -210.6 -297.3 -349.3 -132.6 -132.6 -1624 -153.1
0.1 -221.7 -302.0 -173.3 -250.7 -283.7 -88.8 -88.8 —-135.8 -122.3
0.05 -175.0 -242.1 -140.4 -210.8 -230.2 -57.5 =575 —111.6  -96.7
0.02 -123.0 -177.7  -104.9 —-163.1 -171.7 -26.7 -26.7 -84.6 717
0.01 -90.9 -138.0 -83.8 -130.2 —-134.6 -9.5 -9.5 —-68.5 -59.2
0.005 —65.1 -104.8 -65.9 -100.7 -103.0 53.1 53.1 =552  -49.1
0.002 —-40.3 =70.7 —46.8 -68.9 —-69.9 36.9 36.9 -40.8  -37.8
0.001 =27.5 =517 -35.5 -50.7 =512 28.0 28.0 =322 =310

TABLE VIIL. The correlation components of the electron-electron repulsion energies of the 3P, state of the

four-electron harmonium atom.

U(w) [mhartree]

w Exact MBB GU CA CGA BBCl1 BBC2 ML ML-SIC
1000 -209.3 -218.9 -217.3 =32 —-155.5 -217.6  -2175 -53.0 -451.9
500 -209.0 -219.2 -217.0 —4.5 —-156.1 -2174  -2172 -73.6 -541.2
200 -208.2 -219.7 -216.3 -7.1 -157.1 -2169  -216.6 -110.7 —600.6
100 -207.4 -220.2 -215.4 -10.0 —-158.1 -2163  -2159 —-145.5 -586.0
50 —-206.3 -220.8 -214.1 -13.9 —-159.5 -2153  -=214.7 -181.2 -532.4
20 -204.2 -221.8 -211.4 -21.5 -162.0  -2133  -2124 -214.9 —435.8
10 -201.8 -222.6 -208.3 -29.6 —-164.6 -2109  -209.7 -219.9 -361.9
5 —-198.5 -223.5 -204.0 -40.3 -167.8 -207.5  -205.9 -207.1 —295.7
2 -192.2 -224.0 -195.5 -59.0 -173.0  -200.8 -198.3 -176.3 -225.8
1 -185.4 -223.3 -186.3 -76.4 -176.9 -193.1 —-190.0 -154.1 -187.7
0.5 -176.4 -220.3 -174.2 -95.5 -180.0  -182.5 -178.5 -139.1 -159.0
0.2 -160.0 -210.3 -153.0 -119.0 -179.6 -162.6  -157.4 -124.4 -127.2
0.1 —-143.6 —-196.0 -133.6 -130.5 -173.2 -1424  -136.5 -110.0 -103.7
0.05 -123.9 -175.4 -113.0 -132.7 —-159.9 -1182  -111.9 -93.2 -81.7
0.02 -94.7 —-141.6 -87.4 -120.4 —-1335 -82.4 -76.5 =712 -59.8
0.01 -73.0 -115.0 -70.9 -103.3 -110.3 -33.0 -27.9 -57.2 —48.7
0.005 -54.1 -90.4 -56.8 -84.0 -87.8 -19.7 -15.8 —45.8 —-40.3
0.002 -34.8 -63.4 -41.4 —-60.6 -62.2 16.4 16.4 -34.2 -31.3
0.001 -24.3 -47.5 -32.1 —46.0 —46.8 28.0 28.0 =273 -26.0

BBC1 and BBC2 estimates for small w is worth noting in this
context.

According to the data displayed in Tables VII and VIII,
the performance of the functionals under study for the 3P, and
3S_ states of the four-electron species largely parallels that
for the 2P_ and *P, states of its three-electron counterpart.
Thus, within the weak-correlation regime of the 3p, state, the
MBB, GU, BBC1, and BBC2 functionals are again the most
accurate (though somewhat less than in the analogous case
of the 2P_ state). Similarly, the ML and ML-SIC functionals

perform well only for very small values of w. At that limit,
they are more accurate then the GU approximation, whereas
the MBB, CA, and CGA expressions again yield similarly
poor estimates of U. The BBC1 and BBC2 functionals fare
the worst, producing positive values of U.

Not surprisingly, the results of test calculations for the 3S_
high-spin state reveal extremely poor reproduction of the exact
correlation components of the electron-electron repulsion
energies by all the functionals, the only exception being
the ML and ML-SIC ones at small confinement strengths.
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TABLE VIIL The correlation components of the electron-electron repulsion energies of the 3S_ state of the

four-electron harmonium atom.

U(w) [mhartree]

w Exact MBB GU CA CGA BBCl1 BBC2 ML ML-SIC
1000 -78.8 -150.9 -150.3 -1.3 -107.0 -150.5 -150.4 -30.5 -276.1
500 -78.8 -150.9 -150.0 -1.8 -107.1 -150.3 -150.1 —42.6 —344.3
200 —-78.6 —-150.8 —-149.5 -2.8 -107.3 -149.9 —-149.7 —-65.1 —407.2
100 =785 -150.7 -148.9 -39 -107.5 -149.4 —-149.1 -87.4 -414.9
50 -78.3 -150.5 —-148.0 -5.4 -107.8 -148.7 -148.3 -112.5 -390.0
20 -78.0 —-150.1 —-146.3 -8.4 -108.2 -147.4 -146.7 -141.9 -330.9
10 =77.6 -149.6 -144.3 -11.6 -108.7 —-145.8 -144.9 -152.4 -280.4
5 =717.0 —148.8 —141.5 -159 -109.2 —-143.7 —-142.4 —-149.2 -231.1
2 -75.9 -147.2 -136.3 -23.6 -110.0 -139.5 -137.5 -130.8 -173.8
1 -74.6 —-145.1 -130.8 -31.1 -110.5 -134.9 -132.4 -113.7 -139.3
0.5 -72.9 -141.9 -123.6 —-40.0 -110.6 -128.7 -125.5 -98.7 -112.4
0.2 -69.5 -135.3 -111.4 -52.8 -109.4 -117.5 -113.2 -83.6 -87.0
0.1 —-65.9 -127.7 —-100.1 —61.8 -106.6 -106.4 -101.3 =72.5 =71.5
0.05 -61.0 -117.6 -87.5 -68.4 -101.4 -93.0 -87.2 -61.0 -56.4
0.02 -52.6 -100.5 -70.3 -71.0 -90.4 -72.6 —66.6 -47.9 -40.0
0.01 —45.1 —-86.6 -58.8 -68.3 —-80.1 -56.4 -50.8 -39.7 -32.7
0.005 -37.0 -72.6 —48.8 -62.0 —-68.6 —40.5 -35.7 -32.7 -27.9
0.002 —-26.6 -54.7 =373 -50.1 -52.8 =224 -19.0 =253 =224
0.001 -19.7 -42.7 -29.8 —-40.3 -41.6 16.3 16.3 -20.8 -19.0

In contrast to the case of the *P, state, the BBC1 and BBC2
expressions yield positive values of U at the w — 0 limit.
The data compiled in Tables IX—XI uncover a substantial
underestimation or even a complete neglect of the electron
correlation effects in high-spin states by the functionals of
the PNOF family. For the PNOF1, PNOF2, and PNOF3
ones, this flaw persists for the 1D, state. On the other hand,
among those included in the present survey, the PNOF4 and
PNOF®6 functionals are the only ones capable of describing

TABLE IX. The correlation components of the electron-electron repulsion
energies of the P, state of the three-electron harmonium atom.

U(w) [mhartree]

w Exact PNOF1 PNOF2 PNOF3 PNOF4  PNOF6
1000 -37.9 -0.2 -0.2 0.0 -0.2 -0.2
500 -37.9 -0.3 -03 0.0 -0.3 -0.3
200 -37.9 -0.4 -0.5 0.0 -0.5 -0.5
100 -37.9 -0.7 -0.7 0.0 -0.7 -0.7
50 -37.9 -0.9 -1.0 0.0 -1.0 -1.0
20 -37.9 -14 -1.5 0.0 -1.5 -1.5
10 -37.9 -2.0 -2.1 0.0 -2.1 -2.1
5 -37.9 -2.8 -2.9 0.0 -29 -29
2 -37.9 —4.1 -4.4 0.0 -4.4 -4.4
1 =377 =55 -5.9 0.0 -59 -5.9
0.5 =375 =73 =1.17 0.0 =17 =17
0.2 -36.9 -9.8 -10.5 0.0 -10.5 -10.5
0.1 -35.9 -11.8 -12.6 0.0 -12.6 -12.6
0.05 -34.4 -13.4 -14.3 0.0 -14.3 -14.2
0.02 -31.0 -14.3 -15.2 0.0 -15.2 -15.0
0.01 -27.4 -13.7 -14.7 0.0 -14.7 -14.3
0.005 -23.1 -12.2 -13.0 0.0 -13.0 -12.4
0.002 -17.2 -94 -9.9 0.0 -9.9 -9.0
0.001 -13.0 =72 =15 0.0 =15 -6.5

the w — oo limit of this state with decent accuracy. Although
their performance quickly deteriorates upon weakening of the
confinement, the latter functional yields estimates of U that
are both negative and greater than the exact ones for all values
of w (Table X).

Overall, one finds the functionals under study disappoint-
ingly inaccurate. With the exception of the PNOF4 and PNOF6
ones, all of them fail for a system described by a wavefunction
with two predominant Slater determinants. Moreover, none of
the functionals performs satisfactorily for high-spin species
within the weak-correlation regime, signaling an unbalanced
description of systems with different spin multiplicities. At the
strong-correlation limit, only the ML and ML-SIC expressions
appear to perform reasonably well. However, it is not clear at
this point whether their accuracy is not purely accidental in
this instance.

Most of the flaws and failures uncovered by the present
survey have readily traceable origins. The most obvious one
is the presence of the “phase-switching” step functions in the
BBC1 and BBC2 expressions. Whereas seemingly improving
description of dissociation limits of simple molecules with
single bonds,*! it introduces discontinuities in the first-order
derivatives of U(w) with respect to w and results in the quick
deterioration of accuracy apparent upon further lowering of
the confinement strength.

The poor performance of the ML and ML-SIC functionals
for weakly correlated systems can be elucidated with equal
ease. In such systems, U(w) tends to a constant at the
limit of w — oo [see Egs. (25)-(28)], whereas the electron-
electron repulsion integrals grow like w'/?. Consequently,
the expressions premultiplying these integrals have to be
asymptotically proportional to w~!/2. The deviations of the
occupation numbers {7} from their w — oo limiting values
(equal to either 0 or 1) scale asymptotically like w'.!>°
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TABLE X. The correlation components of the electron-electron repulsion energies of the 'D, state of the
four-electron harmonium atom.

U(w) [mhartree]

w Exact PNOF1 PNOF2 PNOF3 PNOF4 PNOF6
1000 -8636.0 —4234.7 -10707.7 —4308.1 —8446.2 —-8473.6
500 -6172.2 -3029.1 -7593.5 -3102.4 -5983.2 —-6010.5
200 —3985.3 —1958.5 -4830.2 -2031.9 -3798.0 —3825.3
100 —2882.6 -1418.8 -3437.7 -1492.2 -2698.0 —2725.3
50 -2101.9 -1035.6 -2452.8 -1109.0 -1919.7 —-1947.0
20 —-1407.5 -693.4 -1578.6 -766.7 -1229.8 -1257.1
10 -1055.6 -518.6 -1137.7 -591.8 -883.0 -910.3
5 —-804.5 -392.3 -825.6 —-465.2 —638.8 -665.9
2 -576.9 -274.7 -547.4 -346.8 —423.6 —450.3
1 —457.2 -210.2 —405.7 -281.2 -316.2 —342.1
0.5 -366.9 -159.2 -303.4 -228.4 -240.4 —265.1
0.2 -276.4 -105.8 -207.8 -171.1 -171.3 -193.0
0.1 -221.7 =733 —-154.8 —-134.1 -132.4 —-151.1
0.05 -175.0 —-46.5 -112.4 -101.7 -99.3 -114.6
0.02 -123.0 -19.0 —-68.6 —65.6 —-60.8 =722
0.01 -90.9 -4.0 —43.8 —43.5 -36.2 —45.9
0.005 -65.1 5.6 -26.1 -26.3 -17.7 -26.2
0.002 —-40.3 11.4 -12.0 —-11.1 -2.8 -10.3
0.001 -27.5 123 —-6.2 -4.2 2.8 -4.0

Hence, the leading asymptotic terms of the premultipliers
have to be proportional to square roots of the products
{n, ngy} for the pairs comprising one weakly and one strongly
occupied NO that exclusively contribute to U(w) at this limit.5!
Obviously, expressions (10) and (11) do not conform to this
constraint.

This conclusion is confirmed by the trends in the
exponents A of power functional (12) individually optimized
for each state and w (Table XII). The convergence to the

TABLE XI. The correlation components of the electron-electron repulsion
energies of the 7S_ state of the four-electron harmonium atom.

U(w) [mhartree]

limiting value of % is clearly discernible for all the singly
determinantal cases, its rate strongly depending on the state
in question. An analogous analysis for the D, state yields

. . 10V2+3 40V2-37 13 5V3+8
the leading w — oo asymptotics of o T o 30 30

‘/TE, and g (all in the units of —\/g Vw) for U afforded
by the MBB, GU, CA, GCA, BBCI, and BBC2 functionals,
respectively. These asymptotics, which are compatible with
the large-w entries in Table VI, should be compared with
the exact limit of % mentioned in Sec. III of this paper. The

limiting value of A turns out to be given by the rather unwieldy

TABLE XII. The optimal exponents A in power functional (12).

w Exact PNOF1  PNOF2 PNOF3 PNOF4 PNOF6 w 2p_ P, D, 3p. 5S_

1000 -78.8 -0.5 -0.5 0.0 -0.5 -0.5 1000 0.5014 0.5561 0.6657 0.5034 0.5487
500 -78.8 -0.6 -0.7 0.0 -0.7 -0.7 500 0.5017 0.5590 0.6629 0.5039 0.5514
200 -78.6 -0.9 -1.0 0.0 -1.0 -1.0 200 0.5024 0.5634 0.6576 0.5046 0.5554
100 -78.5 -1.3 1.4 0.0 -14 1.4 100 0.5031 0.5671 0.6520 0.5055 0.5589
50 -78.3 -1.9 -2.0 0.0 -2.0 -2.0 50 0.5040 0.5712 0.6447 0.5066 0.5628
20 -78.0 -2.9 -3.1 0.0 -3.1 -3.1 20 0.5060 0.5774 0.6321 0.5088 0.5687
10 -77.6 -4.0 43 0.0 43 43 10 0.5081 0.5827 0.6205 0.5111 0.5739
5 -77.0 -5.5 -5.9 0.0 -5.9 -5.9 5 0.5111 0.5886 0.6075 0.5143 0.5798
2 -75.9 -8.1 -8.7 0.0 -8.7 -8.7 2 0.5166 0.5973 0.5903 0.5203 0.5886
1 -74.6 -10.7 114 0.0 114 ~-11.4 1 0.5223 0.6044 0.5791 0.5265 0.5961
0.5 -72.9 -13.7 -14.6 0.0 -14.6 -14.6 0.5 0.5292 0.6119 0.5708 0.5342 0.6042
0.2 —-69.5 -17.9 -19.2 0.0 -192 -19.1 0.2 0.5400 0.6218 0.5652 0.5464 0.6150
0.1 —-65.9 -20.7 -222 0.0 -222 -22.1 0.1 0.5488 0.6287 0.5651 0.5566 0.6228
0.05 —-61.0 225 242 0.0 242 -239 0.05 0.5579 0.6345 0.5682 0.5671 0.6295
0.02 -52.6 -22.6 -245 0.0 -24.5 -23.7 0.02 0.5716 0.6402 0.5761 0.5815 0.6366
0.01 —45.1 -20.9 -22.6 0.0 -22.6 212 0.01 0.5830 0.6446 0.5839 0.5923 0.6413
0.005  -37.0 -17.8 -192 0.0 -192 -17.4 0.005 0.5940 0.6492 0.5918 0.6024 0.6458
0.002 266 -13.1 -139 0.0 -139 -11.7 0.002 0.6070 0.6551 0.6019 0.6142 0.6516
0.001  -19.7 -9.7 -10.1 0.0 -10.1 -7.9 0.001 0.6158 0.6595 0.6091 0.6222 0.6559
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expression W ~ 0.672996 that compares well

with the actual data computed within the weak-correlation
regime (Table XII).

Finally, a comment on the uneven performance of the
functionals for systems with diverse spin multiplicities is
in order. This problem stems from the insufficiency of the
occupation numbers alone for a proper reconstruction of the
2-cumulant matrix that is equally applicable to species with
balanced and unbalanced spins.®

V. CONCLUSIONS

A simple comparison between the exact and approximate
correlation components U of the electron-electron repulsion
energy of several states of few-electron harmonium atoms with
varying confinement strengths provides a stringent validation
tool for 1-matrix functionals. The robustness of this tool is
clearly demonstrated in a survey of 14 known functionals,
which reveals their substandard performance within different
electron correlation regimes. Unlike spot-testing that employs
dissociation curves of diatomic molecules or more extensive
benchmarking against experimental atomization energies of
molecules comprising some standard set, the present approach
not only uncovers the flaws and patent failures of the
functionals but, even more importantly, also allows for
pinpointing their root causes. Since the approximate values
of U are computed at exact 1-densities, the testing requires
minimal programming and thus is particularly suitable for
rapid screening of new functionals.

The conclusion that emerges from the survey of
functionals reported in this paper is that the current
approximate incarnations of DMFT are highly unlikely to
compete with the more traditional approaches to the electron
correlation problem. However, the present study clearly
identifies the deficiencies that have to be rectified and provides
obvious clues for the direction of the future work.
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