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Abstract

Very recently, the classification of Moufang polygons has been completed by
Tits and Weiss. Moufang n-gons exist for n ∈ {3, 4, 6, 8} only. For n ∈ {3, 6, 8},
the proof is nicely divided into two parts: first, it is shown that a Moufang n-gon
can be parametrized by a certain interesting algebraic structure, and secondly, these
algebraic structures are classified. The classification of Moufang quadrangles (n=4)
is not organized in this way due to the absence of a suitable algebraic structure.
The goal of this article is to present such a uniform algebraic structure for Moufang
quadrangles, and to classify these structures without referring back to the original
Moufang quadrangles from which they arise, thereby also providing a new proof for
the classification of Moufang quadrangles, which does consist of the division into
these two parts. We hope that these algebraic structures will prove to be interesting
in their own right.
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CHAPTER 1

Introduction

The irreducible spherical buildings of rank at least three have been classified
by J. Tits in 1974 [15]. The irreducible spherical buildings of rank two – which
are called generalized polygons – are too numerous to classify, but in the addenda
of [15], the Moufang condition for spherical buildings was introduced, and it was
observed that every thick irreducible spherical building of rank at least three as well
as every irreducible residue of such a building satisfies the Moufang condition. In
this sense, the Moufang polygons are the “building bricks” of any spherical building
of rank at least three.

Very recently, the classification of Moufang polygons has been completed by J.
Tits and R. Weiss in [20]. It was first shown by J. Tits (see [17] and [18]) that
Moufang n-gons exist for n ∈ {3, 4, 6, 8} only; see also [21]. For n ∈ {3, 6, 8}, the
proof is divided into two parts, namely (A) it is shown that a Moufang n-gon can
be parametrized by a certain algebraic structure, and (B) these algebraic structures
are classified.

More precisely, it was already shown in 1933 (but in a slightly different form;
see [2] or [5]) by R. Moufang (see [11]) that all Moufang triangles can be described
by an alternative division ring, a notion which had been introduced by M. Zorn (see
[22]). These alternative division rings were classified by R. Bruck and E. Kleinfeld
in 1951; see [3]. The Moufang hexagons are described by unital quadratic Jordan
division algebras of degree three, also known as anisotropic cubic norm structures
(see [16]). These structures have been classified in its full generality in 1986 by
H. Petersson and M. Racine (see [13] and [14]), whose proof is built on earlier
work by A. Albert [1], F.D. Jacobson and N. Jacobson [6], N. Jacobson [7], [8] and
K. McCrimmon [9], [10]. The Moufang octagons, finally, can be described by a
so-called octagonal system, as was shown by J. Tits in 1983 (see [19]); since these
systems have a very simple description, there is no need for part (B) in this case.

The classification of Moufang quadrangles (n=4) in [20] is not organized in
this way due to the absence of a suitable algebraic structure. Instead, there are
six different parameter systems, and even then, the division of the proof into parts
(A) and (B) is missing in the two cases which lead to the exceptional quadrangles.
Surprisingly, one of these classes, namely the exceptional quadrangles of type F4,
had only recently been discovered by R. Weiss during the classification process; see
also [12].

The goal of this article is to present a uniform algebraic structure for Mou-
fang quadrangles. These “quadrangular systems” reveal some of the structure of
Moufang quadrangles which is hard to see without them. For example, we have
successfully used them to answer a basic question about the automorphism group
of the Moufang quadrangles of type F4 left open in (37.38) of [20]; see [4]. More-
over, it is possible to classify these structures without referring back to the original
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2 1. INTRODUCTION

Moufang quadrangles from which they arise, thereby providing a new proof for the
classification of Moufang quadrangles, which does consist of the division into parts
(A) and (B).

The Moufang hexagons all arise from forms of algebraic groups of type G2,
3D4, E6 or E8, or they are of mixed type associated with groups of type G2. The
Moufang quadrangles arise either from certain classical groups or from forms of
algebraic groups of type E6, E7 or E8 or are of mixed type associated with groups of
type B2 or F4. The quadrangular systems parametrize the Moufang quadrangles in
the same way that the Jordan algebras mentioned above parametrize the Moufang
hexagons, and it is our hope that the quadrangular systems will turn out to be
equally interesting objects of study.

We start by giving the (ad hoc) definition of the quadrangular systems. Consid-
ering the background of the Moufang quadrangles, it should not be too surprising
that we need a large number of axioms to describe these systems. In the next
chapter, we give some elementary properties of these systems. In chapter 4, we
explain how to construct a Moufang quadrangle starting from an arbitrary quad-
rangular system. In chapter 5, we show that every Moufang quadrangle arises in
this way. After a couple of remarks in chapter 6, we present a list of 6 examples
of quadrangular systems, which corresponds to the 6 different classes of Moufang
quadrangles as described in [20]. Finally, chapter 8 is devoted to the classification
of the quadrangular systems. We conclude with an appendix in which we restate
the axiom system for abelian quadrangular systems and for some specific subclasses
of those.

Acknowledgment

I am very grateful to Richard Weiss, for providing me a copy of his book “Mou-
fang Polygons” [20] prior to publication, and for the many illuminating discussions
we have had on this topic.



CHAPTER 2

Definition

Throughout this article, we will use the following notation. If S is a group,
then we define S∗ := S \ {neutral element}. If S is a set which contains an element
called “0”, then we define S∗ := S \ {0}. It will always be clear from the context
which definition we mean.

Consider an abelian group (V,+) and a (possibly non-abelian) group (W,�).
The inverse of an element w ∈W will be denoted by �w, and by w1 �w2, we mean
w1 � (�w2). Suppose that there is a map τV from V ×W to V and a map τW from
W × V to W , both of which will be denoted by · or simply by juxtaposition, i.e.
τV (v, w) = vw = v · w and τW (w, v) = wv = w · v for all v ∈ V and all w ∈ W .
Consider a map F from V × V to W and a map H from W ×W to V , both of
which are “bi-additive” in the sense that

F (v1 + v2, v) = F (v1, v) � F (v2, v) ;

F (v, v1 + v2) = F (v, v1) � F (v, v2) ;

H(w1 � w2, w) = H(w1, w) +H(w2, w) ;

H(w,w1 � w2) = H(w,w1) +H(w,w2) ;

for all v, v1, v2 ∈ V and all w,w1, w2 ∈ W . Suppose furthermore that there exists
a fixed element ε ∈ V ∗ and a fixed element δ ∈ W ∗, and suppose that, for each
v ∈ V ∗, there exists an element v−1 ∈ V ∗, and for each w ∈ W ∗, there exists an
element κ(w) ∈ W ∗, such that, for all w,w1, w2 ∈ W and all v, v1, v2 ∈ V , the
following axioms are satisfied. We define

v := εF (ε, v)− v
Rad(F ) := {v ∈ V | F (v, V ) = 0}
Rad(H) := {w ∈W | H(w,W ) = 0}

Im(F ) := F (V, V )

Im(H) := H(W,W )

(Q1) wε = w.
(Q2) vδ = v.
(Q3) (w1 � w2)v = w1v � w2v.
(Q4) (v1 + v2)w = v1w + v2w.
(Q5) w(−ε) · v = w(−v).
(Q6) v · w(−ε) = vw.
(Q7) Im(F ) ⊆ Rad(H).
(Q8) [w1, w2v]� = F (H(w2, w1), v).
(Q9) δ ∈ Rad(H).

(Q10) If Rad(F ) 6= 0, then ε ∈ Rad(F ).

3



4 2. DEFINITION

(Q11) w(v1 + v2) = wv1 � wv2 � F (v2w, v1).
(Q12) v(w1 � w2) = vw1 + vw2 +H(w2, w1v).
(Q13) (v−1)−1 = v (if v 6= 0).
(Q14) κ(�κ(�w)) = w(−ε) (if w 6= 0).
(Q15) wv · v−1 = w (if v 6= 0).

(Q16) v−1 · wv = −v(�w) (if v 6= 0).
(Q17) F (v−1

1 , v2)v1 = F (v1, v2) (if v1 6= 0).
(Q18) vκ(w) · (�w) = −v (if w 6= 0).
(Q19) w · vκ(w) = κ(w)v (if w 6= 0).
(Q20) H(κ(w1), w2)w1 = H(w1, w2) (if w1 6= 0).

Then we call the system (V,W, τV , τW , ε, δ) a quadrangular system. Note that
we omit the maps F and H in our notation, as well as the maps v 7→ v−1 and
w 7→ κ(w). The reason is that they are uniquely determined by V , W , τV , τW , ε
and δ; see Theorem 3.7.

Remark 2.1. We will sometimes think about the maps τV from V × W to
V and τW from W × V to W as “actions”, since it will turn out that, for every
w ∈ W ∗, the map from V to itself which maps v to vw for every v ∈ V is an
automorphism of V ; similarly, for every v ∈ V ∗, the map from W to itself which
maps w to wv for every w ∈W is an automorphism of W ; see Theorem 3.6. Note,
however, that these maps are no group actions in the proper sense of the word,
since v(w1 � w2) 6= vw1 · w2 and w(v1 + v2) 6= wv1 · v2 in general.

Remark 2.2. In writing down these axioms, we used the convention that the
maps which are denoted by juxtaposition preceed those which are denoted by “·”.
Note, however, that there is no danger of confusion, since we have not defined a
multiplication on V or on W . Hence we will often write wvv−1 instead of wv · v−1,
for example.

We will show in Theorem 3.8 below that the following two identities are satisfied
for every quadrangular system, for all v1, v2 ∈ V and all w1, w2 ∈W .

(Q21) F (v1, v2) = F (v2, v1).

(Q22) H(w1, w2) = −H(w2, w1).

Remark 2.3. These two identities show that, in some sense, F is a symmetric
form and H is a skew-hermitian form. Note, however, that V and W are not vector
spaces in general.

Moreover, we will show in Theorem 6.1 that the following four identities are
satisfied for every quadrangular system, for all v, c ∈ V and all w, z ∈W . We first
introduce the notion of a reflection, which is a direct generalization of the classical
notion of a reflection in a quadratic space:

πv(c) := c− vF (v−1, c) (if v 6= 0)

Πw(z) := z � w(−H(κ(w), z)) (if w 6= 0) .

Then

(Q23) v ·Πw(z) = −v(�w)zκ(w) (if w 6= 0).

(Q24) w · πv(ε)−1 · πv(c) = wvcv−1 (if v 6= 0).
(Q25) πv(c · δv)w = πv(c · wv) (if v 6= 0).
(Q26) Π�z(w · εz)v = Π�z(w · vz) (if w 6= 0).



2. DEFINITION 5

Let Ω := (V,W, τV , τW , ε, δ) and Ω′ := (V ′,W ′, τV ′ , τW ′ , ε
′, δ′) be two quadran-

gular systems. We say that (φ, ψ) is a morphism from Ω to Ω′ if and only if φ is a
morphism from V to V ′ and ψ is a morphism from W to W ′ such that φ(ε) = ε′,
ψ(δ) = δ′, φ(vw) = φ(v)ψ(w) and ψ(wv) = ψ(w)φ(v), for all v ∈ V and all w ∈W .

A morphism (φ, ψ) is called an monomorphism (respectively epimorphism, iso-
morphism) if and only if both φ and ψ are monomorphisms (respectively epimor-
phisms, isomorphisms). We call Ω and Ω′ isomorphic if and only if there exists an
isomorphism (φ, ψ) from Ω to Ω′.





CHAPTER 3

Some Identities

We will now prove some identities which we will use in the construction of the
Moufang quadrangles in chapter 4, and which will also be used in the classification
of quadrangular systems.

Definition 3.1. For each w ∈ W ∗, we define λ(w) := �κ(�w). Using this
definition, (Q14) can be rephrased as κ(λ(w)) = w(−ε).

Lemma 3.2. Let (V,W, τV , τW , ε, δ) be a quadrangular system. Then, for all
w ∈W ∗ and all v ∈ V , we have that

(i) vwκ(�w) = −v ;
(ii) κ(w)(v(�w)) = w(−v) .

Proof. If we plug in λ(w) for w in (Q18), then it follows from (Q14) that
v(w(−ε))(�λ(w)) = −v, and by (Q6) and the definition of λ, this is equivalent to
vwκ(�w) = −v, which proves (i).

If we plug in λ(w) for w in (Q19), then we get, again by (Q14), that λ(w)(v ·
w(−ε)) = w(−ε)v. By (Q6), (Q5) and the definition of λ, this is equivalent to
�κ(�w)(vw) = w(−v). Replacing w by �w now yields (ii). �

Lemma 3.3. Let (V,W, τV , τW , ε, δ) be a quadrangular system. Then the fol-
lowing holds, for all w ∈W and all v ∈ V :

(i) wv = 0 ⇐⇒ w = 0 or v = 0 ;
(ii) vw = 0 ⇐⇒ v = 0 or w = 0 .

Proof. We will only prove statement (i); because of Lemma 3.2(i), the proof of
(ii) is completely similar. By choosing v1 = v2 = 0 in (Q11), we get w0 = w0�w0,
from which it follows that w0 = 0. Similarly, it follows from (Q3) that 0v = 0.

On the other hand, suppose that wv = 0. If v 6= 0, then it follows from (Q15)
that w = wvv−1 = 0v−1 = 0. �

Lemma 3.4. Let (V,W, τV , τW , ε, δ) be a quadrangular system. Then, for all
w ∈W and all v ∈ V , we have :

(i) (�w)v = �(wv) ;
(ii) (−v)w = −(vw) .

It follows that the notations �wv and −vw are unambiguous.

Proof. By putting w1 = w and w2 = �w in (Q3), we get 0v = wv � (�w)v,
from which it follows that (�w)v = �(wv). Similarly, (ii) follows from (Q4). �

Lemma 3.5. Let (V,W, τV , τW , ε, δ) be a quadrangular system. Then the fol-
lowing holds, for all w ∈W and all v ∈ V :

(i) w1v = w2v ⇐⇒ w1 = w2 or v = 0 ;

7



8 3. SOME IDENTITIES

(ii) v1w = v2w ⇐⇒ v1 = v2 or w = 0 .

Proof. By (Q3) and Lemma 3.4(i), we have (w1 � w2)v = w1v � w2v, and
so (i) is an immediate consequence of Lemma 3.3(i). Similarly, (ii) follows from
Lemma 3.3(ii). �

Theorem 3.6. Let (V,W, τV , τW , ε, δ) be a quadrangular system. Then

(i) for every w ∈W ∗, the map from V to itself which maps v to vw for every
v ∈ V is an automorphism of V ;

(ii) for every v ∈ V ∗, the map from W to itself which maps w to wv for every
w ∈W is an automorphism of W .

Proof. We will only show (i), the proof of (ii) being completely similar. So
let w ∈ W ∗ be arbitrary, and let α be the map from V to itself which maps v to
vw for every v ∈ V . By Lemma 3.3(ii), we have that α(0) = 0, and it follows from
(Q4) that α(v1 + v2) = α(v1) + α(v2) for all v1, v2 ∈ V , so α is a group morphism.
Since w 6= 0, it follows from Lemma 3.5(ii) that α is injective. Finally, it follows
from (Q18) that α

(
−vκ(�w)

)
= v for all v ∈ V , hence α is surjective as well, and

we are done. �

Theorem 3.7. Let (V,W, τV , τW , ε, δ) be a quadrangular system. Then the
maps F and H and the maps v 7→ v−1 and w 7→ κ(w) are uniquely determined.

Proof. By (Q11), F (v2, v1) = �δv2 � δv1 � δ(v1 + v2), so F is uniquely
determined. Note that this implies that the map v 7→ v is uniquely determined as
well. By (Q12), H(w2, w1) = −εw2−εw1 +ε(w1 +w2), so H is uniquely determined.
Suppose that v∗ were another “inverse” of v. Then it would follow from (Q16) that
v∗(wv) = v−1(wv), but then Lemma 3.5 would imply that v∗ = v−1 after all.
Similarly, it follows from Lemma 3.2(ii) that the map κ is uniquely determined. �

Theorem 3.8. Let (V,W, τV , τW , ε, δ) be a quadrangular system. Then the
identities (Q21) and (Q22) are satisfied for all v1, v2 ∈ V and all w1, w2 ∈W .

Proof. We will first show that (Q21) follows from (Q8), (Q9) and (Q11).
Since V is abelian, δ(v1 + v2) = δ(v2 + v1), and hence, by (Q11), we have that

δv1 � δv2 � F (v2, v1) = δv2 � δv1 � F (v1, v2) ,

for all v1, v2 ∈ V . In order to show (Q21), it thus suffices to show that δv1 and δv2

commute for all v1, v2 ∈ V . By (Q8) and (Q9),

[δv1, δv2]� = F (H(δ, δv1), v2) = 0

for all v1, v2 ∈ V , and hence (Q21) holds.
Similarly, we will show that (Q22) follows from (Q12), (Q15) and (Q16). By

substituting �w for w and ε for v in (Q16), we have that εw = −ε−1(�w) for all
w ∈W . Moreover, by (Q15), wε−1 = w for all w ∈W . By (Q12) and the fact that
H is additive in both variables, we thus have that

H(w2, w1) = ε(w1 � w2)− εw1 − εw2

= −ε−1(�w2 � w1) + ε−1(�w1) + ε−1(�w2)

= −H(�w1,�w2ε
−1)

= −H(w1, w2)

for all w1, w2 ∈W , hence (Q22) holds. �
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Lemma 3.9. Let (V,W, τV , τW , ε, δ) be a quadrangular system. Then the map
v 7→ v is additive. In particular, we have that −v = −v for all v ∈ V . Moreover,
for all c ∈ V ∗, the map πc is additive. In particular, we have that πc(−v) = −πc(v)
for all v ∈ V .

Proof. It follows from (Q7) that H(F (ε, v2), F (ε, v1)) = 0, for all v1, v2 ∈ V .
Hence

εF (ε, v1 + v2) = ε(F (ε, v1) � F (ε, v2))

= εF (ε, v1) + εF (ε, v2) ,

by (Q12). Since v = εF (ε, v)−v, it follows from this that the map v 7→ v is additive.
Similarly, it follows from (Q7) that H(F (c−1, v2), F (c−1, v1)c) = 0, for all c ∈ V ∗
and all v1, v2 ∈ V . Since the map v 7→ v is additive, it now follows, again by (Q12),
that

πc(v1 + v2) = (v1 + v2)− cF (c−1, v1 + v2)

= v1 + v2 − c(F (c−1, v1) � F (c−1, v2))

= v1 − cF (c−1, v1) + v2 − cF (c−1, v2)

= πc(v1) + πc(v2) ,

which is what we wanted to show. �

Lemma 3.10. Let (V,W, τV , τW , ε, δ) be a quadrangular system. Then, for all
w ∈W ∗ and all v ∈ V ∗, we have

(i) (−v)−1 = −(v−1) ;
(ii) κ(�w) = �λ(w) .

Proof. If we replace w by δ in (Q16), we have that −(v−1)(δv) = v(�δ).
If we replace w by δ(−ε) in the same identity (Q16), then we get, by (Q5) and

(Q6) that v−1(δ(−v)) = −v(�δ). If we replace v by −v in this identity, then

we get, using the fact that −v = −v, that (−v)−1(δv) = v(�δ). It follows that
(−v)−1(δv) = −(v−1)(δv). Since δv is non-zero, this implies, by Lemma 3.5(i),
that (−v)−1 = −(v−1), which proves (i). Identity (ii) follows immediately from the
definition of λ. �

Lemma 3.11. Let (V,W, τV , τW , ε, δ) be a quadrangular system. Then, for all
w ∈W and all v ∈ V , we have

wv(−ε) = w(−v) .

Proof. Note that this identity is trivial if v = 0, so assume v 6= 0. By
(Q15) and Lemma 3.10(i), we have that wvv−1 = w(−v)(−v−1). It follows, by
(Q5), that wv(−ε)(−v−1) = w(−v)(−v−1). By Lemma 3.5(i), this implies that
wv(−ε) = w(−v), for all w ∈W and all v ∈ V . �

Lemma 3.12. Let (V,W, τV , τW , ε, δ) be a quadrangular system. Then, for all
v ∈ V , we have

v = v .

Proof. Assume v 6= 0. By replacing w by �δ in (Q16), we see that v =
−v−1(�δv). If, on the other hand, we replace v by v−1 and w by δv in this same

identity (Q16), then we get v(δvv−1) = −v−1(�δv). Combining those two equalities
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gives us the required identity v = v, since v(δvv−1) is equal to v because of (Q15)
and (Q2). �

Lemma 3.13. Let (V,W, τV , τW , ε, δ) be a quadrangular system. Then, for all
w ∈W and all v ∈ V , we have

(i) w(−v) = F (vw, v) � wv ;
(ii) v(�w) = H(w,wv)− vw .

Proof. If we put v1 = −v and v2 = v in (Q11), then we get that w0 =
w(−v) � wv � F (vw,−v). Since F is additive in both variables, this is equivalent
to w(−v) = F (vw, v)�wv, which proves (i). Similarly, (ii) follows from (Q12). �

Lemma 3.14. Let (V,W, τV , τW , ε, δ) be a quadrangular system. Then, for all
v ∈ V ∗, we have

(i) κ(δv) = δ(v)−1 ;

(ii) v−1 = (v)−1 .

Proof. If we substitute δv for w and −v−1 for v in Lemma 3.2(ii), then we
get that

κ(δv) · (−v−1(�δv)) = δvv−1 ,

and hence, by (Q16) and (Q15),

κ(δv) · v = δ .

By (Q15), it thus follows that κ(δv) = δ(v)−1, which shows (i). Note that it follows
from Lemma 3.13(ii) that v(�δ) = −v for all v ∈ V , since δ ∈ Rad(H) by (Q9). By
Lemma 3.2(i) with �δv in place of w, (Q16) with v in place of v and �δ in place
of w, Lemma 3.12, and (i) with v in place of v, we now have that

(v)−1 = −(v)−1 · (�δv) · κ(δv)

= v · δv−1 = −v−1(�δ) = v−1 ,

which shows (ii). �

Lemma 3.15. Let (V,W, τV , τW , ε, δ) be a quadrangular system. Then, for all
v1, v2 ∈ V and all w1, w2 ∈W , we have that

(i) F (v1, v2)(−ε) = F (v1, v2) ;
(ii) H(κ(w1(−ε)), w2) = −H(κ(w1), w2) .

Proof. If we substitute v2 for v2 in (Q17), then we get, using (Q21), that
F (v2, v

−1
1 )v1 = F (v1, v2). Replacing v1 by −v1 in this last identity and applying

Lemma 3.10(i) yields F (v2, v
−1
1 )(−v1) = F (v1, v2). Thus, by (Q5), F (v2, v

−1
1 )(−ε)v1 =

F (v2, v
−1
1 )v1, and it follows from Lemma 3.5(i) that F (v2, v

−1
1 )(−ε) = F (v2, v

−1
1 ).

Replacing v1 by v−1
1 and using (Q13) completes the proof of (i).

The proof of (ii) is similar. If we substitute w1(−ε) for w1 in (Q20), then we
get that H(κ(w1(−ε)), w2) · w1(−ε) = H(w1(−ε), w2). On the other hand, since
Im(F ) ⊆ Rad(H) by (Q7), it follows from Lemma 3.13(i) that H(w1(−ε), w2) =
H(�w1, w2) = −H(w1, w2). Hence

H(κ(w1(−ε)), w2) · w1(−ε) = −H(w1, w2) ,

and it follows from (Q6) and (Q20) that

H(κ(w1(−ε)), w2) · w1 = −H(κ(w1), w2) · w1 .

It now follows from Lemma 3.5(ii) that (ii) holds. �
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Lemma 3.16. Let (V,W, τV , τW , ε, δ) be a quadrangular system. Then, for all
w ∈W and all v ∈ V , we have

(i) F (vw, v−1) � w(−v)v−1 = w (if v 6= 0) ;
(ii) H(w, κ(w)(−v)) + vκ(w)w = v (if w 6= 0) .

Proof. Putting v1 = v and v2 = vw in (Q17), and using (Q21), yields
F (vw, v−1)v = F (vw, v), from which it follows, by (Q15), that F (vw, v−1) =
F (vw, v)v−1. It follows from Lemma 3.13(i) and from (Q3) that

w(−v)v−1 = (F (vw, v) � wv)v−1

= F (vw, v)v−1 � wvv−1

= F (vw, v−1) � w ,

from which (i) follows, since Im(F ) ⊆ Z(W ) by (Q7) and (Q8).
If we plug in vκ(w) for v in Lemma 3.13(ii), we get

vκ(w)(�w) = H(w,w · vκ(w))− vκ(w)w ,

and applying (Q18) and (Q19) yields −v = H(w, κ(w)v)− vκ(w)w. Replacing v by
−v gives us the required identity (ii). �

Theorem 3.17. Let (V,W, τV , τW , ε, δ) be a quadrangular system. Then, for
all w1 ∈W ∗, w2 ∈W , v1 ∈ V ∗ and v2 ∈ V , we have

(i) F (2v2 − v1F (v2, v
−1
1 ), v−1

1 ) = 0 ;
(ii) H(κ(w1) � λ(w1), w2) +H(λ(w1), w1(−H(κ(w1), w2))) = 0 .

Proof. By (Q5), (Q15) and Lemma 3.15(i), we have

F (v2, v
−1
1 )(−v1)v−1

1 = F (v2, v
−1
1 )(−ε)v1v

−1
1

= F (v2, v
−1
1 ) .

If we put v = v1 and w = F (v2, v
−1
1 ) in Lemma 3.16(i), we get

F (v1F (v2, v
−1
1 ), v−1

1 ) = F (v2, v
−1
1 ) � F (v2, v

−1
1 )(−v1)v−1

1

= F (v2, v
−1
1 ) � F (v2, v

−1
1 )

= F (2v2, v
−1
1 ) ,

from which (i) follows.
To prove (ii), we first observe that, by (Q7), it follows from Lemma 3.13(i) that

H(w1(−v), w2) = H(F (vw1, v) � w1v, w2)

= −H(w1v, w2) ,

for all w1, w2 ∈W and all v ∈ V . We also observe that κ(λ(w))(−v) = w(−ε)(−v) =
wv because of (Q14) and (Q5), and that vκ(λ(w)) = v(w(−ε)) = vw because of
(Q14) and (Q6), for all w ∈W ∗ and all v ∈ V .
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If we substitute λ(w1) for w and −H(κ(w1), w2) for v in Lemma 3.16(ii), then
we get, using these remarks, that

H(λ(w1), w1(−H(κ(w1), w2))) = −H(κ(w1), w2) +H(κ(w1), w2)w1λ(w1)

= −H(κ(w1), w2) +H(w1, w2)λ(w1)

= −H(κ(w1), w2)−H(w1(−ε), w2)λ(w1)

= −H(κ(w1), w2)−H(κ(λ(w1)), w2)λ(w1)

= −H(κ(w1), w2)−H(λ(w1), w2)

= −H(κ(w1) � λ(w1), w2) ,

where we have used identity (Q20) twice. This completes the proof of (ii). �

Lemma 3.18. Let (V,W, τV , τW , ε, δ) be a quadrangular system. Then, for all
v ∈ V ∗, c ∈ V , w ∈W ∗ and z ∈W , we have that

(i) πv(c) = c− vF (v−1, c) = c− v−1F (v, c) ;
(ii) Πw(z) = z � w(−H(κ(w), z)) = z � λ(w)H(w, z) .

Proof. By (Q17), (Q15) and (Q16), we have that

vF (v−1, c) = v · F (v, c)v−1

= −v−1(�F (v, c)) .

Since Im(F ) ⊆ Rad(H) by (Q7), it follows from Lemma 3.13(ii) that v−1(�F (v, c)) =
−v−1F (v, c), and hence

vF (v−1, c) = v−1F (v, c) ,

which shows (i).
By (Q20), Lemma 3.2(i) and (Q19), we have that

w(−H(κ(w), z)) = w · (H(w, z)κ(�w))

= �κ(�w)H(w, z)

= λ(w)H(w, z) ,

which shows (ii). �

In the sequel, we will use both expressions as definitions of πv and Πw, without
explicitly referring to this lemma.

Lemma 3.19. Let (V,W, τV , τW , ε, δ) be a quadrangular system, and let w ∈
Rad(H) and v ∈ V . Then wv ∈ Rad(H) as well.

Proof. By (Q8), [w,w2]� = 0 for all w2 ∈W , hence v(w � w2) = v(w2 � w).
It follows from (Q12) that H(w2, wv) = H(w,w2v) = 0 for all w2 ∈ W , since
w ∈ Rad(H). By (Q22), this implies that H(wv,w2) = 0 for all w2 ∈ W , hence
wv ∈ Rad(H). �

Lemma 3.20. Let (V,W, τV , τW , ε, δ) be a quadrangular system. Then we have

that vw = −v(δv−1)(�wv) for all v ∈ V ∗ and all w ∈W .

Proof. It follows from (Q16) that vw = −v−1(�wv) for all v ∈ V ∗ and all
w ∈W . In particular, we have that v = −v−1(�δv) for all v ∈ V ∗, and hence that
vκ(δv) = v−1 by Lemma 3.2(i). If we substitute this expression for v−1 in the first
identity, then we get that vw = −vκ(δv)(�wv) for all v ∈ V ∗ and all w ∈W . The
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result follows, since κ(δv) = δv−1 for all v ∈ V ∗ by Lemma 3.14(i) and Lemma
3.14(ii). �

Lemma 3.21. Let (V,W, τV , τW , ε, δ) be a quadrangular system. Then πv(vw) =
v(�w) for all v ∈ V ∗ and all w ∈W .

Proof. Let v ∈ V ∗ and w ∈ W be arbitrary. It follows from (Q5) and (Q15)
that w(−v)v−1 = w(−ε). It thus follows from Lemma 3.16(i) that F (vw, v−1) =
w � w(−ε). Hence, by (Q12), (Q5), (Q6) and Lemma 3.13(ii),

vF (vw, v−1) = v(w � w(−ε))
= vw + v · w(−ε) +H(w(−ε), wv)

= vw + vw +H(w(−ε), w(−ε)(−v))

= vw + vw − v(�w(−ε))− v(w(−ε))
= vw + vw − v(�w)− vw
= vw − v(�w) ,

and hence

πv(vw) = vw − vF (vw, v−1) = v(�w) ,

which is what we had to show. �

The following two lemmas generalize some properties of reflections in an ordi-
nary quadratic space.

Lemma 3.22. Let (V,W, τV , τW , ε, δ) be a quadrangular system. Then

(i) F (v, πv(c)) = F (v,−c) for all v ∈ V ∗ and all c ∈ V ;
(ii) H(λ(w),Πw(z)) = −H(κ(w), z) for all w ∈W ∗ and all z ∈W .

Proof. By Lemma 3.18(i) and Theorem 3.17(i) with v−1 in place of v1 and c
in place of v2, we have that

F (v, πv(c)) = F (v, c− v−1F (v, c))

= F (2c− v−1F (c, v), v) � F (c, v)

= F (v,−c) ,

which shows (i). By Theorem 3.17(ii) with w1 = w and w2 = z,

H(λ(w),Πw(z)) = H(λ(w), z � w(−H(κ(w), z)))

= H(κ(w) � λ(w), z) +H(λ(w), w(−H(κ(w), z)))−H(κ(w), z)

= −H(κ(w), z) ,

which shows (ii). �

Lemma 3.23. Let (V,W, τV , τW , ε, δ) be a quadrangular system. Then

(i) πv(πv(c)) = c for all v ∈ V ∗ and all c ∈ V ;
(ii) Π�w(Πw(z)) = z for all w ∈W ∗ and all z ∈W .
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Proof. By Lemma 3.22(i),

πv(πv(c)) = πv(c)− v−1F (v, πv(c))

= −πv(−c)− v−1F (v,−c)

= c+ v−1F (v,−c)− v−1F (v,−c)
= c ,

which shows (i). By Lemma 3.10(ii) and Lemma 3.22(ii),

Π�w(Πw(z)) = Πw(z) � (�w)(−H(κ(�w),Πw(z)))

= Πw(z) � wH(λ(w),Πw(z))

= Πw(z) � w(−H(κ(w), z)

= z ,

which shows (ii). �



CHAPTER 4

From Quadrangular Systems To Moufang
Quadrangles

We will now describe how we can construct a Moufang quadrangle from a
quadrangular system. We will use the method described in Tits and Weiss [20].
Therefore, we will describe 4 groups U1, U2, U3 and U4, and we will implicitly
define the group U+ := 〈U1, U2, U3, U4〉 by giving the commutator relations between
any two of those groups. It is possible to construct a graph Q out of the data
(U+, U1, U2, U3, U4).

To prove that this construction will actually result in a Moufang quadrangle,
it suffices to check that certain conditions Ak, Bk and Ck are satisfied (see [20] for
details), and that we can construct groups U0 and U5, such that, for every a0 ∈ U∗0 ,
there exists some element µ(a0) ∈ U∗4 a0U

∗
4 , and for every a5 ∈ U∗5 , there exists

some element µ(a5) ∈ U∗1 a5U
∗
1 , for which certain conditions have to be satisfied

(see again [20] for details).
Let (V,W, τV , τW , ε, δ) be a quadrangular system. Let U1 and U3 be two groups

isomorphic to W , and let U2 and U4 be two groups isomorphic to V . Denote the
corresponding isomorphisms by

x1 : W → U1 : w 7→ x1(w) ;
x2 : V → U2 : v 7→ x2(v) ;
x3 : W → U3 : w 7→ x3(w) ;
x4 : V → U4 : v 7→ x4(v) ;

we say that U1 and U3 are parametrized by W and that U2 and U4 are parametrized
by V . For all 1 ≤ i < j ≤ 4, we will denote the group 〈Ui, . . . , Uj〉 by U[i,j]. Now,
we implicitly define the group U+ = U[1,4] by the following commutator relations:

[x1(w1), x3(w2)−1] = x2(H(w1, w2)) ,

[x2(v1), x4(v2)−1] = x3(F (v1, v2)) ,

[x1(w), x4(v)−1] = x2(vw)x3(wv) ,

[Ui, Ui+1] = 1 ∀i ∈ {1, 2, 3} ,
for all w,w1, w2 ∈W and all v, v1, v2 ∈ V . We will denote the corresponding graph
by Q(V,W, τV , τW , ε, δ). If we define

ξ13(x1(w1), x3(w2)−1) = x2(H(w1, w2)) ,

ξ24(x2(v1), x4(v2)−1) = x3(F (v1, v2)) ,

ξ14(x1(w), x4(v)−1) = x2(vw)x3(wv) ,

then we can rephrase the conditions Ak, Bk and Ck as follows.
For all (i, j) ∈ {(1, 3), (2, 4), (1, 4)}, the following conditions should hold, for all

ai, bi ∈ Ui, for all aj , bj ∈ Uj , and for all c ∈ U[i+1,j−1].

15
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Aij . ξij(aibi, a
−1
j ) = ξij(ai, a

−1
j )biξij(bi, a

−1
j ).

Bij . ξij(ai, (ajbj)
−1) = ξij(ai, a

−1
j )ξij(ai, b

−1
j )a

−1
j .

Cij . cξij(ai,a
−1
j ) = ca

−1
i ajaia

−1
j .

Theorem 4.1. Let (V,W, τV , τW , ε, δ) be a quadrangular system. Then the
corresponding graph Q(V,W, τV , τW , ε, δ) satisfies all of the conditions Aij, Bij and
Cij.

Proof. By plugging in the formulas for the functions ξij , we get the following
explicit conditions, which must hold for all v, v′, v1, v2 ∈ V and all w,w′, w1, w2 ∈
W .

A13. x2(H(w1 � w2, w
′)) = x2(H(w1, w

′))x1(w2)x2(H(w2, w
′)).

A24. x3(F (v1 + v2, v
′)) = x3(F (v1, v

′))x2(v2)x3(F (v2, v
′)).

A14. x2(v(w1�w2))x3((w1�w2)v) = (x2(vw1)x3(w1v))x1(w2)·(x2(vw2)x3(w2v)).

B13. x2(H(w′, w1 � w2)) = x2(H(w′, w1))x2(H(w′, w2))x3(�w2).

B24. x3(F (v′, v1 + v2)) = x3(F (v′, v1))x3(F (v′, v2))x4(−v2).

B14. x2((v1+v2)w)x3(w(v1+v2)) = (x2(v1w)x3(wv1))·(x2(v2w)x3(wv2))x4(−v1).

C13. x2(v)x2(H(w,w′)) = x2(v)x1(�w)x3(w′)x1(w)x3(�w′).

C24. x3(w)x3(F (v,v′)) = x3(w)x2(−v)x4(v′)x2(v)x4(−v′).

C14,2. x2(v′)x2(vw)x3(wv) = x2(v′)x1(�w)x4(v)x1(w)x4(−v).

C14,3. x3(w′)x2(vw)x3(wv) = x3(w′)x1(�w)x4(v)x1(w)x4(−v).

Note that [U1, U2] = [U2, U3] = [U3, U4] = 1; some of the conditions can be simpli-
fied by this observation.

Condition (A13) is equivalent to

x2(H(w1 � w2, w
′)) = x2(H(w1, w

′))x2(H(w2, w
′)) ,

which is, in turn, equivalent to the fact that H is additive in the first variable.
Completely similarly, (A24), (B13) and (B24) also follow from the fact that F and
H are additive in both variables.

By (Q12), the left hand side of (A14) can be rewritten as

x2(vw1 + vw2 +H(w2, w1v))x3((w1 � w2)v) .

Using the fact that ba = [a, b−1]b, we can rewrite the right hand side as

x2(vw1)[x1(w2), x3(w1v)−1]x3(w1v)x2(vw2)x3(w2v)

which is also equal to

x2(vw1)x2(H(w2, w1v))x3(w1v)x2(vw2)x3(w2v) .

Since [U2, U2] = [U2, U3] = 1, we can rewrite this once more as

x2(vw1 + vw2 +H(w2, w1v))x3(w1v + w2v) .

It now follows from (Q3) that (A14) holds.
Similarly, (B14) follows from (Q11) and (Q4); we additionally need the fact that

Im(F ) ≤ Z(W ), which follows from (Q7) and (Q8).
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Since [U2, U1] = [U2, U2] = [U2, U3] = 1, (C13) becomes trivial. Because
[U3, U2] = [U3, U4] = 1, we have that (C24) is equivalent to the condition [w,F (v, v′)]� =
1. Since Im(F ) ≤ Z(W ), this is always satisfied.

To prove (C14,2), we need to show that

x2(v′) = x2(v′)x4(v)x1(w)x4(−v) ,

which is the same as

(x2(v′)x4(v))x1(w) = x2(v′)x4(v) .

Since x2(v′)x4(v) = x2(v′)[x2(v′), x4(−v)−1] = x2(v′)x3(F (v′,−v)), we have that

(x2(v′)x4(v))x1(w) = (x2(v′)x3(F (v′,−v)))x1(w)

= x2(v′)[x1(w), x3(F (v′,−v))−1]x3(F (v′,−v))

= x2(v′)x2(H(w,F (v′,−v)))x3(F (v′,−v))

= x2(v′)x3(F (v′,−v))

= x2(v′)x4(v)

since Im(F ) ≤ Rad(H) by (Q7). Thus (C14,2) holds.
The left hand side of (C14,3) is equal to

x3(w′)[x3(w′), x3(wv)] ,

which is, by (Q8), also equal to

x3(w′ � F (H(w,w′), v)) .

The right hand side is equal to

x3(w′)x1(�w)x4(v)x1(w)x4(−v)

= (x2(−H(w,w′))x3(w′))x4(v)x1(w)x4(−v)

= (x2(−H(w,w′))x3(F (H(w,w′), v))x3(w′))x1(w)x4(−v)

= (x2(−H(w,w′))x3(w′ � F (H(w,w′), v)))x1(w)x4(−v)

= (x2(−H(w,w′))x2(H(w,w′ � F (H(w,w′), v)))x3(w′ � F (H(w,w′), v)))x4(−v)

= x3(w′ � F (H(w,w′), v))x4(−v)

= x3(w′ � F (H(w,w′), v)) ,

thus (C14,3) holds. This concludes the proof of this theorem. �

Let U0 be a group parametrized by V (via a map x0), and let U5 be a group
parametrized by W (via a map x5). We define an action of U0 on U[1,3] by the
following commutator relations.

[U0, U1] = 1

[x0(v1), x2(v2)−1] = x1(F (v1, v2))

[x0(v), x3(w)−1] = x1(wv)x2(−v(�w))

for all w ∈ W and all v, v1, v2 ∈ V . For each x4(v) ∈ U∗4 , we define an element
µ(x4(v)) ∈ U∗0x4(v)U∗0 as

µ(x4(v)) = x0(v−1)x4(v)x0(v−1) .
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We define an action of U5 on U[2,4] by the following commutator relations.

[x2(v), x5(w)−1] = x3(w(−v))x4(−v(�w))

[x3(w1), x5(w2)−1] = x4(H(w2, w1))

[U4, U5] = 1

for all w,w1, w2 ∈ W and all v ∈ V . For each x1(w) ∈ U∗1 , we define an element
µ(x1(w)) ∈ U∗5x1(w)U∗5 as

µ(x1(w)) = x5(κ(w))x1(w)x5(λ(w)) .

Note that, by Lemma 3.10, µ(x4(v)−1) = µ(x4(v))−1, and µ(x1(w)−1) = µ(x1(w))−1.
It follows Theorem 4.1 that the graph Q(V,W, τV , τW , ε, δ) satisfies the condi-

tions which are denoted by (M1) and (M2) in [20]. In order to obtain a Moufang
quadrangle, this graph additionally has to satisfy the conditions (M3) and (M4).
In Theorem 4.2, we will show that (M3) holds; the validity of (M4) will be shown
in Theorem 4.3.

Theorem 4.2. Let (V,W, τV , τW , ε, δ) be a quadrangular system. Then the
corresponding graph Q(V,W, τV , τW , ε, δ), together with the group U0 and the map
µ, satisfies the following conditions, for all v ∈ V .

(i) U
µ(x4(ε))
0 = U4 , considered as subgroups of Aut(U[1,3]) ;

(ii) U
µ(x4(v))
1 = U3 . More precisely, we have that x1(w)µ(x4(v)) = x3(w(−v))

for all w ∈W and all v ∈ V ∗ ;

(iii) U
µ(x4(v))
2 = U2 . More precisely, we have that x2(v′)µ(x4(v)) = x2(πv(v

′))
for all v′ ∈ V and all v ∈ V ∗ ;

(iv) U
µ(x4(v))
3 = U1 . More precisely, we have that x3(w)µ(x4(v)) = x1(wv−1)

for all w ∈W and all v ∈ V ∗ ;

(v) U
µ(x4(ε))
4 = U0 , considered as subgroups of Aut(U[1,3]) .

Proof. For all w ∈W and all v ∈ V ∗, we have

x1(w)µ(x4(v)) = x1(w)x0(v−1)x4(v)x0(v−1)

= x1(w)x4(v)x0(v−1)

= (x1(w)x2(−vw)x3(w(−v)))x0(v−1)

= x1(w)x1(F (−vw, v−1))x2(−vw)x1(w(−v)v−1)

· x2(−v−1(�w(−v)))x3(w(−v))

= x3(w(−v)) ,

where we have used Lemma 3.16, (Q16) and Lemma 3.12 for the last equality. By
substituting wv−1 for w and −v for v, we also get

x1(wv−1)µ(x4(−v)) = x3(wv−1v) ,

and since µ(x4(−v)) = µ(x4(v))−1 and by (Q15), it follows that

x3(w)µ(x4(v)) = x1(wv−1) .

So we have proved that U
µ(x4(v))
1 ⊆ U3 and U

µ(x4(v))
3 ⊆ U1. If we replace v by −v in

those two relations, and conjugate by µ(x4(v)), it also follows that U1 ⊆ U
µ(x4(v))
3

and U3 ⊆ Uµ(x4(v))
1 . So (ii) and (iv) are proved.
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We will now prove (iii). For all v ∈ V ∗ and all v′ ∈ V , we have

x2(v′)µ(x4(v)) = x2(v′)x0(v−1)x4(v)x0(v−1)

= (x1(F (v−1, v′))x2(v′))x4(v)x0(v−1)

= (x1(F (v−1, v′))x2(−vF (v−1, v′))x3(F (v−1, v′)(−v))

· x2(v′)x3(�F (v′, v)))x0(v−1)

= (x1(F (v−1, v′))x2(v′ − vF (v−1, v′)))x0(v−1) ,

where we have used (Q17) for the last equality. It follows that

x2(v′)µ(x4(v)) = x1(F (v−1, v′))x1(F (v−1, v′ − vF (v−1, v′)))x2(v′ − vF (v−1, v′))

= x2(v′ − vF (v−1, v′))

= x2(πv(v
′)) ,

where we have used Lemma 3.9 and Theorem 3.17(i). Hence U
µ(x4(v))
2 ⊆ U2, and

again by replacing v by −v and conjugating by µ(x4(v)), we get that U2 ⊆ Uµ(x4(v))
2

as well, from which (iii) follows.
To prove (v), we will check that the action of µ(x4(−ε))x4(v)µ(x4(ε)) on U[1,3]

is the same as the action of x0(v) on U[1,3], for all v ∈ V . Note that we will use the

fact that wε−1 = w, which follows by choosing v = ε in (Q15), and the fact that
F (ε−1, v) = F (ε, v), which holds by substituting ε for v1 in (Q17).

Using the definition of the map v 7→ v, we see that

x2(v)µ(x4(ε)) = x2(v − εF (ε−1, v))

= x2(v − εF (ε, v))

= x2(−v) ,

for all v ∈ V . Since −(−v) = v, replacing v by −v and conjugating by µ(x4(−ε))
yields

x2(v)µ(x4(−ε)) = x2(−v)

for all v ∈ V , as well. For the action on U1, we have

x1(w)µ(x4(−ε))x4(v)µ(x4(ε)) = x3(w)x4(v)µ(x4(ε))

= x3(w)µ(x4(ε))

= x1(w)

= x1(w)x0(v) ;

for the action on U2, we have

x2(v′)µ(x4(−ε))x4(v)µ(x4(ε)) = x2(−v′)x4(v)µ(x4(ε))

= (x2(−v′)x3(F (v′, v)))µ(x4(ε))

= x2(v′)x1(F (v, v′))

= x2(v′)x0(v) .
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To check the action on U3, we need (Q6), (Q5), (Q22), Lemma 3.9 and Lemma
3.13(ii) :

x3(w)µ(x4(−ε))x4(v)µ(x4(ε)) = x1(w(−ε))x4(v)µ(x4(ε))

= (x1(w(−ε))x2(−vw)x3(wv))µ(x4(ε))

= x3(w)x2(vw)x1(wv)

= x1(wv)x2(vw +H(wv,w))x3(w)

= x1(wv)x2(vw −H(w,wv))x3(w)

= x1(wv)x2(−v(�w))x3(w)

= x3(w)x0(v) .

Thus (v) is proved.
To prove (i), we will check that the action of µ(x4(ε))x4(v)µ(x4(−ε)) on U[1,3]

is the same as the action of x0(v) on U[1,3]. We can take a shortcut by observing
that

µ(x4(ε))x4(v)µ(x4(−ε)) = µ(x4(ε))2µ(x4(−ε))x4(v)µ(x4(ε))µ(x4(−ε))2 .

We just have to do a short calculation to see that

x1(w)µ(x4(ε))2 = x1(w)µ(x4(−ε))2 = x1(w(−ε)) ;

x2(v)µ(x4(ε))2 = x2(v)µ(x4(−ε))2 = x2(v) ;

x3(w)µ(x4(ε))2 = x3(w)µ(x4(−ε))2 = x3(w(−ε)) .

For the action on U1, we have

x1(w)µ(x4(ε))x4(v)µ(x4(−ε)) = x1(w(−ε))µ(x4(−ε))x4(v)µ(x4(ε))µ(x4(−ε))2

= x1(w(−ε))µ(x4(−ε))2

= x1(w)

= x1(w)x0(v) ;

for the action on U2, we have, by Lemma 3.15, that

x2(v′)µ(x4(ε))x4(v)µ(x4(−ε)) = x2(v′)µ(x4(−ε))x4(v)µ(x4(ε))µ(x4(−ε))2

= (x2(v′)x1(F (v, v′)))µ(x4(−ε))2

= x2(v′)x1(F (v, v′)(−ε))
= x2(v′)x1(F (v, v′))

= x2(v′)x0(v) ;

Finally, for the action on U3, we have, using Lemma 3.11, that

x3(w)µ(x4(ε))x4(v)µ(x4(−ε)) = x3(w(−ε))µ(x4(−ε))x4(v)µ(x4(ε))µ(x4(−ε))2

= (x1(w(−v))x2(−v(�w))x3(w(−ε)))µ(x4(−ε))2

= x1(wv)x2(−v(�w))x3(w)

= x3(w)x0(v) .

So we have proved (i), and this completes the proof of this theorem. �
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Theorem 4.3. Let (V,W, τV , τW , ε, δ) be a quadrangular system. Then the
corresponding graph Q(V,W, τV , τW , ε, δ), together with the group U5 and the map
µ, satisfies the following conditions, for all w ∈W .

(i) U
µ(x1(δ))
5 = U1 , considered as subgroups of Aut(U[2,4]) ;

(ii) U
µ(x1(w))
4 = U2 . More precisely, we have that x4(v)µ(x1(w)) = x2(vw) for

all v ∈ V and all w ∈W ∗ ;

(iii) U
µ(x1(w))
3 = U3 . More precisely, we have that x3(w′)µ(x1(w)) = x3(Πw(w′))

for all w′ ∈W and all w ∈W ∗ ;

(iv) U
µ(x1(w))
2 = U4 . More precisely, we have that x2(v)µ(x1(w)) = x4(−vκ(w))

for all v ∈ V and all w ∈W ∗ ;

(v) U
µ(x1(δ))
1 = U5 , considered as subgroups of Aut(U[2,4]) .

Proof. The proof of this theorem is very similar to the previous one, so we
will skip most of the calculations.

For all w ∈W ∗ and all v ∈ V , we have

x2(v)µ(x1(w)) = x2(v)x5(κ(w))x1(w)x5(λ(w))

= x4(−vκ(w)) ,

where we have to use (Q19) and Lemma 3.16(ii). By substituting −w for w and vw
for v, we also get

x2(vw)µ(x1(�w)) = x4(−vwκ(�w)) ,

and since µ(x1(�w)) = µ(x1(w))−1 and by Lemma 3.2(i), it follows that

x4(v)µ(x1(w)) = x2(vw) .

So we have proved that U
µ(x1(w))
4 ⊆ U2 and U

µ(x1(w))
2 ⊆ U4. If we replace w

by �w in those two relations, and conjugate by µ(x1(w)), it also follows that

U4 ⊆ Uµ(x1(w))
2 and U2 ⊆ Uµ(x1(w))

4 . So (ii) and (iv) are proved.
We will now prove (iii). For all w ∈W ∗ and all w′ ∈W , we have

x3(w′)µ(x1(w)) = x3(w′)x5(κ(w))x1(w)x5(λ(w))

= x3(w′ � w(−H(κ(w), w′)))

= x3(Πw(w′)) ,

where we have to use (Q20) and Theorem 3.17(ii). Hence U
µ(x1(w))
3 ⊆ U3, and again

by replacing w by −w and conjugating by µ(x1(w)), we get that U3 ⊆ Uµ(x1(w))
3 as

well, from which (iii) follows.
To prove (v), we will check that the action of µ(x1(�δ))x1(w)µ(x1(δ)) on U[2,4]

is the same as the action of x5(w) on U[2,4], for all w ∈W . First of all, observe that
it follows from Lemma 3.13(ii) and from the fact that δ ∈ Rad(H) (by (Q7)) that
v(�δ) = −v. If we put w = δ in (Q18), it thus follows that vκ(δ) = v; if we put
w = �δ in this same identity (Q18), it follows that vκ(�δ) = −v. Furthermore, if
we put w1 = δ in (Q20), it follows from (Q7) that H(κ(δ), w) = 0, for all w ∈W .

Using these facts, we can prove that

x4(v)µ(x1(�δ))x1(w)µ(x1(δ)) = x4(v)x5(w) ;

x3(w′)µ(x1(�δ))x1(w)µ(x1(δ)) = x3(w′)x5(w) ;

x2(v)µ(x1(�δ))x1(w)µ(x1(δ)) = x2(v)x5(w) ,
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where we have to use (Q21) and Lemma 3.13(i) as well. Thus (v) is proved.
To prove (i), we have to check that the action of µ(x1(δ))x5(w)µ(x1(�δ)) on

U[2,4] is the same as the action of x5(w(−ε)) on U[2,4]. Again, we can take a shortcut
by observing that

µ(x1(δ))x1(w)µ(x1(�δ)) = µ(x1(δ))2µ(x1(�δ))x1(w)µ(x1(δ))µ(x1(�δ))2 .

First, we observe that

x2(v)µ(x1(δ))2 = x2(v)µ(x1(�δ))2 = x2(−v) ;

x3(w)µ(x1(δ))2 = x3(w)µ(x1(�δ))2 = x3(w) ;

x4(v)µ(x1(δ))2 = x4(v)µ(x1(�δ))2 = x4(−v) .

It now follows from a short calculation that

x4(v)µ(x1(δ))x5(w)µ(x1(�δ)) = x4(v)x5(w(−ε)) ;

x3(w′)µ(x1(δ))x5(w)µ(x1(�δ)) = x3(w′)x5(w(−ε)) ;

x2(v)µ(x1(δ))x5(w)µ(x1(�δ)) = x2(v)x5(w(−ε)) .

So we have proved (i), and this completes the proof of this theorem. �

This completes the proof of the fact that the graph Q(V,W, τV , τW , ε, δ) is a
Moufang quadrangle.



CHAPTER 5

From Moufang Quadrangles To Quadrangular
Systems

In this chapter, we will prove that every Moufang quadrangle can be obtained
from the construction described in the previous chapters. We will make intensive use
of Chapter 21 “Quadrangles” in [20]. Since we are dealing with the same objects
as in [20], it should not be very surprising that we need these same properties.
However, after recalling these facts, our approach will very quickly diverge from
the one given in [20].

Let Γ be an arbitrary Moufang quadrangle, and consider a fixed apartment
Σ = (0, 1, . . . , 7), where the vertices are labeled modulo 8. We will denote its root
groups U(i, i+1, . . . , i+4) by Ui, for all i ∈ Z. The following properties of the root
groups are fundamental.

Theorem 5.1. (i) [Ui, Uj ] ≤ U[i+1,j−1], if i < j < i+ 4.
(ii) For each i, the product map from Ui × Ui+1 × Ui+2 × Ui+3 to U[i,i+3] is

bijective.

Proof. See, for example, [20, (5.5) and (5.6)]. �

Thanks to this theorem, we can use the following notation. Let ai ∈ Ui and
aj ∈ Uj , with j ∈ {i+ 2, i+ 3}. For each k such that i < k < j, we set

[ai, aj ]k = ak ,

where ak is the unique element of Uk appearing in the factorization of [ai, aj ] ∈
U[i+1,j−1].

Let Vi := [Ui−1, Ui+1] ≤ Ui and Yi := CUi(Ui−2) ≤ Ui for each i. It can be
shown (see [20, (21.20.i)]) that Yi = CUi(Ui+2) as well.

The following theorem defines the functions κ, λ and µ.

Theorem 5.2. For each i, there exist unique functions κi, λi : U∗i → U∗i+4, such

that (i− 1)aiλi(ai) = i+ 1 and (i+ 1)κi(ai)ai = i− 1, for all ai ∈ U∗i . The product

µi(ai) := κi(ai)aiλi(ai) fixes i and i+ 4 and reflects Σ, and U
µi(ai)
j = U2i+4−j for

each ai ∈ U∗i and each j.

Proof. See [20, (6.1)]. �

Since we will apply these functions only when it is clear in which U∗i the argu-
ment lies, we will write κ, λ and µ in place of κi, λi and µi. Note that it follows
from the last statement of this theorem, that Ui and Uj are conjugate (and hence
isomorphic) whenever i and j have the same parity.

Lemma 5.3. For all ai ∈ U∗i , we have :

(i) µ(a−1
i ) = µ(ai)

−1 ;

23
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(ii) λ(a−1
i ) = κ(ai)

−1 ;
(iii) µ(agi ) = µ(ai)

g for every element g ∈ Aut(Γ) mapping Σ to itself .

Proof. See [20, (6.2)]. �

The following “Shift Lemma” is essential.

Theorem 5.4. Suppose, for some i, that [ai, a
−1
i+3] = ai+1ai+2, with ak ∈ Uk

for each k, and with ai and ai+3 non-trivial. Then we have:

(i) ai = a
µ(ai+3)
i+2 and ai+1 = a

µ(ai)
i+3 ;

(ii) [κ(ai+3), a−1
i+2] = aiai+1 ;

(iii) [ai+1, λ(ai)
−1] = ai+2ai+3 .

Proof. See [20, (21.19)]. �

The following theorem already puts strong restrictions on the root groups.

Theorem 5.5. By relabeling the vertices of Σ by the transformation i 7→ 5− i
if necessary, we can assume the following :

(i) Yi 6= 1, [Ui, Ui] ≤ Vi ≤ Yi ≤ Z(Ui), for all odd i ;
(ii) Ui is abelian, for all even i .

Proof. See [20, (21.28)]. �

From now on, we will assume that we have chosen the labeling of our apartment
Σ in such a way that the statements of Theorem 5.5 hold.
We will also use the following results from [20].

Theorem 5.6. (see [20, (21.29)])
If a1 ∈ Y ∗1 , then κ(a1) and λ(a1) both lie in Y ∗5 .

Theorem 5.7. (see [20, (21.33)])
Let h = µ(a1)2, for some a1 ∈ Y ∗1 . Then :

(i) ah3 = a3, for all a3 ∈ U3 ;
(ii) ah4 = a−1

4 , for all a4 ∈ U4 .

Theorem 5.8. (see [20, (21.34)])
κ(a4) = λ(a4), for all a4 ∈ U∗4 .

Theorem 5.9. (see [20, (21.36)])
Let a1 ∈ U∗1 , a2 ∈ U2, a3 ∈ U3 and a4 ∈ U∗4 . Then :

(i) a
µ(a4)
2 a−1

2 = [[λ(a4), a−1
2 ], a4]2 ;

(ii) [[λ(a4), a−1
2 ], a4]3 = [a2, a4]−1 ;

(iii) [a1, [a3, κ(a1)]−1]2 = [a1, a
−1
3 ]−1 .

Theorem 5.10. (see [20, (21.37)])
[µ(a4)2, Y1U2Y3U4] = 1, for all a4 ∈ U∗4 .

Proof. For all the proofs of these theorems, see [20], except for Theorem
5.9(iii), for which the proof is completely similar to the proof of Theorem 5.9(ii). �

We can now start to build up our quadrangular systems. We start the con-
struction by choosing an arbitrary parametrization of the group U1 by some group
(W,�) ∼= U1, and an arbitrary parametrization of the group U4 by some group
(V,+) ∼= U4. We will denote the isomorphisms from W to U1 and from V to U4 by
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x1 and x4, respectively. Choose some fixed elements e1 = x1(δ) ∈ Y ∗1 (note that
Y ∗1 is non-empty because of Theorem 5.5(i)) and e4 = x4(ε) ∈ U∗4 , where we choose
e4 in Y ∗4 if Y4 6= 1. Since U3 is isomorphic to U1, we can also have it parametrized
by the same group (W,�) by some isomorphism x3, which we define by setting

x3(w) := [x1(w), e−1
4 ]3 ,

for all w ∈W . Similarly, we let U2 be parametrized by (V,+), via the isomorphism
x2 defined by

x2(v) := [e1, x4(v)−1]2 ,

for all v ∈ V . To parametrize U0 and U5, we choose the following isomorphisms x0

and x5 from V to U0 and from W to U5, respectively :

x0(v) := x4(v)µ(e4) ,

x5(w) := x1(w)µ(e1) ,

for all w ∈W and all v ∈ V . We will now define a map F from V × V to W and a
map H from W ×W on V , by setting

[x1(w1), x3(w2)−1] = x2(H(w1, w2)) ,

[x2(v1), x4(v2)−1] = x3(F (v1, v2)) ,

for all w1, w2 ∈W and all v1, v2 ∈ V . Furthermore, we define a map τV from V ×W
to V and a map τW from W × V to W , both of which will be denoted by · or by
juxtaposition, by setting

[x1(w), x4(v)−1]2 = x2(τV (v, w)) = x2(vw) ,

[x1(w), x4(v)−1]3 = x3(τW (w, v)) = x3(wv) ,

for all w ∈ W and all v ∈ V . Finally, for each w ∈ W ∗, we define two elements
κ(w), λ(w) ∈W ∗ by setting

κ(x1(w)) = x5(κ(w)) ,

λ(x1(w)) = x5(λ(w)) ,

and for each v ∈ V ∗, we define an element v−1 ∈ V ∗, by setting

κ(x4(v)) = x0(v−1) .

Note that, by Theorem 5.8, λ(x4(v)) = x0(v−1) as well.
If we can now prove that these data satisfy all of the axioms (Q1) – (Q20),

then we have proved that every Moufang quadrangle can actually be obtained from
the construction in the previous chapters, since we have started from an arbitrary
Moufang quadrangle. At the same time, however, we will show that the identities
(Q21) – (Q26) hold; see Theorem 6.1.

Remark 5.11. It is interesting to observe that the choice of δ and ε is arbitrary
(up to some restrictions about the radical). This gives us some freedom for the
choice of the base points for the parametrizing structure of an arbitrary Moufang
quadrangle. See also Remark 6.4.

By Theorem 5.5(ii), the group U4 is abelian. Since U4 is parametrized by (V,+),
we have that V is abelian as well.

By the definition of the isomorphism x3 and the definition of the map from V ×
W to V , we have, for all w ∈ W , that x3(w) = [x1(w), e−1

4 ]3 = [x1(w), x4(ε)−1]3 =
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x3(wε), from which it follows that w = wε, which proves (Q1). Similarly, we can
prove that (Q2) holds.

We now take a look at the subgroups V3 and Y3 of U3. By definition, we
have V3 = [U2, U4] = [x2(V ), x4(V )−1] = x3(F (V, V )) = x3(Im(F )). The ele-
ments of U3 which commute with every element of U1, are exactly those elements
x3(w) ∈ U3 such that [x1(w′), x3(w)] = 1, for all w′ ∈ W , this is, such that
x2(H(w′, w)) = 1 or equivalently H(w′, w) = 0, for all w′ ∈ W . This means
that Y3 = CU3

(U1) = x3(Rad(H)). It now follows from Theorem 5.5(i) that
[W,W ] ≤ Im(F ) ≤ Rad(H) ≤ Z(W ). In particular, we have proved (Q7). We
have also proved that [Im(F ),W ] = 1.

Completely similarly as in the previous paragraph, it follows from the defini-
tions that Y1 = CU1(U3) = x1(Rad(H)) and that Y4 = CU4(U2) = x4(Rad(F )). It
thus follows from e1 = x1(δ) ∈ Y ∗1 that δ ∈ Rad(H)∗, and it follows from the fact
that e4 = x4(ε) was chosen to lie in Y ∗4 if Y4 6= 1 that ε ∈ Rad(F )∗ if Rad(F ) 6= 0.
Hence we have shown (Q9) and (Q10).

Using the identity [ab, c−1] = [a, c−1]b[b, c−1] and the fact that U1 and U2

commute (because of Theorem 5.1(i)), we can deduce that

x2(H(w1 � w2, w
′)) = [x1(w1 � w2), x3(w′)−1]

= [x1(w1)x1(w2), x3(w′)−1]

= [x1(w1), x3(w′)−1]x1(w2)[x1(w2), x3(w′)−1]

= x2(H(w1, w
′))x1(w2)x2(H(w2, w

′))

= x2(H(w1, w
′))x2(H(w2, w

′))

= x2(H(w1, w
′) +H(w2, w

′)) ,

for all w1, w2, w
′ ∈ W , so H is additive in the first variable. Similarly, it follows

from the identity [a, (bc)−1] = [a, b−1][a, c−1]b
−1

that H is additive in the second
variable. In the same way, we can deduce from those two identities that F is
additive in both variables. Since we will use this fact very often from now on, we
will not mention it explicitly anymore.

Using the same identity [ab, c−1] = [a, c−1]b[b, c−1] and the fact that [U2, U2] = 1
(since V is abelian) and [U2, U3] = 1 (by Theorem 5.1(i)), we deduce that

x2(v(w1 � w2))x3((w1 � w2)v) = [x1(w1 � w2), x4(v)−1]

= [x1(w1)x1(w2), x4(v)−1]

= [x1(w1), x4(v)−1]x1(w2)[x1(w2), x4(v)−1]

= (x2(vw1)x3(w1v))x1(w2)x2(vw2)x3(w2v)

= x2(vw1)x2(H(w2, w1v))x3(w1v)x2(vw2)x3(w2v)

= x2(vw1 + vw2 +H(w2, w1v))x3(w1v � w2v) ,

for all w1, w2 ∈W and all v1, v2 ∈ V . By Theorem 5.1(ii), this implies that

x2(v(w1 � w2)) = x2(vw1 + vw2 +H(w2, w1v)) and

x3((w1 � w2)v) = x3(w1v � w2v) ,

for all w1, w2 ∈ W and all v1, v2 ∈ V , from which it follows that (Q12) and (Q3)
hold.
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Similarly, it follows from the identity [a, (bc)−1] = [a, b−1][a, c−1]b
−1

, the fact
that [Im(F ),W ] = 1 and the fact that [U2, U3] = 1 (because of Theorem 5.1(i)),
that (Q11) and (Q4) hold.

Now, we will define a map v 7→ v from V to V , by setting

x2(v)µ(e4) = x2(−v) ,

for all v ∈ V ; we will prove later on (see page 31) that v = εF (ε, v)− v. Note that,

by Theorem 5.10, we have x2(v)µ(e4)2 = x2(v), and hence −(−v) = v, for all v ∈ V .
If we invert the identity x2(v)µ(e4) = x2(−v), then we get x2(−v)µ(e4) = x2(v); it
follows that −v = −v, for all v ∈ V . Combining these two relations, we also get
v = v, for all v ∈ V .

Theorem 5.12. For all w ∈W and all v ∈ V , we have:

(i) x0(v)µ(e4) = x4(v) ;
(ii) x1(w)µ(e4) = x3(w(−ε)) ;
(iii) x2(v)µ(e4) = x2(−v) ;
(iv) x3(w)µ(e4) = x1(w) ;
(v) x4(v)µ(e4) = x0(v) ;

(vi) x1(w)µ(e1) = x5(w) ;
(vii) x2(v)µ(e1) = x4(−v) ;

(viii) x3(w)µ(e1) = x3(w) ;
(ix) x4(v)µ(e1) = x2(v) ;
(x) x5(w)µ(e1) = x1(w(−ε)) .

Proof. First of all, (iii), (v) and (vi) hold by definition. By Theorem 5.10,

x4(v)µ(e4)2 = x4(v). So if we conjugate (v) by µ(e4), we get (i). If we apply
Theorem 5.4(i) on the identity

[x1(w), x4(v)−1] = x2(vw)x3(wv) ,

we get that

x1(w) = x3(wv)µ(x4(v)) and

x2(vw) = x4(v)µ(x1(w)) ,

for all w ∈ W ∗ and all v ∈ V ∗. If we choose v = ε in the first equality, we get, by
(Q1), that x1(w) = x3(w)µ(e4), which proves (iv). If we choose v = −ε in this same
equality, we get

x1(w) = x3(w(−ε))µ(e−1
4 )

= x3(w(−ε))µ(e4)−1

,

by Lemma 5.3(i); conjugating by µ(e4) yields (ii).
If we choose w = δ in the second equality, then it follows from (Q2) that x2(v) =

x4(v)µ(e1), which proves (ix). By Theorem 5.7(ii), we have that x4(v)µ(e1)2 =
x4(−v). So if we conjugate (ix) by µ(e1), we get (vii).

By Theorem 5.6, we know that µ(e1) ∈ Y5Y1Y5. Since Y1 = CU1
(U3) and

Y5 = CU5
(U3), it follows that [µ(e1), U3] = 1, which implies (viii).

If we conjugate the identity

[x1(w), x4(v)−1] = x2(vw)x3(wv)

by µ(e1)2, we get, using (vi), (vii), (viii) and (ix), that

[x5(w)µ(e1), x4(−v)−1] = x2(−vw)x3(wv) ,

for all w ∈W and all v ∈ V . If we choose v = −ε, then this yields

[x5(w)µ(e1), e−1
4 ] = x2(εw)x3(w(−ε)) .
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It now follows from Theorem 5.4(i) and (iv) that

x5(w)µ(e1) = x3(w(−ε))µ(e4) = x1(w(−ε)) ,

for all w ∈W , which proves (x). �

So far, we have proved (Q1), (Q2), (Q3), (Q4), (Q7), (Q9), (Q10), (Q11) and
(Q12). We now continue to prove the other axioms.

If we conjugate the identity

[x1(w1), x3(w2)−1] = x2(H(w1, w2))

by µ(e4), we get, by Theorem 5.12, that

[x3(w1(−ε)), x1(w2)−1] = x2(−H(w1, w2)) ,

for all w1, w2 ∈W . Using the fact that [b, a] = [a, b]−1, it follows that

[x1(�w2), x3(�w1(−ε))−1] = x2(H(w1, w2)) ,

hence

x2(H(�w2,�w1(−ε))) = x2(H(w1, w2)) ,

for all w1, w2 ∈ W . Using the fact that H is additive, it follows from this last
equality that H(w2, w1(−ε)) = H(w1, w2)), for all w1, w2 ∈W . Note that it follows
from (Q12) that H(w2, w1(−ε)) = −H(w2, w1), for all w1, w2 ∈W , so we have that

−H(w2, w1) = H(w1, w2)), which proves (Q22).
Completely similarly, we can conjugate the identity

[x2(v1), x4(v2)−1] = x3(F (v1, v2))

by µ(e1), and, again by Theorem 5.12, we find after a short calculation that
F (v1, v2) = F (v2, v1), for all v1, v2 ∈ V , which proves (Q21).

If we conjugate the identity

[x1(w), x4(−v)−1] = x2(−vw)x3(w(−v))

by µ(e1)2, then we get, by Theorem 5.12, that

[x1(w(−ε)), x4(v)−1] = x2(vw)x3(w(−v)) ,

for all w ∈W and all v ∈ V . But on the other hand, we have that

[x1(w(−ε)), x4(v)−1] = x2(v(w(−ε)))x3(w(−ε)v) ,

for all w ∈W and all v ∈ V . By Theorem 5.1(ii), this implies that vw = v(w(−ε))
and w(−v) = w(−ε)v, for all w ∈W and all v ∈ V . Thus we have proved (Q6) and
(Q5).

If we conjugate the same identity

[x1(w), x4(v)−1] = x2(vw)x3(wv)

by µ(e4)2, we get, again by Theorem 5.12, that

[x1(w(−ε)), x4(v)−1] = x2(vw)x3(wv(−ε)) ,

from which it follows immediately (by Theorem 5.1(ii)) that w(−ε)v = wv(−ε), for
all w ∈W and all v ∈ V . This means that w(−v) = wv(−ε) as well.
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We will now prove (Q8). We will make use of the identity [a, b] = a−1ab and
of the identity [abc, d] = [a, d]bc[b, d]c[c, d].

x3(F (H(w2, w1), v)) = [x2(H(w2, w1)), x4(v)−1]

= [[x1(w2), x3(w1)−1], x4(v)−1]

= [x1(w2), x3(w1)−1]−1[x1(w2), x3(w1)−1]x4(v)−1

= [x1(w2), x3(w1)−1]−1[x1(w2)x2(vw2)x3(w2v), x3(w1)−1] .

If a1 ∈ U1, a2 ∈ U2 and a3, b3 ∈ U3, then [a2, b3] ∈ [U2, U3] = 1 and [a1, b3] ∈
[U1, U3] ≤ U2 (by Theorem 5.1(i)), and since [U2, U2U3] = 1, we have that [a1, b3]a2a3 =
[a1, b3]. Therefore [a1a2a3, b3] = [a1, b3][a3b3]. Hence

x3(F (H(w2, w1), v)) = [x1(w2), x3(w1)−1]−1[x1(w2), x3(w1)−1][x3(w2v), x3(w1)−1]

= [x3(w2v), x3(w1)−1]

= x3(�w2v � w1 � w2v � w1) ,

and since Im(F ) ≤ Z(W ), we have that

x3(F (H(w2, w1), v)) = x3(�w1 � w2v � w1 � w2v)

= x3([w1, w2v]�)

as well, for all w1, w2 ∈W and all v ∈ V , which proves (Q8).
We will now apply the Shift Lemma 5.4(ii) on the identity

[x1(w), x4(v)−1] = x2(vw)x3(wv) .

This gives us the identity

[κ(x4(v)), x3(wv)−1] = x1(w)x2(vw) .

Note that, by definition, we have κ(x4(v)) = x0(v−1). If we conjugate this identity
by µ(e4), we thus get, by Theorem 5.12, that

[x4(v−1), x1(wv)−1] = x3(w(−ε))x2(−vw) .

Inverting this identity and replacing w by �w yields

[x1(wv), x4(−(v−1))−1] = x2(v(�w))x3(w(−ε)) ,
for all w ∈W and all v ∈ V ∗. But on the other hand, we have

[x1(wv), x4(−(v−1))−1] = x2(−(v−1)(wv))x3(wv(−(v−1))) ,

for all w ∈W and all v ∈ V ∗. By Theorem 5.1(ii), this implies that

v(�w) = −(v−1)(wv) ,

w(−ε) = wv(−(v−1)) ,

for all w ∈ W and all v ∈ V ∗. If we apply the identity w(−v) = wv(−ε) on the
second equality, we can conclude that this is equivalent to

v−1(wv) = −v(�w) ,

wvv−1 = w ,

for all w ∈W and all v ∈ V ∗. So we have proved (Q16) and (Q15).
If we replace v by v−1 and w by wv in (Q16), then we get

(v−1)−1(wvv−1) = −v−1(�wv) ,
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for all w ∈ W and all v ∈ V ∗. Using (Q15) and (Q16) once again, and using the

fact that −(−v) = v for all v ∈ V , we get

(v−1)−1w = vw ,

for all w ∈ W and all v ∈ V ∗. If we choose w = δ, it follows that (v−1)−1 = v, for
all v ∈ V ∗, which proves (Q13).

If we take ai = x4(v) in Lemma 5.3(ii), then we get that λ(x4(−v)) = κ(x4(v))−1,
for all v ∈ V ∗. By the definition of v−1, this is equivalent to x0((−v)−1) =
x0(−(v−1)), from which it follows that (−v)−1 = −(v−1), for all v ∈ V ∗.

Similarly, if we choose ai = x1(w) in Lemma 5.3(ii), then we get that λ(x1(�w)) =
κ(x1(w))−1, for all w ∈ W ∗. By the definition of κ and λ, this is equivalent
to x5(λ(�w)) = x5(�κ(w)), from which it follows that λ(�w) = �κ(w), for all
w ∈W ∗.

If we apply the Shift Lemma 5.4(iii) on the identity

[x1(w), x4(v)−1] = x2(vw)x3(wv) ,

then we get that

[x2(vw), λ(x1(w))−1] = x3(wv)x4(v) ,

for all w ∈ W ∗ and all v ∈ V . By definition, we have λ(x1(w)) = x5(λ(w)). If we
conjugate this identity by µ(e1)−1, we thus get, by Theorem 5.12, that

[x4(vw), x1(λ(w))−1] = x3(wv)x2(−v) ,

for all w ∈W ∗ and all v ∈ V . We can rewrite this identity as

[x1(�λ(w)), x4(−vw)−1] = x2(v)x3(�wv) ,

for all w ∈W ∗ and all v ∈ V . On the other hand, we also have that

[x1(�λ(w)), x4(−vw)−1] = x2(−vw(�λ(w)))x3(�λ(w)(−vw)) ,

for all w ∈W ∗ and all v ∈ V . It follows from Theorem 5.1(ii) that

v = −vw(�λ(w)) ,

wv = λ(w)(−vw) ,

for all w ∈W ∗ and all v ∈ V . If we replace w by �λ(w) and v by vw in the second
equality, then we get

�λ(w)(vw) = λ(�λ(w))(−vw(�λ(w))) ,

for all w ∈ W ∗ and all v ∈ V . If we use these same equalities once again, then we
can simplify this to

�w(−v) = λ(�λ(w))v ,

for all w ∈W ∗ and all v ∈ V . If we choose v = ε, then we get λ(�λ(w)) = �w(−ε),
for all w ∈ W ∗. Since λ(�w) = �κ(w), for all w ∈ W ∗, this is the same as
κ(λ(w)) = w(−ε), for all w ∈ W ∗, so we have proved (Q14). If we replace w by
�w, then we get λ(κ(w)) = w(−ε) as well. Now, we substitute κ(w) for w in the
equations

v = −vw(�λ(w)) ,

wv = λ(w)(−vw) ;
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this gives us, using the fact that λ(κ(w)) = w(−ε), that

v = −vκ(w)(�w(−ε)) ,
κ(w)v = w(−ε)(−vκ(w)) ,

for all w ∈ W ∗ and all v ∈ V . It suffices to use (Q6) and (Q5) to see that those
two equations are equivalent to (Q18) and (Q19), respectively.

If we put a2 = x2(v2) and a4 = x4(v1) in Theorem 5.9(ii), then we get

[[λ(x4(v1)), x2(v2)−1], x4(v1)]3 = [x2(v2), x4(v1)]−1 ,

for all v1 ∈ V ∗ and all v2 ∈ V . First of all, we have that

[λ(x4(v1)), x2(v2)−1] = [x0(v−1
1 ), x2(v2)−1]

= [x4(v−1
1 ), x2(−v2)−1]µ(e4)

= ([x2(v2), x4(−v−1
1 )−1]−1)µ(e4)

= (x3(F (v2,−v−1
1 ))−1)µ(e4)

= x3(F (v2, v
−1
1 ))µ(e4)

= x1(F (v2, v
−1
1 )) ,

for all v1 ∈ V ∗ and all v2 ∈ V . So it follows from this identity that

[x1(F (v2, v
−1
1 )), x4(−v1)−1]3 = [x2(v2), x4(−v1)−1]−1 ,

for all v1 ∈ V ∗ and all v2 ∈ V , from which it follows that

F (v2, v
−1
1 )(−v1) = F (v2, v1) ,

for all v1 ∈ V ∗ and all v2 ∈ V . If we now replace v1 by −v1, then we get, using the
fact that (−v1)−1 = −(v−1

1 ) and (Q21), that (Q17) holds.
If we choose v1 = ε in (Q17), then we get that F (ε−1, v) = F (ε, v), for all v ∈ V .

If we put a2 = x2(v) and a4 = e4 in Theorem 5.9(i), then we get

x2(v)µ(e4)x2(v)−1 = [[λ(e4), x2(v)−1], e4]2 ,

for all v ∈ V . We have that

[λ(e4), x2(v)−1] = x1(F (v, ε−1))

= x1(F (ε, v)) ,

for all v ∈ V . Thus we have

x2(v)µ(e4)x2(v)−1 = [[λ(e4), x2(v)−1], e4]2

= [x1(F (ε, v)), x4(−ε)−1]2

= x2(−εF (ε, v)) ,

for all v ∈ V . Since x2(v)µ(e4)x2(v)−1 = x2(−v − v), we conclude that

v = εF (ε, v)− v ,

for all v ∈ V ; see page 27.
If we put a1 = x1(w1) and a3 = x3(w2) in Theorem 5.9(iii), then we get

[x1(w1), [x3(w2), κ(x1(w1))]−1]2 = [x1(w1), x3(w2)−1]−1 ,
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for all w1 ∈W and all w2 ∈W ∗. First of all, we have that

[x3(w2), κ(x1(w1))] = [x3(w2), x5(κ(w1))]

= [x3(w2), x1(κ(w1))]µ(e1)

= ([x1(κ(w1)), x3(�w2)−1]−1)µ(e1)

= (x2(−H(κ(w1), w2))−1)µ(e1)

= x2(H(κ(w1), w2))µ(e1)

= x4(−H(κ(w1), w2)) ,

for all w1 ∈W and all w2 ∈W ∗. So it follows from this identity that

[x1(w1), x4(−H(κ(w1), w2))−1]2 = [x1(w1), x3(w2)−1]−1 ,

for all w1 ∈W and all w2 ∈W ∗, from which it follows that

−H(κ(w1), w2)w1 = −H(w1, w2) ,

for all w1 ∈W and all w2 ∈W ∗. So we have proved (Q20).
Since we have shown all of the identities (Q1) – (Q20), we can conclude that

every Moufang quadrangle can be obtained from a quadrangular system.
In particular, we are now allowed to use the results of chapter 4 as well. We

thus continue to show that the identities (Q23) – (Q26) hold.
In order to show (Q23), we will calculate the expression

x2(v)[µ(x1(δ))µ(x1(z))]µ(x3(w))µ(x3(δ))

with v ∈ V and w, z ∈ W ∗ in two different ways. We have shown in Theorem
4.3(iii) that

x3(z)µ(x1(w)) = x3(Πw(z))

for all w, z ∈ W ∗. If we let µ(e4) act on both sides of this equality, then it follows
by Lemma 5.3(iii) and Theorem 5.12 that

x1(z)µ(x3(w(−ε))) = x1(Πw(z))

and it thus follows by substituting w(−ε) for w and by Lemma 5.3(iii) that

µ(x1(z))µ(x3(w)) = µ(x1(Πw(−ε)(z)))

for all w, z ∈W ∗. By Lemma 3.15(ii), Πw(−ε)(z) = Πw(z) for all w, z ∈W ∗. Since
δ ∈ Rad(H) by (Q9), it now follows that

µ(x1(z))µ(x3(w))µ(x3(δ)) = µ(x1(Πw(z)))

and hence, since Πw(δ) = δ,

[µ(x1(δ))µ(x1(z))]µ(x3(w))µ(x3(δ)) = µ(x1(δ))µ(x1(Πw(z)))

for all w, z ∈ W ∗. Note that vκ(δ) = v for all v ∈ V . Since we have shown in
Theorem 4.3 that

x2(v)µ(x1(w)) = x4(−vκ(w)) and

x4(v)µ(x1(w)) = x2(vw)
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for all v ∈ V and all w ∈W ∗, it thus follows, by Lemma 5.3(i), that

x2(v)[µ(x1(δ))µ(x1(z))]µ(x3(w))µ(x3(δ))

= x2(v)µ(x1(δ))µ(x1(Πw(z)))

= x4(−v)µ(x1(Πw(z)))

= x2(−v ·Πw(z))

for all w, z ∈W ∗.
On the other hand, if we let µ(e4) act on both sides of the identity x4(v)µ(x1(w)) =

x2(vw), then we can deduce that

x0(v)µ(x3(w)) = x2(−vw) and

x2(v)µ(x3(w)) = x0(vκ(w))

for all v ∈ V and all w ∈W ∗. Hence, by Lemma 5.3(i),

x2(v)[µ(x1(δ))µ(x1(z))]µ(x3(w))µ(x3(δ))

= x2(v)µ(x3(�δ))µ(x3(�w))µ(x1(δ))µ(x1(z))µ(x3(w))µ(x3(δ))

= x2

(
v(�w)

)µ(x1(δ))µ(x1(z))µ(x3(w))µ(x3(δ))

= x2

(
−v(�w)z

)µ(x3(w))µ(x3(δ))

= x2

(
v(�w)zκ(w)

)
for all w, z ∈W ∗. Hence we have shown that (Q23) holds.

The proof of (Q24) follows in a completely similar way by calculating the ex-
pression

x3(w)[µ(x4(ε))µ(x4(c))]µ(x2(v))µ(x2(ε))

with w ∈W and v, c ∈ V ∗ in two different ways.
We will now show (Q25). Let c ∈ V , v ∈ V ∗ and w ∈ W ∗ be arbitrary. This

time, we will calculate the expression

x2(c)[µ(x1(δ))µ(x1(w))]µ(x4(−v))

in two different ways. By Theorem 4.2(ii),

x1(w)µ(x4(v)) = x3(w(−v))

for all v ∈ V ∗ and all w ∈W , and hence, by Lemma 5.3(iii),

[µ(x1(δ))µ(x1(w))]µ(x4(−v)) = µ(x3(δv))µ(x3(wv)) .

It follows that

x2(c)[µ(x1(δ))µ(x1(w))]µ(x4(−v))
= x2(c)µ(x3(δv))µ(x3(wv))

= x2(c · κ(δv))µ(x3(wv))

= x2(−c · κ(δv) · wv) .

On the other hand, we have shown in Theorem 4.2(iii) that

x2(u)µ(x4(v)) = x2(πv(u))
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for all u ∈ V and all v ∈ V ∗, and hence, by Lemma 5.3(i),

x2(c)[µ(x1(δ))µ(x1(w))]µ(x4(−v))
= x2(c)µ(x4(v))µ(x1(δ))µ(x1(w))µ(x4(−v))

= x2(πv(c))
µ(x1(δ))µ(x1(w))µ(x4(−v))

= x2(−πv(c)w)µ(x4(−v))

= x2(−π−v(πv(c)w)) .

Since π−v(u) = πv(u) for all u ∈ V and all v ∈ V ∗, it follows by comparing these
two expressions that

c · κ(δv) · wv = πv(πv(c)w) .

If we substitute c · δv for c in the last identity and apply πv on both sides, then we
get, by Lemma 3.23(i), that

πv(c · δv · κ(δv) · wv) = πv(c · δv)w .

Since δv ∈ Rad(H) by (Q9) and Lemma 3.19, it follows by Lemma 3.13(ii) and
Lemma 3.2(i) that

c · δv · κ(δv) = −c · (�δv) · κ(δv) = c ,

which completes the proof of (Q25).
The proof of (Q26) follows in a completely similar way by calculating the ex-

pression

x3(w)[µ(x4(ε))µ(x4(−v))]µ(x1(z))

with w ∈W , z ∈W ∗ and v ∈ V ∗ in two different ways.
This concludes the proof of all of the identities (Q1) – (Q26).



CHAPTER 6

Some Remarks

We start by pointing out that we have really shown that the identities (Q23) –
(Q26) follow from the axioms (Q1) – (Q20).

Theorem 6.1. Let Ω := (V,W, τV , τW , ε, δ) be a quadrangular system. Then
the identities (Q23) – (Q26) hold, for all v, c ∈ V and all w, z ∈W .

Proof. Let Ω := (V,W, τV , τW , ε, δ) be a quadrangular system. Then it follows
from chapter 4 that we can construct a Moufang quadrangle Γ starting from Ω. In
chapter 5, it is shown that every Moufang quadrangle can be constructed from
a quadrangular system for which additionally the identities (Q23) – (Q26) hold.
In particular, Γ can be constructed from a quadrangular system, which can be
chosen to coincide with the quadrangular system Ω that we started with, since the
choice of the parametrization of the groups U1 and U4 and of the elements ε and
δ was arbitrary. (Note that the parametrization of the groups U2 and U3 and the
definition of the maps F and H then automatically coincide by construction.) This
shows that Ω is a quadrangular system for which additionally the identities (Q23)
– (Q26) hold. Since Ω was arbitrary, these identities hold for every quadrangular
system. �

Remark 6.2. One might wonder why we pay so much attention to these last
four identities (Q23), (Q24), (Q25) and (Q26). The reason is that these identities
turn out to be essential for the classification of the quadrangular systems, but still,
we are not aware of a direct proof for the fact that they follow from the other
axioms.

Remark 6.3. Although every quadrangular system gives rise to a Moufang
quadrangle and every Moufang quadrangle can be constructed from a quadrangular
system, it is not true that there is a bijection between the set of classes of isomorphic
quadrangular systems and the set of classes of isomorphic Moufang quadrangles. In
particular, two non-isomorphic quadrangular systems can give rise to isomorphic
Moufang quadrangles. However, two isomorphic quadrangular systems will always
give rise to isomorphic Moufang quadrangles.

Remark 6.4. We could as well have defined a quadrangular system without
axiom (Q10). The reason that we added this axiom has to do with the classification
of the so-called wide quadrangular systems which are the extension of a quadrangu-
lar system of quadratic form type. Without axiom (Q10), one would have to define
a translate of a quadrangular system of type F4 in order to describe all possible
quadrangular systems (up to isomorphism), which is not needed now because of
this extra axiom. (See section 8.5 for more details.)

On the other hand, if there are no quadrangles of type F4 involved in a certain
application, then it can often be more convenient to drop this axiom (Q10), since

35



36 6. SOME REMARKS

it gives more freedom in the choice of the base point ε ∈ V ∗. See also Remark 5.11
and Remark A.1.



CHAPTER 7

Examples

We will now present a list of six examples of quadrangular systems. These
examples correspond to the six different classes of Moufang quadrangles in [20]. The
goal of the next chapter is to prove that, up to isomorphism, this list is complete.

In each case, we will describe a parametrization for the groups V and W , that
is, we will describe V and W as groups which are isomorphic to certain other groups
Ṽ and W̃ , respectively; we will denote the isomorphisms from Ṽ to V and from W̃
to W by square brackets: a ∈ Ṽ 7→ [a] ∈ V and b ∈ W̃ 7→ [b] ∈W .

7.1. Quadrangular Systems of Quadratic Form Type

Consider a non-trivial anisotropic quadratic space (K,V0, q), that is, a commu-
tative field K (of arbitrary characteristic), a non-trivial vector space V0 over K, and
a quadratic form q from V0 to K such that q(v) = 0 if and only if v = 0. Choose
an arbitrary element ε ∈ V0, and replace q by q(ε)−1q. Then q(ε) = 1. Denote
the corresponding bilinear form of q by f , i.e. f(u, v) := q(u + v) − q(u) − q(v).
We define a map v 7→ v by setting v := f(ε, v)ε − v for all v ∈ V . (This map is
the negative of the reflection about the base point ε.) Let V be parametrized by
(V0,+), and let W be parametrized by the additive group of K. We define a map
τV from V ×W to V and a map τW from W × V to W as follows:

τV ([v], [t]) := [v][t] := [tv] ,

τW ([t], [v]) := [t][v] := [tq(v)] ,

for all v ∈ V0 and all t ∈ K. Then (V,W, τV , τW , [ε], [1]) is a quadrangular system.
One can check that

F ([u], [v]) = [f(u, v)] ,

H([s], [t]) = [0] ,

for all u, v ∈ V0 and all s, t ∈ K, and that

[v]−1 = [q(v)−1v] ,

κ([t]) = [t−1] ,

for all v ∈ V ∗0 and all t ∈ K∗. Note that [v] = εF (ε, [v])− [v] = [ε][f(ε, v)]− [v] = [v]
for all v ∈ V .

These are the quadrangular systems of quadratic form type. They will be de-
noted by ΩQ(K,V0, q).

7.2. Quadrangular Systems of Involutory Type

Following [20], we define an involutory set as a triple (K,K0, σ), where K is a
field or a skew-field, σ is an involution of K, and K0 is an additive subgroup of K

37
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containing 1 such that

Kσ ⊆ K0 ⊆ FixK(σ) and

aσK0a ⊆ K0 for all a ∈ K ,

where Kσ := {a+ aσ | a ∈ K}. Note that if char(K) 6= 2, then Kσ = FixK(σ), and
hence K0 = Kσ as well, so the second condition is superfluous in this case.

Let V be parametrized by the additive group of K, and let W be parametrized
by K0. We define a map τV from V ×W to V and a map τW from W × V to W
as follows:

τV ([a], [t]) := [a][t] := [ta] ,

τW ([t], [a]) := [t][a] := [aσta] ,

for all a ∈ K and all t ∈ K0. Then (V,W, τV , τW , [1], [1]) is a quadrangular system.
One can check that

F ([a], [b]) = [aσb+ bσa] ,

H([s], [t]) = [0] ,

for all a, b ∈ K and all s, t ∈ K0, and that

[a]−1 = [a−1] ,

κ([t]) = [t−1] ,

for all a ∈ K∗ and all t ∈ K∗0 . Note that [a] = εF (ε, [a])−[a] = [1][a+aσ]−[a] = [aσ]
for all a ∈ K.

These are the quadrangular systems of involutory type. They will be denoted
by ΩI(K,K0, σ).

7.3. Quadrangular Systems of Indifferent Type

Again following [20], we define an indifferent set as a triple (K,K0, L0), where
K is a commutative field of characteristic 2, and K0 and L0 are additive subgroups
of K both containing 1, such that

K2
0L0 ⊆ L0 ,

L0K0 ⊆ K0 ,

K0 generates K as a ring.

Let V be parametrized by L0, and let W be parametrized by K0. We define a
map τV from V ×W to V and a map τW from W × V to W as follows:

τV ([a], [t]) := [a][t] := [t2a] ,

τW ([t], [a]) := [t][a] := [ta] ,

for all a ∈ L0 and all t ∈ K0. Then (V,W, τV , τW , [1], [1]) is a quadrangular system.
One can check that

F ([a], [b]) = [0] ,

H([s], [t]) = [0] ,
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for all a, b ∈ L0 and all s, t ∈ K0, and that

[a]−1 = [a−1] ,

κ([t]) = [t−1] ,

for all a ∈ K∗ and all t ∈ K∗0 . Note that [a] = [a] for all a ∈ K.
These are the quadrangular systems of indifferent type. They will be denoted

by ΩD(K,K0, L0).

7.4. Quadrangular Systems of Pseudo-quadratic Form Type

Let K be an arbitrary field or skew-field, let σ be an involution of K (which
may be trivial), and let V0 be a right vector space over K. A map h from V0 × V0

to K is called a sesquilinear form (with respect to σ) if and only if h is additive
in both variables, and h(at, bs) = tσh(a, b)s, for all a, b ∈ V0 and all t, s ∈ K.
A form h : V0 × V0 → K is called hermitian, respectively skew-hermitian, (with
respect to σ) if and only if h is sesquilinear with respect to σ and h(a, b)σ = h(b, a),
respectively h(a, b)σ = −h(b, a), for all a, b ∈ V0.

Let (K,K0, σ) be an involutory set, let V0 be a right vector space over K and
let p be a map from V0 to K. Then p is an anisotropic pseudo-quadratic form on V
(with respect to K0 and σ) if there is a form h on V0 which is skew-hermitian with
respect to σ such that

p(a+ b) ≡ p(a) + p(b) + h(a, b) (mod K0) ,

p(at) ≡ tσp(a)t (mod K0) ,

p(a) ∈ K0 ⇐⇒ a = 0 ,

for all a, b ∈ V0 and all t ∈ K.
As in [20], we define an anisotropic pseudo-quadratic space as a quintuple

(K,K0, σ, V0, p) such that (K,K0, σ) is an involutory set, V0 is a right vector space
over K and p is an anisotropic pseudo-quadratic form on V0 with respect to K0 and
σ.

Let (K,K0, σ, V0, p) be an arbitrary anisotropic pseudo-quadratic space with
corresponding skew-hermitian form h. We define a group (T,�) as

T := {(a, t) ∈ V0 ×K | p(a)− t ∈ K0} ,

where the group action is given by

(a, t) � (b, s) := (a+ b, t+ s+ h(b, a)) ,

for all (a, t), (b, s) ∈ T . One can check that T is indeed a group with neutral element
(0, 0), and with the inverse given by �(a, t) = (−a,−t+ h(a, a)), for all (a, t) ∈ T .

Let V be parametrized by the additive group of K, and let W be parametrized
by T . We define a map τV from V ×W to V and a map τW from W × V to W as
follows:

τV ([v], [a, t]) := [v][a, t] := [tv] ,

τW ([a, t], [v]) := [a, t][v] := [av, vσtv] ,
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for all v ∈ K and all (a, t) ∈ T . Then (V,W, τV , τW , [1], [0, 1]) is a quadrangular
system. One can check that

F ([u], [v]) = [0, uσv + vσu] ,

H([a, t], [b, s]) = [h(a, b)] ,

for all u, v ∈ K and all (a, t), (b, s) ∈ T , and that

[v]−1 = [v−1] ,

κ([a, t]) = [at−σ, t−σ] ,

for all v ∈ K∗ and all (a, t) ∈ T ∗. Note that

[v] = [1]F ([1], [v])− [v] = [1][0, v + vσ]− [v] = [vσ]

for all v ∈ K.
These are the quadrangular systems of pseudo-quadratic form type. They will

be denoted by ΩP (K,K0, σ, V0, p).

7.5. Quadrangular Systems of Type E6, E7 and E8

We first recall the notion of a norm splitting, which has been introduced in [20,
(12.9)]. Let K be an arbitrary commutative field, let V0 be a 2d-dimensional vector
space over K, and let q be a regular quadratic form from V0 to K. First of all,
observe that, if E/K is a separable quadratic extension with norm N , then N is
a 2-dimensional anisotropic regular quadratic form from E (as a vector space over
K) to K. We say that (E, {v1, . . . , vd}) is a norm splitting of q if and only if V0

is a vector space over E, where the scalar multiplication from E × V0 to V0 is an
extension of the scalar multiplication from K × V0 to V0, such that {v1, . . . , vd} is
a basis of V0 over E for which

q(t1v1 + · · ·+ tdvd) = s1N(t1) + · · ·+ sdN(td) ,

for all t1, . . . , td ∈ E. Observe that si = q(vi), for all i ∈ {1, . . . , d}. The constants
s1, s2, . . . , sd are called the constants of the norm splitting. Note that these con-
stants are all non-zero, since q is regular. It follows that a regular quadratic form
which has a norm splitting is anisotropic.

Remark 7.1. This definition is equivalent to the assumption that q has an
orthogonal decomposition q ' q1 ⊥ q2 ⊥ · · · ⊥ qd, where each qi is a 2-dimensional
regular quadratic form with the same non-trivial discriminant.

Now let (K,V0, q) be an arbitrary anisotropic quadratic space with correspond-
ing bilinear map f . An automorphism T of V0 is called a norm splitting map of q
if and only if there exist constants α, β ∈ K with α = 0 if char(K) 6= 2 and α 6= 0
if char(K) = 2, and with β 6= 0 in all characteristics, such that

q(T (v)) = βq(v) ,

f(v, T (v)) = αq(v) ,

T (T (v)) + αT (v) + βv = 0 ,

for all v ∈ V0. For each norm splitting map T , we can define a corresponding norm
splitting map T , defined by the relation T (v) := αv − T (v) for all v ∈ V0. It is
straightforward to check that T is a norm splitting map with the same parameters
α and β as the original norm splitting map T .
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Definition 7.2. Let K be an arbitrary commutative field, let V0 be a vector
space over K, and let q be an anisotropic quadratic form from V0 to K. Then

• q is a quadratic form of type E6 if and only if dimKV0 = 6 and q has a
norm splitting q ' s1N ⊥ s2N ⊥ s3N .

• q is a quadratic form of type E7 if and only if dimKV0 = 8 and q has a
norm splitting q ' s1N ⊥ s2N ⊥ s3N ⊥ s4N such that s1s2s3s4 6∈ N(E).

• q is a quadratic form of type E8 if and only if dimKV0 = 12 and q has a
norm splitting q ' s1N ⊥ · · · ⊥ s6N such that −s1s2s3s4s5s6 ∈ N(E).

An anisotropic quadratic space (K,V0, q) is called of type E6, E7 or E8 if and only
if q is a quadratic form of type E6, E7 or E8, respectively.

Theorem 7.3. Let (K,V0, q) be a quadratic space of type Ek with k ∈ {6, 7, 8},
and suppose that ε is an element of V0 such that q(ε) = 1. Let T be a norm splitting
map of q, and let X0 be a vector space over K of dimension 2k−3. Then there exists
a unique map (a, v) 7→ av from X0 × V0 to X0 and an element ξ ∈ X∗0 such that

at = a(tε) ,

(av)v = aq(v) ,

ξT (v) = (ξT (ε))v ,

for all a ∈ X0, t ∈ K and v ∈ V0.

Proof. This follows from [20, (12.56) and (13.11)]. �

From now on, we let T be a fixed arbitrary norm splitting map of q, and we
let X0 be a fixed vector space over K of dimension 2k−3. We apply Theorem 7.3
with these choices of T and X0. Note that ξ is not uniquely determined; see [20,
(13.12)].

Remark 7.4. The first two conditions of Theorem 7.3 say that X0 is a C(q, ε)-
module, where C(q, ε) is the Clifford algebra of q with base point ε.

Theorem 7.5. We can choose the norm splitting (E, {v1, . . . , vd}) in such a
way that v1 = ε (and hence s1 = 1). Furthermore, if k = 8, then we can choose it
in such a way that ξv2v3v4v5v6 = ξ as well.

Proof. This follows from [20, (27.20) and (27.13)]. �

So assume that the norm splitting satisfies the conditions of this Theorem.
Then we can now define a subspace M0 of X0 as follows.
If k = 6, then we set

M0 := {ξtv2v3 | t ∈ E} ;

If k = 7, then we set

M0 := {ξt1v2v3 + ξt2v1v3 + ξt3v1v2 + ξtv1v2v3 | t1, t2, t3, t ∈ E} ;

If k = 8, then we set

M0 :=

{ ∑
i,j∈{2,...,6}

i<j

ξtijvivj | tij ∈ E
}
.

Theorem 7.6. X0 = ξV0 ⊕M0.

Proof. See [20, (13.14)]. �
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Theorem 7.7. There is a unique map h from X0 ×X0 to V0 which is bilinear
over K, such that

(i) h(ξ, ξv) = T (v)− T (v) , for all v ∈ V0 ;
(ii) h(ξ, a) = 0 , for all a ∈M0 ;

(iii) h(a, b) = −h(b, a) , for all a, b ∈ X0 ;
(iv) h(a, bv) = h(b, av) + f(h(a, b), ε)v , for all a, b ∈ X0 and all v ∈ V0 .

Proof. See [20, (13.15)]. �

We now define an element ζ ∈ V0 as follows. Note that, if char(K) = 2, then
f(ε, T (ε)) = α 6= 0 by the definition of T .

ζ :=

{
ε/2 if char(K) 6= 2

T (ε)/f(ε, T (ε)) if char(K) = 2
.

Next, let g be the bilinear form from X0 ×X0 to K given by

g(a, b) := f(h(b, a), ζ)

for all a, b ∈ X0. Set

v∗ :=

{
0 if char(K) 6= 2

f(v, ζ)ε+ f(v, ε)ζ + v if char(K) = 2
,

for all v ∈ V0.

Theorem 7.8. There is a unique map θ from X0 × V0 to V0 satisfying the
following conditions, for all a, b ∈ X0 and all u, v ∈ V0:

(i) θ(ξ, v) = T (v) ;
(ii) θ(a+ b, v) = θ(a, v) + θ(b, v) + h(b, av)− g(a, b)v ;

(iii) θ(av, w) = θ(a, w̄)q(v)− θ(a, v)f(w, v̄) + f(θ(a, v), w̄)v̄ + f(θ(a, v∗), v)w .

Proof. See [20, (13.30), (13.31) and (13.37)]. �

Let ϕ be the map from X0 × V0 to K defined as

ϕ(a, v) := f(θ(a, v∗), v) ,

for all a ∈ X0 and all v ∈ V0.
Finally, we define a group (S,�) as S := X0 × K where the group action is

given by

(a, t) � (b, s) := (a+ b, t+ s+ g(a, b)) ,

for all (a, t), (b, s) ∈ S. One can check that S is indeed a group with neutral element
(0, 0), and with the inverse given by �(a, t) = (−a,−t+ g(a, a)), for all (a, t) ∈ S.

Let V be parametrized by (V0,+), and let W be parametrized by S. We define
a map τV from V ×W to V and a map τW from W × V to W as follows:

τV ([v], [a, t]) := [v][a, t] := [θ(a, v) + tv] ,

τW ([a, t], [v]) := [a, t][v] := [av, tq(v) + ϕ(a, v)] ,

for all v ∈ V and all (a, t) ∈ S. Then (V,W, τV , τW , [ε], [0, 1]) is a quadrangular
system. One can check that

F ([u], [v]) = [0, f(u, v)] ,

H([a, t], [b, s]) = [h(a, b)] ,
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for all u, v ∈ V and all (a, t), (b, s) ∈ S, and that

[v]−1 = [q(v)−1v] ,

κ([a, t]) =

[
aθ(a, ε) + ta

q(θ(a, ε) + tε)
,

t

q(θ(a, ε) + tε)

]
,

for all v ∈ K∗ and all (a, t) ∈ S∗.

Remark 7.9. It is not obvious at all to verify that this is a quadrangular sys-
tem. Quite a lot of identities involving these functions h, g, θ and ϕ are needed. We
will omit these calculations, since our main interest here is to give a classification,
and not to prove existence. However, see [20, Chapter 13 and (32.2)] for more
details about these identities.

These are the quadrangular systems of type E6, E7 and E8. They will be
denoted by ΩE(K,V0, q).

7.6. Quadrangular Systems of Type F4

Consider an anisotropic space (K,V0, q) with char(K) = 2 and with non-trivial
radical R := Rad(f) = Def(q) = {v ∈ V0 | f(v, V0) = 0} 6= 0. Suppose that there
is an element ε ∈ R such that q(ε) = 1. Then this quadratic space is said to be
of type F4 if and only if L := q(R) is a subfield of K, and there is a complement
S of R in V0 such that the restriction of q to the subspace S has a norm splitting
(E, {v1, v2}) with constants s1, s2 ∈ K∗ such that s1s2 ∈ L∗.

From now on, we will assume that (K,V0, q) is of type F4. Since t2 = q(tε) ∈
q(R) = L for all t ∈ K, we have that K2 ⊆ L ⊆ K. Denote the restriction of q to
S by q1. Denote the norm of the extension E/K by N , and denote the non-trivial
element of Gal(E/K) by u 7→ u (not to be confused with the map v 7→ v in the
definition of a quadrangular system). Set B0 := E⊕E. Then B0 is a 4-dimensional
vector space over K which can be identified with S by the relation

(u, v) ∈ B0 ←→ uv1 + vv2 ∈ S .

In particular, we will write q1(u, v) = s1N(u) + s2N(v) for all (u, v) ∈ B0.
Next, we define a commutative field D := E2L = {u2s | u ∈ E, s ∈ L}. Then

E2 ⊆ D ⊆ E, D/L is a separable quadratic extension, and D ∩ K = L. The
non-trivial element of Gal(D/L) is precisely the restriction of the map u 7→ u to
D; hence we will also denote it by x 7→ x. Also, the norm of D is precisely the
restriction of N to D, and so we will denote it by N as well. Now set A0 := D⊕D;
then A0 is a 4-dimensional vector space over L. Observe that both s−1

1 s2 and s−3
1 s2

are elements of L. We now define a quadratic form q2 on A0 given by

q2(x, y) := s−1
1 s2N(x) + s−3

1 s2N(y)

for all (x, y) ∈ A0. If we set α := s−1
1 s2 ∈ L and β := s−1

1 ∈ K, then we have

q1(u, v) = β−1 · (N(u) + αN(v)) for all (u, v) ∈ B0 .

q2(x, y) = α · (N(x) + β2N(y)) for all (x, y) ∈ A0 .

We will denote the bilinear forms corresponding to q1 and q2 by f1 and f2, respec-
tively.

Theorem 7.10. For all (u, v) ∈ B0 and all (x, y) ∈ A0 we have:

(i) q1(u, v) ∈ L ⇐⇒ (u, v) = (0, 0) ;
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(ii) q2(x, y) ∈ K2 ⇐⇒ (x, y) = (0, 0) ;
(iii) α ∈ L \K2 ;
(iv) β ∈ K \ L .

Proof. See [20, (14.8)]. �

Note that it follows from (iii) and (iv) of this Theorem that K2 ⊂ L ⊂ K. In
particular, K is not perfect.

Since L ⊆ K, we can consider K as a (left) vector space over L by the trivial
scalar multiplication s · t := st for all s ∈ L and all t ∈ K. Since K2 ⊆ L and
char(K) = 2, we can also consider L as a (left) vector space over K by the scalar
multiplication t ∗ s := t2s for all t ∈ K and all s ∈ L. One can check that in this
sense, q is a vector space isomorphism from R to L = q(R).

From now on, we will identify R with L via q, and we still identify S with
B0 = E ⊕ E. Combining those two identifications, we have actually identified V0

with B0 ⊕ L. Then ε = (0, 1), and we have q(b, s) = q1(b) + s, for all (b, s) ∈ V0.
Now set W0 := A0 ⊕K. Then W0 is a vector space over L, and we can define

a quadratic form q̂ from W0 to f given by q̂(a, t) = q2(a) + t2 for all (a, t) ∈W0. It
follows from Theorem 7.10(ii) that q̂ is anisotropic as well. One can actually check
that (L,W0, q̂) is again a quadratic form of type F4.

Finally, we define a map Θ from A0⊕B0 to B0, a map Υ from A0⊕B0 to A0,
a map ν from A0 ⊕B0 to K, and a map ψ from A0 ⊕B0 to L as follows.

Θ((x, y), (u, v)) := (α · (x̄v + βyv̄), xu+ βyū) ,

Υ((x, y), (u, v)) := (yū2 + αȳv2, β−2 · (xu2 + αx̄v2)) ,

ν((x, y), (u, v)) := α · (β−1 · (xuv̄ + x̄ūv) + yūv̄ + ȳuv) ,

ψ((x, y), (u, v)) := α · (xȳu2 + x̄yū2 + α · (xyv̄2 + x̄ȳv2)) ,

for all (x, y) ∈ A0 = D ⊕D and all (u, v) ∈ B0 = E ⊕ E.
Let V be parametrized by (V0,+), and let W be parametrized by (W0,+). We

define a map τV from V ×W to V and a map τW from W × V to W as follows:

τV ([b, s], [a, t]) := [b, s][a, t] := [Θ(a, b) + tb, q̂(a, t)s+ ψ(a, b)] ,

τW ([a, t], [b, s]) := [a, t][b, s] := [Υ(a, b) + sa, q(b, s)t+ ν(a, b)] ,

for all (b, s) ∈ V0 and all (a, t) ∈W0. Then (V,W, τV , τW , [0, 1], [0, 1]) is a quadran-
gular system. One can check that

F ([b, s], [b′, s′]) = [0, f1(b, b′)] ,

H([a, t], [a′, t′]) = [0, f2(a, a′)] ,

for all (b, s), (b′, s′) ∈ V0 and all (a, t), (a′, t′) ∈W0, and that

[b, s]−1 = [q(b, s)−1b, q(b, s)−2s] ,

κ([a, t]) = [q̂(a, t)−1a, q̂(a, t)−1t] ,

for all (b, s) ∈ V ∗0 and all (a, t) ∈W ∗0 .

Remark 7.11. It would be a very tedious job to check that this is indeed a
quadrangular system by only using the definitions of the different functions involved.
However, it is not very hard to prove the following list of twelve identities, after
which the verification of the axioms for the quadrangular systems is straightforward.
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Theorem 7.12. For all a, a′ ∈ A0 and all b, b′ ∈ B0, we have that

(i) ν(a, b+ b′) = ν(a, b) + ν(a, b′) + f1(Θ(a, b), b′) ;
(ii) ψ(a+ a′, b) = ψ(a, b) + ψ(a′, b) + f2(Υ(a, b), a′) ;
(iii) Υ(Υ(a, b), b) = q1(b)2a ;
(iv) Θ(a,Θ(a, b)) = q2(a)b ;
(v) Θ(Υ(a, b), b) + bν(a, b) = q1(b)Θ(a, b) ;

(vi) Υ(a,Θ(a, b)) + aψ(a, b) = q2(a)Υ(a, b) ;
(vii) ν(Υ(a, b), b) = q1(b)ν(a, b) ;

(viii) ψ(a,Θ(a, b)) = q2(a)ψ(a, b) ;
(ix) ψ(Υ(a, b), b) = q1(b)2ψ(a, b) ;
(x) ν(a,Θ(a, b)) = q2(a)ν(a, b) ;

(xi) q1(Θ(a, b)) = q1(b)q2(a) + ψ(a, b) ;
(xii) q2(Υ(a, b)) = q1(b)2q2(a) + ν(a, b)2 .

These are the quadrangular systems of type F4. They will be denoted by
ΩF (K,V0, q).

Remark 7.13. Although it can be very useful to have these explicit formulas
to calculate with, this description is not very clarifying. The description in terms
of the quadrangular systems ought to give more insight in the structure of these
F4-quadrangles. See section A.3.





CHAPTER 8

The Classification

We will now start the classification of the quadrangular systems. We start with
some definitions.

Definition 8.1. A quadrangular system Ω = (V,W, τV , τW , ε, δ) is called in-
different if F ≡ 0 and H ≡ 0, reduced if F 6≡ 0 and H ≡ 0 and wide if F 6≡ 0 and
H 6≡ 0.

Remark 8.2. We will prove that if Ω = (V,W, τV , τW , ε, δ) is a quadrangu-
lar system with F ≡ 0 and H 6≡ 0, then Ω∗ := (W,V, τW , τV , δ, ε) is a reduced
quadrangular system; see Theorem 8.13.

Remark 8.3. Let Ω = (V,W, τV , τW , ε, δ) be a quadrangular system. If X ⊆ V
and Y ⊆W , then the restriction of τV to X×Y and the restriction of τW to Y ×X
will also be denoted by τV and τW , respectively.

Definition 8.4. Let Ω = (V,W, τV , τW , ε, δ) be a wide quadrangular system.
Set Y := Rad(H). We will show below that Γ := (V, Y, τV , τW , ε, δ) is a reduced
quadrangular system; see Theorem 8.14. We then say that Ω is an extension of Γ.

Definition 8.5. Let Ω = (V,W, τV , τW , ε, δ) be a reduced quadrangular sys-
tem. Then Ω is said to be normal if and only if for all w1, w2, . . . , wi ∈ W , there
exists a w ∈W such that εw1w2 . . . wi = εw.

Let Ω = (V,W, τV , τW , ε, δ) be an arbitrary quadrangular system. The classifi-
cation will be divided up into the following five theorems.

Theorem 8.6. If Ω is reduced but not normal, then Ω ∼= ΩI(K,K0, σ) for some
involutory set (K,K0, σ) such that σ 6= 1 and K is generated by K0 as a ring.

Theorem 8.7. If Ω is normal, then Ω ∼= ΩQ(K,V0, q) for some anisotropic
quadratic space (K,V0, q).

Theorem 8.8. If Ω is indifferent, then Ω ∼= ΩD(K,K0, L0) for some indifferent
set (K,K0, L0).

Theorem 8.9. If Ω is an extension of the reduced quadrangular system Γ =
ΩI(K,K0, σ) for some involutory set (K,K0, σ) such that σ 6= 1 and K is generated
by K0 as a ring, then Ω ∼= ΩP (K,K0, σ, V0, p) for some anisotropic pseudo-quadratic
space (K,K0, σ, V0, p).

Theorem 8.10. If Ω is an extension of the reduced quadrangular system Γ =
ΩQ(K,V0, q) for some anisotropic quadratic space (K,V0, q), then one of the fol-
lowing holds:

• There exists

47
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(a) a multiplication on V0 making the vector space V0 into an algebra over
K such that either V0 is a field and V0/K is a separable quadratic
extension with norm q or V0 is a quaternion division algebra over K
with norm q ,

(b) an involution σ of V0 (which is the unique non-trivial element of
Gal(V0/K) if dimK V0 = 2 and which is the standard involution of
V0 if dimK V0 = 4) ,

(c) a non-trivial right vector space X over V0 ,
(d) a pseudo-quadratic form π on X ,

such that (V0,K, σ,X, π) is an anisotropic pseudo-quadratic space, Γ ∼=
ΩI(V0,K, σ) and Ω ∼= ΩP (V0,K, σ,X, π).

• (K,V0, q) is a quadratic space of type E6, E7 or E8, and Ω ∼= ΩE(K,V0, q).
• (K,V0, q) is a quadratic space of type F4, and Ω ∼= ΩF (K,V0, q).

We will now prove the two theorems which we mentioned in the above remarks.
But first, we make an easy but useful observation.

Lemma 8.11. If Rad(F ) 6= 0, then W is abelian, and all elements of V and W
have order 1 or 2. Furthermore, πr(v) = v for all r ∈ Rad(F )∗ and all v ∈ V , and
v = v for all v ∈ V .

Proof. Let r be an arbitrary non-zero element of Rad(F ). If we substitute r
for v in (Q8), then we get that [w1, w2r]� = 0 for all w1, w2 ∈ W . Substituting
w2r

−1 for w2 shows, by (Q15), that W is abelian.
If we substitute r for v in 3.13(i), then we get that w(−r) = F (rw, r) � wr =

�wr for all w ∈W . By (Q5), this implies that w(−ε)r = �wr, hence w(−ε) = �w
for all w ∈ W . It thus follows from (Q6) that v(�w) = vw for all v ∈ V and all
w ∈ W . In particular, v(�δ) = v. On the other hand, it follows from 3.13(ii) that
v(�δ) = H(δ, δv) − vδ = −v, for all v ∈ V . Hence v = −v for all v ∈ V , so every
element of V has order 1 or 2.

In particular, ε = −ε, hence w = w(−ε) = �w for all w ∈ W , that is, every
element of W has order 1 or 2.

Finally, πr(v) = v + r−1F (r, v) = v for all r ∈ Rad(F )∗ and all v ∈ V . Since it
follows from (Q10) that ε ∈ Rad(F ), we have in particular that v = πε(v) = v for
all v ∈ V . �

Remark 8.12. Apart from the last statement, we have avoided to use (Q10).
We thereby want to stress the fact that this axiom is not essential, and is really only
needed to simplify the list of the wide quadrangular systems which have Rad(F ) 6=
0. See Remark 6.4.

Theorem 8.13. Let Ω = (V,W, τV , τW , ε, δ) be a quadrangular system with
F ≡ 0 and H 6≡ 0. Then Ω∗ := (W,V, τW , τV , δ, ε) is a reduced quadrangular
system.

Proof. Since F ≡ 0, it follows from Lemma 8.11 that W is abelian and that
all elements of V and W have order 1 or 2. In particular, we will write + in place
of � and �. We define w := δH(δ, w) + w, for all w ∈ W . Then it follows from
(Q9) that w = w, for all w ∈ W . We also set w−1 := κ(w) for all w ∈ W ∗ and
κ(v) := v−1 for all v ∈ V ∗. Let F ∗ ≡ H and H∗ ≡ F ≡ 0.

We will denote the axioms that we have to prove for Ω∗ by (Qi)
∗.
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Since all elements of V and W have order 1 or 2, the axioms (Q5)∗ and (Q6)∗

are trivial. Note that v = v for all v ∈ V and w = w for all w ∈ W . We
now prove the remaining axioms. We observe that (Q1)∗ ≡ (Q2), (Q2)∗ ≡ (Q1),
(Q3)∗ ≡ (Q4), (Q4)∗ ≡ (Q3), (Q13)∗ ≡ (Q14), (Q14)∗ ≡ (Q13), (Q17)∗ ≡ (Q20)
and (Q20)∗ ≡ (Q17). It follows from F ≡ 0 that Rad(F ) = V and hence Im(H) ⊆
Rad(F ) 3 ε; this shows (Q7)∗ and (Q9)∗. Now (Q8)∗ follows from the fact that
V is abelian and that F ≡ 0; (Q10)∗ follows from (Q9). By (Q22), H(w1, w2) =
H(w2, w1) for all w1, w2 ∈ W . Since W is abelian, it follows from (Q12) that
v(w1 +w2) = v(w2 +w1) = vw2 + vw1 +H(w1, w2v) = vw1 + vw2 +H(w2v, w1) for
all v ∈ V and all w1, w2 ∈W . This proves (Q11)∗. Vice versa, it follows from (Q11)
that w(v1 +v2) = wv1 +wv2 for all w ∈W and all v1, v2 ∈ V , which proves (Q12)∗.
By (Q13), we have that (Q15) is equivalent to wv−1v = w. It follows that (Q15)∗

≡ (Q18) and (Q18)∗ ≡ (Q15). Again by (Q13), we have that (Q16) is equivalent to
v(wv−1) = v−1w. Hence (Q16)∗ ≡ (Q19) and (Q19)∗ ≡ (Q16). It follows that Ω∗

is a quadrangular system, which is reduced since H∗ ≡ 0 and F ∗ 6≡ 0. �

Theorem 8.14. Let Ω = (V,W, τV , τW , ε, δ) be a wide quadrangular system.
Set Y := Rad(H). Then Γ := (V, Y, τV , τW , ε, δ) is a reduced quadrangular system;
see Remark 8.3.

Proof. First of all, we observe that Y is a subgroup of W : if w1, w2 ∈ Y , then
H(w1 � w2, w) = H(w1, w) +H(w2, w) = 0 for all w ∈W , so w1 � w2 ∈ Y as well.
It only remains to show that τW (Y × V ) ⊆ Y , F (V, V ) ⊆ Y and κ(Y ∗) ⊆ Y . So
let w be an arbitrary element of Y , and let v be an arbitrary element of V . Then
[w,w2]� = 0 for all w2 ∈ W by (Q8), and therefore v(w � w2) = v(w2 � w). It
follows from (Q12) that H(w2, wv) = H(w,w2v) = 0 for all w2 ∈ W . By (Q22),
this implies that H(wv,w2) = 0 for all w2 ∈W , hence wv ∈ Y . So we have proved
that τW (Y × V ) = Y · V ⊆ Y .

It follows from (Q7) that F (V, V ) ⊆ Y . Now let w be an arbitrary element
of Y ∗. Substituting −ε for v in 3.2(ii) yields κ(w)(−ε(�w)) = w, hence κ(w) =
w(−ε(�w))−1 ∈ Y · V ⊆ Y . So Γ is a quadrangular system, which is reduced since
H restricted to Y × Y is identically zero. �

8.1. Quadrangular Systems of Involutory Type

Our goal in this section is to classify the quadrangular systems which are re-
duced but not normal.

Let Ω = (V,W, τV , τW , ε, δ) be a quadrangular system. For the moment, we
only assume that H ≡ 0, so Ω is reduced or indifferent.

Since H ≡ 0, it follows from (Q8) that W is abelian. We will write + and −
in place of � and �, respectively. It follows from 3.13(ii) that v(−w) = −vw for
all v ∈ V and all w ∈ W . If we replace w2 by −w2 in (Q12), we get v(w1 − w2) =
vw1−vw2, for all v ∈ V and all w1, w2 ∈W . In particular, it follows from εw1 = εw2

that w1 = w2, by 3.3(ii).
By (Q18), we have εκ(w)w = ε for all w ∈ W . If we replace w by −w, we

get that ε(−κ(−w))w = ε for all w ∈ W . Hence εκ(w)w = ε(−κ(−w))w, so
εκ(w) = ε(−κ(−w)) by 3.5(ii) and hence κ(w) = −κ(−w) for all w ∈ W by the
previous paragraph. Moreover, by (Q6) and the result of the previous paragraph, we
have that w(−ε) = w for all w ∈ W . It now follows from (Q14) that κ(κ(w)) = w,
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for all w ∈W . Hence we will write w−1 in place of κ(w), for all w ∈W . Note that
it follows from 3.2(i) that vww−1 = v, for all v ∈ V and all w ∈W ∗.

For all w1, w2, . . . , wn ∈W ∗, let m = w1•w2•· · ·•wn be the automorphism of V
which maps v to vw1w2 . . . wn for all v ∈ V ; see Theorem 3.6(i). Let M be the set of
all such automorphisms. Then (M, •) is a group with neutral element δ. We denote
the action of an element m ∈M by right juxtaposition, i.e. vm = vw1w2 . . . wn. Let
K be the set of homomorphisms from V to itself (additively) generated by a finite
number of elements of M . We write k = m1 + · · · + m`, where m1, . . . ,m` ∈ M .
Again, we denote the action of an element k ∈ K by right juxtaposition, so we have
vk = vm1+· · ·+vm`. ThenK with this + as addition and with • as multiplication is
a ring with multiplicative identity δ. Note that, by (Q12), v(w1 +w2) = vw1 +vw2,
hence the notation w1 + w2 is unambiguous. Let σ be the automorphism of M
which maps m = w1 • · · · •wn to mσ := wn • · · · •w1. We extend σ to K by setting
kσ := mσ

1 + · · ·+mσ
` for all k = m1 + · · ·+m` ∈ K. Let E := εK.

Lemma 8.15. For all v ∈ V , w ∈W and m ∈M , we have that w·εm·v = w·vm.

Proof. Let m = w1 • · · · •wn be an arbitrary element of M , so w1, . . . , wn are
elements of W ∗. We will show the lemma by induction on n.

Note that Π�z ≡ idW since H ≡ 0; hence by (Q26), the lemma holds for n = 1.
Assume that w · εw1 . . . wn−1 · v = w · vw1 . . . wn−1 for all w ∈ W and all v ∈ V .
Then, by repeated use of (Q26),

w · εw1 . . . wn · v = w · (εw1 . . . wn−1 · wn) · v
= w · (εwn) · εw1 . . . wn−1 · v
= w · (εwn) · vw1 . . . wn−1

= w · (vw1 . . . wn−1 · wn)

= w · vw1 . . . wn

for all w ∈W and all v ∈ V , and we are done. �

Lemma 8.16. For all v ∈ V and all w, z ∈W , we have that vwz = vzw.

Proof. Let v ∈ V and w, z ∈ W . We may assume that w 6= 0. Note that
Πw(z) = z since H ≡ 0. Since v(−w) = −vw, it follows from (Q23) that vz =

vwzw−1. Since (w−1)−1 = w and by 3.12, it follows from this that vzw = vwz. �

Lemma 8.17. For all v ∈ V , all w ∈ W and all m ∈ M , we have that vwm =
vmw and vmw = vwm.

Proof. Let m = w1 • · · · •wn be an arbitrary element of M , so w1, . . . , wn are
elements of W ∗. We will prove by induction on n that vww1 . . . wn = vw1 . . . wnw.
For n = 1, this was shown in Lemma 8.16. Assume that we have proved the current
lemma for n− 1. Then

vww1 . . . wn = vww1 . . . wn−1 · wn
= vw1 . . . wn−1wwn

= vw1 . . . wnw ,

again by Lemma 8.16 with vw1 . . . wn−1 in place of v. This proves the first identity;
the second then follows from the first by substituting v for v. �
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Lemma 8.18. For all v ∈ V and all k1, k2 ∈ m, we have that vk1k2 = vk2k1.

Proof. Since both sides are additive in k1 and k2, it suffices to show this for
k1 = m1 ∈M and k2 = m2 ∈M . Let m2 = z1 • · · · • zn for some z1, . . . , zn ∈ W ∗.
By repeated use of Lemma 8.17, we have that

vm1m2 = vm1z1 . . . zn

= vz1m1z2 . . . zn

= . . .

= vz1 . . . znm1

= vm2m1 ,

which proves the lemma. �

Theorem 8.19. εk = εkσ, for all k ∈ K.

Proof. It is sufficient to prove this for k ∈ M . Let k = w1 • · · · • wn be an
arbitrary element of M , so w1, . . . , wn ∈W ∗. We will prove by induction on n that
εw1 . . . wn = εwn . . . w1.

First assume that n = 1. Since v(−w) = −vw for all v ∈ V and all w ∈ W , it
follows from 3.21 that εw1 = −πε(εw1) = −ε(−w1) = εw1.

Now assume that we have proved that εw1 . . . wn−1 = εwn−1 . . . w1, for all
w1, . . . , wn−1 ∈W ∗. Then it follows from 3.12 and Lemma 8.17 that

εw1 . . . wn = εw1 . . . wn−1wn

= εwn−1 . . . w1wn

= εwnwn−1 . . . w1

= εwnwn−1 . . . w1 ,

since εwn = εwn = εwn. �

Theorem 8.20. ∆ := (E,W, τV , τW , ε, δ) is a quadrangular system; see Remark
8.3.

Proof. First of all, we observe that E = εK is a subgroup of V , since εk1 + εk2

= ε(k1 + k2) for all k1, k2 ∈ K. It only remains to show that τV (E ×W ) ⊆ E,
H(W,W ) ⊆ E and (E∗)−1 ⊆ E. Since K •W = K, we have that τV (E ×W ) =
εK ·W = ε(K •W ) = εK = E. Since H ≡ 0, it is obvious that H(W,W ) ⊆ E.
Finally, if we substitute δ for w in (Q16) and apply the fact that vww−1 = v,
we get that v−1 = v(δv)−1 for all v ∈ V ∗. In particular, we get that (εk)−1 =
εk(δ · εk)−1 = ε(kσ • (δ · εk)−1) ∈ εK for all k ∈ K∗, where we have used Theorem
8.19. Thus ∆ := (E,W, τV , τW , ε, δ) is a quadrangular system. �

Lemma 8.21. If vk = 0 for some v ∈ V and some k ∈ K, then vk2k = 0 for
all k2 ∈ K.

Proof. We may assume that v 6= 0. We will first show the lemma for k2 = w ∈
W . Since v(−w) = −vw, it follows from 3.20 that vw = vm where m = δv−1•wv ∈
M . By Lemma 8.18, it follows from vk = 0 that vwk = vmk = vkm = 0, which
proves the lemma in this case.

Now let k2 = m = w1 • · · · • wn be an arbitrary element of M , then it follows
by induction on n that vmk = 0.
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Finally, let k2 = m1 + · · · + m` be an arbitrary element of K, then it follows
from the previous paragraph that vk2k = vm1k+ · · ·+ vm`k = 0, which completes
the proof of this lemma. �

Lemma 8.22. For all v1, v2 ∈ V and all k ∈ K, we have that F (v1k, v2) =
F (v1, v2k

σ).

Proof. Since both V and W are abelian, it follows from (Q21) and (Q11)
that F (v1w, v2) = F (v1, v2w) for all v1, v2 ∈ V and all w ∈ W . For m ∈ M , say
m = w1 • · · · • wn, it follows by induction on n that F (v1m, v2) = F (v1, v2m

σ).
Since F is additive in both variables, it now follows that F (v1k, v2) = F (v1, v2k

σ)
for any k = m1 + · · ·+m` ∈ K. �

Our first goal is to prove that ∆ is a quadrangular system of involutory type.
Assume from now on that V = E, that is, that Ω = ∆.

Lemma 8.23. (i) Let k ∈ K. If εk = 0, then k = 0.
(ii) Let k1, k2 ∈ K. If εk1 = εk2, then k1 = k2.

Proof. Let k ∈ K be such that εk = 0. By Lemma 8.21, it follows that
εk2k = 0 for all k2 ∈ K, and hence V k = Ek = εKk = 0, which implies that k = 0
(remember that the elements of K are endomorphisms of V ). This proves (i); (ii)
now follows from (i) by substituting k1 − k2 for k. �

Definition 8.24. For each k ∈ K∗, we define k′ as the (unique!) element in
K such that (εk)−1 = εk′.

Lemma 8.25. For all k ∈ K∗ and all w ∈W , we have that k•w = w(εk)•(k′)σ.

Proof. By (Q16), we have that

(εk)w = (εk)−1 · w(εk)

= ε · k′ · w(εk)

= ε · (k′ • w(εk))

= ε · (w(εk) • (k′)σ) ,

where we have used Theorem 8.19. It follows by Lemma 8.23(ii) that k • w =
w(εk) • (k′)σ. �

Lemma 8.26. For all k ∈ K∗ and all w ∈W ∗, we have that (k •w)′ = w−1 •k′.

Proof. By Lemma 8.25 with k •w in place of k and w−1 in place of w and by
(Q19), we have that

k • w = ((k • w) • w−1) • w
= w−1(ε(k • w)) • (k • w)′σ • w
= w(εk) • (k • w)′σ • w ,

which, together with Lemma 8.25, implies that

w(εk) • (k′)σ • w−1 = w(εk) • (k • w)′σ .

If we apply σ to both sides, we get that

w−1 • k′ • w(εk) = (k • w)′ • w(εk) ,

from which it follows that w−1 • k′ = (k • w)′ since w(εk) is invertible in K. �
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Lemma 8.27. For all w1, . . . , wn ∈W ∗, we have that

(w1 • · · · • wn)′ = w−1
n • · · · • w−1

1 .

Proof. By Lemma 8.26 with k = δ, we have that w′1 = w−1
1 . Again by Lemma

8.26, it now follows by induction on n that

(w1 • · · · • wn)′ = w−1
n • (w1 • · · · • wn−1)′

= w−1
n • w−1

n−1 • · · · • w
−1
1 ,

which is what we wanted to show. �

Since it follows from this lemma that m •m′ = m′ •m = δ, we will from now
on write m−1 in place of m′ for all m ∈M .

Lemma 8.28. For all m ∈M and all w ∈W , we have that w(εm) = m•w•mσ.

Proof. First of all, observe that it follows from Lemma 8.27 that (m−1)σ =
(mσ)−1. By Lemma 8.25, we have that m • w = w(εm) • (m−1)σ. It follows that
m • w •mσ = w(εm). �

Lemma 8.29. For all k1, k2 ∈ K, we have that F (εk1, εk2) = k1 • kσ2 + k2 • kσ1 .

Proof. Since v+v = εF (ε, v) for all v ∈ V , we have that εF (ε, εk) = εk+εk =
εk + εkσ and hence F (ε, εk) = k + kσ, for all k ∈ K. It now follows from Lemma
8.22 that

F (εk1, εk2) = F (ε, εk2k
σ
1 )

= F (ε, ε(k2 • kσ1 ))

= k2 • kσ1 + k1 • kσ2 ,

which proves the lemma. �

Theorem 8.30. For all k ∈ K and all w ∈W , we have that w(εk) = k •w•kσ.

Proof. In Lemma 8.28, we have shown this theorem for all k ∈ M . Now
suppose that the theorem holds for k1, k2 ∈ K. We will show that it then holds for
k1 + k2 as well, which will prove the theorem for all k ∈ K.

It follows from (Q11) and Lemma 8.29 that

w(ε(k1 + k2)) = w(εk1 + εk2)

= w(εk1) + w(εk2) + F (εk2w, εk1)

= k1 • w • kσ1 + k2 • w • kσ2 + (k2 • w) • kσ1 + k1 • (k2 • w)σ

= k1 • w • kσ1 + k2 • w • kσ2 + k2 • w • kσ1 + k1 • w • kσ2
= (k1 + k2) • w • (k1 + k2)σ ,

which is what we had to show. �

Theorem 8.31. K+,• is a field or a skew-field.

Proof. We already know that K+,• is a ring. Let k be an arbitrary element
of K∗. We will show that k′ • k = k • k′ = δ.
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By (Q15), Theorem 8.30 and Lemma 8.25, we have that

δ = δ(εk)(εk)−1

= δ(εk)(εk′)

= k′ • δ(εk) • (k′)σ

= k′ • (k • δ)
= k′ • k ,

and if we substitute k′ for k, then we get that δ = k • k′ as well, since it follows
from the definition of k′ that k′′ = k.

Hence every non-zero element k ∈ K∗ is invertible with inverse k−1 = k′. It
follows that K+,• is a field or a skew-field. �

For technical reasons which will be clear in a moment, we let K+,· := Kop
+,•,

that is, we set k1k2 := k2 • k1 for all k1, k2 ∈ K.

Theorem 8.32. (K,W, σ) is an involutory set. Furthermore, K is generated
by W as a ring.

Proof. We have just shown that K is a field or a skew-field. It is obvious
from the definition that σ2 = 1 and that (k1k2)σ = (k2 • k1)σ = kσ1 • kσ2 = kσ2 k

σ
1

for all k1, k2 ∈ K, so σ is an involution of K. W is an additive subgroup of K
containing δ. By Lemma 8.29, k+kσ = F (ε, εk) ∈ Im(F ) ⊆W for all k ∈ K, hence
Kσ ⊆ W , and by the definition of σ, all elements of W are fixed by σ. Finally, it
follows from Theorem 8.30 that kσWk = k •W • kσ ⊆ W (εk) ⊆ W for all k ∈ K.
Thus (K,W, σ) is an involutory set.

The fact that K is generated by W as a ring follows immediately from the
definition of the ring K. �

Theorem 8.33. (E,W, τV , τW , ε, δ) ∼= ΩI(K,W, σ).

Proof. Let φ be the isomorphism from [K] to E which maps [k] to εk for all
k ∈ K, and let ψ be the isomorphism from [W ] to W which maps [w] to w for all
w ∈W . Then φ([δ]) = εδ = ε and ψ([δ]) = δ. Furthermore,

φ([k][w]) = φ([wk]) = ε(wk) = ε(k • w) = εk · w = φ([k])ψ([w]) , and

ψ([w][k]) = ψ(kσwk) = kσwk = k • w • kσ = w(εk) = ψ([w])φ([k]) ,

for all w ∈ W and all k ∈ K. Hence (φ, ψ) is an isomorphism from ΩI(K,W, σ) to
(E,W, τV , τW , ε, δ). �

The next lemma shows the “σ 6= 1” part of Theorem 8.6.

Lemma 8.34. If (K,K0, σ) is an involutory set with σ = 1, then ΩI(K,K0, σ)
is normal or indifferent.

Proof. Since σ is an involution, ab = (ab)σ = bσaσ = ba for all a, b ∈ K, hence
K is abelian. It follows that F ([a], [b]) = [2ab] for all a, b ∈ K. If char(K) = 2,
then F ≡ 0, hence ΩI(K,K0, σ) is indifferent. So we can assume that char(K) 6= 2.
But then Kσ = {2a | a ∈ K} = K, and hence K0 = K. It follows that for all
elements t1, t2, . . . , tn ∈ K0, the product t1t2 . . . tn lies in K0 as well, and hence
[1][t1][t2] . . . [tn] = [1][t1t2 . . . tn], which implies that ΩI(K,K0, σ) is normal. �
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From now on, we drop our assumption that V = E (but we still assume that
H ≡ 0). Our next goal is to show that if Ω is reduced but not normal, then V = E
after all.

We start with a generalization of Lemma 8.18:

Lemma 8.35. For all v ∈ V ∗, all c ∈ V and all k1, k2 ∈ K, we have that

πv(πv(c)k1)k2 = πv(πv(ck2)k1) .

Proof. If we substitute c(δv)−1 for c in (Q25), then we get that πv(c)w =

πv
(
c(δv)−1(wv)

)
, and hence πv(πv(c)w) = c(δv)−1(wv) for all c, v ∈ V and all

w ∈W . It thus follows by 3.23(i) and Lemma 8.18 that

πv(πv(c)w1)w2 = c(δv)−1(w1v)w2

= cw2(δv)−1(w1v)

= πv(πv(cw2)w1) ,

which shows the lemma for all k1, k2 ∈W . In the same way as in Lemma 8.17 and
Lemma 8.18, we can use induction to deduce from this that the lemma holds for
all k1, k2 ∈ M . Since πv is additive, it then follows that the lemma holds for all
k1, k2 ∈ K. �

Lemma 8.36. For all v ∈ V ∗ and all k ∈ K, we have that πv(vk) = −vkσ.

Proof. Since πv is additive, it suffices to show that πv(vm) = −vmσ for all
m = w1 • · · · • wn ∈M , which we will do by induction on n.

It already follows from 3.21 that πv(vw1) = −vw1, which shows the state-
ment for n = 1. Now assume that πv(vw1 . . . wn−1) = −vwn−1 . . . w1 for all
w1, . . . , wn−1 ∈W . Then it follows by Lemma 8.35 that

πv(vw1 . . . wn) = −πv(πv(vwn−1 . . . w1)wn)

= −πv(πv(v)wn)wn−1 . . . w1

= −vwnwn−1 . . . w1 ,

since πv(πv(v)wn) = −πv(vwn) = vwn. �

Lemma 8.37. For all v ∈ V and all w ∈W , we have that vww = v · δ(εw).

Proof. We may assume that v 6= 0. Since H ≡ 0, it follows from (Q26) that
δ(εw)v = δ(vw), and hence δ(εw) = δ(vw)v−1. By (Q16), it follows that

v · δ(εw) = v ·
(
δ(vw)v−1

)
= v−1 · δ(vw) .

If we substitute vw for v, v−1 for c and w−1 for w in (Q25), then we get, by (Q19),
(Q16) and 3.21, that

πvw(v−1 · δ(vw))w−1 = πvw(v−1 · w−1(vw))

= πvw(v−1 · wv)

= πvw(vw)

= −vw ,

and hence πvw(v ·δ(εw)) = −vww, from which it follows, by 3.23(i), that v ·δ(εw) =
−πvw(vww) = vww by Lemma 8.36, which is what we had to show. �

Lemma 8.38. For all v ∈ V and all w, z ∈W , we have that vwzw = v · z(εw).
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Proof. We may assume that v 6= 0. Since H ≡ 0, it follows from (Q26) that
z(εw)v = z(vw). By (Q16), it follows that

v · z(εw) = v ·
(
z(vw)v−1

)
= v−1 · z(vw) .

If we substitute vw for v, v−1 for c and z for w in (Q25), then we get that

πvw(v−1 · δ(vw))z = πvw(v−1 · z(vw)) ,

and hence

πvw(v · δ(εw))z = πvw(v · z(εw)) .

It now follows from Lemma 8.37 and Lemma 8.36 that

v · z(εw) = πvw(πvw(vww)z)

= πvw(−vwwz)
= vwzw ,

which proves the lemma. �

Lemma 8.39. For all v ∈ V , all z ∈W and all m ∈M , we have that vmzmσ =
v · z(εm). In particular, vmmσ = v · δ(εm).

Proof. Let m = w1 •· · ·•wn with w1, . . . , wn ∈W ∗. We will prove the lemma
by induction on n.

We have already shown in Lemma 8.38 that the current lemma holds for n = 1.
Now assume that vw1 . . . wn−1ywn−1 . . . w1 = v · y(εw1 . . . wn−1) for all y ∈ W .
Then by Lemma 8.38 and (Q26), we have that

vw1 . . . wnzwn . . . w1 =
(
(vw1 . . . wn−1)wnzwn

)
wn−1 . . . w1

= vw1 . . . wn−1 · z(εwn) · wn−1 . . . w1

= v · z(εwn)(εw1 . . . wn−1)

= v · z(εw1 . . . wn−1wn) ,

and we are done. �

Lemma 8.40. For all v ∈ V and all w1, w2, w3 ∈W , we have that

(i) F (vw1, vw2w3) = F (εw1, εw2w3)v ;
(ii) vw1w2w3 + vw3w2w1 = vF (εw1, εw3w2) .

Proof. By (Q21), (Q11) and (Q26), we have that

F (vw1, vw2w3) = w3(vw1 + vw2)− w3(vw1)− w3(vw2)

= w3 · v(w1 + w2)− w3 · vw1 − w3 · vw2

= w3 · ε(w1 + w2) · v − w3 · εw1 · v − w3 · εw2 · v
= (w3 · (εw1 + εw2)− w3 · εw1 − w3 · εw2) · v
= F (εw1, εw2w3)v ,
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which proves (i). By Lemma 8.36, the definition of πv, Lemma 8.22, (i) and (Q16),
we have that

vw1w2w3 + vw3w2w1 = vw3w2w1 − πv(vw3w2w1)

= v−1F (v, vw3w2w1)

= v−1F (vw1, vw3w2)

= v−1 · F (εw1, εw3w2)v

= vF (εw1, εw3w2) ,

which proves (ii). �

Lemma 8.41. Let w1, w2, w3 ∈ W be arbitrary. Let k = w1 + w2 • w3 ∈ K.
Then

(i) vkkσ = v · δ(εk) for all v ∈ V ;
(ii) If εk = 0, then k = 0 .

Proof. By Lemma 8.39, Lemma 8.40(ii) and (Q11), we have that

vkkσ = v(w1 + w2 • w3)(w1 + w3 • w2)

= vw1w1 + vw2w3w3w2 + vw1w3w2 + vw2w3w1

= v · δ(εw1) + v · δ(εw2w3) + vF (εw1, εw2w3)

= v · (δ(εw1) + δ(εw2w3) + F (εw1, εw2w3))

= v · δ(εw1 + εw2w3)

= v · δ(εk)

for all v ∈ V , which proves (i). Now suppose that εk = εw1 + εw2w3 = 0. Then it
follows, by (Q11), Lemma 8.15 and Lemma 8.40(i), that

0 = δ · (εw1 + εw2w3) · v
= δ · εw1 · v + δ · εw2w3 · v + F (εw1, εw2w3) · v
= δ · vw1 + δ · vw2w3 + F (vw1, vw2w3)

= δ · (vw1 + vw2w3)

= δ · vk ,

and hence vk = 0, for all v ∈ V . So k = 0. �

Remark 8.42. It will follow from the classification that the statements in
Lemma 8.40 and Lemma 8.41 actually hold in a much broader generality, for all
reduced quadrangular systems. More precisely, we have that

(i) F (vk1, vk2) = F (εk1, εk2)v ;
(ii) vk + vkσ = vF (εk, ε) ;
(iii) vkkσ = v · δ(εk) ;
(iv) if εk = 0, then k = 0 ;

for all v ∈ V and all k, k1, k2 ∈ K. However, we are not aware of a simple proof of
these facts at this step of the classification.

By definition, Ω = (V,W, τV , τW , ε, δ) is normal if and only if εM = εW .
To complete the proof of Theorem 8.6, it will thus suffice to prove the following
theorem:
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Theorem 8.43. If V 6= E and F 6≡ 0, then εM = εW . Furthermore, vm =
vmσ and vm = vm for all v ∈ V \ E and all m ∈M .

Proof. We start by showing that vw = vw for all v ∈ V \ E and all w ∈ W .
So let v ∈ V \ E and w ∈ W be arbitrary. By 3.20, vw = v · δv−1 · wv, and hence
vw − vw = vk for k = w − δv−1 • wv. On the other hand,

vw − vw = vw − εF (v, ε)w − vw
= vw − εF (εF (v, ε)w − vw, ε) + εF (v, ε)w − vw
= εF (v, ε)w − εF (εF (v, ε)w − vw, ε)
∈ εK ,

hence vk ∈ εK. Suppose that vk 6= 0. Then it would follow from Lemma 8.41 that
εk 6= 0 and that vkkσ · (δ(εk))−1 = v. Hence v ∈ εK · kσ · (δ(εk))−1 ⊆ εK = E,
which contradicts the choice of v. So we must have vk = 0, and thus vw = vw,
which shows that vw = vw.

We will now show by induction on n that vw1 . . . wn = vw1 . . . wn for all v ∈
V \ E and all w1, . . . , wn ∈ W . We have already shown this for n = 1, so suppose
that it holds for n − 1. We may assume that wi 6= 0 for all i ∈ {1, . . . , n}. If
v ∈ V \ E, then also vw1 . . . wn−1 ∈ V \ E, since v = vw1 . . . wn−1w

−1
n−1 . . . w

−1
1 .

Hence we can substitute vw1 . . . wn−1 for v in the result of the previous paragraph,
and we get that

vw1 . . . wn = vw1 . . . wn−1 · wn
= vw1 . . . wn−1 · wn
= vw1 . . . wn ;

the statement thus holds for n as well. This shows that vm = vm for all v ∈ V \E
and all m ∈M .

We will now prove by induction on n that vw1 . . . wn = vwn . . . w1 for all v ∈ V
and all w1, . . . , wn ∈ W . Again, we have already shown this for n = 1, so suppose
that it holds for n− 1. Then, by Lemma 8.17,

vw1 . . . wn = vwn−1 . . . w1wn

= vwnwn−1 . . . w1

= vwn . . . w1 ,

so it holds for n as well. We have thus proved that vm = vmσ for all m ∈M .
Since v ∈ V \ E if and only if v ∈ V \ E, it follows from the previous two

paragraphs that vm = vmσ for all v ∈ V \ E and all m ∈M .
Now, we first assume that ε 6∈ Rad(F ). Since E is a proper subgroup of V , V

is generated by V \E. Since ε 6∈ Rad(F ), this implies that F (ε, V \E) 6= 0, so there
exists an element v ∈ V \ E such that F (ε, v) 6= 0. Let m be an arbitrary element
of M , and let m2 := F (ε, v)−1 •m ∈M . Then it follows from vm2 = vm2 that

εF (ε, vm2)− vm2 = εF (ε, v)m2 − vm2

and hence

εF (ε, vF (ε, v)−1m) = εF (ε, v)F (ε, v)−1m

from which it follows that

εm = εF (ε, vF (ε, v)−1m) ∈ εW ,
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for all m ∈M . So we have shown that εM = εW in this case.
Now assume that ε ∈ Rad(F ). By Lemma 8.11, all elements of V and W have

order at most 2, and v = v for all v ∈ V .
Since F 6≡ 0, there exists an element η ∈ V \ Rad(F ). By Lemma 8.22,

Rad(F ) · K = Rad(F ), so E = εK ⊆ Rad(F ), and hence η ∈ V \ E. It follows
that ηm = ηmσ for all m ∈ M , which implies, by Lemma 8.36, that πη(ηm) =
ηmσ = ηm. By the definition of πη, this implies that η−1F (η, ηm) = 0, and
hence F (η, ηm) = 0 for all m ∈ M . Since F is additive, this in turn implies that
F (η, ηK) = 0. Since we chose η 6∈ Rad(F ), we conclude that V 6= ηK.

We now show that πη(vw) = πη(v)w for all v ∈ V \ ηK and all w ∈ W . So
let v ∈ V \ ηK and w ∈ W be arbitrary. If we substitute η for v and v(δη)−1 for
c in (Q25), then we get that πη(v)w = πη(v(δη)−1(wη)), and hence πη(πη(v)w) =
v(δη)−1(wη). Hence vw + πη(πη(v)w) = vk where k = w + (δη)−1 • (wη) ∈ K. On
the other hand,

vw + πη(πη(v)w) = vw + πη(vw + ηF (η−1, v)w)

= vw + vw + ηF (η−1, v)w + ηF (η−1, vw + ηF (η−1, v)w)

= ηF (η−1, v)w + ηF (η−1, vw + ηF (η−1, v)w)

∈ ηK,

hence vk ∈ ηK. In a similar way as in the first paragraph, it would follow from
vk 6= 0 that v ∈ ηK, which would contradict the choice of v. Hence vk = vw +
πη(πη(v)w) = 0, and thus πη(vw) = πη(v)w.

Again, it follows by induction on n that πη(vw1 . . . wn) = πη(v)w1 . . . wn for all
v ∈ V \ ηK and all w1, . . . wn ∈ W , that is, πη(vm) = πη(v)m for all v ∈ V \ ηK
and all m ∈M .

Since ηK is a proper subgroup of V , V is generated by V \ ηK. Since η 6∈
Rad(F ), this implies that F (η, V \ ηK) 6= 0, so there exists an element v ∈ V \ ηK
such that F (η, v) 6= 0. It follows from (Q17) that F (η−1, v) = F (η, v)η−1 6= 0 as
well.

Let m be an arbitrary element of M , and let m2 := F (η−1, v)−1 • m ∈ M .
Then it follows from πη(vm2) = πη(v)m2 that

vm2 + ηF (η−1, vm2) = vm2 + ηF (η−1, v)m2

and hence

ηF (η−1, vF (η−1, v)−1m) = ηF (η−1, v)F (η−1, v)−1m ,

from which it follows that

ηm = ηF (η−1, vF (η−1, v)−1m) ,

for all m ∈M . So we have shown that ηM = ηW .
Since η ∈ V \ Rad(F ) and ε ∈ Rad(F ), we have that η + ε ∈ V \ Rad(F ) as

well. So the conclusion of the previous paragraph is also valid for η + ε, that is,
(η + ε)M = (η + ε)W . Now let m be an arbitrary element of M . Then ηm = ηw1

and (η + ε)m = (η + ε)w2 for some w1, w2 ∈W . It follows that

εm = ηm+ (η + ε)m

= ηw1 + (η + ε)w2

= η(w1 + w2) + εw2 .
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If w1 + w2 6= 0, then it would follow from this that

η = (εm+ εw2) · (w1 + w2)−1 ∈ εK = E ⊆ Rad(F ) ,

which contradicts the choice of η. Hence we must have w1 +w2 = 0, and it follows
that εm = εw2. Since m was arbitrary, we have shown that εM = εK also in this
case.

This completes the proof of this theorem, and thereby also the proof of Theorem
8.6. �

8.2. Quadrangular Systems of Quadratic Form Type

Our goal in this section is to classify the quadrangular systems which are nor-
mal.

Let Ω = (V,W, τV , τW , ε, δ) be a quadrangular system which is normal. In
particular, Ω is reduced, so H ≡ 0.

Lemma 8.44. K is abelian, i.e. vk1k2 = vk2k1 for all v ∈ V and all k1, k2 ∈ K.
Equivalently, σ = 1.

Proof. Note that by the definition of σ, K is abelian if and only if σ = 1.
It suffices to show that vw1w2 = vw2w1 for all v ∈ V and all w1, w2 ∈ W . If

v ∈ V \ E, then this follows by substituting w1 • w2 for m in Theorem 8.43. If
v = ε, then εw1w2 = εw3 for some w3 ∈ W since Ω is normal. Hence, by Theorem
8.19, εw1w2 = εw3 = εw3 = εw1w2 = εw2w1. Finally, assume that v = εk for some
k ∈ K. Then vw1w2 = εkw1w2 = εw2w1kσ = εw1w2kσ = εkw2w1 = vw2w1, again
by Theorem 8.19. This shows the lemma in all possible cases. �

Lemma 8.45. For all v ∈ V , we have that vK = vW .

Proof. It suffices to show that vM = vW .
First, assume that v ∈ E, say v = εk for some k ∈ K. Let m ∈M be arbitrary.

Then εm = εw for some w ∈ W , since Ω is normal. Since K is abelian by Lemma
8.44, it follows that vm = εkm = εmk = εwk = εkw = vw, which shows that
vM = vW in this case.

Now, assume that v ∈ V \E. Note that it is sufficient to show that vw1w2 ∈ vW
for all w1, w2 ∈ W ; it then follows by induction that vM = vW . Choose two
arbitrary elements w1, w2 ∈ W . By Lemma 8.40(ii) and Lemma 8.44, we have
that vw1w2w3 + vw1w2w3 = vF (εw1, εw2w3), or equivalently, vw1w2w3(δ + δ) =
vF (εw1, εw2w3), for all w3 ∈W .

We now distinguish two cases. First, assume that δ+ δ = 0. It then follows, by
(Q12), that all elements of V and W have order at most 2. Since Ω is normal, there
exists a w ∈W such that εw1w2 = εw. By the previous paragraph, F (εw1, εw2w) =
0, and hence, by Lemma 8.22 and Lemma 8.40(i), F (vw1w2, vw) = F (vw1, vw2w) =
F (εw1, εw2w)v = 0 as well. By Lemma 8.15, it follows that

δ(vw1w2 + vw) = δ · vw1w2 + δ · vw + F (vw1w2, vw)

= δ · εw1w2 · v + δ · εw · v
= δ · εw · v + δ · εw · v
= 0 ,

which implies that vw1w2 + vw = 0, hence vw1w2 = vw ∈ vW , which is what we
had to show.
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Now, assume that δ + δ 6= 0. Then we set w3 = (δ + δ)−1 in the identity
vw1w2w3(δ + δ) = vF (εw1, εw2w3), which yields

vw1w2 = vF (εw1, εw2(δ + δ)−1) ∈ vW ,

which proves the lemma in this case as well. �

Lemma 8.46. Let w ∈ W and k ∈ K be such that vk = vw for some v ∈ V ∗.
Then k = w.

Proof. We will show that uk = uw for all u ∈ V . We distinguish two cases.
First, assume that u ∈ vK. Since vK = vW by Lemma 8.45, there exists a

z ∈ W such that u = vz. Then uk = vzk = vkz = vwz = vzw = uw, since K is
abelian.

Now, assume that u 6∈ vK. By Lemma 8.45, there exists a w2 ∈ W such that
uk = uw2, and there exists a w3 ∈W such that (v + u)k = (v + u)w3. We have to
show that w = w2. We have that vw3 + uw3 = (v + u)w3 = (v + u)k = vk + uk =
vw + uw2, from which it follows that u(w3 − w2) = v(w − w3). Since u 6∈ vK, this
can only occur if w3 − w2 = 0, and then w − w3 = 0 as well. Hence w = w3 = w2,
which is what we had to show. �

Remark 8.47. It follows from this lemma that if k1, k2 ∈ K are such that
vk1 = vk2 for some v ∈ V ∗, then k1 = k2, since, by Lemma 8.45, there exists a
w ∈W such that vk1 = vw = vk2.

Theorem 8.48. K+,• is a commutative field.

Proof. We have already shown in Lemma 8.44 that K is a commutative ring.
It only remains to show that every element of K∗ is invertible. Let k be an arbitrary
non-zero element of K. Since Ω is normal, εk = εw for some w ∈ W ; hence by
Lemma 8.46, k = w. It follows that k is invertible with inverse k−1 = w−1, since
w • w−1 = w−1 • w = δ. �

By Lemma 8.46, (K,+) ∼= W as additive groups. We will denote the isomor-
phism by square brackets, that is, for every t ∈ K, we will denote the corresponding
element of W by [t]. Since K is a commutative field, V is a (left) vector space over
K, with scalar multiplication given by tv := v[t], for all t ∈ K and all v ∈ V . From
now on, we will denote the multiplicative identity of K by 1 in place of δ. Then
δ = [1] ∈W . If there is no danger of confusion, we will also write st in place of s• t
for s, t ∈ K, and t2 in place of t • t for t ∈ K.

Definition 8.49. We define a map q from V to K by setting [q(v)] = δv = [1]v
for all v ∈ V . Furthermore, we define a map f from V × V to K by setting
[f(v1, v2)] = F (v1, v2) for all v1, v2 ∈ V .

Lemma 8.50. For all v ∈ V , all w ∈W and all t ∈ K, we have that

(i) vw = vw ;
(ii) tv = tv .

Proof. We first show (i). If v ∈ εW , then vw ∈ εW as well, and it follows
from Theorem 8.19 and Lemma 8.44 that vw = vw = vw (remember that σ = 1).
If v 6∈ εW = εK, then we have already shown this in Theorem 8.43.

Identity (ii) now follows by substituting [t] for w in (i). �

Lemma 8.51. For all v ∈ V and all t ∈ K, we have that [t]v = [tq(v)].
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Proof. Let w := [t] ∈ W . We have to show that wv = w • δv. By (Q16)
and Lemma 8.50(i), v−1 · wv = vw = vw. On the other hand, v−1 · (w • δv) =
v−1 · δv · w = vw, again by (Q16). Hence v−1 · wv = v−1 · (w • δv), which implies
by Lemma 8.46 that wv = w • δv. �

Lemma 8.52. For all u, v ∈ V and all t ∈ K, we have that πu(tv) = tπu(v).

Proof. Let w := [t] ∈W . If we substitute u for v and v(δu)−1 for c in (Q25),

then we get that πu(v)w = πu
(
v(δu)−1(wu)

)
, and hence, by Lemma 8.50(i) and

Lemma 8.51, that

tπu(v) = πu(v)w

= πu(v(δu)−1(wu))

= πu(v · [q(u)−1] · [tq(u)])

= πu(tq(u)q(u)−1v)

= πu(tv) ,

which is what we had to show. �

Theorem 8.53. q is an anisotropic quadratic form from V to K with corre-
sponding bilinear form f .

Proof. Let v ∈ V and t ∈ K be arbitrary, and let w := [t] ∈ W . Then, by
(Q26),

[q(tv)] = [q(vw)] = δ · vw = δ · εw · v = δv · εw .

By Lemma 8.46, it follows from Lemma 8.38 that w • w • z = z · εw for all z ∈W .
Hence

[q(tv)] = δv · εw = w • w • δv = [t] • [t] • [q(v)] = [t2q(v)] .

Next, it follows from (Q11) that for all u, v ∈ V , [q(u + v)] = δ(u + v) =
δu+ δv+F (u, v) = [q(u)] + [q(v)] + [f(u, v)] = [q(u) + q(v) +f(u, v)]. We now show
that f is bilinear over K. Let u, v ∈ V ∗ and t ∈ K be arbitrary. By Lemma 8.52,
we have that πu(tv) = tπu(v). By the definition of πu, this yields

tv − u−1F (u, tv) = tv − tu−1F (u, v) .

By Lemma 8.50(ii), it follows that u−1F (u, tv) = tu−1F (u, v), hence

u−1 · [f(u, tv)] = u−1 · [f(u, v)] · [t] = u−1 · [tf(u, v)] .

By Lemma 8.46, this implies that f(u, tv) = tf(u, v). Since f is symmetric, it
follows from this that f is bilinear over K.

Finally, q is anisotropic, since q(v) = 0 implies that δv = 0 and hence v = 0. �

Lemma 8.54. For all u, v ∈ V , we have that q(v) = q(v) and f(u, v) = f(u, v).

Proof. We have that

q(v) = q(f(ε, v)ε− v)

= q(f(ε, v)ε) + q(v)− f(f(ε, v)ε, v)

= f(ε, v)2q(ε) + q(v)− f(ε, v)f(ε, v)

= q(v) ,
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and hence

f(u, v) = q(u+ v)− q(u)− q(v)

= q(u+ v)− q(u)− q(v)

= f(u, v)

as well. �

Theorem 8.55. (V,W, τV , τW , ε, δ) ∼= ΩQ(K,V, q).

Proof. Observe that q(ε) = 1, since [q(ε)] = δε = δ = [1].
Let φ be the isomorphism from [V ] to V which maps [v] to v for all v ∈ V , and

let ψ be the isomorphism from [K] to W which maps [t] to [t] for all t ∈W . Then
φ([ε]) = ε and ψ([1]) = [1] = δ. Furthermore,

φ([v][t]) = φ([tv]) = tv = v[t] = φ([v])ψ([t]) , and

ψ([t][v]) = ψ([tq(v)]) = [tq(v)] = [t]v = ψ([t])φ([v]) ,

for all t ∈ K and all v ∈ V . Hence (φ, ψ) is an isomorphism from ΩQ(K,V, q) to
(V,W, τV , τW , ε, δ). �

This completes the proof of Theorem 8.7.

8.3. Quadrangular Systems of Indifferent Type

Our goal in this section is to classify the quadrangular systems which are in-
different.

Let Ω = (V,W, τV , τW , ε, δ) be a quadrangular system which is indifferent. Then
F ≡ 0 and H ≡ 0. By Lemma 8.11, all elements of V and W have order 1 or 2,
and for all v ∈ V , we have v = v. Furthermore, we have πv(c) = c for all v, c ∈ V .

Lemma 8.56. K is abelian, i.e. vk1k2 = vk2k1 for all v ∈ V and all k1, k2 ∈ K.

Proof. By Lemma 8.36, we have that πv(vk) = vkσ and hence vk = vkσ

for all v ∈ V and all k ∈ K. It follows that vk1k2 = v(k1 • k2) = v(k1 • k2)σ =
v(kσ2 • kσ1 ) = vkσ2 k

σ
1 = vk2k1 for all v ∈ V and all k1, k2 ∈ K. �

Lemma 8.57. For all v ∈ V and all k ∈ K, we have that vkk = v · δ(εk).

Proof. It already follows from Lemma 8.39 that vmm = v · δ(εm) for all
m ∈ M . Now suppose that vk1k1 = v · δ(εk1) and vk2k2 = v · δ(εk2) for some
k1, k2 ∈ K. We will then show that v(k1 + k2)(k1 + k2) = v · δ(ε(k1 + k2)), which
will prove the lemma.

By (Q11), (Q12) and Lemma 8.56, we have that

v(k1 + k2)(k1 + k2) = vk1k1 + vk2k2 + vk1k2 + vk2k1

= v · δ(εk1) + v · δ(εk2) + vk1k2 + vk1k2

= v · (δ(εk1) + δ(εk2))

= v · δ(εk1 + εk2)

= v · δ(ε(k1 + k2)) ,

and we are done. �

Lemma 8.58. For all v ∈ V and all k ∈ K, we have that δ · vk = δ · εk · v.



64 8. THE CLASSIFICATION

Proof. In Lemma 8.15, we have already shown this for all k ∈ M . Now
suppose that δ · vk1 = δ · εk1 · v and δ · vk2 = δ · εk2 · v for some k1, k2 ∈ K. We will
then show that δ · v(k1 + k2) = δ · ε(k1 + k2) · v, which will prove the lemma.

By (Q11), we have that

δ · v(k1 + k2) = δ · (vk1 + vk2)

= δ · vk1 + δ · vk2

= δ · εk1 · v + δ · εk2 · v
= δ · (εk1 + εk2) · v
= δ · ε(k1 + k2) · v ,

and we are done. �

Theorem 8.59. K+,• is a commutative field of characteristic 2 with multiplica-
tive identity δ.

Proof. We have already shown in Lemma 8.56 that K+,• is a commutative
ring. Let k ∈ K be arbitrary. If δ(εk) = 0, then it would follow from Lemma 8.58
that vk = 0 for all v ∈ V and thus k = 0. Hence δ(εk) is invertible for all k 6= 0,
and it then follows from Lemma 8.57 that vkk(δ(εk))−1 = v for all v ∈ V . This
implies that k is invertible with inverse k−1 := k • (δ(εk))−1.

Furthermore, for all v ∈ V and all k ∈ K, we have that v(k+k) = vk+vk = 0,
hence k + k = 0, so char(K) = 2. �

Lemma 8.60. If vk1 = vk2 for some v ∈ V ∗ and some k1, k2 ∈ K, then k1 = k2.

Proof. If vk1 = vk2 for some v ∈ V ∗ and some k1, k2 ∈ K, then v(k1+k2) = 0.
If we would have that k1 6= k2, then k1 + k2 would be invertible, and it would then
follow that v = v(k1 +k2)(k1 +k2)−1 = 0, a clear contradiction. Hence k1 = k2. �

Theorem 8.61. (K,W, δV ) is an indifferent set. Moreover, δv • w = wv and
w • w • δv = δ · vw for all v ∈ V and all w ∈W .

Proof. It is obvious that W is a subgroup of (K,+). Since δv1 + δv2 =
δ(v1 + v2) by (Q11), δV is a subgroup of (K,+) as well. Furthermore, both W and
δV contain the multiplicative identity δ.

By (Q25), ε · δv · w = ε · wv for all v ∈ V and all w ∈W . It follows by Lemma
8.60 that δv • w = wv, and hence δV •W ⊆W .

By (Q26), we have that δ · vw = δ · εw · v = δv · εw, for all v ∈ V and all
w ∈W . By Lemma 8.60, it follows from Lemma 8.38 that w •w • z = z · εw for all
z ∈ W . Hence δv · εw = w • w • δv. It follows that w • w • δv = δ · vw, and hence
W 2 • δV ⊆ δV .

Finally, it follows from the definition of K that K is generated by W as a ring.
This shows that (K,W, δV ) is an indifferent set. �

Theorem 8.62. (V,W, τV , τW , ε, δ) ∼= ΩD(K,W, δV ).

Proof. First, we observe that v is uniquely determined by δv, since δ(v1 + v2)
= δv1 + δv2 by (Q11).

Let φ be the isomorphism from [δV ] to V which maps [δv] to v for all v ∈ V ,
and let ψ be the isomorphism from [W ] to W which maps [w] to w for all w ∈W .
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Then φ([δ]) = φ([δε]) = ε and ψ([δ]) = δ. Furthermore, it follows from Theorem
8.61 that

φ([δv][w]) = φ([w2 • δv]) = φ([δ · vw]) = vw = φ([δv])ψ([w]) , and

ψ([w][δv]) = ψ([δv • w]) = ψ([wv]) = wv = ψ([w])φ([δv]) ,

for all v ∈ V and all w ∈ W . Hence (φ, ψ) is an isomorphism from ΩD(K,W, δV )
to (V,W, τV , τW , ε, δ). �

This completes the proof of Theorem 8.8, and thereby the classification of all
reduced quadrangular systems.

8.4. Quadrangular Systems of Pseudo-quadratic Form Type, I

Let Ω = (V,W, τV , τW , ε, δ) be a wide quadrangular system which is the exten-
sion of a reduced quadrangular system Λ of proper involutory type; more precisely,
let Λ = (V,Rad(H), τV , τW , ε, δ) ∼= ΩI(K,K0, σ) with K = 〈K0〉 and σ 6= 1, where
τV and τW are as in Remark 8.3. In particular, V = [K].

Definition 8.63. Let Y := Rad(H). Note that Y is a normal subgroup of W

since Y ⊆ Z(W ) by (Q8); let W̃ := W/Y . Let ι be the canonical surjection from

W to W̃ . We will also write w̃ in place of ι(w), for all w ∈ W . Then w̃1 = w̃2 if
and only if w1 � w2 ∈ Y .

By (Q8) and (Q7), [w1, w2] ∈ Im(F ) ⊆ Y , hence W̃ is abelian; we will use the

additive notations + and − for W̃ . We can define a map τ̃W from W̃ × V to W̃ ,
which we will denote by · or by juxtaposition, by setting

τ̃W (w̃, v) := w̃ · v := w̃v

for all v ∈ V and all w ∈W . This is well defined: let w̃1 = w̃2, then w1 � w2 ∈ Y ,
and hence w1v � w2v = (w1 � w2)v ∈ Y since Y · V = Y ; it then follows that
w̃1v = w̃2v.

Remark 8.64. If s ∈ K0, then the notation [s] is ambiguous. If we want
to make clear whether we mean [s] ∈ V or [s] ∈ W , we will write [s]

V
and [s]

W
,

respectively. Note that [s]
W
∈ Y for all s ∈ K0, and that ε[s]

W
= [s]

V
for all s ∈ K0.

Theorem 8.65. W̃ is a right vector space over K, with scalar multiplication

given by w̃t := w̃ · [t], for all t ∈ K and all w̃ ∈ W̃ .

Proof. We have that

(w̃1 + w̃2)t = (w̃1 + w̃2) · [t] = ι
(
(w1 + w2) · [t]

)
= ι(w1 · [t]) + ι(w2 · [t]) = w̃1 · [t] + w̃2 · [t] = w̃1t+ w̃2t

for all t ∈ K and all w1, w2 ∈W . By (Q11) and (Q7),

w̃(t1 + t2) = w̃ · [t1 + t2] = w̃ · ([t1] + [t2]) = ι(w · ([t1] + [t2]))

= ι(w · [t1] � w · [t2] � F ([t2]w, [t1]))

= ι(w · [t1]) + ι(w · [t2]) = w̃ · [t1] + w̃ · [t2] = w̃t1 + w̃t2

for all t1, t2 ∈ K and all w ∈W .
It only remains to show that w̃(t1t2) = (w̃t1)t2 for all t1, t2 ∈ K and all w ∈W .

(The other axioms for a vector space are obvious.) We thus have to check that
ι(w · [t1t2]) = ι(w · [t1] · [t2]). Since K = 〈K0〉, it suffices to show this for t1 ∈ K0;
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the result for t1 = s1 . . . sn with s1, . . . , sn ∈ K0 will then follow by induction on n,
and since we have already shown that w̃ · [t3 +t4] = w̃ · [t3]+w̃ · [t4] for all t3, t4 ∈ K,
the result then follows for all t1 ∈ K.

By Remark 8.64, (Q26) and the definition of ΩI(K,K0, σ), we have that

w · [s]
V
· [t] = w · ε[s]

W
· [t]

= w · [t][s]
W

= w · [st]
V

and hence ι(w · [s]
V
· [t]) = ι(w · [st]

V
) for all s ∈ K0 and all t ∈ K, which is what

we had to show. �

Definition 8.66. Let π be the map from W̃ to V/[K0]
V

which maps w̃ to εw
(mod [K0]

V
). This map is well defined: let w1, w2 ∈ W be such that w̃1 = w̃2.

Then w1 � w2 ∈ Y , hence

εw1 − εw2 = ε((w1 � w2) � w2)− εw2

= ε(w1 � w2) + εw2 − εw2

= ε(w1 � w2) ∈ εY = ε[K0]
W

= [K0]
V

by (Q12).

Lemma 8.67. For all w̃ ∈ W̃ , we have that π(w̃) = 0 if and only if w̃ = 0.

Proof. Let w ∈ W be such that π(w̃) = 0. Then εw ∈ [K0]
V

, say εw = [s]
V

with s ∈ K0. By 3.13(ii), ε(�[s]
W

) = −ε[s]
W

since [s]
W
∈ Y . It follows that

ε(w� [s]
W

) = εw+ ε(�[s]
W

) = εw− ε[s]
W

= εw− [s]
V

= 0, and hence w = [s]
W
∈ Y .

It follows that w̃ = 0. �

Definition 8.68. Let h be the map from W̃ ×W̃ to K, defined by the identity

[h(w̃1, w̃2)] := H(w1, w2) for all w̃1, w̃2 ∈ W̃ . Since W̃ = W/Rad(H), the map h is
well defined.

Lemma 8.69. For all v ∈ V , all w ∈ W and all y1, . . . , yn ∈ Y , we have that
vwy1 . . . yn = vy1 . . . ynw.

Proof. We will first prove the lemma for n = 1. Let v ∈ V , w ∈W and y ∈ Y .
We may assume that w 6= 0. Note that Πw(y) = y since y ∈ Rad(H). It follows

from (Q23) that vy = −v(�w)yκ(w), and hence, by (Q18), vy(�w) = v(�w)y.
Substituting �w for w now yields the result for n = 1.

We advance to general n by induction. Let v ∈ V , w ∈W and y1, . . . , yn ∈ Y ,
and suppose that vwy1 . . . yn−1 = vy1 . . . yn−1w. Then

vwy1 . . . yn = vy1 . . . yn−1w · yn
= vy1 . . . yn−1ynw ,

where we have used the lemma for n = 1 in the last equality. This completes the
proof of this lemma. �

Lemma 8.70. For all w ∈W and all y1, . . . , yn ∈ Y , we have that εwy1 . . . yn =
εyn . . . y1w. In particular, for all w ∈ W and all s ∈ K0, we have that [s]

V
w =

εw[s]
W

.
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Proof. By Theorem 8.19, εy1 . . . yn = εyn . . . y1. The first result follows by
substituting ε for v in Lemma 8.69.

In the particular case n = 1 and y1 = [s]
W

, we get that εw[s]
W

= ε[s]
W
w =

[s]
V
w. �

Theorem 8.71. The map h is a skew-hermitian form over K with respect to
σ.

Proof. Since H(w1, w2) = −H(w2, w1) for all w1, w2 ∈W by (Q22), and since

[t] = [tσ] for all t ∈ K, it follows that h(w̃1, w̃2) = −h(w̃2, w̃1)σ, for all w̃1, w̃2 ∈ W̃ .
By (Q22), (Q12) and Lemma 8.70,

H(w1 · [s]V , w2) = −H(w2, w1 · [s]V )

= −[s]
V
· (w1 � w2) + [s]

V
· w1 + [s]

V
· w2

= −ε(w1 � w2)[s]
W

+ εw1[s]
W

+ εw2[s]
W

= −H(w2, w1) · [s]
W

= H(w1, w2) · [s]
W
,

for all w1, w2 ∈W and all s ∈ K0. Hence

[h(w̃1s, w̃2)] = [h(w̃1, w̃2)] · [s]
W

= [sh(w̃1, w̃2)] ,

from which it follows that h(w̃1s, w̃2) = sh(w̃1, w̃2) for all w1, w2 ∈ W and all
s ∈ K0. Since K = 〈K0〉 and since h is additive in both variables, it follows from
this that h(w̃1t, w̃2) = tσh(w̃1, w̃2) for all w1, w2 ∈W and all t ∈ K.

Finally, h(w̃1, w̃2t) = −h(w̃2t, w̃1)σ = −(tσh(w̃2, w̃1))σ = −h(w̃2, w̃1)σt =
h(w̃1, w̃2)t for all w1, w2 ∈W and all t ∈ K. This shows that h is a skew-hermitian
form over K with respect to σ. �

Definition 8.72. For all t ∈ K, let kt be the homomorphism from V to itself
which maps [t′] to [tt′] for all [t′] ∈ [K] = V . We denote the action of kt by right
juxtaposition, i.e. [t′]kt = [tt′] for all t, t′ ∈ K. In particular, we can identify ks
and [s]

W
for all s ∈ K0. Moreover, we set kσt := ktσ for all t ∈ K. Note that the set

{kt | t ∈ K} coincides with the set K that we defined in the beginning of section
8.1. In particular, we can apply the lemmas and theorems of that section on the
sub-quadrangular system Λ = (V, Y, τV , τW , ε, δ).

Lemma 8.73. For all w ∈W and all t1, t2 ∈ K, we have that

εk1wk
σ
2 + εk2wk

σ
1 = εF ([t2]w, [t1]) +H(w[t2], w[t1]) ,

where k1 := kt1 and k2 := kt2 .

Proof. By Lemma 8.22 and the definition of the map v 7→ v, we have that

εF ([t2]w, [t1]) = εF (εk2w, εk1)

= εF (εk2wk
σ
1 , ε)

= εk2wk
σ
1 + εk2wkσ1 ,
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and by Theorem 8.71 and 3.13(ii), we have that

H(w[t2], w[t1]) = [h(w̃t2, w̃t1)]

= [tσ2h(w̃, w̃t1)]

= [h(w̃, w̃t1)]kσ2

= H(w,w[t1])kσ2

= [t1](�w)kσ2 + [t1]wkσ2

= εk1(�w)kσ2 + εk1wk
σ
2 .

It only remains to show that εk2wkσ1 = −εk1(�w)kσ2 . By Lemma 8.70, we have

that εkσt w = εwkt for all w ∈ W and all t ∈ K. By (Q16) with ε in place of v and
Lemma 8.18 with ε(�w) in place of v, it follows that

εk2wkσ1 = εwkσ2 k
σ
1

= −ε(�w)kσ2 k
σ
1

= −ε(�w)kσ1 k
σ
2

= −εk1(�w)kσ2 ,

which completes the proof of this lemma. �

Theorem 8.74. For all w ∈W and all t ∈ K, we have that ε · w[t] = εktwk
σ
t .

Proof. First assume that t = s1 . . . sn with s1, . . . , sn ∈ K0. Let yi :=
[si]W ∈ Y for all i ∈ {1, . . . , n}. Then we have to show that ε · w(εy1 . . . yn) =
εy1 . . . ynwyn . . . y1 for all w ∈W . By (Q16), Lemma 8.27 and Lemma 8.70,

εy1 . . . ynw = −(εy1 . . . yn)−1(�w · εy1 . . . yn)

= −εy−1
n . . . y−1

1 (�w · εy1 . . . yn)

= −ε(�w · εy1 . . . yn)y−1
1 . . . y−1

n

= ε(w · εy1 . . . yn)y−1
1 . . . y−1

n ,

from which it follows that ε(w · εy1 . . . yn) = εy1 . . . ynwyn . . . y1.
Now suppose that ε ·w[t1] = εk1wk

σ
1 and ε ·w[t2] = εk2wk

σ
2 for some t1, t2 ∈ K,

where where k1 := kt1 and k2 := kt2 . We will show that

ε · w[t1 + t2] = ε(k1 + k2)w(k1 + k2)σ ,

which will prove the theorem for all t ∈ K, since K = 〈K0〉.
By (Q11), (Q12) with v = ε, (Q7) and Lemma 8.73, we have that

ε · w[t1 + t2] = ε · w([t1] + [t2])

= ε · (w[t1] � w[t2] � F ([t2]w, t1))

= ε · w[t1] + ε · w[t2] + εF ([t2]w, t1) +H(w[t2], w[t1])

= εk1wk
σ
1 + εk2wk

σ
2 + εk1wk

σ
2 + εk2wk

σ
1

= ε(k1 + k2)w(k1 + k2)σ ,

which completes the proof of this theorem. �

Lemma 8.75. Let w ∈ W and t ∈ K be arbitrary. Let x ∈ K be such that
εw = [x]. Then [t]w = [xt], and εktwk

σ
t = [tσxt].
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Proof. By Lemma 8.70, we have that

[t]w = εktw = εwkσt = [xσ]kσt = [tσxσ] = [xt] ;

it then follows that
εktwk

σ
t = [xt]kσt = [tσxt] ,

and we are done. �

Definition 8.76. For all w̃ ∈ W̃ , let p(w̃) be any element t ∈ K such that [t]

is contained in the coset π(w̃) ∈ V/[K0]
V

. Hence p is a map from W̃ to K such
that [p(w̃)] ≡ εw (mod [K0]

V
).

Theorem 8.77. (K,K0, σ, W̃ , p) is an anisotropic pseudo-quadratic space with
corresponding skew-hermitian form h.

Proof. It only remains to show that p is a pseudo-quadratic form. All equiv-
alences will be modulo [K0]

V
. By (Q12), we have that

[p(w̃1 + w̃2)] ≡ [p(w̃2 + w̃1)]

≡ ε(w2 � w1)

≡ εw2 + εw1 +H(w1, w2)

≡ [p(w̃1)] + [p(w̃2)] + [h(w̃1, w̃2)]

for all w1, w2 ∈W , which shows the first property.
Next, let w be an arbitrary element of W , and let x ∈ K be such that εw = [x].

Then [p(w̃)] ≡ [x], and hence [tσp(w̃)t] ≡ [tσxt], since tσK0t ⊆ K0. It follows from
Theorem 8.74 and Lemma 8.75 that

[p(w̃t)] ≡ ε · w[t] ≡ εktwkσt ≡ [tσxt] ≡ [tσp(w̃)t] ,

which shows the second property.

Finally, if [p(w̃)] ≡ 0 for some w̃ ∈ W̃ , then π(w̃) = 0 and hence w̃ = 0 by
Lemma 8.67. �

Lemma 8.78. Let the group T be as in section 7.4. For each element (a, x) ∈ T ,
there is a unique element w ∈ W such that w ∈ a and εw = [x]. If we denote this
element by χ(a, x), then χ is an isomorphism from T to W .

Proof. Let (a, x) ∈ T be arbitrary. Choose an arbitrary element z ∈ a.
Then a = z̃, and εz ≡ [x] (mod [K0]

V
) by the definition of T . Hence εz − [x] ∈

[K0]
V

= εY , say εz − [x] = εy with y ∈ Y . Set w = z � y, then w̃ = z̃ = a, and
εw = ε(z� y) = εz− εy = [x] by (Q12) and 3.13(ii). This shows the existence of w.

Now suppose that w1, w2 ∈ W are such that w̃1 = w̃2 and εw1 = εw2. Then
w1 � w2 ∈ Y , and hence, by (Q12),

0 = εw1 − εw2

= ε((w1 � w2) � w2)− εw2

= ε(w1 � w2) + εw2 − εw2

= ε(w1 � w2) ,

from which it follows that w1 = w2.
Hence χ : T → W is a well defined map, which is bijective, with the inverse

map given by χ−1(w) = (w̃, x) ∈ T , where [x] = εw. In order to show that χ is
an isomorphism, it now suffices to show that χ−1(w1 � w2) = χ−1(w1) � χ−1(w2).
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Let x1, x2 ∈ K be such that [x1] = εw1 and [x2] = εw2. Then ε(w1 � w2) =
εw1 + εw2 +H(w2, w1) = [x1] + [x2] + [h(w̃2, w̃1)], and hence

χ−1(w1 � w2) = (w̃1 + w̃2, x1 + x2 + h(w̃2, w̃1))

= (w̃1, x1) � (w̃2, x2)

= χ−1(w1) � χ−1(w2) ,

which completes the proof of this lemma. �

Theorem 8.79. (V,W, τV , τW , ε, δ) ∼= ΩP (K,K0, σ, W̃ , p).

Proof. Let φ be the isomorphism from [K] to V which maps [t] to [t] for all
t ∈ K, and let ψ be the isomorphism from [T ] to W which maps [a, x] to χ(a, x)

for all (a, x) ∈ T . Then φ([1]) = [1] = ε and ψ([0, 1]) = δ since δ ∈ Y (hence δ̃ = 0)
and εδ = [1].

Now, let t ∈ K and (a, x) ∈ T be arbitrary. Let w = ψ([a, x]) = χ(a, x), then
a = w̃ and εw = [x]. By Lemma 8.75, [xt] = [t]w, hence

φ([t][a, x]) = φ([xt]) = [xt] = [t]w = φ([t])ψ([a, x]) , and

ψ([a, x][t]) = ψ([at, tσxt]) = w[t] = ψ([a, x])φ([t]) ,

since w̃[t] = w̃t = at and ε ·w[t] = [tσxt] by Theorem 8.74 and Lemma 8.75. Hence

(φ, ψ) is an isomorphism from ΩP (K,K0, σ, W̃ , p) to (V,W, τV , τW , ε, δ). �

This completes the proof of Theorem 8.9.

8.5. Quadrangular Systems of Type F4

Let Ω = (V,W, τV , τW , ε, δ) be a wide quadrangular system which is the exten-
sion of a reduced quadrangular system Λ of quadratic form type; more precisely, let
Λ = (V,Rad(H), τV , τW , ε, δ) ∼= ΩQ(K,V0, q), where τV and τW are as in Remark
8.3.

Our goal in this section is to classify these quadrangular systems in the case
that Rad(F ) 6= 0.

So assume that Rad(F ) 6= 0. It then follows from (Q10) that ε ∈ Rad(F ). Note
that v = v for all v ∈ V by Lemma 8.11.

Remark 8.80. We will identify V and V0 in the sequel if there is no danger of
confusion, which will allow us to use notations like tv with t ∈ K and v ∈ V .

Observe that the axiom system is very symmetrical now. (See section A.3.1 in
the appendix.) In particular, every identity will have a “dual identity”, which is
obtained by switching the roles of V and W .

Lemma 8.81. For all v, v1, v2 ∈ V and all w,w1, w2 ∈W , we have that

(i) F (v1w, v2) = F (v1, v2w) ;
(ii) H(w1v, w2) = H(w1, w2v) .

Proof. Since both V and W are abelian, it follows from (Q21) and (Q11) that
F (v1w, v2) = w(v2 + v1) + wv2 + wv1 = w(v1 + v2) + wv1 + wv2 = F (v2w, v1) =
F (v1, v2w), which proves (i). Similarly, (ii) follows from (Q22) and (Q12). (Identity
(ii) is the “dual” of identity (i).) �
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Definition 8.82. Let R := Rad(F ). Then ε ∈ R, and R 6= V since F 6≡ 0.
Moreover, let L := q(R) ⊆ K.

Lemma 8.83. Σ := (R,W, τV , τW , ε, δ) is a quadrangular system with FΣ ≡ 0
and HΣ 6≡ 0; see Remark 8.3.

Proof. First of all, we observe that R = Rad(F ) is a subgroup of V , since F
is additive in both variables. We have that Im(FΣ) = F (R,R) = 0, and Im(HΣ) =
H(W,W ) = Im(H) 6= 0. It now only remains to show that τV (R × W ) ⊆ R,
H(W,W ) ⊆ R and (R∗)−1 ⊆ R.

If v ∈ R, then F (v, V ) = 0, hence F (vw, V ) = F (v, V w) ⊆ F (v, V ) = 0 as
well for all w ∈ W , by Lemma 8.81(i). Hence τV (R ×W ) = R ·W ⊆ R. Since
W is abelian, it follows from (Q8) that H(W,W ) ⊆ Rad(F ) = R. Finally, if
v ∈ R∗, then F (v−1, V ) = F (v, V )v−1 = 0 by (Q17), and hence v−1 ∈ R. Thus
Σ := (R,W, τV , τW , ε, δ) is a quadrangular system. �

By Theorem 8.13, Σ∗ = (W,R, τW , τV , δ, ε) is a reduced quadrangular system.
Suppose that Σ∗ were of involutory type, say Σ∗ ∼= QI(J, J0, σ) for some involutory
set (J, J0, σ). Then δ ∈ Rad(H) would imply that 0 = FΣ∗([1], [a]) = [a + aσ] and
hence a + aσ = 0 for all a ∈ J , from which it would follow that FΣ∗([a], [b]) =
[(aσb) + (aσb)σ] = 0 for all a, b ∈ J . Hence HΣ ≡ FΣ∗ = 0, a contradiction.

It follows that Σ∗ must be of quadratic form type. In particular, R has the
structure of a field, W is a (right) vector space over R, and the map p : W → R :
w 7→ εw is a quadratic form. If we denote the multiplication in R by •, then we
have that w(r1 • r2) = (wr1)r2 for all w ∈W and all r1, r2 ∈ R.

Lemma 8.84. L is a subfield of K, with K2 ⊆ L ⊆ K. Moreover, q is a field
isomorphism from R to L.

Proof. We will first prove that q is an isomorphism (both additive and mul-
tiplicative) from R to L. Since L = q(R), q is surjective. For all r1, r2 ∈ R, we
have that [q(r1 + r2)] = δ(r1 + r2) = δr1 + δr2 = [q(r1) + q(r2)], by (Q11); hence q
is additive. In particular, if q(r1) = q(r2), then q(r1 + r2) = 0 and hence r1 = r2,
since q is anisotropic. Hence q is injective. Furthermore, for all r1, r2 ∈ R, we have
that [q(r1 • r2)] = δ(r1 • r2) = (δr1)r2 = [q(r1)]r2 = [q(r1)q(r2)] by Lemma 8.51,
hence q is multiplicative.

It follows that L = q(R) is a commutative field which is isomorphic to R.
Finally, for all t ∈ K, we have that q(tε) = t2q(ε) = t2, hence K2 ⊆ q(R) = L since
tε ∈ Rad(F ). �

Definition 8.85. For all s ∈ L, we let [s] := q−1(s) ∈ V . If we want to make
clear whether we mean [s] ∈ V or [s] ∈W , we will write [s]

V
and [s]

W
, respectively.

By Lemma 8.84, we can consider W as a (left) vector space over L via the scalar
multiplication sw := w[s] for all w ∈W and all s ∈ L.

Definition 8.86. Let q̂ be the map from W to L given by q̂(w) := q(p(w)) =

q(εw) for all w ∈W , and let f̂ be the map from W ×W to L given by f̂(w1, w2) :=
q(H(w1, w2)) for all w1, w2 ∈ W . In particular, εw = [q̂(w)]

V
and H(w1, w2) =

[f̂(w1, w2)]
V

for all w,w1, w2 ∈W .

Lemma 8.87. q̂ is a quadratic form from W to L with corresponding bilinear

form f̂ .
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Proof. Since p is a quadratic form from W to R with corresponding bilinear
form H, it follows by Lemma 8.84 that q̂ = q ◦ p is a quadratic form from W to L

with corresponding bilinear form f̂ = q ◦H. �

Remark 8.88. For s ∈ L and t ∈ K, we will write q[s] and q̂[t] in place of
q([s]) and q̂([t]), respectively.

Lemma 8.89. For all v, v1, v2 ∈ V and all w,w1, w2 ∈W , we have that

(i) F (v1, v2) = 0 =⇒ wv1v2 = wv2v1 ;
(ii) H(w1, w2) = 0 =⇒ vw1w2 = vw2w1 .

Proof. Observe that (Q23) can be rewritten as “vΠw(z) = vwzw−1”, and
that (Q24) can be rewritten as “wπv(c) = wvcv−1” since πv(ε) = ε.

Let v1, v2 ∈ V be such that F (v1, v2) = 0, and assume that v1 6= 0. Then
πv1(v2) = v2. It then follows from (Q24) that wv2 = wv1v2v

−1
1 for all w ∈ W ,

hence (i). Identity (ii) is the dual of (i). �

In particular, s(wv) = wv[s] = w[s]v = (sw)v and t(vw) = vw[t] = v[t]w =
(tv)w for all v ∈ V , w ∈ W , s ∈ L and t ∈ K. It follows that the notations swv
and tvw are unambiguous.

Lemma 8.90. For all v ∈ V ∗ and all w ∈W ∗, we have that

(i) v−1 = q(v)−1v ;
(ii) w−1 = q̂(w)−1w .

Proof. If we substitute δ for w in (Q16), then we get that v = v−1 · δv =
v−1[q(v)]

W
= q(v)v−1, which proves (i). Similarly for (ii). �

Lemma 8.91. For all v ∈ V ∗, w ∈W ∗, t ∈ K and s ∈ L, we have that

(i) w · tv = q̂[t]wv ;
(ii) v · sw = q[s]vw ;
(iii) wv = q̂[q(v)]wv−1 ;
(iv) vw = q[q̂(w)]vw−1 .

Proof. We only prove (i) and (iii). By (Q26),

w · tv = w · v[t] = w · ε[t] · v = w · [q̂[t]]
V
· v = q̂[t]wv ,

which proves (i). It follows from Lemma 8.90(i) and (i) that wv = w · q(v)v−1 =
q̂[q(v)]wv−1, which proves (iii). �

Lemma 8.92. For all v, c ∈ V , w, z ∈W , we have that

(i) wvcv = w(f(v, c)v + q(v)c) ;

(ii) vwzw = v(f̂(w, z)w + q̂(w)z) .

Proof. We only prove (i). We may assume that v 6= 0. By (Q24) and by
Lemma 8.90(i),

wvcv−1 = wπv(c) = w(c+ f(v, c)v−1) = w(c+ f(v, c)q(v)−1v) .

It follows by Lemma 8.91(iii) and Lemma 8.91(i) that

wvcv = q̂[q(v)]wvcv−1 = q̂[q(v)]w(c+ f(v, c)q(v)−1v) = w(q(v)c+ f(v, c)v) ,

which is what we had to show. �

Lemma 8.93. For all v, c ∈ V , w, z ∈W , we have that
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(i) wvc+ wcv = q̂[f(v, c)]w + [f(v, c)f(vw, c)] ;

(ii) vwz + vzw = q[f̂(w, z)]v + [f̂(w, z)f̂(wv, z)] .

Proof. Again, we only prove (i). We may assume that v 6= 0. By (Q24),
Lemma 8.91(i) and Lemma 8.90(i),

wvcv−1 = wπv(c)

= w(c+ f(v, c)v−1)

= wc+ w · f(v, c)v−1 + F (f(v, c)v−1, cw)

= wc+ q̂[f(v, c)]wv−1 + [f(f(v, c)q(v)−1v, cw)] ,

and hence, by Lemma 8.51,

wvc = wcv + q̂[f(v, c)]w + [f(v, c)q(v)−1f(v, cw)]v

= wcv + q̂[f(v, c)]w + [f(v, c)f(v, cw)]

= wcv + q̂[f(v, c)]w + [f(v, c)f(vw, c)] ,

which is what we had to show. �

Lemma 8.94. For all v ∈ V , c ∈ V ∗, w ∈W and z ∈W ∗, we have that

(i) z · vz = q̂(z)zv ;
(ii) c · wc = q(c)cw ;

(iii) f̂(z, w · vz)z−1 = f̂(zv, w)z ;
(iv) f(c, v · wc)c−1 = f(cw, v)c .

Proof. We will only prove (i) and (iii). First of all, observe that it follows from
(Q12) thatH(w,wv) = 0 for all v ∈ V and all w ∈W . In particular, Πz(z·εz) = z·εz
and Πz(z · vz) = z · vz. It thus follows from (Q26) that z · vz = z · εz · v = q̂(z)zv,
which shows (i). By Lemma 8.81(ii) and Lemma 8.90(ii), it now follows that

f̂(z, w · vz)z−1 = f̂(z · vz, w)q̂(z)−1z

= f̂(q̂(z)zv, w)q̂(z)−1z

= f̂(zv, w)z ,

which shows (iii). �

Lemma 8.95. For all v ∈ V and all w ∈W , we have that

(i) [q̂(wv)] = q(v)[q̂(w)] ;
(ii) [q(vw)] = q̂(w)[q(v)] .

Proof. We will only prove (i). We may again assume that v 6= 0. Since
ε ∈ Rad(F ), it follows by Lemma 8.81(i) that F (v, εc) = F (vc, ε) = 0 and hence
πv(εc) = εc for all c ∈ V . If we set c = ε in (Q25), we thus get that ε ·δv ·w = ε ·wv,
and hence [q̂(wv)] = ε · wv = ε · δv · w = ε[q(v)]w = q(v)εw = q(v)[q̂(w)]. �

Lemma 8.96. For all v, c ∈ V and all w, z ∈W , we have that

(i) w · vz + q̂(z)wv = f̂(w, zv)z + f̂(w, z)zv ;
(ii) v · wc+ q(c)vw = f(v, cw)c+ f(v, c)cw .

Proof. We will only prove (i). We may assume that z 6= 0. By (Q26), we
have that

w · εz · v + z−1H(z, w · εz) · v = w · vz + z−1H(z, w · vz) ,
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hence

q̂(z)wv + f̂(z, w · εz)z−1v = w · vz + f̂(z, w · vz)z−1 ,

and it follows from Lemma 8.94(iii) that

q̂(z)wv + f̂(z, w)zv = w · vz + f̂(zv, w)z ,

which is what we had to show. �

At this point, we will break the symmetry. We cannot avoid this, since L is a
subfield of K, but not vice versa.

Lemma 8.97. For all t ∈ K and all s ∈ L, we have that

(i) s[t] = [st] ;
(ii) t[s] = [t2s] .

Proof. By Lemma 8.51, we have that s[t] = [t][s] = [tq[s]]. Since [s] = q−1(s)
by definition, it follows that s[t] = [st]. On the other hand, t[s] = tq−1(s) =
q−1(t2s) = [t2s]. �

Now choose fixed arbitrary elements ξ ∈W \ Y and d ∈ V \R.

Theorem 8.98. There exists an element e ∈ V such that f(d, e) = 1 and
f(d, eξ) = 0. Moreover, f(dξ, eξ) = q̂(ξ) ∈ L \K2.

Proof. We will first show the last statement. So let a, b ∈ V be arbitrary
elements such that f(a, b) = 1. Then, by Lemma 8.81(i) and Lemma 8.91(iv), we
have that f(aξ, bξ) = f(a, bξξ) = f(a, q[q̂(ξ)]b) = q[q̂(ξ)]f(a, b) = q[q̂(ξ)] = q̂(ξ)
(note that [s] = q−1(s) for all s ∈ L by definition). Let α := q̂(ξ). Suppose that
α ∈ K2, say α = t2 for some t ∈ K. Then q(tε) = t2 = α = q̂(ξ) = q(εξ), hence
ε[t] = tε = εξ. Since [t] ∈ Y , this implies that ε(ξ + [t]) = εξ + ε[t] = 0, and hence
ξ = [t] ∈ Y , which contradicts the choice of ξ. Hence α 6∈ K2.

Since d 6∈ R = Rad(F ), there exist an elements u ∈ V such that F (d, u) 6= 0.
Let v := f(d, u)−1u, then

f(d, v) = f(d, f(d, u)−1u)

= f(d, u)−1f(d, u)

= 1 .

In particular, f(dξ, vξ) = q̂(ξ) = α. Since α 6∈ K2, we have that α−1f(d, vξ)2 6= 1.
Now let

e :=
(
1 + α−1f(d, vξ)2

)−1(
v + α−1f(d, vξ)vξ

)
.

Then, by Lemma 8.81(i),

f(d, e) =
(
1 + α−1f(d, vξ)2

)−1
f(d, v + α−1f(d, vξ)vξ)

=
(
1 + α−1f(d, vξ)2

)−1(
f(d, v) + α−1f(d, vξ)f(d, vξ)

)
=
(
1 + α−1f(d, vξ)2

)−1(
1 + α−1f(d, vξ)2

)
= 1 ,



8.5. QUADRANGULAR SYSTEMS OF TYPE F4 75

and

f(d, eξ) =
(
1 + α−1f(d, vξ)2

)−1
f(d, vξ + α−1f(d, vξ)vξξ)

=
(
1 + α−1f(d, vξ)2

)−1(
f(d, vξ) + α−1f(d, vξ)f(d, vξξ)

)
=
(
1 + α−1f(d, vξ)2

)−1(
f(d, vξ) + α−1f(d, vξ)α

)
= 0 ,

which shows that e fulfills the required properties. �

From now on, let e ∈ V be as in Theorem 8.98, and let α := f(dξ, eξ) = q̂(ξ).
By Theorem 8.98, α ∈ L \K2.

Theorem 8.99. Let B := 〈d, e, dξ, eξ〉. Then dimK B = 4 and B ∩R = 0.

Proof. Let v = t1d + t2e + t3dξ + t4eξ with t1, t2, t3, t4 ∈ K be an arbitrary
element of B. Suppose that v ∈ R = Rad(F ) = Rad(f). Then f(v, d) = f(v, e) =
f(v, dξ) = f(v, eξ) = 0. Note that f(d, d) = f(d, dξ) = f(e, e) = f(e, eξ) =
f(dξ, dξ) = f(eξ, eξ) = 0 by (Q11), and that f(d, eξ) = f(e, dξ) = 0 by Theorem
8.98 and Lemma 8.81(i). Moreover, f(d, e) = 1 and f(dξ, eξ) = α 6= 0. It now
follows from f(v, d) = 0 that t2 = 0, from f(v, e) = 0 that t1 = 0, from f(v, dξ) = 0
that t4 = 0 and from f(v, eξ) = 0 that t3 = 0. Hence v = 0. This shows that
B ∩R = 0.

Since 0 ∈ R, the previous paragraph also shows that it follows from v = 0 that
t1 = t2 = t3 = t4 = 0, hence d, e, dξ and eξ are linearly independent. It follows that
dimK B = 4. �

Theorem 8.100. B⊥ = R, where B⊥ := {v ∈ V | f(v,B) = 0}.

Proof. It is obvious that R ⊆ B⊥. So let g be an arbitrary element of B⊥.
Then f(g, d) = f(g, e) = f(g, dξ) = f(g, eξ) = 0. If we substitute ξ for z, ξde for w
and g for v in Lemma 8.96(i), then we get that

ξde · gξ + q̂(ξ)ξdeg = f̂(ξde, ξg)ξ + f̂(ξde, ξ)ξg .

Since f(e, gξ) = 0 and f(d, gξ) = 0, it follows from Lemma 8.89(i) that ξde · gξ =
ξd · gξ · e = ξ · gξ · d · e, and hence ξde · gξ = q̂(ξ)ξgde by Lemma 8.94(i). On the
other hand, since f(e, g) = 0 and f(d, g) = 0, it follows from Lemma 8.89(i) that
q̂(ξ)ξdeg = q̂(ξ)ξdge = q̂(ξ)ξgde.

Hence ξde · gξ = q̂(ξ)ξdeg, and it follows that f̂(ξde, ξg)ξ = f̂(ξde, ξ)ξg. By
Lemma 8.81(i) and (Q11), we have that

[f̂(ξde, ξ)] = [f̂(ξd, ξe)]

= [q̂(ξd+ ξe)] + [q̂(ξd)] + [q̂(ξe)]

= [q̂(ξ(d+ e))] + [q̂(ξd)] + [q̂(ξe)]

since F (dξ, e) = 0. It follows from Lemma 8.95(i) that

[f̂(ξde, ξ)] = q(d+ e)[q̂(ξ)] + q(d)[q̂(ξ)] + q(e)[q̂(ξ)]

=
(
q(d+ e) + q(d) + q(e)

)
[α]

= f(d, e)[α]

= [α] ,
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and hence f̂(ξde, ξ) = α 6= 0. It follows that ξg = α−1f̂(ξde, ξg)ξ = ξr with

r = [α−1f̂(ξde, ξg)] ∈ R. Since ξ(g + r) = ξg + ξr = 0 by (Q11), we conclude that
g = r ∈ R, which completes the proof of this theorem. �

Since dimK B = 4 is finite by Theorem 8.99, we have V = B + B⊥. Since
B ∩ R = 0 by Theorem 8.99 and B⊥ = R by Theorem 8.100, it follows that V
has a decomposition V = B ⊕ R. In particular, every complement of R in V has
dimension 4 over K. By symmetry, it also follows that every complement of Y in
W has dimension 4 over L.

Let β := q(d)−1. Then β ∈ K \ L, since β ∈ L would imply that q(d) = β−1 =
q[β−1] and hence d = [β−1] ∈ [L] = R = Rad(f), which contradicts the fact that
f(d, e) = 1.

Theorem 8.101. Let A := 〈ξ, ξed−1, ξd−1, β2ξe〉. Then W = A⊕ Y .

Proof. Let w = s1ξ + s2ξed
−1 + s3ξd

−1 + s4β
2ξe with s1, s2, s3, s4 ∈ L be

an arbitrary element of A. Suppose that w ∈ Y = Rad(H) = Rad(f̂). Observe
that q̂[q(d)] = q(ε[q(d)]) = q(q(d)ε) = q(d)2 = β−2 and hence, by Lemma 8.91(iii),

f̂(ξed−1, ξ) = f̂(ξe, ξd−1) = q̂[q(d)]−1f̂(ξe, ξd) = αβ2 6= 0.

By (Q12), f̂(ξ, ξ) = f̂(ξd−1, ξ) = f̂(ξe, ξ) = 0. It thus follows from f̂(w, ξ) = 0

that f̂(s2ξed
−1, ξ) = 0 and hence s2 = 0. We now have w = s1ξ+ s3ξd

−1 + s4β
2ξe.

Since f̂(ξ, ξe) = f̂(ξe, ξe) = 0 and f̂(ξd−1, ξe) = αβ2 6= 0, it follows from

f̂(w, ξe) = 0 that s3 = 0, and hence w = s1ξ + s4β
2ξe.

Since f̂(ξ, ξd−1) = 0 and f̂(ξe, ξd−1) = αβ2 6= 0, it follows from f̂(w, ξd−1) = 0
that s4 = 0. Hence w = s1ξ.

Finally, it now follows from f̂(w, ξed−1) = 0 that f̂(s1ξ, ξed
−1) = s1αβ

2 = 0
and hence s1 = 0.

So we have shown that w ∈ Y implies w = 0, and at the same time, we have
shown that ξ, ξed−1, ξd−1 and β2ξe are linearly independent. Hence dimLA = 4
and A ∩ Y = 0, from which it follows that A is contained in a complement of Y in
W . Since every complement of Y in W is 4-dimensional, this implies that A itself
is a complement of Y , i.e. W = A⊕ Y . �

Let E be the splitting field of the polynomial φ(x) ≡ q(d)x2 + x+ q(e) over K.

Lemma 8.102. E/K is a separable quadratic extension.

Proof. Suppose that t ∈ K would be a root of φ. Then

q(td+ e) = q(td) + f(td, e) + q(e) = t2q(d) + tf(d, e) + q(e) = φ(t) ,

since f(d, e) = 1, hence q(td + e) = 0. Since q is anisotropic, this implies that
td+ e = 0, which contradicts the fact that d and e are linearly independent. Hence
φ has no roots in K, so E/K is a quadratic extension. Since the coefficient of x of
φ is non-zero, the two roots of φ are distinct, hence the extension is separable. �

Let ω ∈ E \ K be one of the roots of φ. Let D := E2L = L(ω2). Then D
is the splitting field of the polynomial φ′(x) ≡ q(d)2x2 + x + q(e)2 over L. For
both extensions E/K and D/L, we will denote the norm by N and the non-trivial
element of the Galois group by x 7→ x.

We can consider E as a 2-dimensional vector space over K, and D as a 2-
dimensional vector space over L. Let B0 := E ⊕ E, and let A0 := D ⊕ D. Then
B0 is a 4-dimensional vector space over K, and A0 is a 4-dimensional vector space
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over L. We can identify B and A with B0 and A0, respectively, by the following
relations.

t1d+ t2e+ t3dξ + t4eξ ←→ (t1 + t2ω, t3 + t4ω)

s1ξ + s2ξed
−1 + s3ξd

−1 + s4β
2ξe ←→ (s1 + s2ω

2, s3 + s4ω
2)

Since R = [L] and Y = [K], we have actually identified V and W with B0 ⊕L and
A0 ⊕K, respectively:

t1d+ t2e+ t3dξ + t4eξ + [s] ←→ (t1 + t2ω, t3 + t4ω, s)

s1ξ + s2ξed
−1 + s3ξd

−1 + s4β
2ξe+ [t] ←→ (s1 + s2ω

2, s3 + s4ω
2, t)

For all (b, s) ∈ B0 ⊕ L and all (a, t) ∈ A0 ⊕ K, we will denote the corresponding
elements of V and W by [b, s] and [a, t], respectively.

We can now describe the quadratic forms q and q̂ on B0 ⊕ L and A0 ⊕ K,
respectively, via this identification.

Theorem 8.103. For all u, v ∈ E, s ∈ L, x, y ∈ D and t ∈ K, we have that

(i) q[u, v, s] = β−1(N(u) + αN(v)) + s ;
(ii) q̂[x, y, t] = α(N(x) + β2N(y)) + t2 .

Proof. Let u = t1 + t2ω and v = t3 + t4ω be arbitrary elements of E, and let
s be an arbitrary element of L. Then we have that

q[u, v, s] = q[t1 + t2ω, t3 + t4ω, s]

= q(t1d+ t2e+ t3dξ + t4eξ + [s])

= q(t1d+ t2e) + q(t3dξ + t4eξ) + q[s] ,

since f(t1d + t2e, t3dξ + t4eξ) = 0 and [s] ∈ Rad(f). By Lemma 8.95(ii) and
Lemma 8.97(i), [q(vξ)] = α[q(v)] = [αq(v)], and hence q(vξ) = αq(v) for all v ∈ V .
It follows that

q[u, v, s] = q(t1d+ t2e) + αq(t3d+ t4e) + q[s]

= q(t1d) + f(t1d, t2e) + q(t2e) + α(q(t3d) + f(t3d, t4e) + q(t4e)) + q[s]

= t21q(d) + t1t2 + t22q(e) + α(t23q(d) + t3t4 + t24q(e)) + s

= q(d)N(t1 + t2ω) + αq(d)N(t3 + t4ω) + s

= β−1(N(u) + αN(v)) + s ,

which proves (i). Similarly, let x = s1 + s2ω
2 and y = s3 + s4ω

2 be arbitrary
elements of D, and let t be an arbitrary element of K. Then we have that

q̂[x, y, t] = q̂[s1 + s2ω
2, s3 + s4ω

2, t]

= q̂(s1ξ + s2ξed
−1 + s3ξd

−1 + s4β
2ξe+ [t]) .

Note that f̂(ξed−1, ξd−1) = f̂(ξe, ξd−1d−1) = q̂[q(d)]−1f̂(ξe, ξ) = 0 by Lemma

8.91(iii), hence f̂(s1ξ + s2ξed
−1, s3ξd

−1 + s4β
2ξe) = 0. Since [t] ∈ Rad(f̂), it thus
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follows that

q̂[x, y, t] = q̂(s1ξ + s2ξed
−1) + q̂(s3ξd

−1 + s4β
2ξe) + q̂[t]

= q̂(s1ξ) + f̂(s1ξ, s2ξed
−1) + q̂(s2ξed

−1)

+ q̂(s3ξd
−1) + f̂(s3ξd

−1, s4β
2ξe) + q̂(s4β

2ξe) + q̂[t]

= s2
1q̂(ξ) + s1s2f̂(ξ, ξed−1) + s2

2q̂(ξed
−1)

+ s2
3q̂(ξd

−1) + s3s4β
2f̂(ξ, ξed−1) + s2

4β
4q̂(ξe) + q̂[t] .

By Lemma 8.95(i) and Lemma 8.97(ii), [q̂(wv)] = q(v)[q̂(w)] = [q(v)2q̂(w)], and

hence q̂(wv) = q(v)2q̂(w) for all v ∈ V and all w ∈W . Remember that f̂(ξ, ξed−1) =
αβ2 and that q(d−1) = q(d)−1 = β. Since q̂[t] = q(ε[t]) = q(tε) = t2, it thus follows
that

q̂[x, y, t] = s2
1α+ s1s2αβ

2 + s2
2q(e)

2q(d)−2α

+ s2
3q(d)−2α+ s3s4β

2αβ2 + s2
4β

4q(e)2α+ t2

= α(s2
1 + s1s2q(d)−2 + s2

2q(e)
2q(d)−2

+ β2(s2
3 + s3s4q(d)−2 + s2

4q(e)
2q(d)−2)) + t2

= α(N(s1 + s2ω
2) + β2N(s3 + s4ω

2)) + t2

= α(N(x) + β2N(y)) + t2 ,

which proves (ii). �

For all a ∈ A0 and all b ∈ B0, we let q1(b) := q[b, 0] and q2(a) := q̂[a, 0]. Denote
the corresponding bilinear forms by f1 and f2, respectively. We now define maps
Υ̃, ν̃, Θ̃ and ψ̃ from A0 ×B0 to A0, K, B0 and L, respectively, by setting

[a, 0][b, 0] = [Υ̃(a, b), ν̃(a, b)] ,

[b, 0][a, 0] = [Θ̃(a, b), ψ̃(a, b)] ,

for all a ∈ A0 and all b ∈ B0. We will show that these maps coincide with the maps
Υ, ν, Θ and ψ defined on page 44.

Lemma 8.104. Υ̃ ≡ Υ.

Proof. All the equivalences in the proof of this lemma are modulo Y . Let

a1 := ξ , b1 := d ,

a2 := ξed−1 , b2 := e ,

a3 := ξd−1 , b3 := dξ ,

a4 := β2ξe , b4 := eξ ,

and let aij := aibj for all i, j ∈ {1, 2, 3, 4}. We first observe that ξde + ξed ≡
f(d, e)2ξ ≡ ξ and that ξd−1e+ ξed−1 ≡ f(d−1, e)2ξ ≡ β2ξ by Lemma 8.93(i). Then

a11 ≡ ξ · d ≡ β−2a3 ;

a12 ≡ ξ · e ≡ β−2a4 ;

a13 ≡ ξ · dξ ≡ αξd ≡ αβ−2a3 ;

a14 ≡ ξ · eξ ≡ αξe ≡ αβ−2a4 ;
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a21 ≡ ξed−1 · d ≡ ξe ≡ β−2a4 ;

a22 ≡ ξed−1 · e ≡ (ξd−1e+ β2ξ) · e ≡ q(e)2a3 + a4 ;

a23 ≡ ξed−1 · dξ ≡ ξe · dξ · d−1 ≡ ξ · dξ · ed−1 ≡ αξded−1 ≡ α(ξ + ξed)d−1 ≡ αa3 + αβ−2a4 ;

a24 ≡ ξed−1 · eξ ≡ ξe · eξ · d−1 ≡ ξ · eξ · ed−1 ≡ αξeed−1 ≡ αq(e)2a3;

a31 ≡ ξd−1 · d ≡ a1 ;

a32 ≡ ξd−1 · e ≡ β2ξ + ξed−1 ≡ β2a1 + a2 ;

a33 ≡ ξd−1 · dξ ≡ ξ · dξ · d−1 ≡ αξdd−1 ≡ αa1 ;

a34 ≡ ξd−1 · eξ ≡ ξ · eξ · d−1 ≡ αξed−1 ≡ αa2 ;

a41 ≡ β2ξe · d ≡ q(d)2β2ξed−1 ≡ a2 ;

a42 ≡ β2ξe · e ≡ β2q(e)2a1 ;

a43 ≡ β2ξe · dξ ≡ β2ξ · dξ · e ≡ β2αξde ≡ αβ2(ξ + ξed) ≡ αβ2a1 + αa2 ;

a44 ≡ β2ξe · eξ ≡ β2ξ · eξ · e ≡ β2αξee ≡ αβ2q(e)2a1 .

Hence

Υ̃
(
(1, 0), (1, 0)

)
= (0, β−2) ; Υ̃

(
(0, 1), (1, 0)

)
= (1, 0) ;

Υ̃
(
(1, 0), (ω, 0)

)
= (0, β−2ω2) ; Υ̃

(
(0, 1), (ω, 0)

)
= (β2 + ω2, 0) ;

Υ̃
(
(1, 0), (0, 1)

)
= (0, αβ−2) ; Υ̃

(
(0, 1), (0, 1)

)
= (α, 0) ;

Υ̃
(
(1, 0), (0, ω)

)
= (0, αβ−2ω2) ; Υ̃

(
(0, 1), (0, ω)

)
= (αω2, 0) ;

Υ̃
(
(ω2, 0), (1, 0)

)
= (0, β−2ω2) ; Υ̃

(
(0, ω2), (1, 0)

)
= (ω2, 0) ;

Υ̃
(
(ω2, 0), (ω, 0)

)
= (0, q(e)2 + ω2) ; Υ̃

(
(0, ω2), (ω, 0)

)
= (β2q(e)2, 0) ;

Υ̃
(
(ω2, 0), (0, 1)

)
= (0, α+ αβ−2ω2) ; Υ̃

(
(0, ω2), (0, 1)

)
= (αβ2 + αω2, 0) ;

Υ̃
(
(ω2, 0), (0, ω)

)
= (0, αq(e)2) ; Υ̃

(
(0, ω2), (0, ω)

)
= (αβ2q(e)2, 0) .

Since ω2 = βω + βq(e)2 and ω = ω + β, it is now straightforward to check that Υ̃
coincides with the map Υ defined on page 44 on the set

{(1, 0), (ω2, 0), (0, 1), (0, ω2)} × {(1, 0), (ω, 0), (0, 1), (0, ω)} .

By (Q3) and (Q11), the map Υ̃ is additive in both variables. Since (sw)v = s(wv)

for all s ∈ L, v ∈ V and w ∈ W , it follows that Υ̃(sa, b) = sΥ̃(a, b) for all
s ∈ L, a ∈ A0 and b ∈ B0. By Lemma 8.91(i), we have that w(tv) = q̂[t]wv =

t2wv for all t ∈ K, v ∈ V and w ∈ W , and hence Υ̃(a, tb) = t2Υ̃(a, b) for all
t ∈ K, a ∈ A0 and b ∈ B0. Since the same properties hold for Υ, and since
A0 = 〈(1, 0), (ω2, 0), (0, 1), (0, ω2)〉 and B0 = 〈(1, 0), (ω, 0), (0, 1), (0, ω)〉, it thus

follows that Υ̃ ≡ Υ. �

Lemma 8.105. For all a ∈ A0 and all b, b′ ∈ B0, we have that

(i) q2(Υ̃(a, b)) = q1(b)2q2(a) + ν̃(a, b)2 ;

(ii) ν̃(a, b+ b′) = ν̃(a, b) + ν̃(a, b′) + f1(Θ̃(a, b), b′) ;

(iii) q1(Θ̃(a, b)) = q2(a)q1(b) + ψ̃(a, b) .

Proof. By Lemma 8.95(i) and Lemma 8.97(ii), [q̂(wv)] = q(v)[q̂(w)] = [q(v)2q̂(w)],
and hence q̂(wv) = q(v)2q̂(w) for all v ∈ V and all w ∈ W . If we choose v = [b, 0]
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and w = [a, 0], then we get that

q̂[Υ̃(a, b), ν̃(a, b)] = q[b, 0]2q̂[a, 0] .

Hence q2(Υ̃(a, b)) + ν̃(a, b)2 = q1(b)2q2(a), which proves (i).
Similarly, it follows from Lemma 8.95(ii) and Lemma 8.97(i) that q(vw) =

q̂(w)q(v) for all v ∈ V and all w ∈W . It follows that

q(Θ̃(a, b), ψ̃(a, b)) = q̂[a, 0]q[b, 0] .

Hence q1(Θ̃(a, b)) + ψ̃(a, b) = q2(a)q1(b), which proves (iii).
Finally, it follows from (Q11) that

[a, 0] · [b+ b′, 0] = [a, 0] · [b, 0] + [a, 0] · [b′, 0] + F ([b, 0] · [a, 0], [b′, 0]) .

Projecting this identity on Y = [0,K] yields

ν(a, b+ b′) = ν(a, b) + ν(a, b′) + f([Θ̃(a, b), ψ̃(a, b)], [b′, 0])

= ν(a, b) + ν(a, b′) + f1(Θ̃(a, b), b′) ,

which proves (ii). �

Theorem 8.106. Υ̃ ≡ Υ, ν̃ ≡ ν, Θ̃ ≡ Θ and ψ̃ ≡ ψ.

Proof. We have already shown in Lemma 8.104 that Υ̃ ≡ Υ. It then follows
from Lemma 8.105(i) and Theorem 7.12(xii) that ν̃ ≡ ν. Hence, by Lemma 8.105(ii)

and Theorem 7.12(i), we have that f1(Θ̃(a, b) − Θ(a, b), b′) = 0 for all a ∈ A0 and

all b, b′ ∈ B0, from which it follows that Θ̃(a, b)−Θ(a, b) ∈ Rad(f1) for all a ∈ A0

and all b ∈ B0. Since B ∩ Rad(f) = B ∩ R = 0 by Theorem 8.99, we have that

B0 ∩ Rad(f1) = 0 as well, and hence Θ̃ ≡ Θ. Finally, it then follows from Lemma

8.105(iii) and Theorem 7.12(xi) that ψ̃ ≡ ψ. �

Theorem 8.107. (V,W, τV , τW , ε, δ) ∼= ΩF (K,V0, q).

Proof. First of all, observe that q is indeed a quadratic form of type F4, since
its regular component q1 has a norm splitting q1(u, v) = β−1N(u)+β−1αN(v), and
the product of the coefficients of the norm splitting is β−1 · β−1α = β−2α, which is
an element of L.

Let φ be the isomorphism from [V0] = [B0 ⊕ L] to V which maps [b, s] to [b, s]
for all b ∈ B0 and all s ∈ L, and let ψ be the isomorphism from [W0] = [A0⊕K] to
W which maps [a, t] to [a, t] for all a ∈ A0 and all t ∈ K. Then φ([0, 1]) = [0, 1] =
[1]
V

= ε and ψ([0, 1]) = [0, 1] = [1]
W

= δ.
Since φ and ψ are identity maps, it now only remains to show that it follows

from the relations

[a, 0][b, 0] = [Υ̃(a, b), ν̃(a, b)] ,

[b, 0][a, 0] = [Θ̃(a, b), ψ̃(a, b)] ,

for all a ∈ A0 and all b ∈ B0 that

[a, t][b, s] = [Υ̃(a, b) + sa, ν̃(a, b) + q[b, s]t] ,

[b, s][a, t] = [Θ̃(a, b) + tb, ψ̃(a, b) + q̂[a, t]s] ,
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for all a ∈ A0 and all b ∈ B0. We will only show the first identity, the second one
being completely similar. Since [0, s] ∈ Rad(F ), it follows from (Q11) and Lemma
8.51 that

[a, t][b, s] = [a, 0][b, s] + [0, t][b, s]

= [a, 0][b, 0] + [a, 0][0, s] + [0, t][b, s]

= [Υ̃(a, b), ν̃(a, b)] + [sa, 0] + [0, tq[b, s]]

= [Υ̃(a, b) + sa, ν̃(a, b) + q[b, s]t] .

Since φ and ψ are identity maps, it is now obvious that φ([b, s][a, t]) = φ([b, s])ψ([a, t])
and ψ([a, t][b, s]) = ψ([a, t])φ([b, s]) for all (a, t) ∈ W0 and all (b, s) ∈ V0; hence
(φ, ψ) is an isomorphism from ΩF (K,V0, q) to (V,W, τV , τW , ε, δ). �

8.6. Quadrangular Systems of Pseudo-quadratic Form Type, II

In this section, we continue to assume that Ω = (V,W, τV , τW , ε, δ) is a wide
quadrangular system which is the extension of a quadrangular system Λ of quadratic
form type, i.e. Λ = (V,Rad(H), τV , τW , ε, δ) ∼= ΩQ(K,V0, q), where τV and τW are
as in Remark 8.3.

Our goal in this and the next section is to classify these quadrangular systems
if Rad(F ) = 0. So assume that Rad(F ) = 0. We continue to identify V and V0 if
there is no danger of confusion.

Lemma 8.108. For all v ∈ V , all w ∈ W and all t ∈ K, we have that (tv)w =
t(vw). It follows that the notation tvw is unambiguous.

Proof. If we substitute [t] for z, v for v and �w for w in (Q23), then we get,
since Πw([t]) = [t], that

tv = −(t · vw)κ(�w) ,

and hence, by Lemma 8.50(ii), that

tv = −(t · vw)κ(�w) .

It follows that

tv · w = −(t · vw)κ(�w) · w ,

and hence, by (Q18), that tv · w = t · vw, which is what we had to show. �

Definition 8.109. If char(K) 6= 2, let ζ := ε/2. If char(K) = 2, define
S1 := {v ∈ V | F (ε, v) 6= 0} and S2 := {εw | w ∈W}. If S1 ∩S2 6= ∅, choose a fixed
element z ∈ S1 ∩ S2; if S1 ∩ S2 = ∅, choose a fixed element z ∈ S1. Observe that
S1 6= ∅ since ε 6∈ Rad(F ). In both cases, we let ζ := f(ε, z)−1z.

It follows that f(ε, ζ) = 1, independent of the characteristic.

Remark 8.110. This somewhat strange definition will become clear in section
8.7.

Definition 8.111. An element w ∈ W is called ζ-orthogonal if and only if
f(ζ, εw) = 0.

Lemma 8.112. Each coset of Y in W contains a unique ζ-orthogonal element.
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Proof. Consider an arbitrary coset w � Y of Y in W (where w ∈ W ). An
arbitrary element of this coset, say w� [t] with t ∈ K, is ζ-orthogonal if and only if
f(ζ, ε(w�[t])) = 0. By (Q12), f(ζ, ε(w�[t])) = f(ζ, εw+ε[t]) = f(ζ, εw)+f(ζ, tε) =
f(ζ, εw) + t, hence w � [t] is ζ-orthogonal if and only if t = −f(ζ, εw). �

Since Y = Rad(H) is a normal subgroup of W , we can define the quotient
group X := W/Y . Since [W,W ]� ≤ Y , the group X is abelian. We will use the
additive notations + and − for X.

Definition 8.113. We define a map ρ : X → W as follows. For each element
w � Y ∈ X, we let ρ(w � Y ) be the unique element w � y ∈ w � Y ⊆ W which
is ζ-orthogonal; see Lemma 8.112. Moreover, for all x ∈ X and all t ∈ K, we let
(x, t) := ρ(x) � [t] ∈ W . Note that ρ(x) ∈ x for all x ∈ X, and hence (x, t) ∈ x for
all x ∈ X and all t ∈ K as well.

Lemma 8.114. For all w ∈ W , there exist unique elements x ∈ X and t ∈ K
such that w = (x, t).

Proof. Let w ∈W be arbitrary. Let x := w � Y ∈ X, and let

y := �ρ(x) � w ∈ �(w � Y ) � w = �Y � w � w = Y .

Hence y = [t] for some t ∈ K, and we thus have that (x, t) = ρ(x)� [t] = ρ(x)�y =
w.

Now suppose that (x1, t1) = (x2, t2) for some x1, x2 ∈ X and some t1, t2 ∈ K.
Since (x1, t1) ∈ x1 and (x2, t2) ∈ x2, it follows that the cosets x1 and x2 have an
element in common, and hence they are equal, i.e. x1 = x2. It then follows from
(x1, t1) = (x2, t2) that t1 = t2 as well. �

Definition 8.115. We define a map G : X ×X →W by setting

G(a, b) := �ρ(a+ b) � ρ(a) � ρ(b)

for all a, b ∈ X. Note that a and b are cosets of Y in W . It follows that G(a, b) ∈
−(a + b) + a + b = Y . Hence we can define a map g : X × X → K by setting
G(a, b) = [g(a, b)] for all a, b ∈ X.

Lemma 8.116. (a, t) � (b, s) = (a + b, t + s + g(a, b)) for all a, b ∈ X and all
t, s ∈ K.

Proof. Since Y ⊆ Z(W ) by (Q8), we have that

(a, t) � (b, s) = ρ(a) � [t] � ρ(b) � [s]

= ρ(a) � ρ(b) � [t+ s]

= ρ(a+ b) � [g(a, b)] � [t+ s]

= (a+ b, g(a, b) + t+ s) ,

which is what we had to show. �

Definition 8.117. We define a map θ from X × V to V , a map π from X to
V and a map h from X ×X to V by setting

θ(a, v) := v · (a, 0) ,

π(a) := θ(a, ε) = ε · (a, 0) ,

h(a, b) := H
(
(a, 0), (b, 0)

)
,

for all a, b ∈ X and all v ∈ V .
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By definition, (a, 0) is ζ-orthogonal for all a ∈ X, hence f(π(a), ζ) = f(ε ·
(a, 0), ζ) = 0 for all a ∈ X. Furthermore, it follows from (Q12) that v · (a, t) =
v · (a, 0) + v · [t] = θ(a, v) + tv for all v ∈ V , all a ∈ X and all t ∈ K.

Definition 8.118. We define a map (a, v) 7→ av from X × V to X and a map
ϕ from X × V to K by the relation

(a, 0) · v = (av, ϕ(a, v)) .

Since we did not define a multiplication yet between elements of X and elements
of V , this will not cause confusion.

Note that it follows from (a, 0) · ε = (a, 0) that aε = a and ϕ(a, ε) = 0 for all
a ∈ X. Furthermore, we have that (a, t) · v = (av, tq(v) + ϕ(a, v)) by Lemma 8.51,
and that H

(
(a, t), (b, s)

)
= h(a, b), for all a, b ∈ X, all v ∈ V and all t, s ∈ K.

Lemma 8.119. For all a ∈ X, we have that

g(a,−a) = g(−a, a) = f(π(a), ε) = f(π(−a), ε) .

Proof. Let w := (a, 0) ∈ W . Then w is ζ-orthogonal. By 3.13(i), we have
that w(−ε) = [f(εw, ε)] � w. By (Q6), f(ε · w(−ε), ζ) = f(εw, ζ) = 0, and hence
w(−ε) is ζ-orthogonal as well. It follows that w(−ε) = (b, 0) for some b ∈ X. Since
[f(εw, ε)] ∈ Y , we now have that b = w(−ε)�Y = [f(εw, ε)]�w�Y = �w�Y = −a.
It follows by Lemma 8.116 that

[f(π(a), ε)] = [f(εw, ε)]

= w(−ε) � w

= (−a, 0) � (a, 0)

= (−a+ a, 0 + 0 + g(−a, a))

= [g(−a, a)] .

Hence f(π(a), ε) = g(−a, a), and since it follows from (Q6) that

f(π(−a), ε) = f(ε · (−a, 0), ε)

= f(ε · (a, 0)(−ε), ε)
= f(ε · (a, 0), ε)

= f(π(a), ε) ,

we conclude that g(a,−a) = g(−a, a) = f(π(a), ε) = f(π(−a), ε). �

Definition 8.120. We define a map (t, a) 7→ ta from K ×X to X by setting
ta := a · tε for all t ∈ K and all a ∈ X. We will prove later on (see Theorem 8.123)
that this makes X into a vector space over K.

Lemma 8.121. For all a ∈ X and all t ∈ K, we have that ϕ(a, tε) = 0 .
Moreover, for all a ∈ X, all v ∈ V and all t ∈ K, we have that

(i) ta · v = a · tv = t · av ;
(ii) ϕ(ta, v) = ϕ(a, tv) = t2ϕ(a, v) .

Proof. Let w := (a, 0) ∈ W and let y := [t] ∈ Y . Since Π�y(z) = z for all
z ∈ W , it follows from (Q26) that w · εy · v = w · vy, for all v ∈ V . It thus follows
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from (Q11) that

F (ε · w(εy), ζ) = �w · εy · ε� w · εy · ζ � w · εy · (ζ + ε)

= �w · εy � w · ζy � w · (ζ + ε)y

= F (εy · w, ζy)

= F (tεw, tζ)

= [t2f(εw, ζ)]

= 0 ,

since w is ζ-orthogonal. It follows that w · εy is ζ-orthogonal as well. Since

w · εy = w · tε = (a, 0) · tε = (a · tε, ϕ(a, tε)) ,

it follows that ϕ(a, tε) = 0.
It now follows from w · εy · v = w · vy that (a · tε, 0) · v = (a, 0) · tv for all v ∈ V ,

and hence

(ta · v, ϕ(ta, v)) = (ta, 0) · v = (a · tε, 0) · v = (a, 0) · tv = (a · tv, ϕ(a, tv))

for all v ∈ V . This implies that ta · v = a · tv and ϕ(ta, v) = ϕ(a, tv).
Now observe that πtε(c) = πε(c) = −c, for all c ∈ V . If we substitute tε for v

and v for c in (Q24), we thus get that wv = w · tε · v · (tε)−1, and hence

(a, 0) · v · tε = (a, 0) · tε · v .

It follows that

(av, ϕ(a, v)) · tε = (ta, 0) · v ,

and finally, since q(tε) = t2, that

(t · av, t2ϕ(a, v)) = (ta · v, ϕ(ta, v)) ,

and we are done. �

Lemma 8.122. The map (a, v) 7→ av is additive in both variables. Moreover,
the following hold for all a, b ∈ X and all u, v ∈ V :

(i) ϕ(a+ b, v) + g(a, b)q(v) = ϕ(a, v) + ϕ(b, v) + g(av, bv) ;
(ii) ϕ(a, u+ v) = ϕ(a, u) + ϕ(a, v) + g(av, au) + f(θ(a, u), v) .

Proof. It follows from (Q3) that(
(a, 0) � (b, 0)

)
v = (a, 0) · v � (b, 0) · v ,

and hence, by Lemma 8.116, that

(a+ b, g(a, b)) · v = (av, ϕ(a, v)) � (bv, ϕ(b, v)) ,

from which it follows that(
(a+ b)v, g(a, b)q(v) + ϕ(a+ b, v)

)
=
(
av + bv, ϕ(a, v) + ϕ(b, v) + g(av, bv)

)
.

So we have shown that (a+ b)v = av + bv and that (i) holds.
On the other hand, it follows from (Q11) that

(a, 0) · (u+ v) = (a, 0) · (v + u) = (a, 0) · v � (a, 0) · u� F (u · (a, 0), v) ,
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and hence(
a(u+ v), ϕ(a, u+ v)

)
= (av, ϕ(a, v)) � (au, ϕ(a, u)) � [f(θ(a, u), v)]

=
(
av + au, ϕ(a, v) + ϕ(a, u) + g(av, au) + f(θ(a, u), v)

)
.

So we have shown that a(u+ v) = au+ av and that (ii) holds. �

Theorem 8.123. X0 is a vector space over K, with the scalar multiplication
given by the map (t, a) 7→ ta = a · tε.

Proof. First of all, we have that 1a = a · ε = a for all a ∈ X. By Lemma
8.122, the two distributivity laws hold, since

t(a+ b) = (a+ b) · tε = a · tε+ b · tε = ta+ tb

for all t ∈ K and all a, b ∈ X, and

(s+ t)a = a · (s+ t)ε = a · (sε+ tε) = a · sε+ a · tε = sa+ ta

for all s, t ∈ K and all a ∈ X. Finally, it follows from Lemma 8.121(i) that

st · a = ts · a = a · (ts)ε = a · t(sε) = ta · sε = s · ta

for all s, t ∈ K and all a ∈ X. �

Lemma 8.124. For all a, b ∈ X, all u, v ∈ V and all t ∈ K, we have that

(i) θ(ta, v) = t2θ(a, v) ;
(ii) θ(a, tv) = tθ(a, v) ;
(iii) θ(a+ b, v) + g(a, b)v = θ(a, v) + θ(b, v) + h(b, av) ;
(iv) θ(a, u+ v) = θ(a, u) + θ(a, v) .

Proof. Let w := (a, 0) ∈ W . Note that πtε(c) = πε(c) = −c, for all c ∈ V . It
thus follows by substituting tε for v and v for c in (Q25) that v · δ(tε) ·w = v ·w(tε).
Hence

θ(ta, v) = v · (ta, 0) = v · w(tε) = v · δ(tε) · w
= v · [q(tε)] · w = t2vw = t2v · (a, 0) = t2θ(a, v) ,

which proves (i). Since t ·vw = tv ·w, we have that tθ(a, v) = θ(a, tv), which proves
(ii).

It follows from (Q12) that

θ(a+ b, v) + g(a, b)v = v · (a+ b, g(a, b))

= v ·
(
(a, 0) � (b, 0)

)
= v · (a, 0) + v · (b, 0) +H

(
(b, 0), (a, 0) · v

)
= θ(a, v) + θ(b, v) +H

(
(b, 0), (av, ϕ(a, v))

)
= θ(a, v) + θ(b, v) + h(b, av) ,

which shows (iii). Finally, it follows from (Q4) that

θ(a, u+ v) = (u+ v) · (a, 0)

= u · (a, 0) + v · (a, 0)

= θ(a, u) + θ(a, v) ,

which proves (iv). �
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Lemma 8.125. For all a, b ∈ X and all t ∈ K, we have that h(ta, b) = h(a, tb) =
th(a, b).

Proof. If we substitute tε for v in Lemma 8.124(iii), then we get, by Lemma
8.124(ii), that

h(b, a · tε) = θ(a+ b, tε) + g(a, b)tε− θ(a, tε)− θ(b, tε)
= tθ(a+ b, ε) + tg(a, b)ε− tθ(a, ε)− tθ(b, ε)
= th(b, a) ,

hence h(b, ta) = th(b, a). It follows by (Q22) and Lemma 8.50(ii) that

h(ta, b) = −h(b, ta) = −th(b, a) = −th(b, a) = th(a, b)

as well, and we are done. �

Lemma 8.126. For all a, b ∈ X, we have that f(h(a, b), ε) = g(b, a)− g(a, b).

Proof. If we set v = ε, w1 = (b, 0) and w2 = (a, 0) in (Q8), then we get that

�(b, 0) � (a, 0) � (b, 0) � (a, 0) = [f(h(a, b), ε)] .

Since

�(b, 0) � (a, 0) � (b, 0) � (a, 0) = �
(
(a, 0) � (b, 0)

)
�
(
(b, 0) � (a, 0)

)
= �(a+ b, g(a, b)) � (a+ b, g(b, a))

= (0,−g(a, b) + g(b, a)) ,

it follows that f(h(a, b), ε) = −g(a, b) + g(b, a). �

Lemma 8.127. For all a, b ∈ X and all v ∈ V , we have that

f(h(a, b), v) = f(h(av, b), ε) = f(h(a, bv), ε) .

Proof. It follows from (Q8) that

F (H(w2, w1), v) = [w1, w2v]� = F (H(w2v, w1), ε)

for all w1, w2 ∈ W . If we choose w2 = (a, 0) and w1 = (b, 0), then we get that
f(h(a, b), v) = f(h(av, b), ε). It then follows from Lemma 8.54 that

f
(
h(a, b), v

)
= f

(
h(a, b), v

)
= −f

(
h(b, a), v

)
= −f

(
h(bv, a), ε

)
= −f

(
h(bv, a), ε

)
= f

(
h(a, bv), ε

)
as well. �

Lemma 8.128. We have that avv = q(v)a and auv + avu = f(u, v)a for all
a ∈ X and all u, v ∈ V .

Proof. Let w := (a, 0) ∈ W . It then follows from (Q15) that avv−1 = a.
Since q(v)v−1 = v, it follows from Lemma 8.121(i) that q(v)a = q(v)avv−1 =
av · q(v)v−1 = avv. It then follows that

f(u, v)a = q(u+ v)a− q(u)a− q(v)a

= a(u+ v)(u+ v)− auu− avv
= auv + avu

as well. �
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We have now come to a point which is very similar to Chapter 26 in [20]. For
some of the remaining identities, we will thus simply refer to the appropriate place
in [20]. Note that [20] uses δ where we use ζ.

Lemma 8.129. For all a, b ∈ X, we have that g(a, b) = f(h(b, a), ζ).

Proof. See [20, (26.20)]. �

Since h is bilinear over K, it follows from Lemma 8.129 that g is bilinear over K.

Lemma 8.130. For all a, b ∈ X and all v ∈ V , we have that

h(a, bv)− h(b, av) = f(h(a, b), ε)v .

Proof. See [20, (26.23)]. �

Lemma 8.131. If char(K) 6= 2, then ϕ ≡ 0, and for all a ∈ X and all v ∈ V ,
we have that

(i) g(a, a) = 0 ;
(ii) θ(a, v) = 1

2h(a, av) .

Proof. See [20, (26.24)]. �

Note that it follows from Lemma 8.131(i) and the fact that g is bilinear over
K that g is skew-symmetric if char(K) 6= 2.

Lemma 8.132. If char(K) = 2, then

(i) h(a, av) = g(a, a)v = f(ε, π(a))v ;
(ii) f(θ(a, v), v) = g(av, av) = g(a, a)q(v) = f(ε, π(a))q(v) ;
(iii) f(θ(a, u), v) = f(θ(a, v), u) + f(ε, π(a))f(u, v) ;

for all a ∈ X and all u, v ∈ V .

Proof. See [20, (26.25)]. �

Lemma 8.133. For all a ∈ X and all u, v ∈ V , we have that

(i) f(θ(a, v), v) = f(ε, π(a))q(v) ;
(ii) f(θ(a, v), u) + f(θ(a, u), v) = f(ε, π(a))f(u, v) .

Proof. See [20, (26.26)]. �

Lemma 8.134. For all a ∈ X, all u ∈ V and all v ∈ V ∗, we have that

θ(av−1, u) + ϕ(a, v−1)u = q(v)−1θ(a, u)− f(u, v′)θ(a, v−1)

− f(θ(a, u), v)q(v)−1v′ + f(θ(a, v−1), v)f(u, v′)v′ ,

where v′ = v−1 = q(v)−1v.

Proof. Let w := (a, 0) ∈W , and let c := q(v)−1πv(u) ∈ V . Since δv = [q(v)],
it follows by substituting u for c in (Q25) and by Lemma 8.52 that

πv(u · wv) = q(v)πv(u) · w .

Note that πv−1(v2) = πv(v2) for all v2 ∈ V by Lemma 3.18(i). If we replace v by
v−1, then it follows that

πv(u · wv−1) = q(v−1)πv(u) · w ,
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and hence, since q(v−1) = q(v)−1, that

u · wv−1 = πv(c · w) ,

from which it follows that

u · (av−1, ϕ(a, v−1)) = πv(θ(a, c)) ,

and therefore

θ(av−1, u) + ϕ(a, v−1)u = θ(a, c)− f(v, θ(a, c))v′ .

Since c = q(v)−1πv(u) = q(v)−1u − q(v)−1f(v, u)v−1 = q(v)−1u − f(u, v′)v−1, it
follows by Lemma 8.124 that

θ(av−1, u) + ϕ(a, v−1)u = q(v)−1θ(a, u)− f(u, v′)θ(a, v−1)

− q(v)−1f(v, θ(a, u))v′ + f(v, θ(a, v−1))f(u, v′)v′ ,

which is what we had to show. �

We now define

v∗ :=

{
0 if char(K) 6= 2

f(v, ζ)ε+ f(v, ε)ζ + v if char(K) = 2
,

for all v ∈ V .

Lemma 8.135. If char(K) = 2, then

(i) ϕ(a, v) = f(θ(a, v∗), v)
= f(π(a), v)f(ζ, v) + f(θ(a, ζ), v)f(ε, v) + f(ε, π(a))q(v) ;

(ii) If f(ε, v) = f(ζ, v) = 0, then π(av) = π(a)q(v) + f(π(a), v)v ;

(iii) π(aζ) = π(a)q(ζ) + θ(a, ζ) + f(ε, π(a))ζ ;

(iv) θ(av, u) = q(v)θ(a, u) + f(u, v)θ(a, v) + f(θ(a, v), u)v + ϕ(a, v)u ;

for all a ∈ X and all u, v ∈ V .

Proof. By Lemma 8.134, this follows from the proof of [20, (26.30)]. �

Lemma 8.136. For all v ∈ V , all w ∈W and all a ∈ X, we have that

(i) q(vw) = q(v)q(εw) ;
(ii) q(θ(a, v)) = q(v)q(π(a)) .

Proof. Since δ · V ⊆ Rad(H), it follows by substituting δ for w and w for z
in (Q26) that δ · εw · v = δ · vw, hence [q(εw)] · v = [q(vw)]. By Lemma 8.51, it
follows that [q(v)q(εw)] = [q(vw)], which proves (i). Substituting (a, 0) for w in (i)
now yields (ii). �

Lemma 8.137. For all a ∈ X, we have that ϕ(a, π(a)) = 0.

Proof. By Lemma 8.131, we may assume that char(K) = 2. Since f(ε, ζ) =
1 = q(ε), we have that q(ε + ζ) = q(ζ). It then follows, by Lemma 8.124(iv) and
Lemma 8.136(ii), that

q(π(a) + θ(a, ζ)) = q(θ(a, ε+ ζ))

= q(ε+ ζ)q(π(a))

= q(ζ)q(π(a))

= q(θ(a, ζ)) ,
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and hence q(π(a)) = f(π(a), θ(a, ζ)). It thus follows from Lemma 8.135(i) that

ϕ(a, π(a)) = f(π(a), π(a))f(ζ, π(a)) + f(θ(a, ζ), π(a))f(ε, π(a)) + f(ε, π(a))q(π(a))

= 0 + q(π(a))f(ε, π(a)) + f(ε, π(a))q(π(a))

= 0 ,

which is what we had to prove. �

Lemma 8.138. For all v ∈ V and all w ∈W ∗, we have that

w · q(εw)−1ε · εw · vw = wv .

Proof. If we substitute λ(w(−ε)) for w in (Q19), then we get that

λ(w(−ε)) · vw = wv .

If we set v = ε in this identity, then we get that λ(w(−ε))·εw = w, hence λ(w(−ε)) =
w · (εw)−1, and therefore

w · (εw)−1 · vw = wv .

Note that it follows by substituting [t] for z in (Q26), with t ∈ K, that w·tε·v = w·tv.
Since (εw)−1 = q(εw)−1εw, it follows from this identity that

w · q(εw)−1ε · εw · vw = wv ,

which is what we had to show. �

Lemma 8.139. For all a ∈ X and all v ∈ V , we have that

(i) q(π(a))av = aπ(a)θ(a, v) ;
(ii) aπ(a)v = aθ(a, v) .

Proof. We may assume that a 6= 0. First, we substitute (a, 0) for w in Lemma
8.138, and we get that

(a, 0) · q(ε(a, 0))−1ε · ε(a, 0) · v(a, 0) = (a, 0)v,

hence
(q(π(a))−1a, 0) · π(a) · θ(a, v) = (a, 0)v.

If we calculate the X-component of both sides, then we get that

q(π(a))−1aπ(a)θ(a, v) = av,

which shows (i).
On the other hand, if we substitute (a, 1) for w in Lemma 8.138, then we get

that
(a, 1) · q(ε(a, 1))−1ε · ε(a, 1) · v(a, 1) = (a, 1)v,

hence

(q(π(a) + ε)−1a, q(π(a) + ε)−2) · (π(a) + ε) · (θ(a, v) + v) = (a, 1)v.

Again, we calculate the X-component of both sides, and we get that(
q(π(a)) + f(π(a), ε) + q(ε)

)−1
a(π(a) + ε)(θ(a, v) + v) = av ,

from which it follows that

aπ(a)θ(a, v) + aθ(a, v) + aπ(a)v + av = q(π(a))av + f(π(a), ε)av + av .

Since f(π(a), ε)av = aπ(a)v + aπ(a)v by Lemma 8.128, it follows by (i) that

aθ(a, v) = aπ(a)v ,
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which proves (ii). �

Lemma 8.140. If |K| > 2, then

cθ(a, v)− cπ(a)v = ah(a, c)v − ah(a, cv)

for all a, c ∈ X and all v ∈ V .

Proof. See [20, (26.36)]. �

Lemma 8.141. For all a ∈ X and all v ∈ V , we have that

θ(a, θ(a, v)) = θ(a, v)f(ε, π(a))− q(π(a))v .

Proof. See [20, (26.33)]. �

We can rephrase this identity in terms of W in place of X, which results in a
nice identity.

Lemma 8.142. For all v ∈ V and all w ∈W , we have that vw(�w) = −q(εw)v.

Proof. Let w = (a, t), with a ∈ X and t ∈ K. Let Q(a) := g(a,−a) =
f(π(a), ε), and observe that 2Q(a) = 0; see Lemma 8.119 and Lemma 8.131. Note
that it follows from Lemma 8.116 that �w = (−a,−t + Q(a)). Hence, by Lemma
8.124 and Lemma 8.141,

vw(�w) = v(a, t)(−a,−t+Q(a))

= (θ(a, v) + tv) · (−a,−t+Q(a))

= θ(−a, θ(a, v) + tv) + (−t+Q(a))(θ(a, v) + tv)

= θ(a, θ(a, v)) + tθ(a, v)− tθ(a, v) +Q(a)θ(a, v)− t2v +Q(a)tv

= θ(a, v)Q(a)− q(π(a))v +Q(a)θ(a, v)− t2v +Q(a)tv

= −
(
q(π(a)) +Q(a)t+ t2

)
v

= −q
(
π(a) + tε

)
v

= −q(εw)v ,

and we are done. �

Lemma 8.143. For all v ∈ V and all w ∈W , we have that

vww = f(ε, εw)vw − q(εw)v .

Proof. By 3.13(i), we have that w(−ε) = F (εw, ε) � w, and hence, by (Q6),
(Q12) and Lemma 8.142,

vww = vw · w(−ε)
= vw · (F (εw, ε) � w)

= vw · [f(εw, ε)] + vw(�w)

= f(εw, ε)vw − q(εw)v ,

which is what we had to show. �

Definition 8.144. For all v ∈ V ∗ and all w ∈ W ∗, we let [v]w := 〈v, vw〉 be
the subspace of V (over K) generated by v and vw. Note that [v]w is 2-dimensional
if and only if w ∈W \ Y .



8.6. QUADRANGULAR SYSTEMS OF PSEUDO-QUADRATIC FORM TYPE, II 91

Lemma 8.145. For all v ∈ V ∗ and all w ∈W \Y , we have that [v]w ·w = [v]w,
i.e. [v]w is a 2-dimensional subspace of V which is irreducible under the action of
w.

Proof. It follows from Lemma 8.143 that [v]w ·w = 〈v, vw〉 ·w = 〈vw, vww〉 =
〈vw, f(ε, εw)vw − q(εw)v〉 = 〈vw, v〉 since q(εw) 6= 0. �

Definition 8.146. Let u, v ∈ V ∗ and w ∈ W \ Y . Then u and v are called
w-orthogonal if and only if f([u]w, [v]w) = 0.

Remark 8.147. It is clear that the definition above of [v]w and the notion
of w-orthogonality are generalizations of the definition of [v]a and the notion of
a-orthogonality as defined in [20]. See [20, (26.37) and (26.38)].

Theorem 8.148. Let a ∈ X∗, and let w := (a, 0) ∈ W ∗. Suppose that
f(ε, π(a)) 6= 0 if char(K) = 2. Let T be the endomorphism of V given by T (v) := vw
for all v ∈ V . Then:

(i) The endomorphism T is a norm splitting map of the quadratic space
(V,K, q) ;

(ii) The minimal polynomial of T is

p(x) = x2 + f(ε, π(a))x+ q(π(a)) .

Let E denote the splitting field of p over K, and let γ ∈ E be a root of
p. Then E/K is a separable quadratic extension and there is a scalar
multiplication from E × V to V extending the scalar multiplication from
K × V to V , such that T (v) = γv for all v ∈ V ;

(iii) Let S be a finite set of pairwise w-orthogonal elements of V ∗. Then the
elements of the set S∪Sw are linearly independent over K; if this set does
not span V , then S can be extended to a larger set of non-zero pairwise
w-orthogonal vectors ;

(iv) Let ψ : E → [ε]w be given by

ψ(r + tγ) := rε+ tπ(a)

for all r, t ∈ K . Then ψ is an isomorphism of vector spaces and X is a
(right) vector space over E with scalar multiplication given by bu := bψ(u)
for all b ∈ X and all u ∈ E. If σ denotes the non-trivial element in
Gal(E/K), then ψ(uσ) = ψ(u) for all u ∈ E . If N denotes the norm of
the extension E/K, then N(u) = q(ψ(u)) for all u ∈ E .

Proof. See [20, (26.39)]. �

Lemma 8.149. Let a ∈ X∗ be arbitrary, and let w := (a, 0) ∈ W ∗. Let D :=
〈ε, εw, v, vw〉 for some v ∈ V \ 〈ε, εw〉. Then dimK D = 4, and aDD ⊆ aD (but not
necessarily bDD ⊆ bD for other elements b ∈ X).

Proof. See [20, (26.41)]. �

Theorem 8.150. Let dimK V = 4. Then V can be made into a division ring
such that X is a right vector space over V with scalar multiplication given by the
map (a, v) 7→ av for all a ∈ X and all v ∈ V .

Proof. See [20, (26.42)]. �

It will be convenient now to set vσ := v for all v ∈ V .
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Theorem 8.151. Suppose that dimK V ∈ {2, 4}. Then there is a multiplication
on V which gives V the structure of a division ring with the following properties:

(i) 〈ε〉 is a subfield lying in the center of V and the map t 7→ tε is an isomor-
phism from K to 〈ε〉 ;

(ii) σ is an involution of V ;
(iii) X is a right vector space over V with scalar multiplication given by the

map (a, v) 7→ av ;
(iv) q(v) = vvσ = vσv ∈ 〈ε〉, and f(u, v) = uvσ + vuσ = uσv + vσu ∈ 〈ε〉 for

all u, v ∈ V ;
(v) h is a skew-hermitian form on X with respect to σ ;

(vi) (V, 〈ε〉, σ) is an involutory set ;
(vii) θ(a, v) = π(a)v for all a ∈ X and all v ∈ V .

Proof. See [20, (26.43)]. �

Theorem 8.152. Suppose that dimK V ≤ 4. Then dimK V ∈ {2, 4}. Let V be
given the structure of a division ring as in Theorem 8.151. Then (V,K, σ,X, π) is
an anisotropic pseudo-quadratic space. Moreover, we have that

π(av) = vσπ(a)v − ϕ(a, v)ε

for all a ∈ X and all v ∈ V .

Proof. See [20, (26.44)]. �

Theorem 8.153. Suppose that dimK V ≤ 4. Let (V,K, σ,X, π) be as in Theo-
rem 8.152. Then (V,W, τV , τW , ε, δ) ∼= ΩP (V,K, σ,X, π).

Proof. Let (T,�) be the group defined in section 7.4 applied on the pseudo-
quadratic space (V,K, σ,X, π). By the definition of T , we have that π(a)− v ∈ 〈ε〉
for all (a, v) ∈ T . Let χ(a, v) be the unique element t ∈ K such that v− π(a) = tε.

Let φ be the isomorphism from [V ] to V which maps [v] to v for all v ∈ V ,
and let ψ be the isomorphism from [T ] to W which maps [a, v] to (a, χ(a, v)) for all
(a, v) ∈ T ⊆ X × V . Then φ([1]) = [1] = ε and ψ([0, 1]) = (0, χ(0, 1)) = (0, 1) = δ
since 1ε − π(0) = 1ε. (Remember that we have identified K with 〈ε〉 ⊆ V by
Theorem 8.151(i).)

Now, let v ∈ V and (a, x) ∈ T be arbitrary. By Lemma 8.139(ii) and Lemma
8.121(i), we have that

a · xv = aπ(a)v + axv − aπ(a)v

= aθ(a, v) + a(x− π(a))v

= aθ(a, v) + a · χ(a, x)ε · v
= aθ(a, v) + χ(a, x)av

= a(θ(a, v) + χ(a, x)v) ,

and hence, by Theorem 8.151(iii), it follows that

xv = θ(a, v) + χ(a, x)v = v · (a, χ(a, x)) .
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By Theorem 8.152 and Theorem 8.151(i and iv), we have that

χ(av, vσxv)ε = vσxv − π(av)

= vσxv − vσπ(a)v + ϕ(a, v)ε

= vσ(x− π(a))v + ϕ(a, v)ε

= vσ · χ(a, x)ε · v + ϕ(a, v)ε

=
(
χ(a, x)q(v) + ϕ(a, v)

)
ε ,

and hence
χ(av, vσxv) = χ(a, x)q(v) + ϕ(a, v) .

It follows that

φ([v][a, x]) = φ([xv]) = xv = v · (a, χ(a, x)) = φ([v])ψ([a, x]) , and

ψ([a, x][v]) = ψ([av, vσxv]) = (av, χ(av, vσxv)) = (av, χ(a, x)q(v) + ϕ(a, v))

= (a, χ(a, x)) · v = ψ([a, x])φ([v]) ,

for all v ∈ V and all (a, x) ∈ T .
Hence (φ, ψ) is an isomorphism from ΩP (V,K, σ,X, π) to (V,W, τV , τW , ε, δ).

�

8.7. Quadrangular Systems of Type E6, E7 and E8

In this section, we continue to assume that Ω = (V,W, τV , τW , ε, δ) is a wide
quadrangular system which is the extension of a quadrangular system Λ of quadratic
form type, such that Rad(F ) = 0. It only remains to consider the case where
dimK V > 4.

Lemma 8.154. If char(K) = 2, then there exists an element ξ ∈ X∗ such that
π(ξ) = αζ for some α ∈ K∗.

Proof. Suppose that g(a, a) = 0 for all a ∈ X. Since g is bilinear, it would
follow that g(a, b) = g(b, a) for all a, b ∈ X, and hence, by Lemma 8.116, that W
is abelian. It would then follow by (Q8) that Im(H) ⊆ Rad(F ). Since Rad(F ) = 0
and H 6≡ 0, this is a contradiction.

Hence there exists an element a ∈ X∗ such that g(a, a) 6= 0. Let w1 := (a, 0) ∈
W ∗. By Lemma 8.119, it follows that f(ε, εw1) = f(ε, π(a)) = g(a, a) 6= 0. Hence
(see Definition 8.109)

S1 ∩ S2 = {v ∈ V | F (ε, v) 6= 0} ∩ {εw | w ∈W} 6= ∅ ,
since εw1 ∈ S1 ∩ S2. By the definition of ζ, this implies that ζ = f(ε, z)−1z for
some z ∈ S1 ∩ S2. Let z = εw2 for some w2 ∈ W ∗. Since f(εw2, ζ) = f(z, ζ) =
f(z, f(ε, z)−1z) = 0, w2 is ζ-orthogonal, hence w2 = (ξ, 0) for some ξ ∈ X∗. We
conclude that π(ξ) = ε(ξ, 0) = εw2 = z = f(ε, z)ζ = αζ for α = f(ε, z) ∈ K∗. �

Definition 8.155. If char(K) 6= 2, let ξ be an arbitrary element of X∗. If
char(K) = 2, choose ξ ∈ X∗ as in Lemma 8.154.

By Lemma 8.154 and Theorem 8.148, the endomorphism T of V which maps
v to v(ξ, 0) is a norm splitting map of q.

We have come to a point which is completely similar to the beginning of Chapter
27 in [20], and the rest of the proof could literally be copied from that chapter.

Theorem 8.156. The quadratic space (K,V0, q) is of type E6, E7 or E8.
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Proof. The proof is exactly as in [20, (27.17)], where we have to use Definition
8.117 and 8.118 and Lemmas 8.124, 8.127, 8.128, 8.129, 8.130, 8.131, 8.132, 8.135,
8.139, 8.140, 8.141 and 8.149. �

Theorem 8.157. (V,W, τV , τW , ε, δ) ∼= ΩE(K,V0, q).

Proof. It follows from the proof of [20, (27.19)], using Definition 8.109 and
8.118 as well as Lemmas 8.124, 8.128, 8.129, 8.130, 8.131, 8.132, 8.133, 8.135 and
8.139, that the maps h, g, θ and ϕ are exactly as in section 7.5.

Let φ be the map from [V0] to V which maps [v] to v for all v ∈ V , and let
ψ be the map from [S] to W which maps [a, t] to (a, t) for all (a, t) ∈ S. Since
we have seen in Definitions 8.117 and 8.118 that (a, t) · v = (av, tq(v) + ϕ(a, v))
and v · (a, t) = θ(a, v) + tv, it is now obvious that (φ, ψ) is an isomorphism from
ΩE(K,V0, q) to (V,W, τV , τW , ε, δ). �

This completes the proof of Theorem 8.10, and thereby the proof of the classi-
fication of quadrangular systems.



APPENDIX A

Abelian Quadrangular Systems

In this appendix, we will describe the quadrangular systems (V,W, τV , τW , ε, δ)
where W is abelian, and we will restate the axiom system for some specific cases.

A quadrangular system Ω = (V,W, τV , τW , ε, δ) will be called abelian if and
only if W is abelian. One can check that Ω is abelian if and only if it is of quadratic
form type, of involutory type, of indifferent type or of type F4. (Note that, if Ω
is of pseudo-quadratic form type with W abelian, then Ω is in fact reduced, and
hence of one of these types.) In this case, we simply write + and − in place of �
and �, respectively, and we get the following description.

Consider an abelian group (V,+) and an abelian group (W,+). Suppose that
there is a map τV from V ×W to V and a map τW from W ×V to W , both of which
will be denoted by · or simply by juxtaposition, i.e. τV (v, w) = vw = v · w and
τW (w, v) = wv = w · v for all v ∈ V and all w ∈W . Consider a map F from V ×V
to W and a map H from W×W to V which are additive in both variables. Suppose
furthermore that there exists a fixed element ε ∈ V ∗ and a fixed element δ ∈ W ∗,
and suppose that, for each v ∈ V ∗, there exists an element v−1 ∈ V ∗, and for each
w ∈ W ∗, there exists an element w−1 ∈ W ∗, such that, for all w,w1, w2 ∈ W and
all v, v1, v2 ∈ V , the following axioms are satisfied.

(A1) wε = w.
(A2) vδ = v.
(A3) (w1 + w2)v = w1v + w2v.
(A4) (v1 + v2)w = v1w + v2w.
(A5) v(−w) = −vw.
(A6) w(−v) = wv.
(A7) Im(F ) ⊆ Rad(H).
(A8) Im(H) ⊆ Rad(F ).
(A9) δ ∈ Rad(H).

(A10) If Rad(F ) 6= 0, then ε ∈ Rad(F ).
(A11) w(v1 + v2) = wv1 + wv2 + F (v1w, v2).
(A12) v(w1 + w2) = vw1 + vw2 +H(w1v, w2).
(A13) (v−1)−1 = v (if v 6= 0).
(A14) (w−1)−1 = w (if w 6= 0).
(A15) wvv−1 = w (if v 6= 0).
(A16) vww−1 = v (if w 6= 0).
(A17) v−1(wv) = vw (if v 6= 0).
(A18) w−1(vw) = wv (if w 6= 0).
(A19) F (v−1

1 , v2)v1 = F (v1, v2) (if v1 6= 0).
(A20) H(w−1

1 , w2)w1 = H(w1, w2) (if w1 6= 0).

Then (V,W, τV , τW , ε, δ) is an abelian quadrangular system.
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A.1. Reduced Quadrangular Systems

If Ω = (V,W, τV , τW , ε, δ) is reduced or indifferent, i.e. if H ≡ 0, then Ω is
abelian, and we get the following description.

Consider an abelian group (V,+) and an abelian group (W,+). Suppose that
there is a map τV from V ×W to V and a map τW from W × V to W , both of
which will be denoted by · or simply by juxtaposition, i.e. τV (v, w) = vw = v · w
and τW (w, v) = wv = w · v for all v ∈ V and all w ∈ W . Consider a map F from
V × V to W which is additive in both variables. Suppose furthermore that there
exists a fixed element ε ∈ V ∗ and a fixed element δ ∈ W ∗, and suppose that, for
each v ∈ V ∗, there exists an element v−1 ∈ V ∗, and for each w ∈ W ∗, there exists
an element w−1 ∈ W ∗, such that, for all w,w1, w2 ∈ W and all v, v1, v2 ∈ V , the
following axioms are satisfied.

(R1) wε = w.
(R2) vδ = v.
(R3) (w1 + w2)v = w1v + w2v.
(R4) (v1 + v2)w = v1w + v2w.
(R5) v(−w) = −vw.
(R6) w(−v) = wv.
(R7) If Rad(F ) 6= 0, then ε ∈ Rad(F ).
(R8) w(v1 + v2) = wv1 + wv2 + F (v1w, v2).
(R9) v(w1 + w2) = vw1 + vw2.

(R10) (v−1)−1 = v (if v 6= 0).
(R11) (w−1)−1 = w (if w 6= 0).
(R12) wvv−1 = w (if v 6= 0).
(R13) vww−1 = v (if w 6= 0).
(R14) v−1(wv) = vw (if v 6= 0).
(R15) w−1(vw) = wv (if w 6= 0).
(R16) F (v−1

1 , v2)v1 = F (v1, v2) (if v1 6= 0).

Then (V,W, τV , τW , ε, δ) is a reduced or indifferent quadrangular system (and
it is reduced if and only if F 6≡ 0).

Remark A.1. As we explained in Remark 6.4, axiom (R7) had only been
introduced to simplify the classification result of the wide quadrangular systems.
In particular, it is not needed for the reduced quadrangular systems, and it is in
fact often more convenient – and perfectly allowed – to leave it out.

A.2. Indifferent Quadrangular Systems

If Ω = (V,W, τV , τW , ε, δ) is indifferent, i.e. if F ≡ 0 and H ≡ 0, then Ω is
abelian, and we get the following description.

Consider an abelian group (V,+) and an abelian group (W,+). Suppose that
there is a map τV from V ×W to V and a map τW from W × V to W , both of
which will be denoted by · or simply by juxtaposition, i.e. τV (v, w) = vw = v · w
and τW (w, v) = wv = w · v for all v ∈ V and all w ∈W . Suppose furthermore that
there exists a fixed element ε ∈ V ∗ and a fixed element δ ∈W ∗, and suppose that,
for each v ∈ V ∗, there exists an element v−1 ∈ V ∗, and for each w ∈ W ∗, there
exists an element w−1 ∈W ∗, such that, for all w,w1, w2 ∈W and all v, v1, v2 ∈ V ,
the following axioms are satisfied.

(D1) wε = w.
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(D2) vδ = v.
(D3) (w1 + w2)v = w1v + w2v.
(D4) (v1 + v2)w = v1w + v2w.
(D5) w(v1 + v2) = wv1 + wv2.
(D6) v(w1 + w2) = vw1 + vw2.
(D7) (v−1)−1 = v (if v 6= 0).
(D8) (w−1)−1 = w (if w 6= 0).
(D9) wvv−1 = w (if v 6= 0).

(D10) vww−1 = v (if w 6= 0).
(D11) v−1(wv) = vw (if v 6= 0).
(D12) w−1(vw) = wv (if w 6= 0).

Then (V,W, τV , τW , ε, δ) is an indifferent quadrangular system. (Note that we
do not have to assume a priori that all elements of V and W have order at most 2,
but that this follows from these axioms.)

A.3. Radical Quadrangular Systems

An abelian quadrangular system Ω = (V,W, τV , τW , ε, δ) will be called radical
if and only if Rad(F ) 6= 0. One can check that Ω is radical if and only if it is of
quadratic form type with ε ∈ Rad(f) (and hence char(K) = 2), of indifferent type
or of type F4. We will give two different (but equivalent) descriptions. The first one
is useful to check whether a certain system is a radical quadrangular system; the
second one is more convenient to work with. Note that each of these descriptions
is completely symmetrical.

A.3.1. First Description. Consider an abelian group (V,+) and an abelian
group (W,+). Suppose that there is a map τV from V ×W to V and a map τW
from W × V to W , both of which will be denoted by · or simply by juxtaposition,
i.e. τV (v, w) = vw = v ·w and τW (w, v) = wv = w · v for all v ∈ V and all w ∈W .
Consider a map F from V × V to W and a map H from W ×W to V which are
additive in both variables. Suppose furthermore that there exists a fixed element
ε ∈ V ∗ and a fixed element δ ∈W ∗, and suppose that, for each v ∈ V ∗, there exists
an element v−1 ∈ V ∗, and for each w ∈ W ∗, there exists an element w−1 ∈ W ∗,
such that, for all w,w1, w2 ∈ W and all v, v1, v2 ∈ V , the following axioms are
satisfied.

(F1) wε = w.
(F2) vδ = v.
(F3) (w1 + w2)v = w1v + w2v.
(F4) (v1 + v2)w = v1w + v2w.
(F5) Im(F ) ⊆ Rad(H).
(F6) Im(H) ⊆ Rad(F ).
(F7) δ ∈ Rad(H).
(F8) ε ∈ Rad(F ).
(F9) w(v1 + v2) = wv1 + wv2 + F (v1w, v2).

(F10) v(w1 + w2) = vw1 + vw2 +H(w1v, w2).
(F11) (v−1)−1 = v (if v 6= 0).
(F12) (w−1)−1 = w (if w 6= 0).
(F13) wvv−1 = w (if v 6= 0).
(F14) vww−1 = v (if w 6= 0).
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(F15) v−1(wv) = vw (if v 6= 0).
(F16) w−1(vw) = wv (if w 6= 0).
(F17) F (v−1

1 , v2)v1 = F (v1, v2) (if v1 6= 0).
(F18) H(w−1

1 , w2)w1 = H(w1, w2) (if w1 6= 0).

Then (V,W, τV , τW , ε, δ) is a radical quadrangular system. It is of type F4 if
and only if F 6≡ 0 and H 6≡ 0.

A.3.2. Second Description. Let K and L be two commutative fields with
char(K) = char(L) = 2, such that K is a vector space over L and that L is a
vector space over K. If t is an element of the field K, then we will denote the
corresponding element of the vector space K by [t]; if s is an element of the field
L, then we will denote the corresponding element of the vector space L by [s]. Let
V be a vector space over K containing [L] as a subspace, and let W be a vector
space over L containing [K] as a subspace.

Suppose that q is an anisotropic quadratic form from V to K, with correspond-
ing bilinear form f , and that q̂ is an anisotropic quadratic form from W to L, with

corresponding bilinear form f̂ , such that [L] ⊆ Rad(f) and [K] ⊆ Rad(f̂). Let
ε := [1] ∈ [L] ⊆ V and δ := [1] ∈ [K] ⊆W . Finally, suppose that there is a map τV
from V ×W to V which is K-linear on V , and a map τW from W × V to W which
is L-linear on W , both of which will be denoted by · or simply by juxtaposition,
i.e. τV (v, w) = vw = v ·w and τW (w, v) = wv = w · v for all v ∈ V and all w ∈W .
Moreover, suppose that the following axioms hold, for all v ∈ V , w ∈ W , t ∈ K
and s ∈ L.

(C1) v[t] = tv.
(C2) w[s] = sw.
(C3) v · sw = vw · sδ.
(C4) w · tv = wv · tε.
(C5) [t]v = [tq(v)].
(C6) [s]w = [sq̂(w)].
(C7) vww = v · q̂(w)δ.
(C8) wvv = w · q(v)ε.
(C9) v · wv = q(v)vw.

(C10) w · vw = q̂(w)wv.

(C11) v(w1 + w2) = vw1 + vw2 + [f̂(w1v, w2)].
(C12) w(v1 + v2) = wv1 + wv2 + [f(v1w, v2)].

Then (V,W, τV , τW , ε, δ) is a radical quadrangular system. It is of type F4 if

and only if f 6≡ 0 and f̂ 6≡ 0.
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