
High Performance Model Based Image Reconstruction

Xiao Wang
School of Electrical and Computer

Engineering, Purdue University
wang1698@purdue.edu

Amit Sabne
School of Electrical and Computer

Engineering, Purdue University
asabne@purdue.edu

Sherman Kisner
High Performance Imaging LLC

kisner@ecn.purdue.edu

Anand Raghunathan
School of Electrical and Computer

Engineering, Purdue University
raghunathan@purdue.edu

Charles Bouman
School of Electrical and Computer

Engineering, Purdue University
bouman@purdue.edu

Samuel Midkiff
School of Electrical and Computer

Engineering, Purdue University
smidkiff@ecn.purdue.edu

Abstract
Computed Tomography (CT) Image Reconstruction is an impor-
tant technique used in a wide range of applications, ranging from
explosive detection, medical imaging to scientific imaging. Among
available reconstruction methods, Model Based Iterative Recon-
struction (MBIR) produces higher quality images and allows for
the use of more general CT scanner geometries than is possible
with more commonly used methods. The high computational cost
of MBIR, however, often makes it impractical in applications for
which it would otherwise be ideal. This paper describes a new
MBIR implementation that significantly reduces the computational
cost of MBIR while retaining its benefits. It describes a novel orga-
nization of the scanner data into super-voxels (SV) that, combined
with a super-voxel buffer (SVB), dramatically increase locality and
prefetching, enable parallelism across SVs and lead to an average
speedup of 187 on 20 cores.

Categories and Subject Descriptors I.4.5 [Image Processing and
Computer Vision]: Reconstruction—Transform methods; D.1.3
[Programming Techniques]: Concurrent Programming—Parallel
Programming

General Terms Applications, Algorithms

Keywords Multicore, Parallel algorithm, CT image reconstruc-
tion, MBIR

1. Introduction
Modern imaging systems increasingly use computation to form
useful images from raw sensor data, and this integration of com-
putation and sensing in computational imaging systems is among
the most important trends in commercial, scientific, medical and
security imaging. The classic example of a computational imaging

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PPoPP ’16, March 12-16, 2016, Barcelona, Spain.
Copyright © 2016 ACM 978-1-4503-4092-2/16/03. . . $15.00.
http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2851141.2851163

system is X-ray tomographic imaging in which a volume is recon-
structed from a set of projections.

Image reconstruction techniques generally fall into two cate-
gories: direct methods, such as filtered back projection (FBP), and
iterative methods. Among iterative methods, Model Based Itera-
tive Reconstruction (MBIR) [20, 22] has been shown to result in
higher quality images in applications including explosive detection
systems (EDS) [4, 5, 13, 17], medical imaging [20, 22], scientific
and materials imaging [14]. MBIR can also work effectively with
a wider range of scanner geometries. MBIR, however, suffers from
a high computational cost. In typical applications, iterative recon-
struction methods may require a factor of 10 to over 100 times the
computation of FBP.

Broadly speaking, there are two approaches to MBIR: simulta-
neous methods [3, 4, 8, 21] and iterative coordinate descent (ICD)
methods [18, 20, 26]. Simultaneous methods work by iteratively
projecting an entire volume to be reconstructed into the measure-
ment or sinogram space.1 Simultaneous methods, however, have
a number of disadvantages. To speed up convergence, these algo-
rithms must be used with preconditioning methods [1, 8, 16], which
must be custom designed for each CT imaging system and geome-
try.

As an alternative to these approaches, ICD has been shown to
have very rapid and robust numerical convergence for a wide va-
riety of MBIR applications with various geometries, noise statis-
tics and image models. Intuitively, ICD is fast and robust because
ICD is a greedy optimization approach and each voxel (a single
data point in the final image being reconstructed) is updated to best
minimize the cost function, so there is tight feedback in the opti-
mization process. In practice, ICD has been shown to converge in
3 to 6 iterations instead of the hundreds of iterations needed by
simultaneous methods [4, 18]. While ICD has rapid convergence,
currently it is believed that ICD requires operations that are more
difficult to parallelize [10, 27]. Moreover, ICD exhibits poor cache
locality because of the data layout which, as shown in Sec. 2.1, re-
quires a 2D array of memory to be accessed in sinusoidal patterns
[7, 23].

Research in high performance CT image reconstruction can
be summarized as addressing two challenges: (1) increasing the
amount of parallelism, and (2) enhancing the locality of refer-

1 The measurement or sinogram space stores all measurements collected by
CT scanner system. It is called the sinogram space because the measurement
of a voxel traces a sinusoidal pattern in the memory.

Physical	
 Scanner	
 System	

rotate	

X-­‐ray	
 source	

rota4ng	
 sensor	

array	

r=sensor	

channel

pθ(r)θ=0ο

voxel	
 	

“u1”	

voxel	
 “u2”	

Physical	
 Scanner	
 System	

(a)	

(b)	
 4me	
 =	
 Δ	
 	
 	
 (a)	
 4me	
 =	
 0	

voxel	
 “u1”	

voxel	
 “u2”	

θ=90ο

pθ(r)

ro
ta
te
)

r

X+
ra
y)
so
ur
ce
)

Physical)Scanner)
System)

(c))7me)=)2Δ)

voxel)“u2”)

voxel)“u1”)

Sinogram	
 Space	

view	
 angle	
 (θ)

ch
an
ne

l	
 (
r)
	

(d)	
 4me	
 =	
 0	

	

0ο

Sinogram	
 Space	

view	
 angle	
 (θ)

ch
an
ne

l	
 (
r)
	

0ο 45ο	

(e)	
 3me	
 =	
 Δ	
 	

Sinogram	
 Space	

ch
an
ne

l	
 (
r)
	

view	
 angle	
 (θ)

0ο 45ο	
 90ο

(f)	
 4me	
 =	
 2Δ	

	

Figure 1: (a), (b) and (c) illustrate CT tomography system operations for voxels “u1” and “u2” when θ = 0°, 45°and 90°respectively. (d), (e)
and (f) show how the measurement data collected from the CT scanner is organized into the sinogram.

ence. The ICD algorithm presents significant challenges in meet-
ing these two apparently competing goals. Early efforts to speed up
ICD focused on parallelizing the algorithm by eliminating depen-
dencies between voxel updates. Methods have been developed to
find “loosely coupled voxels” sharing little or no data in common
[19, 26]. By using loosely coupled voxels, it is shown in [10, 27]
that, from an algorithmic perspective, updates of voxels could be
done simultaneously with little effect on convergence rate. For ex-
ample, in Table I of [10], parallelizing loosely coupled voxels leads
to a convergence rate about 18% slower and a speedup of 2.3 times
on 16 cores. Typically, loosely coupled voxels must be far from
each other in the same 3D slice, or must be in different slices of
the 3D volume. While the parallel updates of loosely coupled vox-
els eliminate the need for shared data, they also hurt cache locality
since there is no memory reuse between any two distinct voxel up-
dates. Alternatively, one might choose to update nearby voxels that
are strongly coupled and share more data, thus leading to better
cache locality. Strongly coupled voxels, however, will also have in-
creased data sharing and lock contention across cores, negatively
affecting parallelism. Therefore, a good solution must enable good
cache locality while also enable good parallel executions.

This paper makes the following contributions:

1. It describes the performance issues inherent in MBIR;

2. It introduces and describes the ideas of the super-voxel (SV) and
super-voxel buffer (SVB) to increase locality and prefetching;

3. It identifies and discuss available parallelism in MBIR;

4. It proposes a parallel super-voxel ICD algorithm (PSV-ICD)
that simultaneously addresses the challenges of parallelism and
locality;

5. It produces experimental results showing that PSV-ICD gives
an average 14 speedup on a single core and an average 187
speedup on 2 Intel Xeon E5 processors with 20 cores in total.

The remainder of the paper is organized as follows. In Section 2,
we review background information about CT and MBIR. In Sec-
tion 3, we introduce the SV algorithm (SV-ICD/SVB) and its ex-
ploitation of cache locality and hardware prefetching. In Section 4,
we investigate different levels of parallelism in high performance
imaging, and introduce the PSV-ICD algorithm. In Section 5, we
provide an evaluation of SV-ICD/SVB and PSV-ICD using datasets
from an Imatron C300 CT Scanner, described in [5], in which we
show the achieved performance gains and where they come from.
We believe that other domains will benefit from these techniques,
and in Section 6, we present a discussion of the broader applica-
tion of these techniques to other problems. Finally, we present our
conclusions in Section 7.

	

	

	

	

	

	

	

	

	

	

	

	
 	

	

	

	

	

	

	

	

	

Sinogram	
 Space	

view	
 angle	
 (θ)ch
an
ne

l	
 (
r)
	

memory	
 to	
 access	
 for	

voxels	
 “u1”	
 and	
 “u2”	

intersec>on	

cache	
 lines	

At	

A	

	

	

	

	

	

	

	

	

	

	

	

Image	

Space	
 voxel	
 “u1”	

voxel	
 “u2”	

Figure 2: The sub-figure on the left shows the sinogram space
storing all of the CT measurements. The sub-figure on the right
shows the final reconstructed image. Notice that each single voxel
in the image domain traces out a sinusoidal pattern in the sinogram
domain. The sinusoidal pattern for voxel “u1” is shown in solid
yellow while “u2” is shown in dashed red. In addition, each voxel
traces out a different sine wave pattern, but different voxels’ sine
wave patterns will intersect for some set of views.

2. BACKGROUND
2.1 Computed Tomography
Figures 1 (a), (b) and (c) illustrate the basic concepts of how a
typical parallel beam X-ray CT system operates. An X-ray source
is mounted on a rotating gantry along with a rotating linear array of
X-ray detectors. The object to be imaged is then placed at or near
the center of rotation. When the gantry containing the X-ray source
and sensor rotates, X-rays pass through the object to be imaged and
a series of measurements are taken on the array of X-ray detectors.
Each single view is taken at a specific rotation angle, θ. At that
view angle, the CT system takes a set of measurements from all
the elements of the X-ray detector array at a single instant of time.
Since the X-rays pass through the object from the source to the
sensor array, measurements from each array element r (or channel)
are used to estimate pθ(r), the integral density of the object along
the path from the X-ray source to the detector. The objective is then
to take these estimates of integral density and reconstruct an image
of the object. Figures 1 (a), (b) and (c) also show how a CT system
takes measurements for the voxels “u1” and “u2” when θ = 0°,
45°and 90°respectively. Bars of different color show the distance
between the channel that detects the voxel and the channel located
at the center of rotation.

Typically, the data collected from the scanner is organized into
a sinogram, as illustrated in Figures 1 (d), (e) and (f). For each
cross-section slice of the object being imaged, the sinogram is
a 2D data structure indexed by the channel r and view θ. The
name “sinogram” comes from the fact that the measurements of
individual voxels in the image correspond to sine wave patterns in
the sinogram. When we connect channels r at different views θ for
voxels “u1” and “u2”, their connected traces correspond to the sine
wave patterns in the sinogram shown as a thin yellow line and a
red line. In order to compute the update of a voxel in ICD, it is
necessary to access the voxels’ corresponding measurement values
in the sinogram following these sine wave patterns.

Modern processors access main memory by first transferring
blocks of memory onto fast on-chip cache memory that is much
faster than main memory. Cache lines are shown as short blue line
segments in Figure 2. Notice that, for the most part, these horizontal
blue cache lines only partially overlap the yellow or red line of
memory that must be accessed. This means that most of the words
in a cache line do not hold data for the current voxel update.

One additional observation is that each individual voxel corre-
sponds to a sine wave with a different amplitude and phase. Since
each voxel has a unique sinusoidal path, no single transformation
of the sinogram data will align the cache lines with the sinusoidal
paths in all cases. Also, the sinusoidal paths for different voxels
will always overlap at some views, shown as blue dots in Figure 2.
Therefore, any parallel algorithm that updates different voxels si-
multaneously needs to atomically update these intersection points.
When the number of voxels to be simultaneously updated increases,
there will be more intersections and more lock contention. This
lock contention can limit parallel performance. For this reason, it is
not surprising that grouped coordinate decent (GCD) [10, 23, 27],
the most commonly known method for parallelizing ICD, has been
demonstrated to only achieve a speedup of 2.3 on 16 cores.

2.2 Conventional ICD Algorithm
To better understand the key novelties of this paper, the central
mathematical and algorithmic concepts of MBIR must first be
briefly reviewed. MBIR is based on the numerical solution of an
optimization problem described by

û = argmin
u≥0

{
1

2
(v −Au)TD(v −Au) + S(u)

}
(1)

We consider the image u as a N dimension vector whose elements
are called voxels and the data v as a vector of size M containing
the CT measurement data. To relate this information with Figure 2,
M is the number of channels times the number of views and N is
the number of voxels in the image space. The matrixA is aM ×N
forward system matrix of the scanner geometry, D is a M × M
diagonal weighing matrix containing the inverse variance of the
scanner noise and S(u) is the regularizing prior function which
depends upon voxels only. The system matrix, A, encodes the ge-
ometry of the scanner, and each element Ai,j roughly corresponds
to the length of intersection between the jth voxel and the ith pro-
jection. Since a single projection only intersects a small subset of
the voxels, the matrix A is very sparse and is typically either pre-
computed and stored as a sparse matrix or computed on the fly. The
diagonal matrix D is also pre-computed from the data so that each
element, Di,i, corresponds to the inverse variance of the measure-
ment vi. In the rest of this paper, diagonal entry Di,i is abbreviated
as di. The ICD algorithm for solving equation (1) works by updat-
ing each voxel in sequence to minimize the overall cost function
while keeping the remaining voxels fixed. Formally, the update of
the selected voxel uj is given by

ûj = argmin
uj≥0

{
1

2
(v −Au)TD(v −Au) + S(u)

}
(2)

In practice, the computation associated with the term S(u) is neg-
ligible in the ICD update because it only includes a small number
of local operations. So we will focus on the remaining quadratic
term. Direct implementation of the ICD algorithm using the above
formula requires the evaluation of the term v−Au with each voxel
update. Fortunately, there is a simple method for speeding up the
computation by keeping a state variable to store this error term
e = v − Au. In order to update the voxel uj , however, it is neces-
sary to evaluate terms involving the corresponding jth column of
the matrix A. More specifically, in order to compute an ICD up-
date of voxel uj , it is necessary to compute the first two derivatives

ch
an
ne

l	(
r)

Sinogram	Space

Image	Space

super-voxel

r

pθ(r)
θ=45ο

r

p θ
(r
)

rotating	sensor	array
r	=	sensor	channel

θ=0ο
view	angle	(θ)

relevant	measurements	for	
given	super-voxel

Forward	Projection	of	a Square	Super-voxel

θ=90ο

(a)

Sinogram	Space

Image	Space

super-voxel

ch
an
ne

l	(
r)

Forward	Projection	of	a	Circular	Super-voxel
r

pθ(r)
θ=0ο θ=45ο

θ=90ο

r

p θ
(r
)

rotating	sensor	array
r	=	sensor	channel

relevant	measurements	for	
given	super-voxel

view	angle	(θ)

(b)

Figure 3: (a) The forward projection of a square SV. (b) The forward projection of a circular SV. Notice that the circular SV maps to a band
of uniform thickness in the sinogram. The brighter color in the sinogram also corresponds to more data reuse.

of the cost function. The expressions for these two derivatives, de-
noted by θ1 and θ2, are given by

θ1 = −
M∑
i=1

diAijei (3)

θ2 =

M∑
i=1

diA
2
ij (4)

where ei is the ith element in the error term. One can then write
the minimization of the 1-D objective function for uj explicitly as

uj ← argmin
r≥0

{
θ1r +

θ2(r − ũj)2

2
+ f(r, u∂j)

}
, (5)

ũj is the jth voxel’s value before the update, and f(r, u∂j) is some
function of the eight neighbors of the voxel uj . In addition, we
sometimes skip the update of voxels in a process called “zero-
skipping.” Zero-skipping can be used to speed up convergence and
it is typically performed whenever a voxel and all its 8 neighbors
are zero [26].

Algorithm 1 Voxel Update (j, u, e, d)

1: ũj ← uj
2: θ1 =

∑M
i=1 diAijei

3: θ2 =
∑M
i=1 diA

2
ij

4: uj ← argminr≥0

{
θ1r +

θ2(r−ũj)2

2
+ f(r, u∂j)

}
5: e← e+A∗j(uj − ũj)

Algorithm 1 shows the pseudo code for the voxel update algo-
rithm from [26]. The first step is to copy the voxel value to a local
register ũj . We compute θ1 and θ2 using the formulas in Equation 3
and 4. Then we compute the voxel’s updated value uj efficiently
by solving a 1-D optimization problem [26] in the Equation 5. Fi-
nally, we update the error term by forward projecting the update
step uj − ũj . When implemented properly [26], the computation
of Algorithm 1 is dominated by steps 2, 3, and 5. The remaining
steps typically represent a negligible amount of additional compu-
tation. Each iteration of the conventional ICD algorithm updates a

voxel exactly once. Nonetheless, the order of voxel updates may
vary across different iterations. For CT image reconstruction, ex-
perimental results have indicated that selecting voxels in random
order provides significantly faster convergence than raster order, as
the correlation between successive updates is reduced [2]. There-
fore, the random update order is typically used in the conventional
ICD algorithm. The ICD algorithm further speeds up convergence
by focusing computation on regions of the image that contain fine
detail, such as edges [25]. When a voxel is chosen for update, the
reconstruction edge mask is first checked and updates are calcu-
lated only for the masked voxels.

3. Improving sequential execution
Good single core performance is essential for overall good parallel
algorithm performance. In this section, we discuss the concept
of the super-voxel (SV) and how SVs and the super-voxel buffer
(SVB) can improve the locality and performance of the image
reconstruction algorithm.

3.1 Super-voxels
A SV is a group of voxels that are contiguous in the image space
and whose measurement data (from scanners) is likely to be close
together in sinogram memory. Thus, operating on the data for these
voxels is likely to increase temporal and spatial locality.

An initial question is what voxels should be in a SV? To answer
this question, the forward projection [12] of a set of voxels can be
used to determine where in the sinogram space the corresponding
data values lie. For example, Figure 3(a) shows the forward pro-
jection for a square SV. At each view angle θ, we record the SV’s
projection on a rotating sensor array. The more sensor channels
that detect a projection at that view angle, the more measurement
data that will be in that view in the sinogram space. In addition,
brighter points (more yellow and white) in the sinogram space in-
dicate higher levels of data reuse in the SV. From Figure 3(b), we
can see that a circular SV is the ideal choice for the SV shape be-
cause it will have the least amount of measurement data and the
highest data reuse.2 Circular SVs, however, do not tessellate the

2 This result holds if the sinogram is formed by a dense sampling of views
at all angles.

	

	

(a)	
 SV	
 Overlapping	
 Pa1ern	

(b)	
 SV	
 Two	
 Phase	
 Displacement	

Overlapped	

Region	

A	
 SV	
 In	
 Phase	
 1	

The	
 Same	
 SV	
 In	

Phase	
 2	

Figure 4: The layout and the overlaps of SVs in the image space
using the two-phase mechanism. In (a), shaded green cells repre-
sent overlapping neighboring SVs. In (b), red SV is a phase 1 SV
and the blue SV is the same SV in phase 2 but with a diagonal
displacement.

image space. Consequently, circular SVs must have a large amount
of overlap to fully cover the image space, leading to excessive com-
putations on voxels in multiple overlapping SVs. At the same time,
SVs of a different shape, which tessellate the image space with no
overlap, will also lead to excessive computation because the algo-
rithmic convergence could be adversely affected at SV boundaries.

To overcome these flaws, we use square SVs and a two phase
convergence mechanism. With square SVs, data reuse is less com-
pared to circular SVs, as can be seen in the forward projection for
the square SV in Figure 3(a). Nonetheless, having each voxel be-
long to a single SV and eliminating redundant computations more
than compensate for this disadvantage. Figure 4 illustrates the SV
layout used to achieve the two phase convergence. In Figure 4(a),
each phase of SVs of side length 6 provides a full covering of the
image space while adjacent SVs overlap at the boundaries. This in-
troduces limited redundant computations but it is compensated for
by having faster algorithmic convergence. In Figure 4(b), the im-
age on the left shows a SV in Phase 1 and the image on the right
shows the same SV in Phase 2, but with a diagonal displacement of
1. All SVs in the odd iterations of the algorithm use Phase 1 while
SVs in the even iterations use Phase 2. Both overlapping adjacent
SVs and fixed distance phase change ensure more rapid algorithmic
convergence at SV boundaries. The detailed convergence analysis
is shown in Figure 9 of the Experimental Results Section 5.

3.2 Super-voxel buffers
As discussed above, SVs improve performance in part by reduc-
ing data cache misses. Additional improvements can be achieved
by improving the ability of the hardware to perform prefetching.
Hardware prefetching (or just prefetching) is performed by mod-
ern processors when they can recognize one or more sequences
of accessed data, typically with accesses of the form i ± k for
a linear sequence of is. When such a sequence is recognized, the
hardware predicts memory locations that will be accessed soon and
prefetches them into cache before they are needed. SVs do not im-
prove the prefetch rate because most SVs are not centered in the im-
age and therefore the corresponding measurement data for the SV
is in a sinusoidal band with access patterns that are not recognized
by the prefetcher. Figure 5 graphically illustrates this band pattern
in which a red block represents the SV to be updated in the image

Sinogram	
 Space	

Image	

Space	

A	

At	

sinogram	
 memory	

for	
 super-­‐voxel	

super-­‐voxel	
 to	
 be	

updated	

view	
 angle	
 ch
an
ne

l	

super-­‐voxel	
 buffer	

voxel	
 trace	
 in	
 the	
 buffer	

Super-­‐Voxel	
 Buffer	
 Management	

voxel	
 trace	
 	

Figure 5: Memory access in sinogram space for SV updates. Pro-
cessor hardware is used to load sinogram memory into a SVB. Note
that a voxel trace is straightened out in the SVB.

space and sinogram entries related to this block are illustrated as a
yellow band in the sinogram space.

In creating a super-voxel buffer (SVB), the memory accesses
in the yellow band in Figure 5 are copied into the SVB shown in
the same figure. The SVB lays out the SV data so that memory
accesses follow a “straight line” pattern that is ideal both for hard-
ware prefetching and ensuring that a prefetched cache line con-
tains entirely, or almost entirely, useful data. The sinogram band
can be approximated as a band sine function while the SVB is
a straight band. Therefore, the transformation from the sinogram
band to SVB can be described as the inverse function of the sino-
gram band’s sine function.

Theoretical analysis of SVB access patterns indicates that the
average number of consecutive memory locations accessed in the
SVB for a single voxel update along the view direction, denoted
RunSVB , is given by

RunSVB ≈ 2Nv/R, (6)

where Nv is the number of views and R is the side length of the
square SV. For images with square SVs with 13 voxels along each
side and 720 views, it can be shown analytically that the average
run length of data is 110. Alternatively, if the entire image is one
SV (i.e., the SV concept is not used), then RunSVB ≈ 1 so that
on average only a single value of data can be read in sequence in
the SVB for a voxel update. A more thorough analysis about the
impact of SVBs on performance is given in Section 5, showing an
average tenfold increase of the prefetch hit rate.

The detailed SV and SVB implementation is summarized in
Algorithm 2 (SV-ICD/SVB). We first tessellate the image space
by using the two phase convergence mechanism, and then update
voxels sequentially within each SV. In addition, we use two SVBs,
called SVBe and SVBd, to store e (the error term) and d (the
diagonal entries of the weight matrix), respectively, because we
need to access both of them in the ICD algorithm. At the end of
the Algorithm 2, revised memory data are copied back from the
SVB to e. No data are copied from an SVB to d because it is not
modified in Algorithm 1.

4. Improving parallel execution
In this section, we first discuss different levels of possible paral-
lelism in high performance CT image reconstruction.

Algorithm 2 SV-ICD/SVB (G, e, d)

INPUT: G: a CT image consisting of voxels. d: diagonal entries
of weighing matrix.

OUTPUT: e: error term
LOCAL: SVBe, SVBd SVBs to store local memory accesses

1: Initialize e and create a tessellating SVs set P
2: for super-voxel a ∈ P do
3: SVBe,SVBd← ∅
4: for each view θ in the sinogram do
5: SVBe ← Copy e from sinogram to SVB
6: SVBd ← Copy d from sinogram to SVB
7: end for
8: for super-voxel a ∈ P do
9: for Voxel uj ∈ a do

10: Voxel Update(j, u, SVBe, SVBd)
11: end for
12: end for
13: for each view θ in the sinogram do
14: e← Copy SVBe from SVB to sinogram
15: end for
16: end for
17: if image not converged then
18: SVs set P shifts phase. Go back to step 2.
19: end if

Hierarchical Parallelism Achieving a high degree of paralleliza-
tion is extremely important for high performance CT reconstruc-
tion. For any number of CPU cores used in the image reconstruc-
tion, sufficient parallelism is needed to efficiently use the cores.
For future work with GPUs and large clusters, thousands of cores
will need to be kept busy. We have identified the 4 major levels of
parallelism listed below.

1. Intra-voxel parallelism: parallelism within the update of a single
voxel.

2. Intra-SV parallelism: parallelism across the updates of multiple
voxels in a single SV.

3. Inter-SV parallelism: parallelism across multiple SVs in a sin-
gle image.

4. Inter-slice parallelism: parallelism of multiple slices (images)
of a single 3D reconstruction.

Among these 4 levels of parallelism, inter-slice parallelism is
widely used by others, e.g. [9, 19, 24, 26]. In a 400 slice reconstruc-
tion, at least 200 slices can be processed in parallel with little or no
communication required among processes. The data vectorization
in computing Equation (3) and (4) in Section 2.2 can be considered
to be an example of intra-voxel parallelism since it parallelizes mul-
tiple data operations in a single voxel update. Moreover, GCD [10]
can be taken as an exemplary intra-SV parallelism where the entire
image is considered to be a single SV.

Inter-SV parallelism (with each SV containing more than one
voxel) has fewer conflicts on shared data than intra-SV parallelism,
reduced communication overhead and sufficient work to keep ev-
ery core busy. Intuitively, fewer conflicts mean that inter-SV paral-
lelism allows each core to have more work to do before a possible
multicore communication. In addition, the frequency of communi-
cation is also reduced proportionally to the SV size.

Moreover, these four major levels of parallelism are largely or-
thogonal, so that the total number of parallel operations increases
as the product of the number of parallel threads in each level. This
is important because the number of cores in modern computing
systems is rapidly increasing with each new generation of device.

Hence, keeping all these cores efficiently busy is a crucial require-
ment for fast efficient MBIR. In addition, it is also important to note
that these four levels of parallelisms are hierarchical since one slice
is a set of SVs and each SV is a set of voxels.

Algorithm 3 GCD (voxelSet, e)

1: for each voxel uj in the voxelSet do in parallel
2: ũj ← uj
3: θ1 ← Compute as in Equation (3)
4: θ2 ← Compute as in Equation (4)

5: uj ← argminr≥0{θ1r +
θ2(r−ũj)2

2
+ f(r, u∂j)}

6: lock
7: e← e+A∗j(uj − ũj)
8: unlock
9: end for

10: if image not converged then
11: Go back to step 1.
12: end if

The challenges of parallelism The fundamental challenge in a
parallel MBIR is the trade-off between cache locality and paral-
lelism discussed in Section 1. Because of the sinusoidal nature of
voxel traces in the sinogram space, it can be shown analytically
that any two traces are guaranteed to have at least one intersec-
tion, as illustrated in Figure 2. We call those voxels whose traces
have many intersections “strongly coupled voxels” and those vox-
els whose traces have few intersections “loosely coupled voxels”.

Strongly coupled voxels have more shared measurement data
in the sinogram and take advantage of the cache locality, but the
algorithmic convergence will be slower. Algorithm 3 (the GCD al-
gorithm) uses one kind of intra-SV parallelism and violates depen-
dencies from the update of e in step 7 to its use in step 3 of the algo-
rithm. This violation of dependencies leads to a correct answer be-
cause of the convergent nature of the algorithm, but it will converge
much more slowly, i.e., it will require more voxel updates and com-
putations. In addition, a more fundamental limitation comes from
the significant waiting time for a lock in GCD. As we can see from
Algorithm 3, every voxel update has a lock waiting overhead. This
lock contention is a significant overhead in parallel executions.

On the other hand, loosely coupled voxels have less shared mea-
surement data in the sinogram and thus cache locality suffers. How-
ever, the algorithmic convergence will be faster because the voxel
traces have fewer intersections. In the case of the GCD algorithm,
a common solution to this problem is to iterate over the voxels such
that widely separated voxels are simultaneously updated (see [10])
and therefore there are fewer intersections in the voxel traces. Al-
though this will also lead to better parallel performance because
the lock waiting overhead is reduced, the cache locality is reduced
because there is little sharing of measurement data.

Our solution In this section, we describe our parallel SV ICD
algorithm, called PSV-ICD. It uses inter-SV parallelism and main-
tains both good cache locality and good parallel performance. To
speed up convergence, we operate on multiple SVs that are far apart
in the image space, similar to what GCD does with voxels. The
distance between these SVs also minimizes interference and lock
contention resulting from simultaneous SVs update. Each SV has
its own SVB, and within a SV updates are performed sequentially,
as in Section 3, ensuring good cache locality. We call the technique
with multiple SVs and SVBs Augmented SVB. Algorithm 4 shows
the detailed implementation of this parallel SV algorithm (PSV-
ICD). In the beginning of the program, each computing core is as-
signed with one SV in step 4, and then each core creates its own
SVB, denoted SVBk for the kth SV, by copying needed memory
accesses into private, local per-core caches in step 5.

Algorithm 4 PSV-ICD (G, e, d)

INPUT: G, d as before in Algorithm 2
OUTPUT: e: error term
LOCAL: SVBk

e , SVBk
d as before in Algorithm 2

LOCAL: (SVBk
e)

′
a temporary copy of SV Bke

LOCAL: SVBk
∆e error buffer for svk

1: Initialize e and create a tessellating SVs set P
2: while P is not empty do
3: Identify svsubset ⊂ P
4: for super-voxel svk ∈ svsubset do in parallel
5: Create SVBk

e , SVBk
d as in Algorithm 2

6: (SVBk
e)

′
← SVBk

e

7: update all voxels uj ∈ svk as in Algorithm 2
8: SVBk

∆e ← SVBk
e − (SVBk

e)
′

9: Lock
10: e← e+ SVBk

∆e

11: Unlock
12: end for
13: P ← P \ svsubset
14: end while
15: if image not converged then
16: SVs set P shifts phase. Go back to step 2.
17: end if

The augmented SVB, illustrated in Figure 6, enables inter-SV
parallelism. Because multiple SVs are being operated on simulta-
neously, pressure on shared caches is increased. Tuning the size of
the SVs can control the pressure, and the multiple SVBs allow each
core to access its data without interfering with other cores. A direct
benefit of this is reduced contention on shared memory locations
that are being updated. Another benefit is a reduction in both false
and true sharing on caches. Shown in Figure 8 (c), this algorithm,
on average, leads to a significant 187X speedup on 20 cores over
the baseline ICD. The algorithm also uses the same two phase de-
sign described in Section 3.1, resulting in convergences as fast as
the sequential algorithm, as seen in Figure 9 of the Experimental
Results section.

The challenge with inter-SV parallelism is that the SVBs for dif-
ferent SVs will overlap in the sinogram domain, as shown in Fig-
ure 6. This means the individual SVBs’ data must be combined into
the full sinogram at the end of SV updates. At the end of SV up-
dates, each SVBk contains updated sinogram data for the kthSV
only. A simple solution, such as the lock and unlock used in Algo-
rithm 3, will not work for simultaneous SV updates since if a SV
updates the full sinogram without taking into account updates by
other SVs, the other SVs’ updates will be overwritten and lost. In
order to solve this problem, we create a second SVB error buffer
for each SV. This error buffer, denoted SVBk

∆e, is initialized to 0
and all changes of data relative to kth SV are made to this buffer
only. When SV k has been updated, the sinogram data changes
kept in SVBk

∆e are atomically added to the full sinogram, updating
and not overwriting the result. In addition to combining individual
SVBs’ data into the full sinogram, this approach can also signifi-
cantly reduce lock waiting time. Intrinsically, this approach reduces
all of the local updates to one update to the full sinogram. By using
this approach, voxel updates within a SV can be performed asyn-
chronously while other SVs are being processed, so lock contention
within a SV does not happen. The lock waiting overhead exists only
after all voxels within a SV are updated. In Algorithm 4, SVBk

∆e

is created in step 8 after all voxels in the SV are updated and it rep-
resents the additions of data made to this buffer. At the end of the

Sinogram)Space)

ch
an
ne

l)

supervoxel)buffer)#1)

cache)lines)

Sinogram)Space)ch
an
ne

l)

supervoxel)buffer)#2)

cache)lines)

Figure 6: Parallel SVs update with separate augmented SVBs. Two
different SVs have different but overlapping sinogram bands.

algorithm in step 10, these additions of data are atomically added
back to the memory.

5. Experiment Results
In this section, we apply various CT image reconstruction algo-
rithms to a benchmark data set containing 3200 test cases obtained
from an Imatron C-300 scanner in the ALERT Task Order 3 (TO3)
study [5]. Each slice in this data set has the following specification:
(1) parallel beam projection; (2) 720 views uniformly distributed
between 0 and 180 degrees; (3) 1024 channels uniformly sampled
over the region of interest (ROI); (4) 512×512 reconstructed image
size with an embedded circular ROI.

Figure 7 is an example slice in the data set reconstructed by both
FBP and MBIR. Notice that MBIR has much higher image quality
with less noise in the smooth region of this slice. We choose this
data set because it has been confirmed as the standard CT data set
in ALERT task order efforts and the number of views, channels and
selected image resolution for this data set are typical of real image
scanners.

To summarize our empirical results, Table 1 lists detailed re-
sults. Because the baseline ICD, SV-ICD/SVB and PSV-ICD do
not update all voxels (see Section 2 and [26]) in each iteration, we
measure convergence using equivalent iterations or equits. Each
N voxel updates, where N is the number of voxels in the im-
age, is one equit. In addition, we evaluate algorithmic convergence
by measuring the root-mean-square error (RMSE) in Hounsfield
Units3 between the result and a fully converged reconstruction af-
ter approximately 20 equits. In extensive experimentation in the
past, we have found that an RMSE of less than 10 HU consistently
results in high quality reconstructions with little or no visible con-
vergence artifacts. Therefore, all reconstructions in this table are
converged to reach less than 10 HU of RMSE. All data in this
table was collected on a node containing two standard 2.6 GHZ
clock rate Intel Processors Xeon-E5 2660 v3 with 10 cores. Each
core has an L1 data cache of size 32 KB and an L2 cache of 256
KB. Each core also has a shared L3 cache of 25 MB. All of the
algorithms in the experimental results have been implemented in
OpenMP using the Intel C++ Compiler version 15.0.3.187 and

3 The Hounsfield Unit (HU) is a CT measurement unit of the object’s radio
density comparing with the radio density of distilled water.

Xrec

MBIR

Smooth	
 Region	

(a)

Xrec

MBIR Smooth	
 Region	

(b)

Figure 7: One reconstructed slice example in Imatron C-300 scans by FBP and MBIR. The image on the left is this slice fully converged by
FBP. The image on the right is done by MBIR. Note the image quality enhancement in the smooth region.

SIMD pragmas to specify parallelization and data vectorization.
In addition, optimization level -O3 was used in compiling codes.
The baseline ICD refers to the conventional ICD algorithm dis-
cussed in Section 2.2 with 1 core. The baseline code is accessible at
https://engineering.purdue.edu/ bouman/software/tomography/mbirct/
[15] and is used by researchers in many real-world applications,
for example, [13, 14, 19]. The SV reconstruction in this table uses
square SVs of side length 13 because it is empirically shown to be
the best choice for the SV size for this processor.

To better understand and quantify our results, we use a very
simple model of computation time given below. The computation
time given below is the average computation time per slice. As
described in Section 4, inter-slice parallelism has been widely used
with good parallel performance [19]. Our experiments focus on
average computation time per slice and the parallel performance
within each slice, since this is considered to be the most difficult
case.

Tr =
NFNe
OFEF

(7)

where:

1. Tr = average actual reconstruction time.

2. NF = average number of single precision billion floating point
operations (GFLOP) per equit.

3. Ne = average number of equits required for reconstruction.

4. OF = average theoretical single precision GFLOP per second
of CPU.

5. EF = average GFLOP efficiency. EF is the ratio of Topt to
Tr where Topt is the theoretical seconds given 100% GFLOP
efficiency.

Using this framework, Table 1 quantifies the result of our exper-
iments on 3200 slices in the TO3 data set. Notice that we achieved
over 187 speedup, on average, over the single core baseline algo-
rithm by using the PSV-ICD algorithm on a node with 2 Intel Xeon-
E5 processors with 20 computing cores in total. The maximum and
minimum speedup on 20 cores was 243 and 160.

Importantly, by comparing column 3 with column 2, we can also
see that almost 14.5 speedup on average comes from the improved
sequential code GFLOP efficiency EF . This is directly a result of

both the SV design and the SVB design, for the SV design increases
the temporal locality of cache uses and the SVB design increases
the hardware prefetching rate. Figure 8(a) shows L1, L2 and L3
cache level data cache miss rate in the same experiment. The L2
data cache miss rate decreases significantly from 75% to 17%, on
average. Nevertheless, there is a minor cache miss increase at the
L3 level because of the large amount of memory copies in steps 5, 6
and 14 in Algorithm 2. This trend is more obvious with the number
of cores increases. Figure 8(b) shows L1, L2 and L3 cache level
data cache miss rate of PSV-ICD at different number of cores. With
more cores and more memory copies, L3 cache miss rate slowly
increases from 13% at 1 core to 19% at 20 cores. However at the
same time, the existence of augmented SVB also decreases the L2
cache miss rate from 17% at 1 core to 10% at 20 cores.

In addition, the L2 cache prefetching also contributes to the
L2 cache miss rate reduction. Baseline ICD has 0.14% prefetch
rate, 3.6% prefetch hit rate for its L2 cache prefetcher on average.
PSV-ICD (20 cores) L2 prefetch rate increases to 0.94% and its
prefetch hit rate is 33.6% on average. We can observe that both the
prefetch rate and the prefetch hit rate significantly improve when
using SVBs. L1 and L3 prefetch rates are not measured because the
Intel Haswell microarchitecture has no event type that can directly
measure them.

These reductions in the data cache miss and prefetch hit rate
increases have a direct effect on EF , the processor floating point
operations efficiency. If we compare column 2 and column 3 in Ta-
ble 1, EF increases by 14.5 times on average but EF drops some-
what when the number of cores increases. At 20 cores, EF is 9
times higher than the baseline ICD’s despite the lost parallel effi-
ciency from multicore communication cost and waiting on locks.
For serial Baseline ICD, there is no multicore communication cost
or lock waiting overhead. At 20 cores, however, PSV-ICD spends
53% its time on lock waiting overhead. To help us understand the
single core performance better, Figure 8(c) shows EF at different
numbers of cores when the multicore communication cost and lock
waiting overhead are not accounted for. We can see that PSV-ICD
maintains good single core performance when the number of cores
increases.

Results showing PSV-ICD parallel computations strong scal-
ing speedup can be found in Figure 8(d). The important result of

Factor Baseline ICD SV-ICD/SVB PSV-ICD(4) PSV-ICD(16) PSV-ICD(20)
OF (GFLOP) 83 83 332 1331 1664
NF (GFLOP) 18.52 18.38 18.38 18.38 18.38
Ne (equits) 4.6 4.0 4.1 4.1 4.2

EF (efficiency) 0.41% 5.95% 4.0% 3.34% 3.70%
Tr (sec) 253 15 5.6 1.8 1.35
Topt (sec) 1.03 0.89 0.22 0.06 0.05
Speedup 16.86X 45.17X 140.55X 187.40X

Table 1: Table of performance measurement for all algorithms discussed in this paper. Column 2 is the baseline ICD code. Column 3
is SV-ICD/SVB. Columns 4-6 are PSV-ICD with 4 cores, 16 cores and 20 cores respectively. Note that row 6, Tr , is the average actual
reconstruction time and row 8 is the speedup of Tr at 20 cores comparing with the sequential baseline ICD.

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

L1	
 cache	
 L2	
 cache	
 L3	
 cache	

Ca
ch
e	

M
is
s	
 R

at
e	

PSV-­‐ICD	
 (1	
 core)	
 Baseline	
 ICD	

(a) PSV-ICD (1 core) and Baseline ICD’s data cache
miss rate at different levels of cache.

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

BS	
 1	
 4	
 8	
 12	
 16	
 20	

Ca
ch
e	

M
is
s	
 R

at
e	

#	
 of	
 Cores	

L1	
 Cache	
 L2	
 Cache	
 L3	
 Cache	

(b) PSV-ICD data cache miss rate up to 20 cores. BS
is baseline ICD.

0%	

1%	

2%	

3%	

4%	

5%	

6%	

7%	

8%	

9%	

10%	

1	
 4	
 8	
 12	
 16	
 20	

G
FL
O
P	

Effi

ci
en

cy
	
 (N

o	

O
ve
rh
ea
d)
	

#	
 of	
 Cores	

PSV-­‐ICD	

(c) PSV-ICD’s average GFLOP efficiency given no
communication overhead or lock wait time.

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

200	

0	
 2	
 4	
 6	
 8	
 10	
 12	
 14	
 16	
 18	
 20	

Sp
ee
du

p	

#	
 of	
 Cores	

PSV-­‐ICD	

(d) PSV-ICD’s parallel performance strong scaling
speedup up to 20 cores.

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

200	

1	
 4	
 8	
 12	
 16	
 20	

Sp
ee
du

p	

#	
 of	
 Cores	

Side=3	
 Side=9	
 Side=13	
 Side=21	

(e) PSV-ICD strong scaling speedup at different
square SV side lengths.

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

1	
 4	
 8	
 12	
 16	
 20	

St
ro
ng
	
 S
ca
lin

g	

Effi

ci
en

cy
	

#	
 of	
 Cores	

Side=3	
 Side=9	
 Side=13	
 Side=21	

(f) PSV-ICD strong scaling efficiency at different
square SV side lengths.

Figure 8

this figure is that the speedup is almost linear in the number of
cores. This shows that PSV-ICD and augmented SVB is an efficient
method for parallelizing the updates of multiple SVs. PSV-ICD has
an advantage in both cache locality and lock wait overhead. In var-
ious experiments on PSV-ICD speedup, SV size has a significant
fundamental impact on the speedup. Figure 8(e) records PSV-ICD
speedup at different square SV side lengths. Since a SV is a group
of voxels in the shape of a square in the image space, a SV side
length of 9 corresponds to a size of 81 voxels in the SV for exam-
ple. From Figure 8(e), we can see that SV side length of 13 has the
best performance at 20 cores with a speedup of 187. Both increas-
ing SV and decreasing the SV size will hamper its parallel perfor-
mance. A too large SV size will definitely increase cache pressures
and reduce the cache hit rate. At the same time, a too small SV
size increases parallel communications frequency and lock waiting
overhead in step 10 of Algorithm 4. VTune analyzer shows that
PSV-ICD with SV side length of 9 spends more than 72% of its

time on waiting for locks when running on 20 cores. PSV-ICD with
SV side length of 13, however, is able to reduce lock waiting time
to 53% when running on 20 cores.

Figure 8(f) shows PSV-ICD strong scaling parallel efficiency
performance at different SV side lengths. The numerator in the
efficiency calculation is the sequential version of PSV-ICD. The
denominator is the parallel version of PSV-ICD multiplied by the
number of cores. PSV-ICD with SV side length of 3 drops its
efficiency quickly because of waiting for locks when the number of
cores increases. This also explains why GCD and PSV-ICD have
such dramatic performance differences in parallel computations.
GCD can be viewed as Inter-SV parallelism with only one voxel in
each SV. Having a too small SV size will dramatically increase the
lock wait time when the number of cores increases. On the other
hand, PSV-ICD with SV side length of 21 reduces the lock wait
time but has a much steeper parallel efficiency drop compared with
SV side length of 13 because of the reduced cache hit rate from

0	

100	

200	

300	

400	

500	

600	

700	

800	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	

RM
SE
	

Equits	

Baseline	
 ICD	
 PSV-­‐ICD	
 (Square)	
 PSV-­‐ICD	
 (Circle)	

(a)

0	

100	

200	

300	

400	

500	

600	

700	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	

RM
SE
	

Equits	

Baseline	
 ICD	
 PSV-­‐ICD	
 (1	
 core)	
 PSV-­‐ICD	
 (20	
 cores)	

(b)

Figure 9: (a) Illustrates that it is better to use square SVs than circular SVs in the two phase convergence mechanism because square SVs
converge faster. (b) Convergence speed plot of RMSE versus equits. PSV-ICD (20 cores) converges faster than Baseline ICD since the second
equit.

the large SV size. In addition, Figure 8(f) also accounts for the
efficiency lost from parallel executions. It takes about 5 seconds
from 1 core sequential code to 1 core parallel code because PSV-
ICD has the parallel atomic operations at step 10 in Algorithm 4,
which the sequential code does not have. That explains why the
parallel efficiency drops faster in the first few cores and then drops
slower for more cores.

The PSV-ICD algorithm’s convergence rate is also a point of
interest. In this benchmark of 3200 test cases, we require all al-
gorithms to converge fully, so as to have a better understanding
of their convergence. Our results indicate that our PSV-ICD can
converge to a RMSE of 8 HU after 4.1 equits on average on the
benchmark data set. In addition, we did not observe a significant
change in the convergence rate for PSV-ICD versus the baseline
ICD algorithm. Figure 9(a) shows a plot of RMSE versus equits for
PSV-ICD (1 core). For the two phase convergence mechanism, we
note that convergence is slower when using circular SVs than with
square SVs. Square SVs generally maintains the same convergence
speed as the baseline ICD algorithm although it converges faster in
the initial equits.

Figure 9(b) shows the convergence speed of baseline ICD and
PSV-ICD with different cores. Note that PSV-ICD in Figure 9(b)
uses square SVs. The results show that PSV-ICD’s convergence
speed (1 core) is no slower than the baseline ICD implementation
and it even has a small edge in the initial equits. This advantage
continues until after the fifth equit. As to the convergence plot of
PSV-ICD (20 cores) algorithms, it is easy to see that the PSV-ICD
algorithm initially suffers from overshoot due to the violation of de-
pendencies discussed in the challenges of parallelism in Section 4.
The robust convergence of MBIR, however, allows the PSV-ICD al-
gorithm to self correct this inconsistency error in later equits. Start-
ing from the second equit, the PSV-ICD algorithm converges as
fast as SV-ICD. In addition, the convergence speed is not adversely
affected by more parallel-computing units shown in the plot. PSV-
ICD has the same convergence speed at 1 core and 20 cores.

6. The Broader Application to Other Domains
While this paper focuses on the problem of high-performance CT
systems, the methodology we describe is applicable to a broad

range of sensing problems that can be expressed in the form

x̂ = arg min
x
{‖y −Ax‖Λ + S(x)} (8)

where x̂ is the sensor output data, y is measurement data, S(x)
is a stabilizing regularizer, Λ is a weighting matrix and A is an
unstructured sparse matrix.

This sensor output data can be viewed as an image. In fact,
most imaging problems can be put into the framework of equa-
tion (8). These include problems such as whole body CT, PET, or
MRI imaging, transmission and scanning electron microscopy, syn-
chrotron, neutron imaging, proton imaging and ultrasound imaging.

Nonetheless in many other cases,4 the data is simply a multidi-
mensional array of quantitative measurements of the environment
or an object under test. For many of these problems, also known as
the “compressive sensing problems,” the objective is to sense some
underlying state of the physical world from some indirect, noisy,
sparse measurements and the stabilizing function, S(x) in equa-
tion 8, is typically taken to be an L0 or L1 norm. In recent years,
there has been a great deal of interest in compressive sensing as a
method for extracting high fidelity data from sparse measurements
[6].

For the general problem of equation (8), the PSV-ICD algorithm
provides a parallel framework for computing the compressive sens-
ing problems efficiently. The traditional approach has been to find
columns of A that are uncorrelated [11]. More specifically, if we
define the correlation between columns to be

cor(i, j) =

N∑
k=1

|Ak,i| · |Ak,j | (9)

then the traditional approach is to find different columns i and
j such that cor(i, j) = 0. Intuitively, when cor(i, j) = 0, the
columns i and j share no values of y in common and the process-
ing of these columns may be performed independently. This ap-
proach has been driven by the desire to find columns which lead to
“embarrassingly parallel” processing tasks [10, 27]. Columns that

4 such as autonomous navigation, depth sensors, digital holography, graph-
ical inference, geophysical sensing, radar, synthetic aperture radar, lidar,
synthetic aperture lidar, radio astronomy, crystallography, machine learning
techniques such as the least absolute shrinkage and selection operator.

are uncorrelated, however, result in little or no memory reuse since
both columns access completely different entries of the measure-
ment data, y. This means that the resulting algorithm is severely
bounded by the memory access.

In this paper, we demonstrate that the PSV-ICD algorithm can
achieve both parallelization and cache locality in the compressive
sensing problems by breaking the common conviction. The ap-
proach of PSV-ICD is to select columns of i and j that maximize
the value of cor(i, j) for each core. At the same time, however, the
value of cor(i, j) for columns processed on different cores is mini-
mized. In the framework of equation (8), an SV is a set of columns
S such that for all i, j ∈ S, cor(i, j) is large. A large value of
cor(i, j) allows for a great deal of memory reuse since entries in y
can be accessed many times for each core. This memory reuse can
dramatically reduce cache miss rates and lead to much faster perfor-
mance on a single core. Across different SVs, the cross SV correla-
tion, cor(i, j), is small. A small value of cor(i, j) across different
SVs allows for more parallelism and fewer lock contentions. This
balance between cache locality and parallelism is achieved through
hierarchical parallelism, discussed in detail in Section 4.

7. Conclusion
While MBIR provides high quality image reconstructions and is
agnostic to scanner geometries, it has been considered impractical
because of its long running time. ICD is able to speed up conver-
gence but parallelism has been viewed as being very limited and the
data layout has made effective use of cache memories difficult. In
this work, we have shown different levels of parallelism available in
high performance CT reconstruction and that inter-SV parallelism
can be effectively used by the PSV-ICD algorithm. Our experimen-
tal results have shown significant speedups and reduced running
time by using PSV-ICD, making MBIR practical. We view this as
a major breakthrough in making MBIR available for a wide range
of applications.

We also note that we are still utilizing less than 6% of processor
efficiency despite significant performance gains. Thus, future work
will focus not only on scaling these applications to a large num-
ber of processors by utilizing other levels of parallelism, but also
towards further increasing processor efficiency.

Acknowledgments
We would like to thank John Reppy for his helpful comments.
In addition, this research was supported by the U.S. Department
of Homeland Security under SBIR Award D15PC00110, subcon-
tracted through High Performance Imaging LLC, and by the Indi-
ana Economic Development Corporation (IEDC). Additional sup-
port was provided by the DHS ALERT Center for Excellence sup-
ported by the U.S. Department of Homeland Security, Science
and Technology Directorate, Office of University Programs, under
Grant Award 2013-ST-061-ED0001. The views and conclusions
contained in this document are those of the authors and should not
be interpreted as necessarily representing the official policies, ei-
ther expressed or implied, of the U.S. Department of Homeland
Security or the IEDC.

References
[1] S. Basu and Y. Bresler. O(N2 log2 N) Filtered Backprojection Re-

construction Algorithm for Tomography. IEEE Transactions on Image
Processing, 9(10), 2000.

[2] J. E. Bowsher, M. Smith, J. Peter, and R. J. Jaszczak. A Comparison of
OSEM and ICD for Iterative Reconstruction of SPECT Brain Images.
Journal of Nuclear Medicine, 79(5), 1998.

[3] N. Clinthorne, T. S. Pan, P. C. Chiao, W. L. Rogers, and J. A. Stamos.
Preconditioning Methods for Improved Convergence Rates in Itera-

tive Reconstructions. IEEE Transactions on Medical Imaging, 12(1),
1993.

[4] S. Degirmenci, D. G. Politte, C. Bosch, N. Tricha, and J. A.
O’Sullivan. Acceleration of Iterative Image Reconstruction for X-
Ray Imaging for Security Applications. In Proceedings of SPIE-IS&T
Electronic Imaging, volume 9401, 2015.

[5] DHS/ALERT. Research and Development of Reconstruc-
tion Advances in CT-based Object Detection systems.
https://myfiles.neu.edu/groups/ALERT/strategic_
studies/TO3_FinalReport.pdf, 2009.

[6] Y. C. Eldar and G. Kutyniok. Compressed Sensing: Theory and
Applications. Cambridge University Press, 2012.

[7] J. Fessler. Analytical Tomographic Image Reconstruction Methods.
University of Michigan-Ann Arbor, Ann Arbor, MI, 2009.

[8] J. Fessler and S. D. Booth. Conjugate-Gradient Preconditioning Meth-
ods for Shift-variant PET Image Reconstruction. IEEE Transactions
on Image Processing, 8(5), 1999.

[9] J. A. Fessler and D. Kim. Axial Block Coordinate Descent (ABCD)
Algorithm for X-ray CT Image Reconstruction. In 11th International
Meeting on Fully Three-Dimensional Image Reconstruction in Radi-
ology and Nuclear Medicine, 2011.

[10] J. A. Fessler, E. Ficaro, N. Clinthorne, and K. Lange. Grouped-
Coordinate Ascent Algorithms for Penalized-Likelihood Transmission
Image Reconstruction. IEEE Transactions on Medical Imaging, 16(2),
1997.

[11] S. Ha and K. Mueller. An algorithm to compute independent sets of
voxels for parallelization of icd-based statistical iterative reconstruc-
tion. In The 13th International Meeting on Fully Three-Dimensional
Image Reconstruction in Radiology and Nuclear Medicine, 2015.

[12] C. Hoilund. The Radon Transformation. http://mlsp.cs.cmu.
edu/courses/fall2012/lectures/Carsten_Hoilund_Radon.
pdf, 2007.

[13] P. Jin, E. Haneda, C. A. Bouman, and K. D. Sauer. A Model-based 3D
Multi-slice Helical CT Reconstruction Algorithm for Transportation
Security Application. In Second International Conference on Image
Formation in X-Ray Computed Tomography, 2012.

[14] P. Jin, C. A. Bouman, and K. D. Sauer. A Method for Simultaneous
Image Reconstruction and Beam Hardening Correction. In 2013
IEEE Nuclear Science Symposium and Medical Imaging Conference
(NSS/MIC), pages 1–5, 2013.

[15] P. Jin, S. J. Kisner, T. Frese, and C. A. Bouman. Model-Based It-
erative Reconstruction (MBIR) Software for X-ray CT. Available from
https://engineering.purdue.edu/ bouman/software/tomography/mbirct/,
November 2013.

[16] C. Kamphuis and F. J. Beekman. Accelerated Iterative Transmis-
sion CT Reconstruction Using an Ordered Subsets Convex Algorithm.
IEEE Transactions on Medical Imaging, 17(6), 1998.

[17] S. J. Kisner, E. Haneda, C. A. Bouman, S. Skatter, M. Kourinny, and
S. Bedford. Model-Based CT Reconstruction from Sparse Views.
In Second International Conference on Image Formation in X-Ray
Computed Tomography, pages 444–447, June 2012.

[18] B. D. Man, S. Basu, J.-B. Thibault, J. Hsieh, J. A. Fessler, C. A.
Bouman, and K. Sauer. A Study of Different Minimization Ap-
proaches for Iterative Reconstruction in X-ray CT. In IEEE Nuclear
Science Symposium, volume 5, pages 2708–2710, 2005.

[19] K. A. Mohan, S. V. Venkatakrishnan, J. W. Gibbs, E. B. Gulsoy,
X. Xiao, M. D. Graef, P. W. Voorhees, and C. A. Bouman. TIMBER: A
Method for Time-Space Reconstruction from Interlaced Views. IEEE
Transactions on Computational Imaging, 1(2):96–111, June 2015.

[20] K. Sauer and C. Bouman. A Local Update Strategy for Iterative Re-
construction from Projections. IEEE Transactions on Signal Process-
ing, 41(2), 1993.

[21] J. Shewchuk. An Introduction to the Conjugate Gradient Method
Without the Agonizing Pain. Carnegie Mellon University, Pittsburgh,
PA, 1994.

[22] J. B. Thibault, K. D. Sauer, C. A. Bouman, and J. Hsieh. A Three-
Dimensional Statistical Approach to Improved Image Quality for
Multi-Slice Helical CT. Medical Physics, 34(11), 2007.

[23] X. Wang, C. A. Bouman, and S. P. Midkiff. High Performance
Model Based Image Reconstruction. In 2015 ACM/IEEE Confer-
ence on Supercomputing, November 2015. URL http://sc15.
supercomputing.org/sites/all/themes/SC15images/src_
poster/poster_files/spost107s2-file1.pdf.

[24] X. Wang, K. A. Mohan, S. J. Kisner, C. A. Bouman, and S. P. Midkiff.
Fast Voxel Line Update for Time-Space Image Reconstruction. In The
41st IEEE International Conference on Acoustics, Speech and Signal
Processing, 2016.

[25] Z. Yu, J.-B. Thibault, C. Bouman, K. Sauer, and J. Hsieh. Edge-
Localized Iterative Reconstruction for Computed Tomography. In 10th
International Meeting on Fully Three-Dimensional Image Reconstruc-
tion in Radiology and Nuclear Medicine, 2009.

[26] Z. Yu, J.-B. Thibault, C. A. Bouman, K. D. Sauer, and J. Hsieh. Fast
Model-Based X-Ray CT Reconstruction Using Spatially Nonhomo-
geneous ICD Optimization. IEEE Transactions on Image Processing,
20(1), 2011.

[27] J. Zheng, S. S. Saquib, K. Sauer, and C. A. Bouman. Parallelizable
Bayesian Tomography Algorithms with Rapid, Guaranteed Conver-
gence. IEEE Transactions on Image Processing, 9(10), 2000.

